'.) Check for updates

Statistical ‘Reports

Ecology, 103(2), 2022, e03563
© 2021 by the Ecological Society of America.

Using machine learning to model nontraditional spatial dependence
in occupancy data

NARMADHA M. MOHANKUMAR ! AND TREVOR J. HEFLEY

Department of Statistics, Kansas State University, Manhattan, Kansas, USA

Citation: Mohankumar, N. M., and T. J. Hefley. 2022. Using machine learning to model nontraditional
spatial dependence in occupancy data. Ecology 103(2):¢03563. 10.1002/ecy.3563

Abstract.  Spatial models for occupancy data are used to estimate and map the true presence
of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation.
Traditionally researchers have accounted for spatial autocorrelation in occupancy data by using a
correlated normally distributed site-level random effect, which might be incapable of modeling
nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learn-
ing approaches have the potential to model nontraditional spatial dependence, but these
approaches do not account for observer errors such as false absences. By combining the flexibility
of Bayesian hierarchal modeling and machine learning approaches, we present a general frame-
work to model occupancy data that accounts for both traditional and nontraditional spatial
dependence as well as false absences. We demonstrate our framework using six synthetic occu-
pancy data sets and two real data sets. Our results demonstrate how to model both traditional
and nontraditional spatial dependence in occupancy data, which enables a broader class of spatial
occupancy models that can be used to improve predictive accuracy and model adequacy.

Key words: hierarchical Bayesian model; machine learning; occupancy model; presence—absence data;
site occupancy; spatial dependence; zero-inflated binomial model.
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Many ecological studies collect occupancy data to
understand the dynamics of species occurrence over
space and time (e.g., Hepler et al. 2018, Joseph 2020).
Occupancy data are collected by making replicated visits
to sites and recording the presence or absence of at least
one individual. During a site visit, individuals may go
undetected even when present, resulting in the detection

where y; = 1 denotes the presence and detection of one
or more individuals at the i/ site (i = 1, 2, ..., n) during
the ;™ sampling period (j=1,2, ..., J;) and ;=0
denotes that no individuals were detected. Detection of
at least one individual depends on the probability p;.

of no individuals (i.e., a false absence). Failure to
account for false absences can have a significant impact
on parameter estimates and predictions (Hoeting et al.
2000, MacKenzie et al. 2002, Tyre et al. 2003).

To facilitate the analysis of occupancy data that con-
tain false absences, Hoeting et al. (2000), MacKenzie
et al. (2002), and Tyre et al. (2003) introduced a zero-
inflated Bernoulli model that specifies a distribution of
the observed data given the true presence at a site. Using
familiar notation for Bayesian hierarchical models, the
conditional distribution of the data is
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The z; is the true presence (z; = 1) or absence (z; = 0) at
the i site, which is assumed to be constant during all J;
sampling periods and modeled as

z; ly; ~ Bernoulli(y;). 2)

In Eq. 2, the probability of true presence, y;, is modeled
using an intercept term and ¢ site-level covariates with
the equation

g(l/’i) = X;‘ﬁa (3)

where g(-) is an appropriate link function (e.g., logit or
probit),  x;=(1, xi, x2, ..., xq)', and  B=(py, b1,
By ey ﬂq)/. Within the vector f, f, is the intercept param-
eter and fy, p,, ..., B, are regression coefficients.
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Since the introduction of the occupancy model in
Egs. 1-3, many extensions were developed to address
model inadequacies. For example, to account for
spatial dependence Johnson et al. (2013) added a
correlated normally distributed site-level effect, #; (i.e.,
(15 M2y s 1) ~N(0, X); see ch. 26 in Hooten and
Hefley 2019) to Eq. 3 that resulted in

glw;) = xiB + ;. 4)

The approach by Johnson et al. (2013) has been effective
in accounting for occupancy model inadequacies caused
by traditional spatial dependence (e.g., Wright
et al. 2019), which is assumed to have been generated
from a correlated normally distributed random effect
that imparts varying levels of smoothness on the spatial
process. Discontinuities, abrupt transitions, and other
“non-normal” spatial processes are common in ecologi-
cal data, and the traditional spatial random effect may
fail to capture such dynamics (e.g., Hefley et al. 2017).
Unfortunately, ecologists lack alternative occupancy
model specifications that would allow them to check for
and, if needed, model nontraditional spatial dependence.

We demonstrate a framework for occupancy data to
model both traditional and nontraditional spatial
dependence. Our framework takes a machine learning
approach to model the site-level effect in Eq. 4 and can
model both traditional and nontraditional spatial
dependence. We illustrate this framework using six syn-
thetic data sets containing traditional and nontradi-
tional spatial dependence and then apply our approach
to understand the spatial dynamics of Thomson’s
gazelle (Eudorcas thomsonii) in Tanzania and sugar glid-
ers (Petaurus breviceps) in Tasmania.

MATERIALS AND METHODS

Occupancy data requirements

Our proposed modeling framework builds upon the
occupancy model of MacKenzie et al. (2002) and Tyre
et al. (2003) and therefore is intended for use with occu-
pancy data that are collected with repeated site visits,
during which the true presence or absence of individuals
at a site does not change. In addition, we require that
false-negative detections are the only observational
error. However, our framework is adaptable to accom-
modate other types of occupancy data (see ‘“Model
extensions” in Appendix S1 for additional detail). For
example, our framework can be adapted to account for
false presence, which occurs when individuals are not
present at a site but are recorded as occurring at a site.

Spatial occupancy model framework

Our proposed framework involves lifting the normal
distributional assumption in the spatial component that
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accounts for the spatial dependence. To accomplish this,
we replace the site-level effect in Eq. 4 with

gly;) = xiB +f(si). ©))

Conceptually, this is an important change; the f(s;) is an
unknown spatially varying process that is a function,
f(-), that depends on the coordinate vector, s;, of the it
site. The function f(-) is always unknown and is approx-
imated.

This change in perspective is common in the field of
machine learning, in which the goal is to “learn” or
approximate an underlying function using data (see ch. 5
in Hastie et al. 2009). This simple change in Eq. 5
expands the types of model specifications for the spa-
tially varying process, f(s;). For example, regression
trees are used to learn about underlying functions that
have discontinuities and abrupt transitions, and using
regression trees to approximate f(s;) could model non-
traditional spatial dependence.

Many approaches from machine learning, such as
support vector regression, neural networks, boosted
regression trees, and Gaussian processes, could approx-
imate f(-). These approaches have been widely used by
ecologists to make predictions and inferences about
species distributions from abundance and presence—ab-
sence data (e.g., De’ath and Fabricius 2000, Cutler
et al. 2007, Elith et al. 2008, Golding and Purse 2016).
However, machine learning approaches are not widely
used to model occupancy data because of the issues
associated with false absences. Furthermore, approxi-
mating the spatial dependence within the occupancy
model using machine learning approaches requires cus-
tom programming and a level of technical knowledge
that hinders widespread use. The existing approaches
that blend machine learning approaches with occu-
pancy models are approach specific (e.g., Hutchinson
et al. 2011, Joseph, 2020), and therefore switching
among the different types of approaches to approxi-
mate f(-) is a challenge. For example, switching from a
neural network to a regression tree to approximate f ()
in Eq. 5 would require extensive retooling of computer
code, therefore hindering model checking, comparisons,
and selection.

Fortunately, Shaby and Fink (2012) developed a
model-fitting algorithm based on Markov chain Monte
Carlo (MCMC) that enables off-the-shelf software for
machine learning approaches, such as those available
in R (e.g., rpart(...), svm(...), gam(...)), to
be embedded within hierarchical Bayesian models.
Once the initial computer code is written for the occu-
pancy model, switching among machine learning
approaches to approximate f(-) requires modifying
only a few lines of code. Details associated with model
fitting are provided in Appendix S1 of the Supplemen-
tary Material.
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Modeling spatial dependence

To identify the spatial dependence and evaluate model
adequacy, we used a model selection and model check-
ing approach. First, we used a wide variety of
approaches to model spatial dependence and then used a
measure of predictive accuracy to determine which
approach most accurately models the spatial process. We
supplemented this predictive approach with a measure
of model adequacy (e.g., Wright et al. 2019).

Following Hooten and Hobbs (2015), we measured
the predictive accuracy using —2xXLPPD, where LPPD
is the log posterior predictive density. The —2xLPPD is
similar to the information criterion used for model
selection but uses out-of-sample data rather than in-
sample data (Hooten and Hobbs 2015). As such,
—2xLPPD and the difference in —2xLPPD among
models can be interpreted similarly to the information
criterion that attempts to approximate —2xLPPD using
in-sample data (e.g., Watanabe—Akaike information cri-
teria). For example, if model A produced a —2xLPPD
score less than the —2xXLPPD score produced by model
B, then model A has higher predictive accuracy. As a
standard of comparison, we fitted an occupancy model
that does not account for spatial dependence (i.e.,
Eq. 3; from this point forwards non-spatial occupancy
model).

In addition, we used Moran’s I correlogram to
check model adequacy. Moran’s I has been used to
detect traditional spatial dependence in the residuals
of fitted occupancy models (Wright et al. 2019). How-
ever, if traditional approaches fail to capture spatial
dependence, then Moran’s I may identify such
inadequacies.

Synthetic data examples

For our synthetic data examples, we show the proba-
bility of occupancy in Fig. 1, which includes the three
scenarios of nontraditional spatial dependence and the
three scenarios of traditional spatial dependence listed
below.

1) Spatial dependence that has discontinuities and
abrupt transitions generated by a step-wise function
(nontraditional; Fig. 1a).

2) Spatial dependence forming a circle with the proba-
bility of occupancy being low in the center and
smoothly increases toward the edges (nontraditional;
Fig. 1b).

3) Spatial dependence defined by a cosine function
(nontraditional; Fig. 1c).

4) Normally distributed random effect with a correla-
tion matrix specified by a conditional autoregressive
process (traditional; Fig. 1d).

5) Normally distributed random effect with a correla-
tion matrix specified by an exponential covariance
function (traditional; Fig. le).

SPATIAL OCCUPANCY MODELS
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6) Normally distributed random effect with a correla-
tion matrix specified by a squared exponential
covariance function (traditional; Fig. 1f).

For each scenario, we generated synthetic data using
Egs. 1, 2, and 5 on a unit square study area (i.e.,
S = [0, 1[x]0, 1]). We divided the study area, S, into 900
grid cells (sites). We set the true values for the parame-
ters to p; = 0.5 and g, = 0. We excluded covariates and
regression coefficients in our synthetic data so that the
spatial process was unobstructed when y; is mapped
onto S, which aids when visual and numerical compar-
isons are made among the machine learning approaches.
From the 900 grid cells, we considered a random sample
of n = 200 sites as the study area with J; = 3 visits for
model fitting.

We applied our spatial occupancy modeling framework
to the six synthetic data sets and compared the perfor-
mance of four embedded machine learning approaches,
which included regression trees, support vector regres-
sion, a low-rank Gaussian process, and a Gaussian Mar-
kov random field. The low-rank Gaussian process and
Gaussian Markov random field are approaches that
model traditional spatial dependence for data sets with a
large number of sites and have been used in models for
occupancy data (Johnson et al. 2013, Heaton et al. 2019).
The regression tree and support vector regression
are nontraditional approaches and may be capable of
modeling nontraditional types of spatial dependence.

We assessed the performance of each approach to
model spatial dependence using —2XLPPD calculated at
200 sites with J; = 3 visits that were not used for model
fitting (from this point forwards out-of-sample sites)
and using Moran’s I correlogram. In addition, we visu-
ally compared the true probability of occupancy (y;) to
the posterior mean of the probability of occupancy
(E(w;ly); Fig. 2). Details associated with the synthetic
data are provided in Appendix S2 of the Supplementary
Material.

Thomson’s gazelle data

We illustrate our spatial occupancy modeling frame-
work using a data set from Hepler et al. (2018), who
reported the presence and absence of Thomson’s gazelle
at 195 sites within Serengeti National Park, Tanzania
(Fig. 3a). The sites were sampled using a network of
motion-sensitive and thermally activated cameras.
Images were classified by participants on the citizen
science website Snapshot Serengeti. A site visit consisted
of an 8-day period during the year 2012 (e.g., 1-8
January 2012). Each site was visited between 1 and 46
times (the mean number of visits was 29). Following
Hepler et al. (2018), y; = 1 (from Eq. 1) was recorded if
an image of at least one Thomson’ s gazelle was cap-
tured at the /' site within the /™ 8-d window. A value of
¥y = 0 was recorded if the site was sampled, but no indi-
viduals were observed. Of the 195 sites, 141 had at least
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Fic. 1. Synthetic data examples showing the probability of occupancy (y; in Eq. 5) at 900 potential sites (pixels) for six scenar-
ios of traditional and nontraditional spatial dependence. The nontraditional scenarios include spatial dependence having disconti-
nuities and abrupt transitions (panel a), forming a circle (panel b), and defined by a cosine function (panel c). The traditional
scenarios include spatial dependence generated from a normally distributed random effect with a correlation matrix specified using
a conditional autoregressive process (panel d), an exponential covariance function (panel e), and a squared exponential covariance

function (panel f).
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0.00

Probability of occupancy (v;)

Fic. 2. The probability of occupancy from scenario 1 of the synthetic data example (panel a) and the posterior mean of the
probability of occupancy (E(y;|y)) obtained by fitting spatial occupancy models that included an embedded regression tree (panel
b), a support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian Markov random field (panel e).
The gray squares in panel a are the locations of the 200 sampled sites used for model fitting.

one detection. We use 100 randomly selected sites for
model fitting and reserve the remaining 95 sites to calcu-
late —2xLPPD.

Similar to our synthetic data example, we applied our
spatial occupancy modeling framework by embedding
four machine learning approaches, which include regres-
sion trees, support vector regression, a low-rank Gaus-
sian process, and a Gaussian Markov random field. We
excluded site-level covariates in our data example to
illustrate our approach’s ability to model multiple pro-
cesses that generate spatial dependence (e.g., missing

site-level covariates and spatial autocorrelation) and to
illustrate the ability of our method to serve as a “spatial
interpolator” for occupancy data (i.e., similar to indica-
tor or binomial kriging, but accounting for false
absences). However, as with traditional occupancy mod-
els, we can easily include site-level covariates into our
spatial occupancy models. Details associated with the
data example are provided in Appendix S3 of the Sup-
plementary Material. The data used in our data exam-
ples are available from the Dryad Digital Repository
(Mohankumar and Hefley 2021).
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Fic. 3. Thomson’s gazelle data from Hepler et al. (2018) collected at 195 sites within Serengeti National Park, Tanzania (panel
a) and the posterior mean of the probability of occupancy (E(y;|y); panels b—e). Panels (b—e) show E(y;|y) obtained by fitting spa-
tial occupancy models that included an embedded regression tree (panel b), a support vector regression (panel c), a low-rank Gaus-
sian process (panel d), and a Gaussian Markov random field (panel e).
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Sugar glider data

We illustrate our modeling framework using a second
data set from Allen et al. (2018), who reported the pres-
ence and absence of sugar gliders. The data were col-
lected during four or five site visits made to 100 sites in
the Southern Forest region of Tasmania (Fig. 4a). Of
the 100 sites, 79 had at least one sugar glider detected.

Latitude

~43.6°S " @uegb
146.6°E
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146.8° E 147°E
Longitude

1.0
0.8

: : a . 0.6

0.4

FiG. 4. Sugar glider data from Allen et al. (2018) collected at 100 sites in the Southern Forest region of Tasmania and the poste-
rior mean of the probability of occupancy (E(y;|y); panels b—e). Panels (b—e) show E(y;|y) obtained by fitting spatial occupancy
models that included an embedded regression tree (panel b), a support vector regression (panel c), a low-rank Gaussian process
(panel d), and a Gaussian Markov random field (panel e).
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As this data set has a relatively small number of sites,
we used 75 randomly selected sites for model fitting
and reserve the remaining 25 sites to calculate
—2XLPPD. We used the same modeling approaches for
this example as we did in the Thomson’s gazelle exam-
ple. Details associated with the data example are pro-
vided in Appendix S4 of the Supplementary Material.
The data used in our data examples are available from

Great Bay.
'\,‘2’ 3 j }

Map data ©2021
1

147.2°E 147.4°E

Probability of occupancy (y;)
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the Dryad Digital Repository (Mohankumar and
Hefley 2021).

REsuLTS

Synthetic data examples

In scenario 1, the occupancy model with an embedded
regression tree performed best because the other embed-
ded machine learning approaches did not capture the
abrupt transition created by the step-wise spatial process
(Fig. 2). The —2xLPPD was 348.5, 377.2, 377.5, and
384.0 for the embedded regression tree, support vector
regression, low-rank Gaussian process, and Gaussian
Markov random field, respectively. For comparison, the
—2XLPPD obtained from the non-spatial occupancy
model was 433.1. Similarly, for scenario 1, the compar-
ison of the Moran’s I between the occupancy models
suggested that spatial dependence must be accounted for
using a regression tree; all other approaches resulted in
lingering spatial dependence (see Appendix S5: Fig. S6).

Detailed results for scenarios 2-6 are presented in
Appendix S5 of the Supplementary Material. For exam-
ple, in scenario 2, the spatial dependence forms a circle
with the probability of occupancy being low in the center
and smoothly increases toward the edge of the circle
(Fig. 1b). For scenario 2, we expected and found that
the embedded support vector regression performed best
(see Appendix S5). This was expected because this
machine learning approach is best suited to learn about
smoothly varying deterministic functions. In total, the
results from the scenarios clearly demonstrated that, if
the spatial process is a discontinuous step function, then
the approaches used to model traditional spatial depen-
dence are not adequate, and the approaches such as
regression trees should be used. If the spatial dependence
is traditional, the differences among the approaches are
less distinct; nevertheless, in general, support vector
regression performs better for smoothly varying pro-
cesses (see Appendix S5).

Spatial occupancy dynamics of Thomson’s gazelle

Across the four embedded machine learning
approaches, the probability of occupancy at a site ran-
ged from 0.45 to 0.95 (Fig. 3b-e). Generally, the proba-
bility of occupancy was high across the entire study
area. However, there was a distinct band running from
the southwest to the northeast of the study area
where the probability of occupancy was much lower
(Fig. 3b-e).

The measure of predictive accuracy, —2xLPPD, was
669.4, 668.8, 671.0, and 668.7 for embedded regression
trees, support vector regression, a low-rank Gaussian pro-
cess, and a Gaussian Markov random field, respectively.
For comparison, the —2xLPPD obtained from the non-
spatial occupancy model was 676.7. Comparison of the
Moran’s I between the non-spatial and spatial occupancy

SPATIAL OCCUPANCY MODELS
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models suggested that accounting for spatial dependence
improves model adequacy, although the utility of Mor-
an’s I is questionable because the differences among
approaches are trivial, which may be due to the small
number of sites (see Appendix S3: Fig. S1; Carrijo and da
Silva, 2017). In total, the —2xLPPD and Moran’s I sug-
gested that spatial dependence should be accounted for in
the model. However, Moran’s I and —2xXLPPD suggested
that the differences among machine learning approaches
are less distinct, therefore it is unclear if the spatial depen-
dence is traditional or nontraditional.

Spatial occupancy dynamics of sugar gliders

For the sugar glider data example, the probability of
occupancy at a site ranged from 0.48 to 0.97 (Fig. 4b—¢)
across the four embedded machine learning approaches.
The probability of occupancy was generally high across
the entire study area; however, there was an area in the
eastern and southeastern portion of the study area where
the probability of occupancy was relatively low (i.e.,
y; <0.60), and there were clear visual differences in the
probability of occupancy among the four machine learn-
ing approaches (Fig. 4b—e). The measure of predictive
accuracy, —2xLPPD, was 78.2, 80.4, 79.6, and 78.9 for
embedded regression trees, support vector regression, a
low-rank Gaussian process, and a Gaussian Markov
random field, respectively. For comparison, the
—2XLPPD obtained from the non-spatial occupancy
model was 80.3. Similar to Thomson’s gazelle example,
the comparison of the Moran’s I between the occupancy
models suggested that accounting for spatial dependence
improves model adequacy (see Appendix S4: Fig. S1).
In total, the —2xLPPD and Moran’s I suggested that
the spatial process (i.e., f(-) in Eq. 5) is best modeled
using a regression tree. Using Moran’s I and —2xLPPD
as evidence, the results suggested that the spatial depen-
dence is nontraditional.

DiscussioN

The use of occupancy models has increased rapidly
since the early 2000s. Occupancy data are inherently spa-
tial but, unfortunately, only a limited number of
approaches exists to model the spatial process (e.g.,
Hoeting et al. 2000, Johnson et al. 2013). This lack of
spatial modeling options for occupancy data is in con-
trast with species distribution models (SDM) that pre-
dict the spatial distribution of a species using statistical
and machine learning approaches applied to presence-
only, count, and presence—absence data. There is a bewil-
dering number of approaches within the SDM literature
that are used to model the spatial process. Unfortu-
nately, many of the SDM approaches do not account for
contamination in the response variable (e.g., false
absences). Understandably, ecologists may feel forced to
choose between SDM approaches that do not account
for contamination in the response variable (e.g.,
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regression trees) and approaches that do, but with a lack
of spatial modeling (e.g., occupancy models).

The crux for ecologists planning to use our framework
is to determine which machine learning approaches are
likely to capture the spatial process, which will require a
level of familiarity with the properties of a wide range of
machine learning approaches. We recommend James
et al. (2013) for a gentle introduction and Hastie et al.
(2009) and Murphy (2012) for more advanced and broad
presentations. Within the ecological literature, there are
also several excellent guides to machine learning
approaches (e.g., De’ath and Fabricius 2000, Cutler
et al. 2007, Elith et al. 2008).

Recently, the hierarchical modeling framework com-
monly used in ecology has been expanded to include
some types of machine learning approaches such as neu-
ral networks (Wikle 2019, Joseph 2020). Our study
builds upon this previous work and expands the types of
spatial models ecologists can use for data that fit within
the occupancy model framework. Although our work is
focused on spatial dependence among the true presence
at a site, the approach is easily generalizable. For exam-
ple, Eq. 5 implies a linear effect of the site-level covari-
ates (i.e., xiB). Shaby and Fink (2012) showed how
machine learning approaches can be used to capture
nonlinear and unknown relationships between covari-
ates and the probability of occupancy, therefore alleviat-
ing the linear assumption in Eq. 5. Furthermore, many
studies that use occupancy models perform covariate
selection using model selection techniques (e.g., Hooten
and Hobbs 2015). While model selection techniques
work for a small number of covariates, machine learning
approaches may be superior when there is a large num-
ber of covariates. Another important generalization is
that the machine learning approaches can be embedded
to model the probability of detection as a function of
predictor variables such as Julian date and observer
effort (e.g., similar to the use of cubic splines used by
Johnston et al. 2018). To facilitate these extensions, we
explain in Appendix S1 how to generalize our frame-
work for other popular ecological models, which is a
direct application of the work by Shaby and Fink (2012).
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/
10.1002/ecy.3563/suppinfo

OPEN RESEARCH

The Thomson’s gazelle data and sugar glider data used in our data example are available in the Dryad Digital Repository
(Mohankumar and Hefley 2021) https://doi.org/10.5061/dryad.4xgxd259g. A tutorial showing how to implement our statistical
model is provided in Appendix S1. Annotated computer code that can be used to reproduce all results and figures associated with
the simulation experiment and data examples are provided in Appendices S2, S3, and S4. In addition to the appendix files, the
annotated R codes are provided within DataS1.zip.
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