
Journal of Automated Reasoning (2023) 67:32
https://doi.org/10.1007/s10817-023-09682-2

Reasoning About Vectors: Satisfiability Modulo a Theory of
Sequences

Ying Sheng1 · Andres Nötzli1 · Andrew Reynolds2 · Yoni Zohar3 · David Dill4 ·
Wolfgang Grieskamp4 · Junkil Park4 · Shaz Qadeer4 · Clark Barrett1 · Cesare Tinelli2

Received: 31 January 2023 / Accepted: 17 August 2023 / Published online: 15 September 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Dynamic arrays, also referred to as vectors, are fundamental data structures used inmany pro-
grams. Modeling their semantics efficiently is crucial when reasoning about such programs.
The theory of arrays is widely supported but is not ideal, because the number of elements is
fixed (determined by its index sort) and cannot be adjusted, which is a problem, given that
the length of vectors often plays an important role when reasoning about vector programs.
In this paper, we propose reasoning about vectors using a theory of sequences. We introduce
the theory, propose a basic calculus adapted from one for the theory of strings, and extend
it to efficiently handle common vector operations. We prove that our calculus is sound and
show how to construct a model when it terminates with a saturated configuration. Finally, we
describe an implementation of the calculus in cvc5 and demonstrate its efficacy by evaluating
it on verification conditions for smart contracts and benchmarks derived from existing array
benchmarks.

Keywords Satisfiability Modulo Theories · Decision Procedures · Sequences · Vectors

1 Introduction

Generic vectors are used in many programming languages. For example, in C++’s stan-
dard library, they are provided by std::vector. Automated verification of software
systems that manipulate vectors requires an efficient and automated way of reasoning
about them. Desirable characteristics of any approach for reasoning about vectors include:
(i) expressiveness—operations that are commonly performed on vectors should be supported;
(ii) generality—vectors are always vectors of elements of some type (e.g., vectors of integers),
and so it is desirable that vector reasoning be integrated within a more general framework;
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solvers for satisfiability modulo theories (SMT) provide such a framework and are widely
used in verification tools (see [3] for a recent survey); (iii) efficiency—fast and efficient rea-
soning is essential for usability in a verification context, especially as verification tools are
increasingly used by non-experts and in continuous integration.

Despite the ubiquity of vectors in software on the one hand and the effectiveness of
SMT solvers for software verification on the other hand, there is not currently a clean way
to represent vectors using operators from the SMT-LIB standard [6]. While the theory of
arrays can be used, it is not a great fit because SMT-LIB arrays have a fixed size (possibly
even infinite) determined by their index type. Representing a dynamic array thus requires
additional modeling work expressed by extending an SMT problem with an axiomatization
of relevant properties of vectors. This involves, for expressiveness, the use of quantified
formulas, which often makes the reasoning engine less efficient and robust. Indeed, part of
the motivation for this work was frustration with array-based modeling in the Move Prover,
a verification framework for smart contracts [28] (see Sect. 7 for more information about
the Move Prover and its use of vectors). The current paper bridges this gap by studying
and implementing a native theory of sequences in the SMT framework, which satisfies the
desirable properties for vector reasoning listed above.

Wepresent twoSMT-based calculi for determining satisfiability of quantifier-free formulas
in the theory of sequences, and obtain solving procedures for that theory as rule application
strategies for those calculi. Since the decidability of the satisfiability problem for quantifier-
free formulas in even weaker theories is unknown (see, e.g., [8, 18]), we do not aim for a
decision procedure. Rather, we prove model and solution soundness (entailing that, when
our procedures terminate, their answers are correct). Our first calculus leverages reasoning
techniques for the theory of strings from the SMT-LIB standard, which can be seen as a theory
of sequences ofUnicode characters.We generalize these techniques by lifting rules specific to
sequences of characters to more general rules for arbitrary element types. By itself, this base
calculus is alreadyquite effective.However, it lacks rules to performhigh-level vector-specific
reasoning. For example, both reading from and updating a vector are very common operations
in programming, and reasoning efficiently about the corresponding sequence operators is thus
crucial. Our second calculus addresses this gap by integrating reasoning methods from array
solvers, which handle reads and updates efficiently, into the first procedure. Notice, however,
that this integration is not trivial, as it must handle novel combinations of operators (such as
the combination of update and read operators with concatenation) as well as out-of-bounds
cases that do not occur with SMT-LIB arrays. We have implemented both calculi in the cvc5

SMT solver [2] and evaluated them on benchmarks originating from the Move prover, as
well as benchmarks that were translated from SMT-LIB array benchmarks.

Consistentwith the choice to consider a theory of generic sequences, both of our calculi are
agnostic about the sort of the elements in the sequence. However, for combination purposes,
we consider here only element sorts that are infinite. This makes the theory stably infinite,
allowing for a simple, Nelson-Oppen-style [22] combination of our procedures for it with
those for other theories.More sophisticated combinationmethods require a stronger property,
politeness [20, 24], which we expect to investigate in future work.

The rest of the paper is organized as follows. Section2 includes basic notions from first-
order logic. Section3 introduces the theory of sequences and shows how it can be used to
model vectors. Section4 presents calculi for this theory. Section5 proves that the calculi
are correct for the theory. Section6 describes the implementation of these calculi in cvc5.
Section7 presents an evaluation comparing Z3 and several variations of the sequence solver
in cvc5. We conclude in Sect. 8 with directions for further research.
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1.1 RelatedWork

Our work crucially builds on a proposal by Bjørner et al. [9], but extends it in several key
ways. First, their implementation (for a logic they call QF_BVRE) restricts the generality
of the theory by allowing only bit-vector elements (representing characters) and assuming
that sequences are bounded. In contrast, our calculus maintains full generality, allowing
unbounded sequences and elements of arbitrary sort. Second, while our core calculus focuses
only on a subset of the operators in [9], our implementation supports the remaining operators
by reducing them to the core operators, and also adds native support for the update operator,
which is not included in [9].

The base calculus that we present for sequences builds on similar work for the theory
of strings [7, 21]. We extend our base calculus to support array-like reasoning based on the
weak-equivalence approach [12]. Though there exists prior work on extending the theory of
arrays with more operators and reasoning about length [1, 11, 15, 17, 19], this work does not
consider many of the other sequence operators we consider here. Most notably, it does not
consider concatenation.

The SMT solver Z3 [13] provides a theory solver for sequences. However, its documen-
tation is limited [10], it does not support update directly, and its internal algorithms are not
described in the literature. Furthermore, as we show in Sect. 7, the performance of the Z3

implementation is generally inferior to our implementation in cvc5.
A preliminary version of this work was published in the proceedings of IJCAR 2022 [27].

The current article extends the original version with complete proofs. Further, while [27]
only sketched the model construction method (when a saturated configuration in our calculi
is found), here, model construction is formalized, thoroughly described, and proven correct.

2 Preliminaries

We assume the usual notions and terminology of many-sorted first-order logic with equality
(see, e.g., [16] for a complete presentation). We consider many-sorted signatures �, each
containing a set of sort symbols (including a Boolean sort Bool), a family of logical symbols
≈ for equality, with sort σ × σ → Bool for all sorts σ in � and interpreted as the identity
relation, and a set of interpreted (and sorted) function symbols. We fix a set X of infinitely-
many variables of sort σ , for each sort σ of �, and adopt the usual definitions of well-sorted
terms with variables from X , and of well-sorted literals and formulas as terms of sort Bool.
Given a set of terms S, we write T (S) to denote the set of all subterms of S. A literal is flat
if it has the form ⊥, p(x1, . . . , xn), ¬p(x1, . . . , xn), x ≈ y, ¬x ≈ y, or x ≈ f (x1, . . . , xn),
where p and f are function symbols and x , y, and x1, . . . , xn are variables. By convention
and unless otherwise stated, we use letters w, x, y, z to denote variables and s, t, u, v to
denote terms.

A�-interpretationM is defined as usual and assigns: false toM(⊥); a setM(σ ) to every
sort σ of �; a functionM( f ) : M(σ1) × . . . × M(σn) → M(σ ) to every function symbol
f of � with arity σ1 × . . . × σn → σ ; and an element M(x) ∈ M(σ ) to every variable x
of sort σ . The satisfaction relation between interpretations and formulas is defined as usual
and is denoted by |�.

A theory is a pair T = (�, I), inwhich� is a signature and I is a class of�-interpretations,
closed under variable reassignment. A �-formula ϕ is satisfiable (resp., unsatisfiable) in T ,
or T -(un)satisfiable, if it is satisfied by some (resp., no) interpretation in I. Two�-formulas ϕ
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Fig. 1 Signature for the theory of sequences

andψ are T -equisatisfiable ifϕ is T -satisfiable iffψ is T -satisfiable. For a theory T = (�, I),
a set � of �-formulas and a �-formula ϕ, we say that � entails ϕ in T (or T -entails ϕ) and
write � |�T ϕ if every interpretation M ∈ I that satisfies every formula of � also satisfies
ϕ. We write just |�T ϕ when � is empty. For a signature �, the empty theory of �, also
known as the theory of uninterpreted functions (UF), is (�, I), where I is the class of all
�-interpretations. We often drop � when it is clear from the context.

The theory TLIA = (�LIA, ITLIA) of linear integer arithmetic is based on the signature �LIA
that includes a single sort Int, all natural numbers as constant symbols, the unary − symbol,
the binary+ symbol, and the binary≤ relation, all with the expected rank. For k ∈ N, we use
the notation k · x , inductively defined by 0 · x = 0 and (m + 1) · x = x +m · x . In turn, ITLIA
consists of all interpretations M for �LIA in which the domain M(Int) is the set of integer
numbers, for every constant symbol n ∈ N, M(n) = n, and +, −, and ≤ are interpreted
as usual. We use standard notation for integer intervals (e.g., [a, b] for the set of integers i ,
where a ≤ i ≤ b and [a, b) for the set where a ≤ i < b).

3 A Theory of Sequences

In this section, we define the theory TSeq of sequences. Its signature�Seq is given in Fig. 1. It
includes the sortsSeq,Elem, Int, andBool, intuitively denoting sequences, sequence elements,
integers, and Booleans, respectively. The first four lines include symbols of �LIA. We write
t1 �	 t2, with �	 ∈ {>,<,≥}, as syntactic sugar for the equivalent literal expressed using
≤ and possibly ¬. For example, x < y is expressed as ¬(y ≤ x). The sequence symbols
are given on the remaining lines, using mixfix notation for the length and concatenation
operators. Figure1 also provides the arity of each function symbol, that is, the number and
sorts of its input arguments (if any) and the sort of its result. Notice that _ ++ · · · ++ _ is a
variadic function symbol; we require that it takes at least two arguments.

3.1 Semantics

The theory TSeq consists of all the �Seq-interpretations that interpret:

• Int as the set of all integers;
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• Elem as some non-empty set E ;
• Seq as the set of finite sequences whose elements are from E , that is, the set E∗ of all

words over the alphabet E ;
• each numeral as the corresponding integer;
• +,−, and ≤ as integer addition, negation, and comparison, respectively;
• ε as the empty sequence;
• unit as the function that maps every element of E to the sequence containing only that

element;
• |_| as the function len that maps every sequence of E∗ to its length;
• nth as a function that maps every sequence s ∈ E∗ and integer n to the n-th element of

s when n is in bounds, i.e., 0 ≤ n < len(s),1 and to an arbitrary integer when n is out of
bounds;

• update as the function that maps every sequence s ∈ E∗, integer i , and element e ∈ E
to s itself if i is out of bounds and to the sequence obtained from s by replacing its i-th
element by e if i is in bounds;

• extract as the function that maps every sequence s ∈ E∗ and integers i and l to the
maximal sub-sequence of s starting at index i and having length at most l if both i and
l are non-negative and i < len(x)2 the function returns the empty sequence in all other
cases;

• _ ++ · · · ++ _ as the function that maps two or more sequences s1, s2, . . . , sn of E∗ to
their concatenation s1s2 · · · sn .
Notice that the interpretations of Elem and nth are not completely fixed by the theory:

different models of TSeq may differ on the set they associate with Elem and on the value
returned by nth when its second argument is out of bounds. Also notice that TSeq is a
conservative extension of the theory TLIA of linear integer arithmetic introduced earlier, that
is, every �LIA-formula is TSeq-satisfiable iff it is TLIA-satisfiable.

3.2 Vectors as Sequences

We show the applicability of TSeq by using it for a simple verification task. Consider the
C++ function swap at the top of Fig. 2 . This function swaps two elements in a vector.
The comments above the function include a partial specification for it: if both indexes are
in bounds and the indexed elements are equal, then the function should not change the
vector (this is expressed by s_out == s). We now consider how to encode the verification
condition induced by the code and the specification. The function variables a, b, i , and j
can be encoded as variables of sort Int with the same names. We include two copies of s:
s for its value at the beginning, and sout for its value at the end. But what should the sorts
of s and sout be? In the following examples, we consider two options, one based on arrays
(Example 1) and the other on sequences (Example 2). Figure2 summarizes the encodings of
the two alternatives.

Example 1 (Arrays) The theory of arrays includes three sorts: index, element (in this case,
both are Int), and an array sort Arr, as well as two operators: x[i], interpreted as the i th
element of x ; and x[i ← a], interpreted as the array obtained from x by setting the element
at index i to a. The variables and formulas used for this example are given on the left-hand

1 We number elements in a sequence starting at 0.
2 In Bjørner et al. [9], the second argument j denotes the end index, while here it denotes the length of the
sub-sequence, in order to be consistent with the theory of strings in the SMT-LIB standard.
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Fig. 2 An example using TSeq

side of the table of in Fig. 2. We declare s and sout as variables of an uninterpreted sort Vec
and declare two functions � and c, which, given v of sort Vec, return its length (of sort Int)
and content (of sort Arr), respectively.3

Next, we introduce functions to model vector operations: ≈A for comparing vectors,
nthA for reading from them, and updateA for updating them. These functions need to be
axiomatized. We include two axioms (see bottom of Fig. 2): Ax1 states that two vectors are
equal iff they have the same length and content. Ax2 axiomatizes the update operator relying
on the definition of array updates: the updated vector has the same length as the original one,
and if the update index i is in bounds, the updated content has the update value at index i and
is otherwise identical to the original content. These axioms are not meant to be complete but
are strong enough for the example.

The first two lines of the swap function are encoded as equalities using nthA, and the last
two lines are combined into one nested constraint using updateA. The precondition of the
specification is naturally modeled using nthA, and the post-condition is negated, so that the
unsatisfiability of the formula entails the correctness of the function w.r.t. the specification.
Indeed, the conjunction of all formulas in this encoding is unsatisfiable in the combined
theories of arrays, integers, and uninterpreted functions.

The above encoding, while being good enough to prove the verification condition, has two
main shortcomings: it introduces auxiliary symbols and it uses quantifiers, reducing clarity
and efficiency. The next example illustrates how the theory of sequences allows for a more
natural and succinct encoding.

3 It is possible to obtain a similar encoding using the theory of datatypes (see, e.g., [5]); however, here we
use uninterpreted functions which are simpler and more widely supported by SMT solvers.
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Example 2 (Sequences) In the sequences encoding, given in the right-hand side of the table
in Fig. 2, s and sout have sort Seq. No auxiliary sorts or functions are needed, as the theory
symbols can be used directly. Further, these symbols do not need to be axiomatized as their
semantics is fixed by the theory. The resulting formula is much shorter than in Fig. 1 and has
no quantifiers. It is also unsatisfiable in TSeq and can be proven so with our calculus.

4 Calculi

After introducing some definitions and assumptions (Sect. 4.1), we describe a basic calculus
for the theory of sequences, which adapts techniques from previous procedures for the theory
of strings (Sect. 4.2). In particular, the basic calculus reduces the operators nth and update by
introducing concatenation terms. We then show how to extend that calculus with additional
rules inspired by solvers for the theory of arrays (Sect. 4.3); the modified calculus can often
reason about nth and update terms directly, avoiding the introduction of concatenation terms
(which are typically expensive to reason about).

4.1 Basic Definitions

For conciseness, we use a vector of sequence terms t = (t1, . . . , tn) to denote the term
corresponding to the concatenation of t1, . . . , tn . More precisely, t denotes ε if n = 0,
denotes t1 if n = 1, and denotes t1 ++ · · · ++ tn otherwise.

Definition 1 A �Seq-formula ϕ is a sequence constraint if it has the form s ≈ t or s 
≈ t . It
is an arithmetic constraint if

1. it has the form s ≈ t , s ≥ t , s 
≈ t , or s < t where s, t are terms of sort Int; or
2. it is a disjunction c1 ∨ c2 of two arithmetic constraints.

Notice that sequence constraints do not have to contain sequence terms (e.g., x ≈ y where
x, y are Elem-variables). Also, equalities and disequalities between terms of sort Int are
both sequence and arithmetic constraints. In this paper we focus on sequence constraints and
arithmetic constraints. This is justified by the following lemma.

Lemma 1 For every quantifier-free �Seq-formula ϕ, there are sets S1, . . . , Sn of sequence
constraints and sets A1, . . . ,An of arithmetic constraints such that: (i) ϕ is TSeq-satisfiable
iff Si ∪ Ai is TSeq-satisfiable for some i ∈ [1, n]; and (ii) for every TSeq-interpretation M
and i ∈ [1, n], if M |� Si ∪ Ai , then M |� ϕ.

Proof Using standard transformations, ϕ can be transformed into a disjunction ϕ′ = ϕ1 ∨
. . .∨ϕn , where for each i ∈ [1, n], ϕi is a conjunction of flat literals ϕ1

i , . . . , ϕ
ni
i , such that (i)

ϕ and ϕ′ are TSeq-equisatisfiable; and (ii) for every TSeq-interpretation M, if M |� ϕ′, then
M |� ϕ. Each flat literal in ϕi is either a sequence constraint or an arithmetic constraint. For
each i ∈ [1, n] we set Si = {ϕ j

i | such that ϕ
j
i is a sequence constraint } and Ai = {ϕ j

i |
such that ϕ j

i is an arithmetic constraint }. Both (i) and (ii) follow easily. ��
We present the calculi with the following simplifying assumptions.

Assumption 1 Whenever we refer to a set S of sequence constraints, we assume:

1. for every non-variable term t ∈ T (S), there exists a variable x such that x ≈ t ∈ S;
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Fig. 3 Rewrite rules for the reduced form t↓ of a term t , obtained from t by applying these rules to completion

2. for every variable x of sort Seq, there exists a variable �x such that �x ≈ |x | ∈ S;
3. all literals in S are flat.

Whenever we refer to a set of arithmetic constraints, we assume all its literals are flat.

These assumptions are without loss of generality as any set can be easily transformed
into a TSeq-equisatisfiable set satisfying the assumptions by the addition of fresh variables
and equalities. Some of the derivation rules we introduce later, which operate on a set S
of sequence constraints and a set A of arithmetic constraints, introduce non-flat literals in
those sets. In such cases, we assume that similar transformations are done immediately after
applying the rule to maintain the invariant that all literals in S∪A are flat. Similarly, rules may
introduce arithmetic literals, such as �x > 0, that are not arithmetic constraints according
to Definition 1. Every one of those literals, however, can be converted to an equivalent set
of arithmetic constraints, and so we assume that they are, to guarantee that A remains a set
of arithmetic constraints. Rules may also introduce fresh variables k of sort Seq. We further
assume for brevity that in such cases, a corresponding constraint �k ≈ |k| is added to S,
where �k is a fresh variable of sort Int.

Definition 2 Let C be a set of constraints. We write C |� ϕ to denote that C entails formula
ϕ in the empty theory, and write ≡C to denote the binary relation over T (C) such that s ≡C t
iff C |� s ≈ t .

Lemma 2 For every set S of sequence constraints,≡S is an equivalence relation; furthermore,
every equivalence class of ≡S contains at least one variable.

We denote the equivalence class of a term s according to ≡S by [s]≡S and drop the ≡S
subscript when it is clear from the context.

In the presentation of the calculus, it will often be useful to normalize terms to what we
call a reduced form.

Definition 3 Let t be a�Seq-term. The reduced form of t , denoted by t↓, is the term obtained
by applying to it the rewrite rules listed in Fig. 3to completion.

Observe that t↓ is well defined because the given rewrite rules form a terminating and
confluent rewrite system. Termination can be seen by noting that each rule reduces the
number of applications of sequence operators in the left-hand side term or keeps that number
the same but reduces the size of the term. It is confluent because the reduction rules for length
constraints have no ambiguity, and the last two rules about concatenation have a unique final
form, which is the result of removing all the empty sequences and nested concatenations. It
is not difficult to show that |�TSeq t ≈ t↓.

We now introduce some basic definitions related to concatenation terms. The goal is to be
able to define when such terms are made up of basic building blocks that cannot be further
decomposed.
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Definition 4 A concatenation term is a term of the form s1 ++· · ·++ sn with n ≥ 2. If each si
is a variable, it is a variable concatenation term. For a set S of sequence constraints, a variable
concatenation term x1 ++ · · · ++ xn is singular in S if S � xi ≈ ε for at most one variable
xi with i ∈ [1, n]. A sequence variable x is atomic in S if S � x ≈ ε and for all variable
concatenation terms s ∈ T (S) such that S |� x ≈ s, s is singular in S.

Intuitively, a variable concatenation term is singular if it contains at most one variable that is
not equivalent to the empty sequence; a sequence variable is atomic if it is inequivalent to the
empty sequence and every concatenation term it is equivalent to is singular. Thus, an atomic
variable cannot be further decomposed into a concatenation of more than one (non-empty)
term.

We now lift the concept of atomic variables to representatives of equivalence classes.

Definition 5 LetSbe a set of sequence constraints.Assume a choice functionα : T (S)/≡S →
T (S) that chooses a variable from each equivalence class of ≡S. A sequence variable x is an
atomic representative in S if it is atomic in S and x = α([x]≡S).

Finally, we define a relation between a sequence variable and its furthest expansion into
concatenations. For example, from x ≈ x1 ++ u and u ≈ x2 ++ x3, we can expand x to get
x ≈ x1 ++ x2 ++ x3. Informally, under the right conditions on a set of atoms of the form
x ≈ x1 ++ · · · ++ xn , we can apply such expansions to completion and obtain a unique
representation for each sequence variable which we can then treat as the variable’s normal
form (defined formally in Lemma 6 in the next section).

Definition 6 Let S be a set of sequence constraints. We inductively define a relation S |�++
x ≈ s, where x is a sequence variable in S and s is a sequence term whose variables are in
T (S), as follows:

1. S |�++ x ≈ x for all sequence variables x ∈ T (S).
2. S |�++ x ≈ t for all sequence variables x ∈ T (S) and variable concatenation terms t ,

where x ≈ t ∈ S.
3. If S |�++ x ≈ (w ++ y ++ z)↓ and S |� y ≈ t and t is ε or a variable concatenation term

in S that is not singular in S, then S |�++ x ≈ (w ++ t ++ z)↓.
Let α be a choice function for S as defined in Definition 5. We additionally define the
entailment relation S |�∗++ x ≈ y, with y = (y1, . . . , yn) (n ≥ 0), to hold if each element of
y is an atomic representative in S and there exists z of length n such that S |�++ x ≈ z and
S |� yi ≈ zi for i ∈ [1, n].
In other words, S |�∗++ x ≈ t holds when t is a concatenation of atomic representatives
and is entailed to be equal to x by S. In practice, t is determined by recursively expanding
concatenations using equalities in S up to a fixpoint. Note that our rules ensure that cyclic
equations (i.e., of the form x ≈ t[x]) either collapse into x ≈ x or create an inconsistency in
the arithmetic theory (see Lemma 4).

Example 3 Suppose S = {x ≈ y++z, y ≈ w++u, u ≈ v} (we omit the additional constraints
required by Assumption 1, part 2 for brevity). It is easy to see that u, v, w, and z are
atomic in S, but x and y are not. Furthermore, w and z (and one of u or v) must also be
atomic representatives. By Item 2 of Definition 6, we have S |�++ x ≈ y ++ z. Then, since
S |� y ≈ w ++ u and w ++ u is a variable concatenation term not singular in S, we get
that S |�++ x ≈ ((w ++ u) ++ z)↓, and so S |�++ x ≈ w ++ u ++ z. Now, assume that
v = α([v]≡S) = α({v, u}). Then, S |�∗++ x ≈ w ++ v ++ z.
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Our calculi can be understood as modeling abstractly a cooperation between an arithmetic
subsolver and a sequence subsolver. Many of the derivation rules in these calculi lift those
in the string calculus of Liang et al. [21] to sequences of elements of an arbitrary sort. We
describe them similarly as rules that modify configurations.

Definition 7 A configuration is either the distinguished configuration unsat or a pair (S,A)

of a set S of sequence constraints and a set A of arithmetic constraints.

The derivation rules are given in guarded assignment form, where the rule premises describe
the conditions on the current configuration under which the rule can be applied, and the con-
clusion is eitherunsat, or otherwise describes the resultingmodifications to the configuration,
with a syntax of the form X , y abbreviating X ∪ {y}. A rule may have multiple alternative
conclusions separated by ‖. In the rules, some of the premises have the form S |� s ≈ t (see
Definition 2) or S |�LIA s ≈ t where |�LIA abbreviates |�TLIA . The former entailment can be
checked with standard algorithms for congruence closure, and the latter can be checked by
solvers for linear integer arithmetic.

An application of a rule is redundant if it has a conclusion that is not unsat and where each
component in the derived configuration is a subset of the corresponding component in the
premise configuration.We assume that for rules that introduce fresh variables, the introduced
variables are identical whenever the premises triggering the rule are the same (i.e., we cannot
generate an infinite sequence of rule applications by continuously using the same premises to
introduce fresh variables).4 A configuration other than unsat is saturated with respect to a set
R of derivation rules if every possible application of a rule in R to it is redundant. Notice that,
in particular, the rules A-Conf and S-Conf cannot be applied to a configuration that is saturated
with respect to those rules, as this would result in unsat and would thus not be redundant.

A derivation tree is a tree where each node is a configuration and its children, if any, are
obtained by a non-redundant application of a rule of the calculus. A derivation tree is closed
if all of its leaves are unsat. As we show later, a closed derivation tree with root node (S,A)

is a proof that A ∪ S is unsatisfiable in TSeq. In contrast, a derivation tree with root node
(S,A) and a saturated leaf with respect to all the rules of the calculus is a witness that A ∪ S
is satisfiable in TSeq.

Our two calculi are built out of the derivation rules listed in Figs. 4, 5, and 6. Based on
what we said above about the implicit postprocessing of the sets of constraints derived by
those rules, one can prove that all of them transform configurations to configurations, leading
to the following lemma which we will implicitly rely on when proving later results.

Lemma 3 For every rule from Figs. 4, 5 and 6 that does not derive unsat, if S′ and A′ are the
sets resulting from applying the rule to a configuration (S,A), then (S′,A′) is a configuration
as well.

A configuration (S,A) is satisfied by an interpretation if S ∪ A is satisfied by that inter-
pretation. In contrast, the configuration unsat is satisfied by no interpretation. A derivation
rule is sound if for every model of TSeq that satisfies the configuration in the rule’s premise
there is one that satisfies one of the configurations in the rule’s conclusion.

4.2 Core Calculus

We now present the first calculus for solving TSeq-formulas.

4 In practice, this is implemented by associating each introduced variable with a witness term as described in
Reynolds et al. [26].
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Fig. 4 The core derivation rules, where k and i denote fresh variables of sequence and integer sort, respectively,
and w1, w2 are fresh element variables

Fig. 5 Reduction rules for extract, nth, and update. The rules use k, k′, and k′′ to denote fresh sequence
variables. We write s ≈ min(t, u) as an abbreviation for s ≈ t ∨ s ≈ u, s ≤ t, s ≤ u

Definition 8 The calculus BASE consists of the derivation rules in Figs. 4 and 5.

Some of the rules are adapted from previous work on string solvers [21, 25]. Compared to that
work, our presentation of the rules is noticeably simpler, due to our use of the relation |�∗++
from Definition 6. In particular, our configurations consist only of pairs of sets of formulas,
without any auxiliary data-structures.

The rules in Fig. 4 form the core of the calculus. For greater clarity, some of the conclusions
of the rules include terms before they are flattened. First, either subsolver can report that
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Fig. 6 Extended derivation rules. The rules use z1, . . . , zn to denote fresh sequence variables and e, e′ to
denote fresh element variables

the current set of constraints is unsatisfiable by using the rules A-Conf or S-Conf. The latter
corresponds to a situation where congruence closure detects a conflict between an equality
and a disequality. The rules A-Prop, S-Prop, and S-A correspond to a form of Nelson–Oppen-
style theory combination5 of the two sub-solvers. The first two rules communicate equalities
between terms, while the third guesses arrangements for shared variables of sort Int. Rule
L-Intro ensures that the length term |s| for each sequence term s is equal to its reduced form
(|s|)↓. Rule L-Valid restricts sequence lengths to be non-negative, splitting on whether each
sequence is empty or has a length greater than 0. Rule U-Eq captures the injectivity of the
unit operator. We will introduce the definition of normal form later in Lemma 6. For now, it
can be intuitively treated as a unique representation of each sequence variable introduced by

5 Note that this goes beyond Nelson–Oppen combination because the theories TLIA and TSeq are not disjoint.
As a consequence, the exchanged (dis)equalities are not limited to shared variables.
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|�∗++. In view of this, rule C-Eq concludes that two sequence terms are equal if they have the
same normal form. If a sequence variable has two different normal forms, rule C-Split takes
the first differing components y and y′ from the two normal forms and splits on their length
relationship. Note that C-Split is a source of non-termination of the calculus, and in fact the
only one (see, e.g., [21, 25]). Finally, rule Deq-Ext handles disequalities between sequences
x and y by either asserting that their lengths are different or by choosing an index i at which
they differ.

Figure 5 includes a set of reduction rules for handling operators that are not directly
handled by the core rules. These reduction rules capture the semantics of these operators by
reduction to concatenation. Rule R-Extract splits into two cases: either the extraction uses an
out-of-bounds index or a non-positive length, in which case the result is the empty sequence,
or the original sequence can be described as a concatenation that includes the extracted sub-
sequence. Rule R-Nth creates an equation between y and a concatenation term with unit(x) as
one of its components, as long as i is not out of bounds. Rule R-Update considers two cases. If
i is out of bounds, then the update term is equal to y. Otherwise, y is equal to a concatenation,
with the middle component (k′) representing the part of y that is updated. In the update term,
k′ is replaced by unit(z).

Example 4 Consider a configuration (S,A), where S contains the formulas x ≈ y ++ z,
z ≈ v++ x ++w, and v ≈ unit(u), and A is empty. Hence, S |� |x | ≈ |y ++ z|. By L-Intro, we
have S |� |y ++ z| ≈ |y|+ |z|. Together with Assumption 1, we have S |� �x ≈ �y + �z , and
then with S-Prop, we have �x ≈ �y +�z ∈ A. Similarly, we can derive �z ≈ �v +�x +�w, �v ≈
1 ∈ S, and so

A |�LIA �z ≈ 1 + �y + �z + �w. (1)

Notice that for any variable k of sort Seq, we can apply L-Valid, L-Intro, and S-Prop to add to
A either �k > 0 or �k = 0. Applying this to y, z, w, we have that A |�LIA ⊥ in each branch
thanks to (1), and so A-Conf applies and we get unsat.

Before moving forward, we provide the following helper lemma which relates concate-
nation terms to their lengths.

Lemma 4 Let S be a set of sequence constraints andA a set of arithmetic constraints. Suppose
(S,A) is saturated w.r.t. S-Prop, L-Intro and L-Valid. If x1 ++ · · · ++ xn ∈ T (S) is a variable
concatenation term of size n not singular in S, then

1. A |�LIA �n
k=1�xk ≥ 2; and

2. for each m ∈ [1, n], A |�LIA �n
k=1�xk > �xm .

Proof Let i, j ∈ [1, n], i 
= j , such that S � xi ≈ ε and S � x j ≈ ε. We know that
xi , x j ∈ T (S), so by saturation of L-Valid, we have A |� �xi > 0 and A |� �x j > 0.
Also, by saturation of L-Valid, L-Intro, and S-Prop, together with Assumption 1, we know that
A |�LIA �xk ≥ 0 for k ∈ [1, n]. It follows that A |�LIA �n

k=1�xk ≥ 2. Furthermore, for each
m ∈ [1, n], A |�LIA �n

k=1�xk > �xm . ��
The calculus uses judgments of the form S |�∗++ x ≈ t . The following lemma shows that it
is possible to compute whether those judgments hold.

Lemma 5 Let S be a set of sequence constraints and A a set of arithmetic constraints. If
(S,A) is saturated w.r.t. A-Conf, S-Prop, L-Intro and L-Valid, the problem of determining whether
S |�∗++ x ≈ s for given x and s is decidable.
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Proof We show that the set of pairs (x, s) for which S |�++ x ≈ s is finite (it is then easy to
see that the set of pairs (y, t) for which S |�∗++ y ≈ t is also finite). Consider a tree whose
root is obtained by Item 1 or Item 2 of Definition 6 where the children of a node are all
possible results of applying Item 3 of Definition 6. Note that each node can have only finitely
many children as there are only finitely many pairs (y, t) where y is a variable in S and t is ε

or a variable concatenation term in T (S). Below, we show that every path in the tree is finite,
from which it follows that the tree is finite. Since there are only finitely many such trees, it
follows that the set of (x, s) for which S |�++ x ≈ s is finite.

Define a partial order ≺ over terms of sort Seq in T (S), by s ≺ t iff A |�LIA �xs < �xt
for some variables xs and xt such that xs ≡S s and xt ≡S t . We show that ≺ is well
defined. First, by Assumption 1, such xs and xt exist. Next, if xs ≡S s, xt ≡S t , x ′

s ≡S s
and x ′

t ≡S t , then A |�LIA �xs < �xt iff A |�LIA �x ′
s

< �x ′
t
, since S |� xs ≈ x ′

s and
S |� xt ≈ x ′

t by saturation of S-Prop. Finally, by saturation with respect to A-Conf, ≺ is
irreflexive, asymmetric, and transitive. Let ≺∗ be the (well-founded) Dershowitz–Manna
multiset ordering induced by ≺ [14], that is, the minimal transitive relation that satisfies:
A ≺∗ B whenever A is obtained from B by removing a single element b, and possibly
adding any finite number of elements a such that a ≺ b for every such new element. Now,
for each term t of sort Seq in T (S), let m(t) be the multiset of the terms occurring in it (the
multiplicity of each element in this multiset is the number of times it occurs in t). We prove
the following claim, which establishes that every path in the tree mentioned above is finite:
if S |�++ x ≈ (w ++ y ++ z)↓, S |� y ≈ t and t is ε or a variable concatenation term in S
that is not singular in S, then m((w ++ y ++ z)↓) �∗ m((w ++ t ++ z)↓).

We consider two cases: t is ε or t is a variable concatenation term in T (S) not singular
in S. In the first case, (w ++ t ++ z)↓ = (w ++ z)↓. Note that the only role of ↓ here is to
flatten nested concatenations. Hence, y is removed from the multiset of sub-terms and is not
replaced by anything, so m((w ++ y ++ z)↓) �∗ m((w ++ t ++ z)↓).

In the second case, t is a variable concatenation term in S not singular in S. Let t =
t1 ++ . . . ++ tn . Now, (w ++ (t1 ++ · · · ++ tn) ++ z)↓ is a flat concatenation in which y was
removed, and t1, . . . , tn were added. To prove a decrease in ≺∗ from m((w ++ y ++ z)↓)

to m((w ++ t ++ z)↓), we show that for every k ∈ [1, n], tk ≺ y, that is, A |�LIA �tk < �y
(notice that tk and y are variables). By Lemma 4, we know that for each k ∈ [1, n], A |�LIA
�n
i=1�ti > �tk . Since S |� y ≈ t , we have S |� |y| = |t |. By saturation of L-Intro and S-Prop,

and by Assumption 1, it follows that A |� �y = �n
i=1�ti . Thus, A |�LIA �y > �tk . ��

Lemma 5 assumes saturation with respect to certain rules. Accordingly, our proof strategy,
described in Sect. 6, will ensure such saturation before attempting to apply rules relying on
|�∗++.

The following lemma shows that the relation |�∗++ induces a normal form for each
equivalence class of ≡S.

Lemma 6 Let S be a set of sequence constraints andA a set of arithmetic constraints. Suppose
(S,A) is saturated w.r.t. A-Conf, S-Prop, L-Intro, L-Valid, and C-Split. Then, for every equivalence
class e of ≡S whose terms are of sort Seq, there exists a unique (possibly empty) s such that
whenever S |�∗++ x ≈ s′ for x ∈ e, then s′ = s. In this case, we call s the normal form of e
(and of x).

Proof Let e be an equivalence class of ≡S whose terms are of sort Seq, and let x ∈ e (we
know every equivalence class has at least one variable by Lemma 2). We show existence and
uniqueness of a normal form for e.
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Existence: We show that for some s, S |�∗++ x ≈ s. Consider the tree construction of
Lemma 5. If we follow some path in the tree, we will reach a node S |�++ x ≈ t for which
no children can be derived (i.e., Item 3 of Definition 6 doesn’t apply). It is not hard to see
that t = (t1, . . . , tn), where n ≥ 0 and each ti is a variable for i ∈ [1, n].

Let s have the same length as t and let si := α(ti ) for i ∈ [1, n]. We prove that S |�∗++
x ≈ s. We know that S |�++ x ≈ t . If n = 0, then trivially, S |�∗++ x ≈ s. Otherwise, for
each i ∈ [1, n], we further know that S |� ti ≈ si and si = α([si ]), so it only remains to
show that si is atomic in S. Assume it is not. Then either S |� si ≈ ε or there exists a variable
concatenation term u ∈ T (S) not singular in S such that S |� si ≈ u. In either case, this
would imply that Item 3 of Definition 6 is applicable to S |�++ x ≈ t , contradicting our
assumption.

Uniqueness: By the existence argument above, there exists some s such that S |�∗++ x ≈ s.
Now, suppose S |�∗++ x ≈ s′, and assume that s 
= s′. Then there must bew, z, z′, y, y′, each
containing only variables that are atomic representatives, such that s = (w ++ y ++ z)↓ and
s′ = (w ++ y′ ++ z′)↓, with y 
= y′. By saturation w.r.t. C-Split, there are three possibilities:
A |� �y > �y′ and y ≈ y′ ++ k ∈ S for some k; A |� �y < �y′ and y′ ≈ y ++ k ∈ S for some
k; or A |� �y = �y′ and y ≈ y′ ∈ S. In the first case, notice that since S |� y ≈ y′ ++ k, it
follows that S |� |y| ≈ |y′ ++ k|. Also, by saturation of L-Intro, S |� |y′ ++ k| ≈ |y′|+|k|. So,
S |� |y| ≈ |y′|+ |k|. And, by saturation of S-Prop and Assumption 1 also A |� �y ≈ �y′ +�k .
It follows that S � k ≈ ε; otherwise, we would have A |� �k ≈ 0 by L-Intro and S-Prop, which
together with A |� �y > �y′ contradicts saturation of A-Conf. Also, y′ is atomic and hence,
S � y′ ≈ ε. Thus, S |� y ≈ y′ ++ k but y′ ++ k is not singular in S as S � k ≈ ε and
S � y′ ≈ ε. In particular, this means that y is not atomic, which contradicts our assumption,
so the first case is impossible. The second case is analogous to the first. In the third case, we
have y ≈ y′ ∈ S, but y and y′ are both equivalence class representatives, so y = y′, which
contradicts our assumption that y 
= y′. ��

4.3 Extended Calculus

Next, we present a variant of the BASE calculus that combines array reasoning with the core
rules of that calculus and the R-Extract rule.

Definition 9 The calculus EXT is comprised of the derivation rules in Figs. 4 and 6, with the
addition of rule R-Extract from Fig. 5.

Unlike in BASE, the rules in Figs. 6 do not reduce nth and update to concatenation oper-
ations. Instead, they reason about those operators directly and handle their combination
with concatenation. Rule Nth-Concat identifies the i-th element of sequence y with the corre-
sponding element selected from its normal form (see Lemma 6). Rule Update-Concat operates
similarly, applying update to all the components. Rule Update-Concat-Inv operates similarly
on the updated sequence rather than on the original sequence. Rule Nth-Unit captures the
semantics of nthwhen applied to a unit term. RuleUpdate-Unit is similar and distinguishes an
update on an out-of-bounds index (different from 0) from an update within the bound. Rule
Nth-Intro is meant to ensure that rules Nth-Update (explained below) and Nth-Unit (explained
above) are applicable whenever an update term exists in the constraints. Rule Nth-Update

captures the read-over-write axioms of arrays, adapted to consider their lengths as in Christ
and Hoenicke [12]. It distinguishes three cases. In the first, the update index is out of bounds.
In the second, it is not out of bounds, and the corresponding nth term accesses the same
index that was updated. In the third case, the index used in the nth term is different from the

123



32 Page 16 of 34 Y. Sheng et al.

updated index. Rule Update-Bound splits on two cases: either the update changes the sequence,
or the sequence remains the same. Finally, rule Nth-Split introduces a case split on the equality
between two sequence variables x and x ′ whenever they appear as arguments to nth with
equivalent second arguments. This is needed to ensure that we detect all cases where the
arguments of two nth terms must be equal.

5 Correctness

In this section, we prove that the calculi presented in Sect. 4 are correct. This is formalized
by following theorem:

Theorem 1 Let X ∈ {BASE, EXT} and (S0,A0) be a configuration. Assume without loss of
generality that A0 contains only arithmetic constraints that are not sequence constraints.
Let T be a derivation tree obtained by applying the rules of X with (S0,A0) as the initial
configuration.

1. If T is closed, then S0 ∪ A0 is TSeq-unsatisfiable.
2. If T contains a saturated configuration (S,A) w.r.t. all the rules of X, then S ∪ A is

TSeq-satisfiable, and so is S0 ∪ A0.

The theorem states that the calculi are correct in the following sense: if a closed derivation
tree is obtained for the constraint set S0 ∪ A0 then that is unsatisfiable in TSeq; if a tree with
a saturated leaf is obtained, then it is satisfiable. It is possible, however, that neither kind of
tree can be derived by the calculi, making them neither refutation-complete nor terminating.
This is not surprising since, as mentioned in the introduction, the decidability of even weaker
theories is still unknown.

In the remainder of this section, we prove the above theorem for the extended calculus
EXT. The simpler case of BASE can be obtained by an adaptation.

5.1 Proof of Theorem 1, Item 1

The proof of Item 1 is routine, and amounts to a local soundness check of each derivation
rule. Most rules in our calculi are easily shown to be sound. The only non-routine cases are
those involving the |�∗++ relation. They rely on the following lemma.

Lemma 7 Let S be a set of sequence constraints andA a set of arithmetic constraints. Suppose
(S,A) is saturated w.r.t. S-Prop, L-Intro, and L-Valid. If S |�∗++ x ≈ s then S |�TSeq x ≈ s.

Proof Suppose S |�∗++ x ≈ s where s = (s1, . . . , sn). Then, for some s′ = (s′
1, . . . , s

′
n),

S |�++ x ≈ s′ and S |� si ≈ s′
i for i ∈ [1, n]. To show that S |�TSeq x ≈ s, it thus

suffices to show that S |�TSeq x ≈ s′. As shown in Lemma 5, there is a finite number k of
derivation steps in |�++ that yield x ≈ s′. We prove the claim by induction on k. For k = 1,
we either apply Item 1 or Item 2. In the former case we get a trivial identity S |�++ x ≈ x ,
and clearly S |�TSeq x ≈ x . In the latter case, we get an identity S |�++ x ≈ t such
that S |� x ≈ t , and so in particular S |�TSeq x ≈ t . Suppose k > 1, and that x ≈ s′
was obtained using Item 3 of Definition 6. Hence, s′ has the form (w ++ t ++ z)↓, where
S |�++ x ≈ (w ++ y ++ z)↓ with a shorter derivation, and S |� y ≈ t . By the induction
hypothesis, S |�TSeq x ≈ (w ++ y ++ z)↓. Clearly, S |�TSeq y ≈ t . Hence, S |�TSeq x ≈ s′. ��
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Using Lemma 7, we can prove the soundness of rules that use |�∗++. For example, we can
show the soundness of the C-Split rule as follows. Since S |�∗++ x ≈ s implies that x ≈ s
follows from S in TSeq, we have that every model of the premise configuration of C-Split

assigns the same value to (w ++ y ++ z)↓ and (w ++ y′ ++ z′)↓. Assuming that the first two
branches of the conclusion do not hold in some model, we indeed get that the interpretations
of y and y′ must be identical, as they are the sub-sequence of the same sequence, that begins
at the same index and whose length is the same.

5.2 Proof of Theorem 1, Item 2

Consider a saturated configuration (S,A). We first define an interpretation M, based on
(S,A) in Sect. 5.2.1. Then, we prove that M is well-defined in Sect. 5.2.2. Finally, we show
in Sect. 5.2.3 thatM |� S∪ A. By construction,M is designed to be a model of TSeq, hence
S ∪ A is TSeq-satisfiable. The TSeq-satisfiability of S0 ∪ A0 is an immediate consequence of
that fact that S0 ∪ A0 ⊆ S ∪ A since, except for A-Conf and S-Conf, none of rules removes
constraints from the current configuration.

5.2.1 Model Construction

We will construct a satisfying interpretation M for a saturated configuration (S,A) bottom-
up by interpreting Elem as an arbitrary but countably infinite set. We can do that because,
intuitively, TSeq itself allows such interpretations and is such that no set of �Seq constraints
can impose an upper bound on the cardinality of Elem. Note, however, that in a theory
combination setting, where Elem is replaced by a sort (such as Bool, for instance) that admits
only finite interpretations, our construction will not work. In that case, in fact, our calculus
needs to be extended with additional rules that take the finiteness of the element sort into
account as done, for instance, in Liang et al. [21] for the theory of strings over a finite
alphabet.

For our model construction, we start with the lengths of the sequences, obtained from
solving the TLIA-constraints. Then the element variables are be assigned with distinct inter-
pretations. For that, we rely on the element domain being infinite. We use aweak equivalence
graph to capture constraints that are based on update. In the graph, two variables connected
by an edge will differ in their interpretation on at most one element. We carefully assign
atomic sequence variables in the graph, starting with element-wise assignments deduced by
nth. We assign distinct values to all remaining elements for the sequence variables. Non-
atomic sequence variables are assigned simply by following the values assigned to their
corresponding equivalent concatenation terms.

Unless stated otherwise, by equivalence class we mean an equivalence class w.r.t. ≡S and
may drop the subscript when referring to it (e.g., writing [x] for the equivalence class of x).
We say that an equivalence class e is atomic in S if its terms are of sort Seq and all variables
in it are atomic in S. From now on, we will simply say “atomic” to mean “atomic in S.” Note
that if e contains any variable that is atomic, then all variables in e are atomic.

The definitions provided below completely define the interpretation M. Definition 10
defines the domains of M; Definition 11 defines the interpretations of the function symbols
of �Seq, except nth, whose definition is deferred. Definition 12 defines the interpretations of
variables of sort Int and Elem; Definition 13 assigns lengths, but not yet values, to the inter-
pretations of variables of sort Seq that are atomic; Definition 14 defines the interpretations of
variables of sort Seq that are equivalent to unit terms; Definition 17 defines the interpretations
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of variables of sort Seq that are atomic but not equivalent to unit terms; Definition 18 defines
the interpretations of variables of sort Seq that are not atomic; Finally, Definition 19 fully
defines the interpretation of the nth symbol in M.6

Definition 10 (Model construction: domains)

1. M(Int) = Z, the set of integers.
2. M(Elem) is some countably infinite set E .
3. M(Seq) is the set E∗ (of finite sequences whose elements are taken from E).

The domains for Int and Seqwere chosen tomeet the requirements of TSeq. The exact identity
of Elem is not important, and so we set its elements to be arbitrary. In contrast, as argued
above, its cardinality is, as we will see later.

Definition 11 (Model construction: function symbols) The symbols shown in Fig. 1, except
for nth, are interpreted as prescribed by the semantics of TSeq provided in Sect. 3.1.

Now we can assign values to variables of sort Int and Elem.

Definition 12 (Model construction: Int and Elem variables)

1. Let A be a TLIA-interpretation (with A(Int) = Z) that satisfies A. Then M(x) := A(x)
for every variable x of sort Int.

2. Let a1, a2, . . . be an enumeration of M(Elem), and let e1, . . . , en be an enumeration of
the equivalence classes of ≡S whose variables have sort Elem. Then, for every i ∈ [1, n]
and every variable x ∈ ei , M(x) := ai .

Next,we assign values to variables of sort Seq.Wewill first associate a sequence valuewith
every sequence equivalence class (we write M(e) for the value associated with equivalence
class e). Then, for each equivalence class e and for each x ∈ e, we define M(x) := M(e).
We start by defining lengths.

Definition 13 (Model construction: length of atomic variables) For each variable x in an
atomic equivalence class e of ≡S, we constrain M(e) to be a sequence of length M(�x ).

Note that because every atomic variable is in an atomic equivalence class, Definition 13
assigns a length to every atomic variable. In what follows, we denote the length assigned to
M(e) in Definition 13 by �e.

Next, we define model values for atomic variables. We start with equivalence classes that
contain unit-terms. We will call an equivalence class e of ≡S a unit equivalence class if
unit(x) ∈ e for some x .

Definition 14 (Model construction: atomic variables in unit equivalence classes) For every
atomic variable x such that x ≡S unit(y) for some y, we set M([x]) to be a sequence of
length 1 whose only element is M(y).

Next, we turn to atomic equivalence classes that are not unit. We begin by defining a
graph in order to keep track of constraints that originate from the update symbol. The graph
connects atomic equivalence classes by edges constructed from update.

If two vertices are connected by an edge, one of them is an update of the other, and so they
differ on at most 1 element. This definition is an adaptation of the weak equivalence graph

6 Recall that the meaning of nth is fixed by the theory only for certain inputs.
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from Christ and Hoenicke [12] to the context of sequences, where operations are richer. In
particular, we take into account not onlywhether a constraint of the form y ≈ update(x, i, a)

appears in S, but also whether x and y are atomic, and whether the interpretation already
given to i in Definition 12 is within the range determined by the length assigned to x and y
in Definition 13.

Definition 15 (Weak equivalence graph) Define a graph G = (V , E, δ) as follows. V is the
set of atomic equivalence classes. E ⊆ V ×V is a set of unordered edges, and δ : E → P(N)

is a labeling function on edges, such that (e1, e2) ∈ E and k ∈ δ((e1, e2)) iff there are x ∈ e1
and y ∈ e2 such that y ≈ update(x, i, z) ∈ S or x ≈ update(y, i, z) ∈ S, where M(i) = k
and 0 ≤ k < M(�e1) = M(�e2).

Definition 16 (Weak equivalence) Given a weak equivalence graph G = (V , E, δ), for each
i ∈ N, we define a binary relation ∼i over V as follows: e1 ∼i e2 iff there exists a path p
between e1 and e2 in G, such that for each edge d in p, δ(d)\{i} 
= ∅.

It is routine to verify the following lemma.

Lemma 8 For each i ∈ N, ∼i is an equivalence relation over the atomic equivalence classes
of ≡S.

Notice that even though∼i is defined using update-terms, every atomic equivalence class
e satisfies e ∼i e, even if it has no update-terms.

Let � be the maximal sequence length assigned in Definition 13. Let
a11, a

2
1 , . . . , a

�
1, a

1
2, . . . , a

�
2, . . . be an enumeration of the elements in M(Elem) that were

not assigned to any variable of Elem sort. For each i ∈ [0, �), let Ei
1, E

i
2, . . . , E

i
ni be an

enumeration of the equivalence classes of ∼i . The following lemma is a consequence of
Lemma 8.

Lemma 9 For every atomic equivalence class e of ≡S, and for each i ∈ [0, �e), there exists
some j such that e ∈ Ei

j .

Definition 17 (Model construction: atomic variables in non-unit equivalence classes) Let
e be an atomic equivalence class of ≡S that is not a unit equivalence class. We set the i th
element ofM(e) for every i ∈ [0, �e) as follows. By Lemma 9, there exists some j such that
e ∈ Ei

j .

1. If there are e′ ∈ Ei
j , s ∈ e′, x , and y such that x ≡S nth(s, y) andM(y) = i , we set the

i th element of M(e) to be M(x).
2. Otherwise, the i th element of M(e) is set to aij .

Next, we set the interpretation of non-atomic variables of sort Seq.

Definition 18 (Model construction: non-atomic sequence variables) Let x be a non-atomic
variable of sort Seq, and let y be its normal form. M([x]) is set to be the concatenation of
the interpretations of the variables in y. (M([x]) is the empty sequence if y is of size 0.)

Finally, we define the interpretation of nth.M(nth) is a function fromM(Seq)×M(Int)
to M(Elem). Given a ∈ M(Seq) and an integer i , if i is non-negative and smaller than the
length of a, the value ofM(nth)(a, i) is fixed by the theory. The following definition assigns
a value to M(nth)(a, i) for other i’s.
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Definition 19 (Model construction: nth terms) For every element a ∈ M(Seq)with length n
and for every i ∈ N such that i < 0 or i ≥ n, if there are s, x , and y such that x ≡S nth(s, y),
M(s) = a, and M(y) = i , M(nth)(a, i) is set to M(x). Otherwise, it is set arbitrarily.

This concludes the construction of M. The following is an example of a construction of
a model according to the above definitions.

Example 5 Consider a signature in which Elem is Int, and a saturated configuration (S∗,A∗)
w.r.t. EXT that includes the following formulas: y ≈ y1 ++ y2, x ≈ x1 ++ x2, y2 ≈ x2,
y1 ≈ update(x1, i, a), |y1| = |x1|, |y2| = |x2|, nth(y, i) ≈ a, nth(y1, i) ≈ a.

Following the above construction, a satisfying interpretation M can be built as follows:

Definition 10 Set both M(Int) and M(Elem) to be the set of integer numbers. M(Seq)

is fixed by the theory.
Definition 12 First, find an arithmetic model, M(�x ) = M(�y) = 4,M(�y1) =
M(�x1) = 2,M(�y2) = M(�x2) = 2,M(i) = 0. Further, set M(a) = 0.
Definition 13 Start assigning values to sequences. First, set the lengths of M(x) and
M(y) to be 4, and the lengths of M(x1),M(x2),M(y1),M(y2) to be 2.
Definition 14 Skipped as there are no unit terms.
Definition 17 Next, according to Item 1, the 0th element of M(y1) is set to 0 (y1 is
atomic, y is not). According to Item 2, assign fresh values to the remaining indices of
atomic variables. The result can be, e.g., M(y1) = [0, 2],M(x1) = [1, 2],M(y2) =
M(x2) = [3, 4].
Definition 18 Assign non-atomic sequence variables based on equivalent concatenations:
M(y) = [0, 2, 3, 4],M(x) = [1, 2, 3, 4].
Definition 19 No integer variable in the formula was assigned an out-of-bound value,
and so the interpretation of nth on out-of-bounds cases is set arbitrarily.

5.2.2 Well-Definedness

Note that Definitions 10 and 11 are trivially well-defined. We now go through the remaining
definitions.

Lemma 10 Definition 12 is well-defined.

Proof To show that Item 1 is well-defined, we note that by saturation of A-Conf, A is TLIA-
satisfiable. To show that Item1 iswell-defined,we establish an infinite enumerationa1, a2, . . .
of M(Elem), which exists due to Definition 10. ��
Lemma 11 Definition 13 is well-defined.

Proof Let x, y ∈ e. We show that M(�x ) = M(�y). Since x ≡S y, we have S |� |x | ≈ |y|.
By Assumption 1, we also have S |� �x ≈ �y . By saturation of S-Prop, we have �x ≈ �y ∈ A,
and hence, by Definition 12, M(�x ) = M(�y). ��
Lemma 12 Definition 14 is well-defined.

Proof We first show that �[x] is 1. To see this, note first that by saturation of L-Intro (and
Fig. 3), we have S |� |unit(y)| ≈ 1. We also have �x ≈ |x | ∈ S by Assumption 1. It follows
that S |� �x ≈ 1, so �x ≈ 1 ∈ A by saturation of S-Prop. Thus, we must have A(�x ) = 1
in Definition 12, and thus M(�x ) = 1. By Definition 13, we then have that the length of
M([x]) must be 1.
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Next, suppose unit(y), unit(z) ∈ [x]. We prove M(y) = M(z). Since S |� unit(y) ≈
unit(z), wemust have y ≈ z ∈ S, by saturation ofU-Eq. Hence, y ≡S z and so byDefinition 12,
we have M(y) = M(z). ��

For thewell-definedness ofDefinition 17, we use the following helper lemmawhich shows
that the model assigns equal lengths to updated sequences.

Lemma 13 If y ≈ update(x, i, z) ∈ S, then M(�x ) = M(�y).

Proof By congruence, S |� |y| ≈ |update(x, i, z)|, and by saturation of L-Intro and the
definition of ↓, we know that S |� |update(x, i, z)| ≈ |x |. Thus, S |� |x | ≈ |y|. By
Assumption 1, S |� �x ≈ �y , so by saturation of S-Prop, we have A |� �x ≈ �y . It follows
from Definition 12 that A(�x ) = A(�y), and thus, M(�x ) ≈ M(�y). ��
Lemma 14 Definition 17 is well-defined.

Proof Let e be as in Definition 17. Suppose there are e′, e′′ ∈ Ei
j , with s′ ∈ e′, s′′ ∈ e′′, and

x ′, y′, x ′′, y′′ such that x ′ ≡S nth(s′, y′) and x ′′ ≡S nth(s′′, y′′) and M(y′) = M(y′′) = i ,
with i ∈ [0, �e). We prove that M(x ′) = M(x ′′).

We first show that y′ ≈ y′′ ∈ S. Clearly y′, y′′ ∈ T (S). Also, y′, y′′ ∈ T (A) since
y′ ≈ y′ ∈ A and y′′ ≈ y′′ ∈ A by saturation of S-Prop. It follows by saturation of S-A that
either y′ ≈ y′′ ∈ A or y′ 
≈ y′′ ∈ A. Since M(y′) = M(y′′), the latter cannot hold, and so
the former holds. Then, by saturation of A-Prop, we have y′ ≈ y′′ ∈ S as well.

Now, notice that e′ ∼i e′′. Hence, there exist e1, . . . , en such that e1 = e′, en = e′′
and for k ∈ [1, n), ek and ek+1 are connected by an edge dk in G where δ(dk) \ {i} 
= ∅.
For every such k, we have that sk ≈ update(s′

k, yk, zk) ∈ S or s′
k ≈ update(sk, yk, zk) ∈ S

for some sk ∈ ek , s′
k ∈ ek+1, integer variable yk , and Elem-variable zk . By Lemma 13,

M(�sk ) = M(�s′k ). And by Definition 13, �ek = M(�sk ) and �ek+1 = M(�s′k ). It follows
that �e′ = �e1 = . . . = �en = �e′′ . By a similar argument, because e ∼i e′, we have �e′ = �e.
We also have: (∗) M(yk) 
= i and (∗∗) M(yk) ∈ [0, �e). Define s′

0 to be an alias for s′ and
then notice that for k ∈ [1, n), sk ≡S s′

k−1 because sk, s
′
k−1 are both in ek .

We prove by induction that for k ∈ [0, n), nth(s′, y′) ≡S nth(s′
k, y

′). For the base
case, we simply note that nth(s′, y′) and nth(s′

0, y
′) are identical and nth(s′, y′) ∈ T (S).

For the induction step, suppose that nth(s′, y′) ≡S nth(s′
k, y

′), where k ∈ [0, n − 1).
This implies nth(s′

k, y
′) ∈ T (S), and we also know s′

k ≡S sk+1. Recalling that sk+1 ≈
update(s′

k+1, yk+1, zk+1) ∈ S or s′
k+1 ≈ update(sk+1, yk+1, zk+1) ∈ S, we see that

the premises of Nth-Update are satisfied. By saturation of Nth-Update, then, there are three
possibilities.

1. In the first case,A |� y′ < 0∨y′ ≥ �s′k .We know fromDefinition 12 thatM(y′) = A(y′)
andM(�s′k ) = A(�s′k ), sowemust haveM(y′) < 0 orM(y′) ≥ M(�s′k ). ButM(y′) = i
and i ∈ [0, �e), and we know that M(�s′k ) = �ek+1 = �e, so this case is not possible.

2. In the second case, A |� y′ ≈ yk+1. This is also not possible because we know that
A(y′) = M(y′) = i 
= M(yk+1) = A(yk+1).

3. In the third case, nth(sk+1, y′) ≡S nth(s′
k+1, y

′). But we know that s′
k ≡S sk+1, so we

also haventh(s′
k, y

′) ≡S nth(s′
k+1, y

′). Then, by the induction hypothesis,nth(s′, y′) ≡S
nth(s′

k+1, y
′), which completes the induction proof.

Letting k = n − 1, we obtain nth(s′, y′) ≡S nth(s′
n−1, y

′). But s′
n−1 ∈ en and en = e′′, so

s′
n−1 ≡S s′′ and nth(s′, y′) ≡S nth(s′′, y′). Finally, since we showed above that y′ ≈ y′′ ∈ S,
we have nth(s′, y′) ≡S nth(s′′, y′′), and thus x ′ ≡S x ′′, which means that M(x ′) = M(x ′′)
by Definition 12. ��
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Lemma 15 Definition 18 is well-defined.

Proof y exists and is unique by Lemma 6. If y is a variable or a variable-concatenation term,
then uniqueness guarantees well-definedness. Further, each variable that occurs in y is atomic
by Lemma 6, and hence its value in M was already defined in Definitions 14 and 17. ��

We prove that Definition 19 is well-defined, but first we prove some helper lemmas.
Recall that we write C |�LIA ϕ to denote that every model of TLIA satisfying C also satisfies
ϕ. Intuitively, if ϕ can be derived from C using arithmetic reasoning, then C |�LIA ϕ.

The first lemma states that |�++ conforms with the lengths of sequences.

Lemma 16 If S |�++ x ≈ z and z is of size n, then A |�LIA �x = �n
i=1�zi .

Proof The proof is by structural induction using Definition 6. For Item 1, clearly A |� �x ≈
�x . For Item 2, we have S |�++ x ≈ t for some variable concatenation term t = t1++· · ·++ tn
such that S |� x ≈ t . Therefore, S |� |x | ≈ |t |. By saturation of L-Intro, S |� |x | ≈ �n

i=1|ti |,
and using Assumption 1, we get S |� �x ≈ �n

i=1�ti . By saturation of S-Prop, A |� �x ≈
�n
i=1�ti .
Now suppose that S |�++ x ≈ (w ++ y ++ z)↓ and S |� y ≈ t , where t is ε or a variable

concatenation term in T (S). Letw = (w1, . . . , wm) and z = (z1, . . . , zn), withm, n ≥ 0. By
the induction hypothesis, we have that A |�LIA �x ≈ �m

i=1�wi + �y + �n
i=1�zi . We consider

two cases. (1) t = ε: in this case, S |� |y| ≈ |ε|. Also, S |� |ε| = 0 by saturation of
L-Intro, so S |� |y| = 0, and thus A |� �y = 0 by saturation of S-Prop and Assumption 1.
It follows that A |�LIA �x ≈ �m

i=1�wi + �n
i=1�zi . (2) t is a variable concatenation term in

T (S): let t = t1 ++ . . . ++ tk . We have S |� |y| ≈ |t |. Also, S |� |t | = �k
i=1|ti | by saturation

of L-Intro. By saturation of S-Prop and Assumption 1 (and assuming wlog that �k
i=1�ti is

the result of flattening �k
i=1|ti |), it follows that A |� �y = �k

i=1�ti . Thus, A |�LIA �x ≈
�m
i=1�wi + �k

i=1�ti + �n
i=1�zi . ��

Next, we show that the model respects the lengths of sequence variables.

Lemma 17 For every sequence variable x ∈ S, if � is the length of M(x), then M(�x ) = �.

Proof If x is atomic, then � = M(�x ) by Definition 13. Suppose that x is non-atomic. Let y
be the normal form of x where y is of size n. Each element of y is atomic, so for i ∈ [1, n],
the length of M(yi ) is M(�yi ) by Definition 13. Then, � = �n

i=1M(�yi ) by Definition 18.
Let z of length n be such that S |�++ x ≈ z and S |� yi ≈ zi for i ∈ [1, n], which exists by
Definition 6. By Definition 16, we have that A |�LIA �x ≈ �n

i=1�zi . For each i ∈ [1, n], we
know that because S |� yi ≈ zi , S |� |yi | ≈ |zi |, and so by Assumption 1, S |� �yi ≈ �zi .
Therefore, A |� �yi ≈ �zi by saturation of S-Prop. Then, we can conclude that A |�LIA �x ≈
�n
i=1�yi . Finally, we have M(�x ) = A(�x ) = �n

i=1A(�yi ) = �n
i=1M(�yi ) = �. ��

The next lemmas show that nth terms are evaluated correctly, first for atomic classes and
then generally.

Lemma 18 Suppose k ≡S nth(x, y). Let i = M(y), e = [x], and let �e be the length of
M(x). If e is atomic and i ∈ [0, �e), then the i th element of M(x) is M(k).

Proof We consider the following cases:
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1. e is a unit equivalence class: then, for some z, unit(z) ∈ e. By Definition 14, we have
that i = 0 and M(x) contains the single element M(z). We show that M(z) = M(k).
Since nth(x, y) ∈ T (S) and S |� x ≈ unit(z), by saturation of Nth-Unit, there are two
cases. In the first case, A |� y < 0 ∨ y > 0, which, by Definition 12, is not possible
since M(y) = i = 0. In the second case, nth(x, y) ≈ z ∈ S. It follows that z ≡S k, so
by Definition 12, M(z) = M(k).

2. e is atomic but not a unit equivalence class: let j be such that e ∈ Ei
j . Then, by Item 1 of

Definition 17, the i th element ofM(e) must beM(k), and thus the i th element ofM(x)
is M(k).

��
Lemma 19 Suppose k ≡S nth(x, y). Let i = M(y), e = [x], and let �e be the length of
M(x). If i ∈ [0, �e), then the i th element of M(x) is M(k).

Proof If e is atomic, then we have the result by Lemma 18. Suppose e is not atomic. Let x
be the normal form of x .

1. If x is empty, then by Definition 18,M(x) is the empty sequence, so i ∈ [0, �e) is always
false, and the statement holds vacuously.

2. Suppose x has a single element, x1. By Definition 6, it is clear that S |�∗++ x1 ≈ x1. So,
by saturation of C-Eq, we must have x ≈ x1 ∈ S. But x1 is atomic, so this contradicts the
assumption that e is not atomic.

3. Otherwise, x = x1 ++ · · · ++ xn , with n ≥ 2. Recall that nth(x, y) ∈ T (S). Thus, by
saturation of Nth-Concat, one of its n + 1 conclusions is applicable. In the first case, we
must have A |� y < 0∨ y ≥ �x . But we also know thatM(y) = i is non-negative and is
smaller than the length assigned toM(x), which leads to a contradiction using Lemma 17.
For the other cases, we have, for some k ∈ [1, n], (1) A |� �k−1

j=1�x j ≤ y < �k
j=1�x j

and (2) S |� nth(x, y) ≈ nth(xk, y − �k−1
j=1�x j ). By Definition 12, this means that

�k−1
j=1M(�x j ) ≤ M(y) < �k

j=1M(�x j ). Now, by Definition 18, M(x) = M(x1) ++
· · · ++ M(xn), and by Lemma 17, the length of M(x j ) is M(�x j ) for j ∈ [1, n]. Let
i ′ = M(y) − �k−1

j=1M(�x j ). Clearly, i
′ ∈ [0,M(�xk )), and element M(y) of M(x) is

the same as element i ′ of M(xk). Now, revisiting (2), let α be the term y − �k−1
j=1�x j ,

and let α̂ be the variable introduced for α when flattening the term nth(xk, α). We have
k ≡S nth(x, y), so k ≡S nth(xk, α̂) by (2). Let i ′′ be M(α̂), and recall that xk is atomic
and that the length ofM(xk) isM(�xk ). By Lemma 18, we have that if i ′′ ∈ [0,M(�xk )),
then the i ′′th element ofM(xk) isM(k). It remains to show that i ′ = i ′′. To see this, note
that S |� α̂ ≈ α. So, by saturation of S-Prop, we have A |� α̂ ≈ α. Then, by Definition 12,
i ′′ = M(α̂) = M(y) − �k−1

j=1M(�x j ) = i ′. ��
The following lemma proves that disequalities are respected.

Lemma 20 For all x, y, with x 
≈ y ∈ S, we have M(x) 
= M(y).

Proof By Deq-Ext we have two cases. In the first, A |� �x 
= �y . So, by Definition 12,
M(�x ) 
= M(�y). Thus, by Lemma 17, we have that the length of M(x) is different from
the length of M(y), so M(x) 
= M(y).

In the second case, we have (1) A |� �x ≈ �y ∧0 ≤ i < �x and (2) w1 ≈ nth(x, i), w2 ≈
nth(y, i), w1 
≈ w2 ∈ S, for some i, w1, w2. By (2) and saturation of S-Conf, we know that
w1 
≡S w2, so by Definition 12,M(w1) 
= M(w2). Let n = M(i) and let � be the length of
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M(x). By Definition 12, we haveM(�x ) = M(�y) and 0 ≤ n < M(�x ). So, by Lemma 17,
we have that the lengths of M(x) and M(y) are both equal to �, and n ∈ [0, �). Looking
again at (2), we can apply Lemma 19 twice to get that the nth element of M(x) is M(w1)

and the nth element of M(y) is M(w2). We can then conclude that M(x) 
= M(y), as we
know that M(w1) 
= M(w2). ��

We can now show that Definition 19 is well-defined.

Lemma 21 Definition 19 is well-defined.

Proof Suppose there are x, x ′, s, s′, y, y′ such that x ≡S nth(s, y), x ′ ≡S nth(s′, y′),
M(s) = M(s′) = a, and M(y) = M(y′) = i . We prove M(x) = M(x ′). Since
y, y′ ∈ T (S), and they have sort Int, by saturation of S-Prop, we have that y ≈ y, y′ ≈ y′ ∈ A,
and so y, y′ ∈ T (S) ∩ T (A). By saturation of S-A, either y 
≈ y′ ∈ A or y ≈ y′ ∈ A. The
first case is impossible since M(y) = M(y′). In the second case, we have y ≈ y′ ∈ A, and
so y ≈ y′ ∈ S by saturation of A-Prop. Now, by saturation of Nth-Split, there are two options:
either s 
≈ s′ ∈ S or s ≈ s′ ∈ S. The first is impossible by Lemma 20, as M(s) = M(s′).
On the other hand, if s ≈ s′ ∈ S, then since x ≡S nth(s, y) and x ′ ≡S nth(s′, y′), we also
have x ≡S x ′. Thus, by Definition 12, M(x) = M(x ′). ��

From the well-definedness lemmas above we can then conclude that M is well-defined.

5.2.3 Satisfaction

In this section, we show thatM |� S∪A. The arithmetic constraints (i.e., A) are satisfied by
the fact that M extends a model A of TLIA that satisfies A (see Definitions 11 and 12).

Lemma 22 M satisfies A.

Showing thatM |� S is more involved. Roughly speaking, we consider each possible shape
of a sequence constraint separately, and prove thatM satisfies constraints of that shape from
S. The cases that include nth and update terms heavily rely on the construction of the weak
equivalence graph. Constraints that include concatenation are handled by reasoning about
|�++.

The main result of this section is thus the following.

Lemma 23 M satisfies S.

The proof of this lemma is provided at the end of this section. The following lemmas will
be used for the various cases of that proof. The first lemma proves the existence of atomic
representatives.

Lemma 24 A variable x is atomic in S iff S |�∗++ x ≈ y for some atomic representative y.

Proof ⇒: Let y be the representative of [x]. By Definition 4, and because x ≡S y and x is
atomic, y must also be atomic. We have S |�++ x ≈ x by Definition 6, and thus, also by
Definition 6, we have S |�∗++ x ≈ y. ⇐: Since y is atomic and x ≡S y, x is also atomic by
Definition 4. ��
Next, we show how |�∗++ works with concatenation terms.

Lemma 25 If S |�∗++ x ≈ y, thenM(x) = M(y1)++ . . .++M(yn), where y has size n ≥ 0.
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Proof If x is not atomic, then the result is immediate by Definition 18. If x is atomic, then by
Lemma 24 and uniqueness of normal forms (Lemma 6), n = 1. Since x ≡S y1, and models
are assigned by equivalence class in Definitions 14 and 17, it follows that M(x) = M(y1).
��
In the next lemma, we show that the empty sequence obtains length 0.

Lemma 26 S |� x ≈ ε iff M(x) has length 0.

Proof ⇒: If S |� x ≈ ε, then S |� |x | ≈ |ε|. By saturation of L-Intro, S |� |ε| = 0. So, by
Assumption 1, S |� �x ≈ 0, and so, by saturation of S-Prop, we have �x ≈ 0 ∈ A. Thus, by
Definition 12,M(�x ) = 0, and so the length of x is 0 by Lemma 17. ⇐: IfM(x) has length
0, then by Lemma 17,M(�x ) = 0. By saturation of L-Valid, either x ≈ ε ∈ S or A |� �x > 0.
But the latter is impossible by Definition 12. ��
Next, we show how |�∗++ works with update terms.

Lemma 27 If x ≈ update(y, i, v) ∈ S,M(i) ∈ [0,M(ly)), and S |�∗++ y ≈ w1++· · ·++wn,
then:

1. x ≈ z1 ++ · · · ++ zn ∈ S for some atomic z1, . . . , zn;
2. there exists some k ∈ [1, n], such that

∑k−1
j=1 M(�w j ) ≤ M(i) <

∑k
j=1 M(�w j ) and

zk = update(wk, αk, v) ∈ S, where A |� αk ≈ i − ∑k−1
j=1 �w j ; and

3. for all j ∈ [1, n], j 
= k, z j ≈ w j ∈ S.

Proof By saturationw.r.t. Update-Concat, there is x ≈ z1++· · ·++zn ∈ S, for some z1, . . . , zn ,
such that zm ≈ update(wm, αm, v) ∈ S for m ∈ [1, n], where αm is the variable introduced
for the term i − ∑m−1

j=1 �w j when flattening the term update(wm, i − ∑m−1
j=1 �w j , v). Then,

zm ≈ update(wm, αm, v) ∈ S and αm ≡S i − ∑m−1
l=1 �wl . By saturation of S-Prop, we also

have A |� αm ≈ i − ∑m−1
j=1 �w j .

Next we prove that z1, . . . , zn are atomic. Suppose zm is not atomic for some m ∈ [1, n].
Note that we cannot have S |� zm ≈ ε:wm is atomic, so by Lemma 26,M(wm) has a nonzero
length; then, byLemma13,M(zm) has nonzero length, so S � zm ≈ ε byLemma26. Let u be
the normal form of zm . u cannot be empty because then, by Lemma 25, the length ofM(zm)

would be 0, so by Lemma 26, we would have zm ≈ ε. u cannot be of size 1 as then zm would
be atomic by Lemma 24. Thus, u is of size at least 2. Now, by saturation of Update-Concat-Inv
applied to zm ≈ update(wm, αm, v), we have wm ≈ z′ ∈ S, u1 ≈ update(z′1, αm, v) ∈ S,
and u2 ≈ update(z′2, α′, v) ∈ S, for some α′ where S |� α′ = αm − �u1 . By Lemma 13, we
haveM(�u1) = M(�z′1) andM(�u2) ≈ M(�z′2). But u1 and u2 are atomic, so by Lemma 26,
their lengths cannot be zero. By Lemma 17, then, the lengths of z′1 and z′2 are also nonzero.
So S � z1 ≈ ε and S � z2 ≈ ε by Lemma 26. Thus, z is not singular, which means that wm

is not atomic, which is a contradiction.
Now, consider the following n + 2 constraints: i < 0,

∑k−1
j=1 �w j ≤ i <

∑k
j=1 �w j for

k ∈ [1, n], and i ≥ ∑n
j=1 �w j . Exactly one of these holds inM, since it interprets arithmetic

symbols in the usual way by Definition 11.
SupposeM |� i < 0 orM |� i ≥ ∑n

j=1 �w j . We know thatM(i) ∈ [0,M(�y)), so this
case is impossible by Lemmas 25 and 17.

Now, suppose thatM |� ∑k−1
j=1 �w j ≤ i <

∑k
j=1 �w j for some k ∈ [1, n]. Clearly, Item 2.

holds for this k. We know that Update-Bound is saturated w.r.t. zm ≈ update(wm, αm, v) ∈ S
form ∈ [1, n]. Recall also that A |� αm ≈ i−∑m−1

j=1 �w j . It is easy to see that the first branch
is inconsistent withMwheneverm 
= k. Thus, we have zm ≈ wm ∈ S form ∈ [1, n],m 
= k.
��
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The next lemma proves that unit classes are atomic.

Lemma 28 If x ≡S unit(y) then x is atomic.

Proof Note that S |� |unit(y)| ≈ 1 by saturation of L-Intro, and so we also have (∗) S |� |x | ≈
1. Assume x is not atomic. There are two cases. In the first case, x ≡S ε. But S |� |ε| ≈ 0
by saturation of L-Intro, so by (∗) and saturation of S-Prop, this implies A |� 0 ≈ 1, which
contradicts saturation of A-Conf. In the second case, there exists a variable concatenation term
x1 ++ · · · ++ xn ∈ T (S) such that S |� x ≈ x1 ++ · · · ++ xn and x1 ++ · · · ++ xn is not
singular in S. By Lemma 4, we know that A |�LIA �n

i=1�xn ≥ 2. But by (∗) and saturation of
S-Prop and L-Intro, together with Assumption 1, we also have A |� �n

i=1�xn = 1, which also
contradicts saturation of A-Conf. ��

Next, we show when Item 2 of 6 can be eliminated.

Definition 20 Define S |�1,3
++ x ≈ t if there is a derivation of S |�++ x ≈ t without using

Item 2 of Definition 6.

Lemma 29 If S |�∗++ x ≈ y, where y has size n, then for some z of size n such that zi ≡S

yi , i ∈ [1, n], S |�1,3
++ x ≈ z.

Proof Since S |�∗++ x ≈ y, there is some z′ such that z′i ≡S yi , i ∈ [1, n] and S |�++ x ≈ z′.
Consider the derivation tree described in Lemma 5, and let D be the path through the tree
corresponding to the derivation of S |�++ x ≈ z′. If D has no application of Item 2 of
Definition 6, then the claim is proved by setting z to be z′. Otherwise, the first node in D
must use Item 2 of Definition 6 to derive S |�++ x ≈ t , where x ≈ t ∈ S. Suppose that t is
not singular. Then, it is possible to derive S |�1,3

++ x ≈ t by starting with S |�1,3
++ x ≈ x and

then applying Item 3 of Definition 6, using S |� x ≈ t . We can then replace the root of D
with this derivation to get a derivation showing S |�1,3

++ x ≈ z.
Suppose, on the other hand, that t is singular and t = t1 ++ . . . ++ tm . Without loss of

generality, assume that D eagerly applies Item 3 of Definition 6m−1 times, each time using
S |� ti ≈ ε for some i ∈ [1,m], which is possible because t is singular. The result is a
derivation of S |�++ x ≈ tk for some variable tk . We consider two cases.

1. Suppose that tk is atomic with atomic representative v. Then, clearly we have S |�∗++
x ≈ v and S |�∗++ tk ≈ v, so by saturation of C-Eq, x ≡S tk . By Lemma 6, we also have

that y = v. But then, let z = x . Clearly, we have S |�1,3
++ x ≈ z. Furthermore, x ≡S y,

proving the claim.
2. Suppose that tk is not atomic. Then D must continue after S |�++ x ≈ tk , and the next

step must use Item 3 of Definition 6 using S |� tk ≈ t ′ to derive S |�++ x ≈ t ′, where
t ′ is ε or a variable concatenation term in S that is not singular in S. But then, note that
we can start with S |�1,3

++ tk ≈ tk and apply the same step to get S |�1,3
++ tk ≈ t ′. If we

continue using the rest of the steps in derivation D, we can show that S |�1,3
++ tk ≈ z′,

and therefore, S |�∗++ tk ≈ y. By saturation of C-Eq, we then have x ≡S tk . But, since

x ≡S tk , this means that x ≡S t ′. So, we can start with S |�1,3
++ x ≈ x and apply Item 3

of Definition 6 using S |� x ≈ t ′ to get S |�1,3
++ x ≈ t ′. Using the same steps that appear

in D after tk ≈ t ′, we can show S |�1,3
++ x ≈ z′, which proves the claim. ��

Lemma 30 Let x be a sequence variable. Suppose S |�1,3
++ x ≈ t and S |�++ z ≈

(u ++ x ++ v)↓. Then S |�++ z ≈ (u ++ t ++ v)↓.
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Proof By induction on the number of derivation steps in |�1,3
++ that yield S |�1,3

++ x ≈ t (see
Definition 6). If this number is 1, then it must be by using Item 1 of Definition 6, so x = t
and the result follows trivially. If this number is some n + 1 > 1, then consider the first
n steps of the derivation. Let S |�1,3

++ x ≈ s be their result. By the induction hypothesis,
S |�++ z ≈ (u ++ s ++ v)↓. Now, consider the n + 1 step of the derivation. It must replace
some variable y in s by some term r , which results in t . Performing the same step on
S |�++ z ≈ (u ++ s ++ v)↓ results in S |�++ z ≈ (u ++ t ++ v)↓. ��

The next lemma shows how normal forms can be joined together.

Lemma 31 Let x1, . . . , xk be sequence variables. Suppose S |�++ x ≈ x1 ++ · · · ++ xk , and
for every i ∈ [1, k], S |�∗++ xi ≈ x1i ++ · · · ++ xnii . Then S |�∗++ x ≈ x11 ++ x21 ++ · · · ++ xnkk .

Proof We have S |�++ x ≈ x1 ++ · · · ++ xk . Also, for every i ∈ [1, k], since S |�∗++ xi ≈
x1i ++ · · · ++ xnii , we also have, by Lemma 29, S |�1,3

++ xi ≈ y1i ++ · · · ++ ynii for some

y1i , . . . , y
ni
i such that y j

i ≡S x j
i for every j ∈ [1, ni ]. Considering the case where i = 1, by

Lemma 30 we get S |�++ x ≈ ((y11 ++ · · · ++ yn11 ) ++ x2 ++ · · · ++ xk)↓. Continuing this
way until i = k, and by the properties of ↓, we obtain S |�++ x ≈ (y11 ++ · · · ++ ynkk )↓.
Since y11 , . . . , y

nk
k are variables, we actually have S |�++ x ≈ y11 ++ · · · ++ ynkk . And hence,

S |�∗++ x ≈ x11 ++ · · · ++ xnkk . ��
Finally, we can show that M |� S by considering the various shapes of literals in S.

Proof of Lemma 23 Let ϕ ∈ S. We prove thatM |� ϕ. By Assumption 1, ϕ is a flat sequence
constraint. We consider the possible shapes of ϕ.

1. ϕ is x ≈ y, for x, y of sort Int: by rule S-Prop, x ≈ y ∈ A. By Lemma 22, M |� ϕ.
2. ϕ is x ≈ y, for x, y of sort Elem: we have x ≡S y, so by Definition 12, M |� ϕ.
3. ϕ is x ≈ y where x, y have sort Seq: Definitions 13, 14, 17 and 18 are defined for

equivalence classes. Since x and y are in the same equivalence class, M |� ϕ.
4. ϕ is x 
≈ y where x, y have sort Int: by saturation of S-Prop, x ≈ x, y ≈ y ∈ A. Hence,

x, y ∈ T (S) ∩ T (A). By saturation of S-A, either x ≈ y ∈ A or x 
≈ y ∈ A. In the first
case, by saturation of A-Prop, we also have x ≈ y ∈ S, which is impossible by saturation
of S-Conf. Hence, we have x 
≈ y ∈ A. By Lemma 22, M |� ϕ.

5. ϕ is x 
≈ y where x, y have sort Elem: x is not equivalent to y w.r.t. ≡S, so Definition 12
assigns them different values; thus, M(x) 
= M(y) and M |� ϕ.

6. ϕ is x 
≈ y where x, y have sort Seq: M |� ϕ by Lemma 20.
7. ϕ is x ≈ y + z, x ≈ −y, or x ≈ n for some n ∈ N: by saturation of S-Prop, ϕ ∈ A, so

M |� ϕ by Lemma 22.
8. ϕ is x ≈ ε: we know that S |� |ε| = 0 by saturation of L-Intro. Using Assumption 1,

we get S |� �x ≈ 0, and so by saturation of S-Prop we have A |� �x = 0. It follows by
Lemma 17 that M(x) has length 0 and is thus the empty sequence.

9. ϕ is x ≈ unit(y): By Lemma 28, [x] is atomic. Also, [x] is a unit equivalence class.
Hence M([x]) was defined in Definition 14 and was set to a sequence of size 1 whose
only element is M(y) by Lemma 12. Therefore, M |� ϕ.

10. ϕ is x ≈ |y|: we know that �y ≈ |y| ∈ S by Assumption 1, so �y ≈ x ∈ A by saturation
of S-Prop. From Definition 12, it follows that M(�y) = M(x). But by Lemma 17, we
also have M(|y|) = M(�y), so M(x) = M(|y|).

11. ϕ is x ≈ x1 ++ · · · ++ xn . Suppose that x1, . . . , xn have the unique (by Lemma 6)
normal forms S |�∗++ x1 ≈ u1 ++ · · · ++ um1 , S |�∗++ x2 ≈ um1+1 ++ · · · ++ um2 ,
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. . ., S |�∗++ xn ≈ umn−1+1 ++ · · · ++ umn . By Item 2 of Definition 6, we know S |�++
x ≈ x1 ++ · · · ++ xn , so by Lemma 31, we have S |�∗++ x ≈ u1 ++ · · · ++ umn . By
Lemma 25, then M(x) = M(u1) ++ . . . ++ M(umn ). Also, by Lemma 25, for each
i ∈ [1, n], M(xi ) = M(umi−1+1) ++ . . . ++ M(umi ). So, M(x1 ++ . . . ++ xn) =
M(x1) ++ . . . ++ M(xn) = M(u1) ++ . . . ++ M(umn ) = M(x).

12. ϕ is x ≈ nth(y, i): We consider two cases:

(a) M(i) is negative or is not smaller than the length of M(y): applying Definition 19
with M(y) for a, M(i) for i and x for itself, we get that M |� ϕ.

(b) M(i) is non-negative and smaller than the length ofM(y): By Lemma 19 with x for
k, y for x and i for y, we have that theM(i)th element ofM(y) isM(x). Therefore,
M |� ϕ.

13. ϕ is x ≈ update(y, i, z): First, assumeM(i) is negative or not smaller than the length of
M(y). In this case, the interpretation inM of update(y, i, z) isM(y). Hence, we prove
thatM(x) = M(y). By saturation of Update-Bound, we have that either A |� 0 ≤ i < �y
or x ≈ y ∈ S. The first case is impossible by Definitions 12 and 11 and Lemma 17, and
hence, the second case holds. We therefore have x ≡S y, and since the definitions of
sequence variables are done by equivalence classes (see Definitions 14, 17 and 18), we
haveM(x) = M(y). Next, assumeM(i) is non-negative and smaller than the length of
M(y) (this also implies that M(y) is not an empty sequence). By Lemma 13, we have
M(�x ) = M(�y), and by Lemma 17, M(|x |) = M(�x ) and M(|y|) = M(�y). We
consider the following cases:

(a) [x] and [y] are atomic in S: We show that for every j ∈ [0,M(�x )), the j th element
of M(x) is the same as the j th element of M(update(y, i, z)). First, suppose j =
M(i). We show that the j th element of M(x) is M(z). By saturation of Nth-Intro,
we have nth(x, i) ∈ T (S). Since x ≈ update(y, i, z) ∈ S, rule Nth-Update applies.
Its first and last branches are impossible: the first by our assumption on M(i) and
Definitions 12 and 11 and Lemma 17, and the last because it would require A |�
i 
= i , but we know A � ⊥ by saturation of A-Conf. Hence, the middle branch
applies, which means nth(x, i) ≈ z ∈ S. By Lemma 18, then, we know that the j th
element ofM(x) isM(z). Suppose, on the other hand, that j 
= M(i). This implies
M(�x ) = M(�y) ≥ 2, so [x] and [y] cannot be unit by Definition 14. Their values
are thus set by Definition 17. Since x ≈ update(y, i, z) ∈ S, by Definition 15, there
is an edge d between [x] and [y] with M(i) ∈ δ(d). It follows, because j 
= M(i),
that [x] ∼ j [y] by Definition 16. But then [x] and [y] are in the same equivalence
class of ∼ j , so in either case of Definition 17, their j th value is set to the same value.
Finally, because j 
= M(i), the j th element of M(update(y, i, z)) is (according to
the semantics of update) the j th element of M(y).

(b) Suppose S |�∗++ y ≈ w1 ++ · · · ++ wn . By Lemma 27, we have x ≈ z1 ++ · · · ++
zn ∈ S for some atomic z1, . . . , zn ,

∑k−1
j=1 M(�w j ) ≤ M(i) <

∑k
j=1 M(�w j )

and zk = update(wk, αk, z) ∈ S for some k ∈ [1, n], where A |� αk ≈
i − ∑k−1

j=1 �w j , and for m ∈ [1, n],m 
= k, zm ≈ wm ∈ S. Since Defini-
tions 14 and 17 assign equivalence classes, we also have M(zm) = M(wm).
Since zk, wk are atomic, we have M(zk) = M(update(wk, αk, z)) by Item 13(a)
above. By Lemma 22, we have M(αk) = M(i) − ∑k−1

j=1 M(�w j ). By Item 11,
above, M(x) ≈ M(z1) ++ . . . ++ M(zn). It follows that M(x) = M(w1) ++
. . . ++ M(update(wk, αk, z)) ++ . . . ++ M(wn). By Lemma 24, we also have
M(y) = M(w1) ++ . . . ++ M(wn), so M(update(y, i, z)) = M(w1) ++ . . . ++
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M(update)(M(wk),M(i) − ∑k−1
j=1 M(�w j ),M(z)) ++ . . . ++ M(wn). It follows

that M(x) = M(update(y, i, z)).

14. ϕ is x ≈ extract(y, i, j): By saturation w.r.t. R-Extract, we have two options. In the first,
A |� i < 0 ∨ i ≥ �y ∨ j ≤ 0 and x ≈ ε ∈ S. By Item 8, above, M(x) is the empty
sequence. By Lemmas 22 and 17,M(i) < 0 orM(i) has at least the length ofM(y) or
M( j) ≤ 0. In each of these 3 cases, we get from the semantics of extract in TSeq that
M(extract) assigns the empty sequence w.r.t the inputsM(y),M(i) andM( j). Hence
in this case we get M |� ϕ. In the second case, A |� 0 ≤ i < �y ∧ j > 0 ∧ �k ≈
i ∧ �x ≈ min( j, �y − i) ∧ �k′ ≈ �y − �x − i and y ≈ k ++ x ++ k′ ∈ S. We thus have
M(y) = M(k) ++ M(x) ++ M(k′) by Item 1, above. Also, M |� A, by Lemma 22.
According to the semantics of extract in TSeq, since M(i),M( j) ≥ 0, M(i) is smaller
than the length of M(y), the value assigned in M to extract(y, i, j) is the maximal
sub-sequence of M(y) that starts at index M(i) and has length at most M( j). Since
M |� y ≈ k ++ x ++ k′ with the appropriate length constraints (by Lemma 17), we have
that this sequence value is exactly M(x) and hence, M |� ϕ. ��

6 Implementation

We implemented our procedure for sequences in the cvc5 SMT solver as an extension of
cvc5’s theory solver for strings [21, 25]. We have generalized that theory solver to reason
about both strings and sequences. In this section, we describe how the rules of the calculus
are implemented and the overall strategy for when they are applied.

Like most SMT solvers, cvc5 is based on the CDCL(T ) architecture [23] which combines
several subsolvers, each specialized on a specific theory, with a solver for propositional
satisfiability (SAT). Following that architecture, cvc5 maintains an evolving set of formulas
F. If F consists of quantifier-free formulas over the theory TSeq, the case targeted by this work,
the SAT solver searches for a satisfying assignment for F at the Boolean level, represented
as a setM of literals whose atoms come from F. If none exists, the problem is unsatisfiable at
the propositional level and hence also TSeq-unsatisfiable. Otherwise,M is partitioned into the
arithmetic constraints A and the sequence constraints S and checked for TSeq-satisfiability
using the rules of the EXT calculus. Many of those rules, including all those with multiple
conclusions, are implemented by adding new formulas to F according to the splitting-on-
demand approach [4]. This causes the SAT solver to try to extend its assignment to those
formulas, which results in the addition of new literals to M (and thereby also to A and S).

In this setting, the rules of the two calculi are implemented as follows. The effect of
rule A-Conf is achieved by invoking cvc5’s theory solver for linear integer arithmetic. Rule
S-Conf is implemented by the congruence closure submodule. Rules A-Prop and S-Prop are
implemented by a standard mechanism for theory combination, namely sharing equalities,
as in the Nelson-Oppen method.

Note that each of these four rules may be applied eagerly, i.e., before constructing a
complete satisfying assignment M for F.

The remaining rules are implemented in the theory solver for sequences. Each time M
is checked for satisfiability, cvc5 follows a strategy to determine which rule to apply next.
If none of the rules apply and the configuration is different from unsat, then it is saturated,
and the solver returns sat. The strategy for EXT prioritizes rules as follows. Only the first
applicable rule is applied, and then control goes back to the SAT solver.
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1. (Add length constraints) For each sequence term in S, apply L-Intro for non-variables and
L-Valid for variables, if not already done.

2. (Mark congruent terms) For each set of update (resp. nth) terms that are congruent to
one another in the current configuration, mark all but one term and ignore the marked
terms in the subsequent steps.

3. (Reduce extract) For extract(y, i, j) in S, apply R-Extract if not already done.
4. (Construct normal forms) Apply U-Eq or C-Split. We choose how to apply the latter rule

based on constructing normal forms for equivalence classes in a bottom-up fashion,where
the equivalence classes of x and y are considered before the equivalence class of x ++ y.
We do this until we find an equivalence class such that S |�∗++ z ≈ u1 and S |�∗++ z ≈ u2
for distinct u1, u2.

5. (Normal forms) Apply C-Eq to two variables if they have the same normal form but are
in different equivalence classes.

6. (Extensionality) For each disequality in S, apply Deq-Ext, if not already done.
7. (Distribute update and nth) For each term update(x, i, t) (resp. nth(x, j)) such that

the normal form of x is a concatenation term, apply Update-Concat and Update-Concat-Inv

(resp. Nth-Concat) if not already done. Alternatively, if the normal form of the equivalence
class of x is a unit term, apply Update-Unit (resp. Nth-Unit).

8. (Array reasoning on atomic sequences)ApplyNth-Intro and Update-Bound toupdate terms.
For each update term, find the matching nth terms and apply Nth-Update. Apply Nth-Split

to pairs of nth terms with equivalent indices.
9. (Integer arrangement) Apply S-A to two arithmetic terms occurring in S and A.

Whenever a rule is applied, the strategy will restart from the beginning in the next iteration.
The strategy is designed to apply with higher priority steps that are easy to compute and are
likely to lead to conflicts. Some steps are ordered based on dependencies from other steps.
For instance, Steps 5 and 7 use normal forms, which are computed in Step 4. The strategy
for the BASE calculus is the same, except that Steps 7 and 8 are replaced by one that applies
R-Update and R-Nth to all update and nth terms in S.

We point out that the C-Split rule may cause non-termination of the proof strategy
described above in the presence of cyclic sequence constraints, for instance, constraints
where sequence variables appear on both sides of an equality. The solver uses methods
for detecting some of these cycles, to restrict when C-Split is applied. In particular, when
S |�∗++ x ≈ (u ++ s ++ w)↓, S |�∗++ x ≈ (u ++ t ++ v)↓, and s occurs in v, then C-Split

is not applied. Instead, other heuristics are used, and in some cases the solver terminates
with a response of “unknown” (see e.g., [21] for details). In addition to the version shown
here, we also use another variation of the C-Split rule where the normal forms are matched in
reverse (starting from the last terms in the concatenations). The implementation also uses fast
entailment tests for length inequalities. These tests may allow us to conclude which branch
of C-Split, if any, is feasible, without having to branch on cases explicitly.

Although not shown here, the calculus can also accommodate certain extended sequence
constraints, that is, constraints using a signature with additional functions. For example, our
implementation supports sequence containment, replacement, and reverse. It also supports
an extended variant of the update operator, in which the third argument is a sequence that
overrides the sequence being updated starting from the index given in the second argument.
Constraints involving these functions are handled by reduction rules similar to those in Fig. 5.
The implementation is further optimized by using context-dependent simplifications, which
may eagerly infer when certain sequence terms can be simplified to constants based on the
current set of assertions [25].
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7 Evaluation

We evaluate the performance of our approach, as implemented in cvc5. The evaluation
investigates:

(i) whether the use of sequences is a viable option for reasoning about vectors in programs,
(ii) how our approach compares with other sequence solvers, and
(iii) the performance impact of our array-style extended rules.

As a baseline, we use version 4.8.14 of the Z3 SMT solver, which supports a theory of
sequences without updates. For cvc5, we evaluate implementations of both the basic calculus
(denoted cvc5) and the extended array-based calculus (denoted cvc5-a). The benchmarks,
solver configurations, and logs from our runs are available for download.7 We ran all exper-
iments on a cluster equipped with Intel Xeon E5-2620 v4 CPUs. We allocated one physical
CPU core and 8GB of RAM for each solver-benchmark pair and used a time limit of 300s.
We use the following two sets of benchmarks:

Array Benchmarks (Arrays) The first set of benchmarks is derived from the QF_AX
benchmarks in SMT-LIB [6]. To generate these benchmarks, we

(i) replace declarations of arrays with declarations of sequences of uninterpreted sorts,
(ii) change the sort of index terms to integers, and
(iii) replace store with update and select with nth.

The resulting benchmarks are quantifier-free and do not contain concatenations. Note that
the original and the derived benchmarks are not TSeq-equisatisfiable, because sequences take
into account out-of-bounds cases that do not occur in arrays. For the Z3 runs, we add to the
benchmarks a definition of update in terms of extraction and concatenation.

Smart Contract Verification (Diem) The second set of benchmarks consists of verification
conditions generated by running the Move Prover [28] on smart contracts written for the
Diem framework. By default, the encoding does not use the sequence update operation, so
Z3 can be used directly. To generate benchmarks that use the update operator, we modified
the Move Prover encoding. In addition to using the sequence theory, the benchmarks make
heavy use of quantifiers and the SMT-LIB theory of datatypes.

Figure 7a summarizes the results in terms of number of solved benchmarks and total time in
seconds on commonly solved benchmarks. The configuration that solves the largest number of
benchmarks is the implementation of the extended calculus (cvc5-a). This approach also suc-
cessfully solvesmost of theDiem benchmarks, which suggests that sequences are a promising
option for encoding vectors in programs. The results further show that the sequences solver of
cvc5 significantly outperforms Z3 on both the number of solved benchmarks and the solving
time on commonly solved benchmarks.

Figure 7b and c show scatter plots comparing cvc5 and cvc5-a on the two benchmark
sets. We can see a clear trend towards better performance when using the extended solver.
In particular, the table shows that in addition to solving the most benchmarks, cvc5-a is also
fastest on the commonly solved instances from the Diem benchmark set.

For theArrays set, we can see that some benchmarks are slower with the extended solver.
This is also reflected in the table, where cvc5-a is slower on the commonly solved instances.
This is not too surprising, as the extra machinery of the extended solver can sometimes slow
down easy problems. As problems get harder, however, the benefit of the extended solver

7 http://dx.doi.org/10.5281/zenodo.6146565.
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w/ update

Set cvc5 cvc5-a z3

Arrays Slvd 242 390 170
(551) Time 162 303 4329

Diem Slvd 542 547 443
(558) Time 518 440 639

(a)
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(c) Diem

Fig. 7 Figure a lists the number of solved benchmarks and total time on commonly solved benchmarks. The
scatter plots compare the base solver (cvc5) and the extended solver (cvc5-a) on b Arrays and c Diem
benchmarks

becomes clear. For example, if we drop Z3 and consider just the commonly solved instances
between cvc5 and cvc5-a (of which there are 242), cvc5-a is about 2.47× faster (426 vs
1053s). Of course, further improving the performance of cvc5-a is something we plan to
explore in future work.

8 Conclusion

We introduced calculi for checking satisfiability in the theory of sequences, which can be
used to model the vector data type. We described our implementation in cvc5 and provided
an evaluation, showing that the proposed theory is rich enough to naturally express verifica-
tion conditions without introducing quantifiers, and that our implementation is efficient. We
believe that verification tools can benefit by changing their encoding of verification conditions
that involve vectors to use the proposed theory and implementation.

Weplan to propose the incorporation of this theory in the SMT-LIB standard and contribute
our benchmarks to SMT-LIB. As future research, we plan to integrate other approaches
for array solving into our basic solver. We also plan to study the politeness [20, 24] and
decidability of various fragments of the theory of sequences.
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