
UC Santa Cruz
Activity Descriptions

Title
An Inquiry Approach to Teaching Sustainable Software Development with Collaborative
Version Control

Permalink
https://escholarship.org/uc/item/6fv1s464

Authors
Frisbie, Rachel LS
Grete, Philipp
Glines, Forrest W

Publication Date
2022-09-18

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6fv1s464
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

https://escholarship.org/uc/item/6fv1s464
pp. 249–260 in S. Seagroves, A. Barnes, A.J. Metevier, J. Porter, & L. Hunter (Eds.),
Leaders in effective and inclusive STEM: Twenty years of the Institute for Scientist &

Engineer Educators. UC Santa Cruz: Institute for Scientist & Engineer Educators.
https://escholarship.org/uc/isee_pdp20yr

© 2022 the authors, published open-access by ISEE with a CC BY license 249

An Inquiry Approach to Teaching
Sustainable Software Development with
Collaborative Version Control
Rachel L.S. Frisbie*1, Philipp Grete2,3, and Forrest W. Glines1,3

1 Department of Computational Mathematics, Science & Engineering, Michigan State University,
East Lansing, MI, USA

2 Hamburg Observatory, University of Hamburg, Hamburg, Germany
3 Department of Physics & Astronomy, Michigan State University, East Lansing, MI, USA
* Corresponding author, salmonra@msu.edu

Abstract
Software development is becoming increasingly ubiquitous in STEM disciplines resulting in the
need for education in associated computational skills. To address this need, we designed a "Sus-
tainable Software Development with Collaborative Version Control" workshop in the 2019 Institute
for Scientist & Engineer Educators (ISEE) Professional Development Program (PDP). We describe
here the development process and following delivery of the workshop. In particular, we explored
how to apply an inquiry approach to learning computational skills. By design, PDP activities inter-
twine content and “cognitive STEM practices,” and teasing apart content and practice is important
for STEM education. We encountered challenges with this task because our content — exploring
software sustainability with collaborative version control — is much like a practice in itself. We
designed our workshop to introduce the critical skill of sustainable software development using
collaborative version control systems with an inquiry approach rather than the more typically used,
strictly technical approach. We emphasize the authentic, broadly applicable nature of the workshop
in which learners jointly design, test, and discuss their own increasingly complex development
workflows. The development process for our workshop may be useful for educators who want to
introduce software practices to learners from many disparate STEM disciplines that leverage com-
putational methods and require software development to approach research questions.

Keywords: activity design, git, inquiry, version control, software development

1. Introduction
The ultimate goal of our workshop was to help
learners learn concepts that would enable sustaina-
ble development of scientific software. As compu-
ting resources become more intrinsic to scientific

research, more scientists are developing software to
enable their research. These software projects may
range from small scripts used to analyze experi-
mental data, to specialized software used to control
instrumentation, to large simulation codes used to
model physical systems. Development of scientific

https://escholarship.org/uc/item/6fv1s464
https://escholarship.org/uc/isee_pdp20yr
https://creativecommons.org/licenses/by/4.0/
mailto:salmonra@msu.edu

Frisbie, Grete, & Glines

250

software may be carried out by groups as small as a
single scientist or engineer, to mentor-mentee pairs,
to research groups under a principal investigator, to
large collaborations spread across institutions in ac-
ademia, government, and industry. In any of these
cases, software sustainability practices — including
but not limited to — tracking and communicating
bugs and desired features, tracking and managing
changes to the software, and assigning and delegat-
ing roles and responsibilities to software developers
and users — are majorly beneficial to the reliability,
accuracy, and maintainability of scientific software
(Nangia et al 2017, Queiroz et al. 2017). Unfortu-
nately, said development practices are not yet
widely implemented in scientific software develop-
ment, hence our motivation to train upcoming sci-
entists and engineers in sustainable software prac-
tices.

Development workflows that enact said practices
are usually facilitated by internet hosting sites for
version control systems, software that enables the
tracking and management of the source code for
software. At the time of writing, the most popular
version control system is “git”, with github.com
and gitlab.com being popular online services that,
along with hosting the source code for projects
managed with git, enable essential discussion and
collaboration of code changes.

At the heart of such a software project is the source

code repository, or “repo,” which is the collection
of all source code and the history of changes to the
source code. Development of the source code may
persist along different routes known as “branches.”
For example, there may be a “stable” branch of the
repo that has been thoroughly tested and an “exper-
imental” branch of the repo where new less tested
features are under development. Changes to the
code are added to branches in a “commit.” A com-
mit refers to a set of changes to one or many files
within the source tree of the repository, effectively
also specifying a snapshot of the source code. Com-
mits from different branches can be combined via a
“merge”. Creating and managing branches and

commits as well as merging branches can be ac-
complished locally on a developer’s computer ei-
ther via the command line or graphical tools or via
interfaces provided by the internet hosting sites
such as gitlab.com. Additionally, the internet host-
ing sites usually provide discussion boards to make
comments on code changes, document bugs, re-
quest new features, and any other discussion of the
code. Branch mergers are typically accomplished
and discussed in “merge requests” on GitLab (or
equivalently “pull requests” on GitHub). “Issues”
enable further discussion, providing a tool to docu-
ment and discuss bugs in the source code, request
new features, and make other discussions about the
repo. These tools within git and the internet hosting
sites enable workflows incorporating sustainable
software practices.

Abundant literature supports the claim that learning
to program can be difficult, and exploring new ways
to teach computational concepts can help improve
learners’ understanding (e.g. Guzdial 2010, 2013,
Hazzan et al. 2011, Sorva 2012, Porter et al. 2013).
Exploring topics with an Inquiry framework, as in
the PDP, can increase learner understanding
(Metevier et al. 2022a, 2022b) and help learners
build their identities as scientists (Carlone & John-
son 2007). We sought out to design our workshop
within the PDP in part to address the need for a
more effective way to teach sustainable software
practices to early-stage programmers.

2. Workshop overview
2.1 Venue and learners
We developed our workshop, Sustainable Software

Development, as part of the 2019 PDP. We designed
the workshop for learners from the 2019 Michigan
State University (MSU) Advanced Computational
Research Experience (ACRES) and the 2019 MSU
Physics and Astronomy Research Experience for
Undergraduates (REU). An REU Site consists of a
group of ten or so undergraduates who work in the
research programs of the host institution. REU sites

 Teaching Sustainable Software Development using Inquiry

 251

are encouraged to involve students from historically
marginalized groups. Each student is associated
with a specific research project, where they work
closely with the faculty and other researchers
(https://www.nsf.gov/crssprgm/reu/). These learn-
ers had significant variation in prior knowledge
about computation; consequently, we designed our
workshop with that in mind. We chose to have
learners engage with Gitlab, a web-based git plat-
form, and basic text-based documents to avoid po-
tential software issues and eliminate the need for
prerequisite knowledge of the terminal, a specific
programming language, and git to be able to engage
in the workshop. We ran the workshop twice, first
with the group of ACRES students and second with
the group of Physics and Astronomy REU students.
Our workshop spanned three hours and was split
into two sessions with a lunch break in between for
both venues. In 2020 and 2021, we adapted this
workshop to be run virtually with both REU pro-
grams and retained the basic structure from 2019.

Our primary goal for the workshop was to introduce
the concepts of sustainable software development
using git as a tool. In our experiences, git is typi-
cally presented as a list of commands to be used
from the terminal while discussion of workflow
structure and cases of practical and real-world use
is minimal. We set out to create an opportunity for
learners to discover for themselves how to develop
an effective workflow and then learn the git tools
necessary to maintain that workflow. We believed
that many of the learners, particularly those in the
program who were going to be engaged in compu-
tationally intensive research projects, would benefit
greatly from understanding the purpose of sustain-
able software development along with the tools
necessary to engage with it.

2.2 Activity overview
In Table 1, we share the structure of our activity. We
began with a short lecture to introduce the idea of
sustainable software development and provide ex-
amples of various ways that facilitators engage with

collaborations and developing software. After-
wards, we transitioned to a “Raising Questions”
prompt, dividing learners into small groups de-
signed to elicit thoughts and questions about what
sustainable software development might look like
and emphasizing how it might look different for
communities of various sizes. We defined four in-
ternal, i.e., unknown to the learners, categories of
questions based on the workshop content: issues,
roles, code changes, and miscellaneous. As the
learners came up with questions, we collected and
sorted them into the categories. We then led a dis-
cussion for the learners to determine their own
names for the categories. In general, the names they
determined matched our categorization.

The first portion of the workshop had learners ad-
dress the following prompt in small groups: “Create
a project repository. Experiment with branches and
pull requests and think about how they fit within a
scientific software development workflow for a stu-
dent-advisor collaboration.” We emphasized begin-
ning with a student-advisor collaboration because
that would be authentic to the learners’ REU activ-
ities and because it generally requires the simplest
workflow. During this time, we presented an addi-
tional prompt with facilitation to discuss the git
tools (branches, merge requests, and issues) needed
to enable such a workflow. We ended this portion of
the workshop by having the learners form new
groups (sometimes referred to as a “jigsaw”) and
share what their groups thought about with respect
to different software communities and the git tools.

The second main portion of the workshop built on
the exploration from the first portion. Learners were
asked the following prompt in their small groups:
“Write a software development workflow docu-
ment on the repository. Test all aspects of your
workflow with examples of your choice.” The
learners were encouraged to think about larger and

https://www.nsf.gov/crssprgm/reu/

Frisbie, Grete, & Glines

252

Table 1: Activity Overview. This table outlines the flow of our activity, including time spent on each portion and
the accompanying facilitation prompts.

Section Time Participant
Structure Prompt given to learners that drives this component

Introduction 10 min ‘Mini
lecture’

Brief intro to the importance of (collaborative) software
development with an emphasis on linking to real world
examples in different areas.

Raising
questions

20 min
total

Small groups
(3-4)

Prompt: Broadly think about collaborative software development
from small to large projects. Write down questions, concerns, or
general topics of interest pertaining to challenges and processes
in different collaborative software development environments.

15 min

Additional facilitation or prompt: State that students should
consider questions about small to large communities like those
they might contribute to over their summer research program.
Facilitators roam the room, take questions as they write them,
and sort them into our 4 categories (issues, roles, code changes,
misc.).
Pin up questions on the board (without category titles yet) as
they are raised.

5 min Full class
discussion

Discuss as a class what we might name each category (besides
misc.)

Investigations

60 min
Small groups
(3-4)

Gave a brief primer on the git commands needed to carry out
Prompt 1 and Prompt 2.
Prompt 1: Create a project repository. Experiment with branches
and pull requests and think about how they fit within a scientific
software development workflow for a student/advisor
collaboration.
Prompt 2: Explore making and managing issues on GitLab and
how they relate to branches and pull requests. Consider how
using issues is useful in a scientific software development
workflow within a moderate size collaborative development
group.
Additional facilitation prompt: Consider what roles and
responsibilities developers and scientists have in a large software
development community. In what different ways does the
community interact with the repository (i.e. branches, pull
requests, etc.)? What responsibilities may be assigned to which
groups?

15 min New small
groups (3-4)

Prompt: Share what you learned about how branches, pull
requests, and issues fit into a workflow for different scientific
software development groups and communities.

40 min
Original
small groups
(3-4)

Additional facilitation prompt: Write a software development
workflow document on the repository. Test all aspects of your
workflow with examples of your choice.
Announce that preparation of the culminating assessment task
will follow.

 Teaching Sustainable Software Development using Inquiry

 253

more complex collaborations and to test their work-
flows as they developed them. They then engaged
in a second jigsaw to describe their workflows to
their peers. Finally, we presented a short synthesis
lecture where we returned to the questions they
raised at the beginning of the workshop and con-
nected them to the key points of a successful work-
flow.

2.3 Assessment strategy
To assess the learning outcomes of our workshop,
we used multiple strategies. We emphasized jig-
saws to ensure that all learners were able to form a
level of confidence in their knowledge and so facil-
itators could gauge the learners’ progress. Because
the learners were engaging with online git reposito-
ries throughout the workshop, we were also able to
view their explorations through their git reposito-
ries as they happened, as well as after the workshop.
The main artifact from the workshop was the soft-
ware development workflow that each group cre-
ated and tested in the second half of the workshop.
We assessed those workflows in the jigsaws and in
written form against our rubric for content objec-
tives (see Table 2).

3. Activity development
3.1 Learning outcomes
When version control with git is introduced, it is of-
ten presented as a list of very particular commands
to be executed from the terminal without much mo-
tivation for its usage. To better teach the concepts
of sustainable software development, we used an
inquiry learning approach to facilitate deeper un-
derstanding and make using git more approachable
for all learners. Additionally, we used GitLab due to
its availability, although GitLab is just one of many
hosting sites for version control. We wanted learn-
ers to leave our workshop empowered to use any
version control tool.

We determined that the main components of a ro-
bust software development workflow are issue/bug
management, making code changes, and role man-
agement. Our rubric (shown in Table 2) shows how
we assessed how well those components were in-
corporated into their workflows. For issues/bug
management, learners should ideally include a pro-
cess to report issues/bugs, guidelines for creating
issues to give sufficient detail to fully describe a
problem, make a plan for determining responsibil-
ity for addressing a given issue, and develop a
scheme for prioritizing and fixing the issues. For
making code changes,

Section Time Participant
Structure Prompt given to learners that drives this component

Culminating
assessment
task

30 min =
10 min

(prepare) +
5 min

(transition)
+ 15 min
(jigsaw)

Jigsaw
(3 groups for
three
facilitators)

Prepare to describe to learners outside of your group your
workflow and justify how its design supports a large
collaborative software development community.
Facilitation prompts: What are the key elements of your
workflow and which challenges of (collaborative) software
development did you address with it? Did you encounter any
problems in executing your workflow? Did you
observe/experience anything else you’d like to share?

Synthesis 5 min ‘mini-
lecture’ Closing remarks including a link back to the motivation.

Frisbie, Grete, & Glines

254

Table 2: Assessment Rubric. This table details the rubric we used to measure the learners’ understanding of the
components of our workshop.

Dimensions:
Components or
“knowledge
statements”

M
evidence needed to
make a judgment
is missing

0
evidence that learner has
misunderstanding or
incomplete understanding

1
evidence that learner has
sufficient understanding

Issue/bug-
management

No guidelines
given for reporting
problems

Guidelines to report
problems are
minimal/incomplete

Bugs are only fixed in
private branches

Not enough information to
communicate issues (Such
information could be
reproducibility for bugs or
motivation for feature
requests)

There is a process to report
issues/bugs

Issues fully describe the
problem (ideally include
minimal working examples /
also “full” information is
flexible)

Someone is responsible for an
issue

Prioritization

Making code
changes

Workflow does
not address
guidelines for
making code
changes robustly

Learners make code
changes directly on the
main branch

Process to test code is
minimal

Merge without approval

Code changes are not
described in detail

Learners create a workflow that,
e.g., includes

Making an own branch/fork
with a descriptive name

Make all changes locally

Testing the code

Submit a merge request (incl.
documentation)

Follow up on comments

Merge request need approval

Merge actually happens

Role
management

Roles are not
defined and/or
assigned

Roles are given but
permissions not clearly
defined

Some project members have
too much or too little
responsibility for the code

All developers have access
to the main branch

Roles are clearly defined, e.g.,
developers, maintainers, users

Roles are clearly communicated

All aspects of the software
development are
assigned/linked to roles and
there’s at least one person per
role

 Teaching Sustainable Software Development using Inquiry

 255

learners should ideally include guidelines for giving
descriptive names for branches/forks, a process for
making changes locally first, a process for testing
code throughout development, a process for sub-
mitting a merge request (including documentation),
a process for following up on any comments, and
developing a plan for approving and implementing
merges. For role management, learners should
clearly define and communicate the roles of the
community, have all aspects of the workflow as-
signed and/or linked to roles, and ensure all roles
are filled.

In addition to our main components, we also in-
cluded two additional dimensions in our rubric:
First, for the implementation of a STEM practice —
as defined within the PDP (Metevier et al. 2022a,
2022b) — we had learners design a solution within
requirements. Their workflows needed to facilitate
sustainable software development in a straightfor-
ward way. We desired for learners to design a work-
flow that suited their community, had a plan for
each major component, and included reasoning for
the choices they made. Second, we added an addi-
tional dimension that the design process itself was
collaborative — making the process itself more au-
thentic. As the learners developed and tested their
workflows, they themselves engaged in an example
of sustainable software development and collabora-
tion. Learners needed to work together to determine
their final workflow and to include justification for
their decisions.

3.2 Content development highlights
When developing our workshop within the PDP, we
focused on designing an inclusive workshop that
would help learners build their STEM identities.
Because REU programs often introduce undergrad-
uates to practicing scientific research, we wanted to
create a workshop that would be inclusive to all ex-
perience levels. Our workshop design used text files
instead of code to avoid prerequisite knowledge of
a programming language. We also used the browser
version of GitLab rather than command line git to

include learners who may not be familiar with using
the command line.

Sustainable software development requires collab-
oration, so we designed our workshop to have
learners collaborate with each other while develop-
ing their workflows. This provided an opportunity
for learners to see the value in sustainable software
development as they participated in the workshop.

We began our workshop by introducing the variety
of connections with software development we have
in our own work to emphasize how sustainable soft-
ware development applies in practice and connect
with our learners. Then, we had the learners engage
in a raising questions activity to introduce the cen-
tral ideas of sustainable software development.
During the synthesis portion of the activity, we re-
turned to the questions that were brought up in the
raising questions portion and connected them to the
concepts they explored. Our goal with this design
element was to provide an opportunity for the learn-
ers to connect what they learned to their own
thoughts and experiences with collaboratively de-
veloping a software workflow. Furthermore, em-
phasizing the value of the learners’ questions and
their contributions to the learning process provided
an opportunity to build ownership of the material
(Metevier et al. 2022a, 2022b).

In our design, we included several components with
the goal of having our learners build a STEM iden-
tity. By implementing periodic jigsaw discussions,
we were able to have learners build confidence and
independence in the material as the workshop pro-
gressed. We were also able to assess their progress
throughout the workshop which allowed additional
facilitation. With our synthesis lecture, we provided
recognition of the work they did and connected
their work to real-life examples, both from the fa-
cilitators’ experiences and the experiences of the
learners. Because our workshop was designed to fa-
cilitate the use of sustainable software development
in their summer projects, we connected the work-
shop content to potential implementations in their

Frisbie, Grete, & Glines

256

projects. Our text-based exploration of git also pre-
pared learners to use git for other things beyond
code development such as for paper writing, lab
notebooks, and documentation.

3.3 Pivot to virtual in 2020 and 2021
In 2020 (and 2021) the COVID19 pandemic pre-
vented in-person REU programs at MSU. Given
that all REU projects were conducted remotely, the
virtual nature of students’ projects made using sus-
tainable software development — especially with
centralized, collaborative version control sys-
tems — became even more important. Therefore,
we adjusted the workshop so that we could deliver
it in a virtual format via Zoom (an online video con-
ferencing software). Our main goal for the virtual
format was to keep all the essential components we
originally designed in place and limit the changes
to technical aspects.

In particular, we employed the breakout room capa-
bility of Zoom to reflect the original work in small
groups. As facilitators, we moved between rooms to
listen to conversations and facilitate where neces-
sary, similar to moving between group desks in the
in-person format.

For the raising questions component, we employed
virtual whiteboards (technically a Google Doc) that
allowed all learners to add their questions and ideas
simultaneously to a shared space. Again, this com-
ponent reflected the original collection of questions
in the in-person format and allowed us to collect
and sort in the background.

A major change pertained to the technical compo-
nents of the workshop, such as creating a repository,
sharing it with other learners, or evaluating/trying
the designed workflow. Here, we reused selected
submodules of the Software Carpentry Git work-
shop (Wilson 2006, 2013). These submodules al-
ready contained detailed instructions that allowed
each learner to progress at their own pace. We lev-
eraged those existing technical instructions and fa-
cilitated joint problem-solving and discussions in
small groups in breakout rooms. Therefore, we

could focus on our content goals around collabora-
tive software development rather than technical as-
pects.

Finally, the resulting artifacts were the same as for
the in-person workshop. We were able to evaluate
the outcomes by examining the repositories created
by the learners during the workshop.

3.4 Discussion of learner outcomes
and artifacts
Our content goals were for learners to understand
issues/bug management, how to make code
changes, and how to manage roles when developing
code within large and small software development
communities. Learners with less prior coding expe-
rience struggled to envision how to handle bugs and
code changes, but all learners were able to grasp the
idea of roles and how they could be applied. Inter-
estingly, learners with more prior coding experi-
ence seemingly thought more deeply about is-
sues/bug management and making code changes
but needed varying degrees of facilitation to begin
considering roles within a development community.
Learners did a good job developing a workflow but
struggled to determine how to test their workflows,
although this was likely due to limited time. Some
groups were able to test their workflows, but most
ran out of time.

We assessed their understanding by applying our
rubric to the document each group made to describe
their workflow and to their corresponding reposito-
ries. We were able to informally assess understand-
ing through a jigsaw discussion where each learner
described their group's workflow. Learners were
given a score of 1 if they showed sufficient under-
standing, 0 if they showed incomplete understand-
ing, and M if the content was missing. We did not
have any learners where the content was missing,
but there were some instances where learners didn’t
fully address some of the content goals.

This activity was interesting to lead since we taught
the workshop twice, and in one class, everyone had
prior coding experience while in the other class,

 Teaching Sustainable Software Development using Inquiry

 257

few learners had prior experience. The coding ex-
perience of these groups, given the physics versus
computational focuses of their respective REU pro-
grams, were also opposite of what we had expected
before leading the workshop. Based on our assess-
ment, we believe that an additional ~60 minutes
would have been helpful to ensure that all groups
would be able to explore testing their workflows.
Overall, however, our activity worked to get the
learners to understand our concepts. We believe our
approach of emphasizing the process of sustainable
software development instead of the specific com-
mands and jargon used in version control worked
well.

The STEM practice goals we incorporated into our
activity were to design a solution within require-
ments and to experience a collaborative design pro-
cess. This former process is authentic to STEM be-
cause we often develop codes or devices that carry
out a desired purpose within certain constraints. We
assessed the practice with our STEM practice rubric
by looking at their repositories and gauging their fa-
miliarity with the concepts during the Culminating
Assessment Task (CAT) jigsaw. Learners struggled
with the idea of determining the requirements for
their project, but they did well at realizing that there
is more than one solution and were able to develop
solutions that fit requirements. When struggles with
determining the requirements arose, we facilitated
discussion within the groups primarily using the ad-
ditional facilitation prompt from the Investigations
section in Table 1. The prompt asks the learners to
consider the ways in which one might interact with
the workflow and what their roles might be. We also
encouraged them to think about some of the chal-
lenges that may arise if there are not sufficient
guidelines for a workflow.

Overall, learners worked well with each other to
come up with a final solution for their group. In
general, the learners were able to work together to
form a final workflow document that everyone in
their group agreed on. We were able to facilitate this
process in part by our instructional design where we

emphasized that the design of a software develop-
ment workflow is inherently collaborative and an
authentic practice in a software community. In one
case, a group created their own framework (mod-
eled after the US government) and assigned people
themed roles. They not only created a set of norms
that would work for a software community, but
were also creative in their solution.

3.5 Lessons learned
During the development of this workshop, we ex-
plored new realms in applying the PDP framework
to teach computational concepts. We successfully
implemented an inquiry approach and created a
successful workshop. In particular, the inclusive de-
sign was ideal for our venue since it allowed learn-
ers to begin building an identity as participants in a
software community, regardless of their prior expe-
rience with version control. Because active learning
results in better retention of concepts (Hake 1998)
it is our hope that our approach can result in a better
understanding of how to train scientists in practic-
ing sustainable software development.

4. Conclusion
In developing this workshop through the PDP, we
applied inquiry learning and backward design to
teach computational concepts and tools. Further-
more, we improved on the way that sustainable
software development is introduced to learners.
Since sustainable software development can be
done effectively with a variety of tools, we empha-
sized the concepts (issues/bugs, making code
changes, and role management) instead of solely
presenting the tools (git) to implement these con-
cepts. By having learners interact primarily with the
web browser version of GitLab, we facilitated un-
derstanding the concepts prior to the learners gain-
ing proficiency in tool usage. After participating in
the workshop, learners should be able to apply sus-
tainable software development practices to their
own projects, expanding on their knowledge of git
if necessary.

Frisbie, Grete, & Glines

258

The workshop described here was developed as a
three-hour workshop. But in principle, this ap-
proach could be effectively implemented in a class-
room setting as well. The process of working col-
laboratively in small groups to create a workflow is
an authentic experience both in developing soft-
ware and working with a software community.
Some of the learners that participated in the work-
shop were not directly involved in computationally
intensive research projects, so the workshop was
less immediately applicable to them. However, the
ubiquity of writing code in STEM fields and be-
yond makes engaging in this workshop a worth-
while professional development opportunity for
learners.

Acknowledgements
We thank the MSU Department of Physics & As-
tronomy, MSU Department of Computational
Mathematics, Science, and Engineering, and ISEE
who funded our 2019 PDP participation. The PDP
was a national program led by the UC Santa Cruz
Institute for Scientist & Engineer Educators. The
PDP was originally developed by the Center for
Adaptive Optics with funding from the National
Science Foundation (NSF) (PI: J. Nelson:
AST#9876783), and was further developed with
funding from the NSF (PI: L. Hunter:
AST#0836053, DUE#0816754, DUE#1226140,
AST#1347767, AST#1643390, AST#1743117)
and University of California, Santa Cruz through
funding to ISEE.

References
Better Scientific Software (BSSw). (2022). Re-

trieved from https://bssw.io/

Carlone, H.B., & Johnson, A. (2007). Understand-
ing the science experiences of successful
women of color: Science identity as an ana-
lytic lens. Journal of Research in Science

Teaching. 44, 1187-1218.
https://doi.org/10.1002/tea.20237

Guzdial, M. (2010). Why is it so hard to learn to
program? In A. Oram & G. Wilson (Eds.),
Making Software: What Really Works, and

Why We Believe It (pp. 111–124). Sebastopol,
California: O’Reilly Media, Incorporated.

Guzdial, M. (2013). Exploring hypotheses about
media computation. In Proceedings of the

Ninth Annual International ACM Conference

on International Computing Education Re-

search (ICER’13), Association for Computer
Machinery, New York, NY, 19–26.
https://doi.org/10.1145/2493394.2493397

Hake, R. (1998). Interactive-engagement versus
traditional methods: A six-thousand-student
survey of mechanics test data for introductory
physics courses. American Journal of Physics,
66, 64-74. https://doi.org/10.1119/1.18809

Hazzan, O., Lapidot, T., & Ragonis, N. (2011).
Guide to teaching computer science: An activ-

ity-based approach (First edition). London,
England: Springer.
https://doi.org/10.1007/978-0-85729-443-2

Metevier, A. J., Hunter, L., Seagroves, S., Kluger-
Bell, B., McConnell, N. J., & Palomino, R.
(2022). ISEE’s inquiry framework. In ISEE

professional development resources for teach-

ing STEM. UC Santa Cruz: Institute for Scien-
tist & Engineer Educators. https://escholar-
ship.org/uc/item/9q09z7j5

Metevier, A. J., Hunter, L., Seagroves, S., Kluger-
Bell, B., Quan, T. K., Barnes, A., McConnell,
N. J., & Palomino, R. (2022). ISEE’s frame-
work of six elements to guide the design,
teaching, and assessment of authentic and in-
clusive STEM learning experiences. In S.
Seagroves, A. Barnes, A. J. Metevier, J. Porter,
& L. Hunter (Eds.), Leaders in effective and

inclusive STEM: Twenty years of the Institute

for Scientist & Engineer Educators (pp. 1–22).
UC Santa Cruz: Institute for Scientist & Engi-
neer Educators. https://escholar-
ship.org/uc/item/9cx4k9jb

Nangia, U., & Katz, D. S. (2017). Track 1 paper:
Surveying the U.S. National Postdoctoral As-
sociation regarding software use and training
in research (Version 3). figshare.
https://doi.org/10.6084/m9.figshare.5328442.v
3

https://bssw.io/
https://doi.org/10.1002/tea.20237
https://doi.org/10.1002/tea.20237
https://doi.org/10.1002/tea.20237
https://doi.org/10.1145/2493394.2493397
https://doi.org/10.1119/1.18809
https://doi.org/10.1007/978-0-85729-443-2
https://escholarship.org/uc/item/9q09z7j5
https://escholarship.org/uc/item/9q09z7j5
https://escholarship.org/uc/item/9cx4k9jb
https://escholarship.org/uc/item/9cx4k9jb
https://doi.org/10.6084/m9.figshare.5328442.v3
https://doi.org/10.6084/m9.figshare.5328442.v3

 Teaching Sustainable Software Development using Inquiry

 259

Porter, L., Guzdial, M., McDowell, C., & Simon,
B. (2013). Success in introductory program-
ming: What works? Communications of the

ACM, 56(8).
https://doi.org/10.1145/2492007.2492020

Queiroz, F., Silva, R., Miller, J., Brockhauser, S.,
& Fangohr, H. (2017). Track 1 paper: Good
usability practices in scientific software devel-
opment (Version 3). figshare.
https://doi.org/10.6084/m9.figshare.5331814.v
3

Sorva, J. (2012). Visual program simulation in in-

troductory programming education (Doctoral
thesis, Aalto University, Espoo, Finland). Re-
trieved from https://aaltodoc.aalto.fi/han-
dle/123456789/3534

Wilson, G. (2006). Software carpentry: Getting
scientists to write better code by making them
more productive. In Computing in Science &

Engineering, 8(6), 66-69, Nov.-Dec. 2006.
https://doi.org/10.1109/MCSE.2006.122

Wilson, G. (2013). Software carpentry: Lessons
learned. arXiv:1307.5448.
https://arxiv.org/abs/1307.5448

https://doi.org/10.1145/2492007.2492020
https://doi.org/10.6084/m9.figshare.5331814.v3
https://doi.org/10.6084/m9.figshare.5331814.v3
https://aaltodoc.aalto.fi/handle/123456789/3534
https://aaltodoc.aalto.fi/handle/123456789/3534
https://doi.org/10.1109/MCSE.2006.122
https://arxiv.org/abs/1307.5448

Frisbie, Grete, & Glines

260

	Abstract
	1. Introduction
	2. Workshop overview
	2.1 Venue and learners
	2.2 Activity overview
	2.3 Assessment strategy

	3. Activity development
	3.1 Learning outcomes
	3.2 Content development highlights
	3.3 Pivot to virtual in 2020 and 2021
	3.4 Discussion of learner outcomes and artifacts
	3.5 Lessons learned

	4. Conclusion
	Acknowledgements
	References

