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Pulsar timing arrays (PTAs) have recently found evidence for a nanohertz-frequency stochastic
gravitational-wave background (SGWB). Constraining its spectral characteristics will reveal its origins.
In order to achieve this, we must understand how data and modeling conditions in each pulsar influence the
precision and accuracy of SGWB spectral recovery. These goals typically require many Bayesian analyses
on real data sets and large-scale simulations that are slow and computationally taxing. To combat this, we
have developed several new rapid approaches that instead operate on intermediate SGWB analysis
products. These techniques refit SGWB spectral models to previously-computed Bayesian posterior
estimates of the timing power spectra. We test our new techniques on simulated PTA data sets and the
NANOGrav 12.5-year data set, where in the latter our refit posterior achieves a Hellinger distance—
bounded between 0 for identical distributions and 1 for zero overlap—from the current full production-level
pipeline that is ≲0.1. Our techniques are ∼102–104 times faster than the production-level likelihood, and
scale much more favorably (sub-linearly) as a PTA is expanded with new pulsars or observations. Our
techniques also allow us to demonstrate conclusively that SGWB spectral characterization in PTA data sets
is driven by the longest-timed pulsars and the best-measured power spectral densities, which is not
necessarily the case for SGWB detection that is predicated on correlating many pulsars. Indeed, the
common-process spectral properties found in the NANOGrav 12.5-year data set are given by analyzing
only the ∼14 longest-timed pulsars out of the full 45 pulsar array, and we find that the “shallowing” of the
common-process power-law model occurs when gravitational-wave frequencies higher than ∼50 nanohertz
are included. The implementation of our techniques is openly available as a software suite to allow fast and
flexible PTA SGWB spectral characterization and model selection.
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I. INTRODUCTION

Pulsar timing array (PTA) experiments [1] across the
world have now reported compelling evidence for a
nanohertz-frequency stochastic gravitational wave back-
ground (SGWB) [2–5]. This new insight into the
gravitational wave (GW) spectrum was achieved by
measuring small deviations between the expected and
observed radio-pulse times-of-arrival (TOAs) from a set of
Galactic millisecond pulsars, wherein the distinctive
imprint of an SGWB is inferred through a quasiquadru-
polar correlation signature imparted between pulsars in
the PTA. This Hellings and Downs correlation pattern [6]
has now been inferred with varying levels of significance
by most regional PTA Collaborations, with the promise of

higher significance and enhanced scientific returns when
these are synthesized into an updated International Pulsar
Timing Array dataset [7].
While PTA detection statistics are centered around the

cross-correlation of distinct pulsars, it is an interesting
consequence of the PTA data model that spectral charac-
terization of the SGWB is dominated by pulsar auto-
correlations [8,9]. In fact, multiple PTA Collaborations
saw the first hints of the SGWB through emerging
common spectral behavior in many pulsars, which was
modeled as a common uncorrelated red noise (CURN)
signal [10–12]. Even now, with evidence of GW-induced
cross-correlations, SGWB spectral characteristics derived
from a CURN data model provide an excellent approxima-
tion to a full Hellings and Downs–correlated model (HD),
yet at a fraction of the computational cost. Adequately
modeled, the shape of the inferred SGWB spectrum encodes
information about the emitting source, e.g., the dynamics
and demographics of a black-hole binary population, or the
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details of early-Universe processes. Assuming that the
source is a population of circular supermassive black hole
binaries (SMBHBs) evolving via GW radiation reaction, the
SGWB’s characteristic strain hc as a function of frequency
follows a power law, hcðfÞ ¼ Aðf=fyrÞα, where α ¼ −2=3
[13]. The amplitude A is the characteristic strain referenced
to a frequency of fyr ¼ 1=year, and determined by the
demographics of the binary population, e.g., the number
density of emitting systems per redshift, primary mass, and
mass ratio e.g., [14] and references therein.
While measuring this amplitude parameter A can

provide interesting constraints on the SMBHB population,
the inward migratory dynamics of supermassive black
holes after a galaxy merger are likely much more compli-
cated ([15] and references therein). Binary orbital eccen-
tricity and interactions of binaries with gas and stars
(particularly at wider orbital separations) will attenuate
the expected SGWB characteristic strain at lower frequen-
cies [14,16]. This causes a deviation from a power law [17]
and as such, the SGWB may carry information about the
dynamical interactions of the SMBHB population within
the final parsec of orbital evolution [18]. Even finiteness
of the emitting population under the most simplified
conditions above may cause spectral deviations from
f−2=3 [19–21], rendering fixed-α studies of limited utility
for astrophysical inference.
Beyond SMBHBs, searches are underway for relic

signatures of processes in the early Universe [22], e.g.,
cosmic strings [23], primordial gravitationalwaves [24], and
cosmological phase transitions [25]. While it is thought that
these signals are likely to be an additional, weaker con-
tribution to the SMBHB signal, current searches can not yet
arbitrate on the dominant contributing source of the SGWB.
Kaiser et al. [26] investigated the separability of a SGWB
signal into its component sources; a circular-SMBHB-
population signal, and a background from primordial
gravitational waves. Using simulated datasets developed
by Pol et al. [9], they found that they could begin to
distinguish two injected power-law spectra with 45 pulsars
and 17 years of data, while after 20 years they could begin to
characterize the subdominant power-law GWB signal.
However, their subdominant injected GWB spectrum had
a cosmological energy density that was still rather strong,
comparable to upper limits on primordial gravitational
waves (e.g., [24,27]).
The goal for SGWB spectral characterization is to be a

bridge between pulsar timing data and the physics of these
sources. Our guiding principle is for spectral characteriza-
tion to be scalable andmodular; testing a new spectral model
should not need the analysis to be started from scratch back
at the level of timing residuals, nor should adding a new
pulsar to the PTA require us to ignore that the analysis has
already been successfully performed on the other pulsars.
With this being said, the current production-level pipelines
do indeed start from scratch whenever a newmodel is tested

or a pulsar is added. The current PTA data model is
formulated in the time domain. Uneven observational
sampling of the pulsars, and concerns over the potential
for spectral leakage from windowing, renders fast searches
directly in the Fourier domain impractical. The computa-
tional bottleneck of this time-domain Gaussian likelihood is
the required inversion of the data covariance matrix con-
taining the SGWB signal contributions. Elegant acceler-
ations can be achieved simply by modeling low-frequency
processes (like the SGWB or per-pulsar red noise) with only
a small number of Fourier basis functions [28,29]. However,
even with these accelerations and optimized sparse linear
algebra routines, Bayesian SGWB parameter estimation
with the PTA likelihood via Markov Chain Monte Carlo
(MCMC) sampling can require several days to weeks of
computation. This is the status quo, and will worsen as more
pulsars are added, and further observations of existing
pulsars are incorporated into datasets.
There is a tremendous need for robust, efficient, and

flexible analysis methods for PTAs that follow our
previously mentioned guiding principles of scalability
and modularity. For example, high-cadence timing cam-
paigns from telescopes such as CHIME [30] generate
large data volumes that will slow current pipelines. More
pressing is that the synthesis of all current regional PTA
datasets will result in a combined IPTA dataset with more
than 100 pulsars, which will tax existing pipelines.
Significant acceleration of parameter estimation was
achieved by Taylor et al. [31], who modeled the
SGWB as a CURN, which thereby allows the PTA
likelihood to be factorized into parallelized per-pulsar
analyses (see e.g.,[7,10,11,32]). This factorized likelihood
(FL) method shows excellent agreement with the full
production-level PTA likelihood. Unfortunately, the FL
method assumes a power-law model with a fixed spectral
index, which limits its usefulness for spectral model
selection and source inference. A more general approach
would maintain the likelihood computational speed-up,
parallelization over pulsars, and the intended modularity
of this FL technique while permitting analyses of SGWB
models with arbitrary spectral parametrizations.
In this paper, we introduce the aforementioned gener-

alization of the FL approach, allowing for rapid SGWB
spectral characterization under arbitrary parametrized mod-
els, rather than just a fixed-index power law. This is made
possible by condensing the pulsar timing data down to what
we call Bayesian periodograms; probability density recon-
structions of the pulsar timing-residual power spectral
density at each frequency. Models are then refit to combi-
nations of these Bayesian periodograms. In Sec. II, we
discuss current analysis methods before introducing our
new analysis techniques. We present the results of our
comparison tests between the current and new methods on
simulated and real data in Sec. III, before sharing our
conclusions and goals for further developments in Sec. IV.
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II. METHODS

Here we describe current PTA data-analysis techniques
as they pertain to SGWB spectral characterization,
and discuss expected future limitations as PTA datasets
expand. We then introduce the factorized likelihood (FL)
approach [31], and the concept of refitting spectral models
to Bayesian periodograms of PTA timing residuals.

A. Current spectral characterization methods

PTA analyses model pulsar timing residuals δt
!

as the
sum of a deterministic pulsar timing model and stochastic
red and white noise components,

δt
!¼ Mϵ⃗þ Fa⃗þ n⃗: ð1Þ

The ðNTOA ×mÞ-shaped design matrix M is a matrix of
partial derivatives of the TOAs with respect to m timing-
ephemeris parameters evaluated at an initial fitting solution,
with a vector of linear offsets from the initial fit ϵ⃗. Red-
noise processes, such as the common gravitational wave
signal and red noise intrinsic to each pulsar, are modeled as
a Fourier sum over Nf sampling frequencies such that, for
the ith timing residual observed at time ti,

½Fa⃗&i ¼
XNf

k¼1

!
as;k sin

"
2πkti
T

#
þ ac;k cos

"
2πkti
T

#$
; ð2Þ

where T is the timing baseline (typically the total time span
of the dataset being analyzed). As such, F is a NTOA × 2Nf

matrix of sines and cosines evaluated at observation times,
and a⃗ ¼ ðas;1; ac;1; as;2; ac;2;…; as;Nf

; ac;Nf
ÞT is a vector of

Fourier coefficients. We model intrinsic red noise (IRN) as
independent between pulsars, and the SGWB as a common
signal to all pulsars. For a single pulsar p, its total red noise
is the sum, ðFa⃗Þp ¼ ðFa⃗ÞIRNp þ ðFa⃗ÞSGWB. Finally, n⃗ is
uncorrelated white noise due to radiometer noise, instru-
mental effects, and pulsar phase jitter. We rearrange Eq. (1)
to model residual noise as r⃗,

r⃗ ¼ δt
!−Mϵ⃗ − Fa⃗ ¼ δt

!− Tb⃗; ð3Þ

where T ¼ ½MF& and b⃗ ¼ ½ϵ⃗ a⃗&T. Other contributions to the
timing residuals include correlated white noise between
TOAs within the same timing epoch, and radio-frequency
dependent red noise due to time-dependent variation in
dispersion from the interstellar medium (see e.g., [33,34]).
We place a zero-mean Gaussian prior on b⃗ such that, for

model hyperparameters η⃗,

pðb⃗jη⃗Þ ¼
exp ð− 1

2 b⃗
TB−1b⃗Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πBÞ

p ; ð4Þ

where B≡Bðη⃗Þ ¼ hb⃗b⃗Ti ¼ diagð∞;ϕÞ. The matrix ϕ is
the Fourier-domain covariance on red-noise processes,
while the ∞-block effectively converts the Gaussian prior
into a improper uniform prior on the timing model. Given
that we will eventually only deal with the inverse of B, we
need not worry about the practicalities of treating infinities.
The full hierarchical likelihood of the timing residuals

given the model hyperparameters and b-coefficients
is given by pðδt!jb⃗; η⃗Þ ¼ pðδt!jb⃗Þ × pðb⃗jη⃗Þ. However, we
are only interested in the model hyperparameters η⃗ that
describe the statistical properties of various stochastic
processes; thus we marginalize over the Gaussian
b-coefficients to recover a more concise likelihood,

pðδt!jη⃗Þ ¼
exp ð− 1

2 δt
!TC−1δt

!Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ð2πCÞ

p : ð5Þ

Here, C ¼ Nþ TBTT is the full time-domain covariance
matrix of the data model, with white-noise covariance N,
where

½C&ðpiÞ;ðqjÞ ¼ ½N&p;ðijÞδpqδij þ ½CIRN&p;ðijÞδpq
þ Γpq½CSGWB&ðijÞ: ð6Þ

Equation (6) indexes over pulsars (p, q) and TOAs (i, j).
½N&p;ðijÞ and ½CIRN&p;ðijÞ are the white noise and intrinsic red
noise covariance matrix components respectively for pulsar
p and ith TOA, while ½CSGWB&ðijÞ is the covariance matrix
components for the SGWB between the ith and jth TOAs.
The expected GW-induced cross-correlation in timing
residuals between pulsars is given by the overlap reduction
function (ORF) coefficient Γpq, which, for an isotropic
SGWB is the aforementioned Hellings and Downs (HD)
curve [6].
All current spectral characterization techniques involve

computing the PTA likelihood in Eq. (5) under different
models or assumptions [10,35]. When cross-correlations
between pulsars are modeled (hereafter referred to as
interpulsar correlations), inverting C should scale as
OðN3

pN3
bÞ. As more TOAs and more pulsars are added

to the array, evaluation of this likelihood will slow down
significantly because of this scaling. The autocorrelation
blocks in the PTA data covariance matrix contain white
noise, pulsar-intrinsic red noise, and the SGWB, while the
interpulsar blocks only feature the SGWB. However, we
now know that spectral characterization of an SGWB is
dominated by PTA autocorrelation information [8,9].
Therefore, for the class of techniques below where the
PTA likelihood is factorized over pulsars, we assume no
interpulsar correlations (i.e., a CURN model) such that
Γpq ¼ δpq.
Modeling only the diagonal blocks of the PTA data

covariance matrix reduces the likelihood evaluation scaling
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to OðNpN3
bÞ. Physically speaking, this significant accel-

eration arises because the PTA likelihood is factorized as a
product over pulsars,

pðfδt!gjη⃗Þ¼
expð−1

2

PNp
p¼1 δt

!T
pC−1

ppδt
!

pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞ

p

¼
YNp

p¼1

expð−1
2 δt
!T

pC−1
ppδt
!

pÞffiffiffiffiffiffiffiffiffiffiffiffiffi
2πCpp

p ¼
YNp

p¼1

pðδt!pjη⃗Þ; ð7Þ

where fδt!g where is the set of timing residuals for all
pulsars, pðδt!pjη⃗Þ is the likelihood for a single pulsar pwith

a set of timing residuals δt
!

p, and η⃗ are model hyper-
parameters describing variables like spectral-shape para-
meters, etc. However, this factorization is not exploited to
full effect within the production-level enterprise
analysis pipeline [36], which carries this out as a serialized
calculation over pulsars. Parallelizing the computation over
Np processors would theoretically remove the likelihood
computation’s dependence on the number of pulsars, while
being numerically equivalent to an analysis that uses the
production-level PTA likelihood.

B. Factorized likelihood methods

The factorized likelihood (FL) approach makes possible
a class of techniques where Eq. (7) is computed in parallel
across pulsars, with reweighted posterior distributions
from each pulsar combined in postprocessing to calculate
the likelihood for the array. Evaluation of the like-
lihood becomes approximately scale invariant with Np.
Taylor et al. [31] modeled a power-law SGWB strain
spectrum with a fixed spectral index of α ¼ −2=3 to
recover posteriors on the SGWB strain amplitude for each
pulsar. The posteriors on the strain amplitude were repre-
sented by histograms, re-weighted by the single-pulsar
parameter priors, then multiplied across pulsars with a
suitable prior for the final posterior calculation.
This fixed-index FL technique (along with variants)

has already been adopted as a new tool in large analysis
campaigns from NANOGrav [2,10], the Parkes Pulsar
Timing Array [4,11], and IPTA [7], as well as other
studies [32,37], to accelerate parameter estimation and
cross-validation. However as discussed earlier in Sec. I,
there are many reasons why the SGWB strain spectrum
could deviate from this simple fixed-index power-law
model. We therefore require a more flexible and general-
ized FL approach that would allow for inference of
physically motivated SGWB spectral models.
A general factorized likelihood (GFL) approach is

possible by fitting spectral models to the free spectrum,
a minimally modeled Bayesian spectral characterization of
pulsar timing data [38,39]. The free spectrum recovers the
joint posterior of the red-noise power spectrum at all

sampling frequencies, parametrized by the coefficient ρ,
such that

ρ2k ≔
hak!Tak

!i
T

¼ SðfkÞ
T

; ð8Þ

where k is the Fourier frequency-bin index and S is the
power spectral density of the timing residuals induced by
red processes. Typically, a free-spectrum analysis is con-
ducted with a uniform prior on log10 ρ, with posteriors
jointly recovered at all sampling frequencies. In the
following we assume that there is independence between
sampling frequencies, thus no covariance between them.
Pulsar-timing analyses deal with unevenly sampled obser-
vations, so we will assess the strength of this assumption in
our tests.
Refitting spectral models to Bayesian free spectra can be

done at various levels; one can (i) perform a PTA Bayesian
free-spectrum analysis, followed by refitting on the fre-
quency-factorized PTA free spectrum, or ðiiÞ perform free-
spectral analysis on individual pulsars, which are then
combined into a frequency- and pulsar-factorized like-
lihood against which spectral models are fit. The general
scheme for (i) is as follows. Translating hc into ρ-space
gives

ρ2k ¼
hcðfkÞ2

12π2f3kT
¼ A2

12π2T

"
fk

f1 yr−1

#−γ
; ð9Þ

where γ ¼ 3 − 2α ¼ 13=3 for the idealized SMBHB pop-
ulation. We form a likelihood by computing the probability
that a given model is supported by the free spectrum at each
frequency,

pðfδt!gjη⃗Þ ¼
Z

dρ⃗pðfδt!gjρ⃗Þpðρ⃗jη⃗Þ

∝
Z

dρ⃗
pðρ⃗jfδt!gÞ

pðρ⃗Þ
× pðρ⃗jη⃗Þ

≈
YNf

k¼1

Z
dρk

pðρkjfδt
!gÞ

pðρkÞ
× pðρkjη⃗Þ; ð10Þ

where pðρkÞ is the prior probability of ρk in the free-
spectrum analysis, pðρkjfδt

!gÞ is the marginal posterior
probability density of ρk that is sampled using MCMC
techniques, and pðρkjη⃗Þ is the probability of ρk under a
parametrized spectral model, such as Eq. (9). In all cases
considered here, the spectral model maps precisely to a
value of ρ at each frequency, in which case the integral in
Eq. (10) is trivial. However, the more general form shown
allows for models that have intrinsic spread, e.g., where
there is an expected form of the spectrum due to a
population of SMBHBs, and population finiteness induces
departures in a given realization [14,15]. We note that in (i),
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the PTA free spectrum need not necessarily use only
autocorrelation information in the PTA likelihood;
pðρkjfδt

!gÞ is not yet factorized over pulsars, hence an
interpulsar-correlated free-spectral analysis may be per-
formed that accounts for HD correlations, and this would
still allow a frequency-factorized refitting analysis to be
subsequently performed.
Finally, (ii), the extension to factorize the likelihood over

pulsars simply requires that the right-hand side of Eq. (10)
is modified to have an additional product over pulsars.
However, by doing so, we must explicitly make the usual
FL assumption of conditioning spectral characterization on
the PTA autocorrelation information under a CURNmodel,

pðfδt!gjη⃗Þ∝
∼

YNp

p¼1

YNf

k¼1

Z
dρk

pðρkjδt
!

pÞ
pðρkÞ

× pðρkjη⃗Þ: ð11Þ

To compute probabilities of a spectral model with a given
set of hyperparameters η⃗ under the free-spectral likelihoods
pðfδt!gjρkÞ, we use optimized density estimation with
MCMC samples. There are already a number of examples
in the literature of fitting SGWB spectra to a free spectrum
of a PTA (e.g., [40–42]). It is favored over analyzing the
full likelihood because it is fast, since the data structures
that we are fitting to are no longer the timing residuals
themselves, but a compressed-data representation in terms
of a red process at each GW frequency. Other timing-
residual contributions from the timing model, uncorrelated
and correlated white noise, and interstellar-medium effects,
are marginalized over.
The simplest density estimation technique is to bin our

free-spectrum MCMC samples as histograms, just like in
the FL method. This recreates the probability densities of
the free-spectra posteriors within bins of log10 ρ. To
faithfully reconstruct the original distribution, an appro-
priate choice of bin width must be made. If the width of the
bins is too large, the histogram will be oversmoothed,
perhaps removing important fluctuations in the actual
distribution. In contrast, if the bin width is too narrow,
the histogram will undersmooth the data, creating a density
reconstruction that captures all of the fluctuations in the
data that are a result of statistical sampling randomness and
not due to the underlying distribution. There are several
standard rules-of-thumb for finding the optimal bin width
for a histogram given some data, such as by using Scott’s
normal reference rule [43] or the Freedman-Diaconis
rule [44], which are tuned for an underlying normal
distribution. Unfortunately, histograms do not result in a
continuous distribution from which probability densities
can be extracted, causing some loss of data in between bins,
particularly if the bin width is wide.
An alternative method is to use kernel density estimators

(KDEs) [45,46]. A KDE recreates a distribution by replac-
ing each sample with a normalized, symmetric, strictly

positive, real-valued function called a kernel (also known as
a window function). If samples ðx1; x2;…; xNÞ are
extracted from an unknown distribution f, the density
estimate f̂ of a KDE is given by

f̂ðxÞ ¼ 1

Nh

XN

i¼1

K
"
x − xi
h

#
; ð12Þ

where K is the kernel function, and h is the bandwidth of
the KDE. As with histograms, an appropriate bandwidth
must be chosen to avoid creating an under or oversmoothed
estimator. The kernel function itself is also a choice to be
decided. In this paper, we use an Epanechnikov kernel [47],
and select bandwidths using the Sheather-Jones plug-in
selector [48]. Further details on these choices, and KDEs in
general, are given in Appendix A.
Some free-spectrum posteriors may be poorly con-

strained and show non-negligible support for log10 ρ down
to their lower prior boundary. The corresponding likelihood
would effectively be constant if the boundary were lowered
to −∞. To ensure accurate KDE reconstruction at the
boundary, we mirror the data about the boundary to create
the KDE, and then cut off the KDE at the boundary. Any
proposed spectral model in our refitting scheme that goes
below the boundary is given the same probability as spectra
at the boundary.

C. Refit pipelines

We refit parametrized spectral models against these
optimized KDE representations of PTA and pulsar-free
spectra using MCMC techniques. A typical algorithm is as
follows: (1) an iteration of the MCMC proposes a set of
parameters for the spectral model, from which we calculate
our log10 ρ coefficients at all GW sampling frequencies;
(2) we then find the probability of these model log10 ρ
values under the free-spectrum likelihoods at each fre-
quency—and, if applicable, for each pulsar—given our
KDEs,1 and take their product to compute the total like-
lihood. The employed Metropolis-Hastings algorithm will
then reject or accept those parameters accordingly. We
repeat this until the MCMC has sufficiently sampled the
parameter space of the spectral model and converged to the
target posterior.
In this paper, we explore two possible types of refits:

1KDE objects are memory intensive, and extracting the
probability density function of a point from every KDE object
at each MCMC iteration would slow down computation. How-
ever, KDEs are continuous, therefore before conducting the
MCMC, we extract an array of probabilities along a grid of
log10 ρ that is intentionally finer than the KDE bandwidth. This
allows us to implement numpy vectorization techniques to
accelerate the computation of the likelihood. When a set of
log10 ρ is calculated, we look up its probability within the
precalculated KDE density array across frequencies (and pulsars,
where relevant).
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(i) PTA free-spectrum refit: This involves refitting
spectral models against the PTA free spectrum,
which requires an initial analysis using the full
PTA likelihood as a one-time cost. The PTA free-
spectrum analysis describes each pulsar with a
timing model, white noise, and power-law intrinsic
red noise, with a free-spectrum common process
across the entire array. Note that the model of
interpulsar correlations for this common process
can be CURN (uncorrelated), HD (SGWB-corre-
lated), or other, since this refit technique involves
only a factorization over frequencies. While we can
refit SGWB spectral models to different numbers of
frequencies with the PTA free spectrum, we cannot
refit using different combinations of pulsars without
recomputing the PTA free-spectrum.

(ii) Generalized factorized likelihood (GFL) Lite: In
preparation for our goal of a complete generalization
of the factorized likelihood technique, we introduce
and study an intermediate analysis approach here
called GFL Lite. Each pulsar is analyzed independ-
ently in parallel, with a model composed of a timing
model, white noise, power-law intrinsic red noise,
and a free-spectrum that acts as a proxy for the
common process in each pulsar. Given the implicit
factorization of the PTA likelihood over pulsars,
GFL Lite assumes CURN as an interpulsar corre-
lation model. We then refit a common spectral model
to the free spectra of an ensemble of all (or a subset
of) pulsars to recreate the PTA common process.
This method allows us to fit a common signal to
different combinations of pulsars and frequencies
quickly. However, the per-pulsar intrinsic red noise
model cannot be refit. This method is labeled as
‘Lite’ because the full GFL technique will also be
capable of refitting per-pulsar intrinsic red noise
models. Plans and prospects for full GFL are
discussed in Sec. IV.

D. Pipeline profiling

In addition to these techniques being modular and
flexible, we are also motivated by the prospects of
significantly accelerating spectral characterization of the
SGWB with PTA data, especially where many repeated
studies and simulations are required. As discussed in
Sec. II A, the full PTA likelihood with a CURN model
should scale ∝ Np because of the required inversion of a
block-diagonal PTA data covariance matrix, and should
scale as ∝ N3

p for the full likelihood with an HD model
because of the additional off-diagonal structure of the data
covariance matrix.
Before carrying out a suite of simulations to compare the

accuracy of our refit parameter estimation with the full
PTA likelihood, we profiled our analyses on a simulated
Np-pulsar PTA dataset that contains an injected SGWB

signal (as detailed later in Sec. III A). The timing profiles
are shown in Fig. 1. For a simulated 45-pulsar dataset, the
mean-likelihood evaluation time for the CURN full like-
lihood was 0.012 seconds, and 0.24 seconds for the HD full
likelihood. The CURN full likelihood scales as expected
with the number of pulsars. However the HD full likelihood
scales ∝ N2

p, rather than the expected ∝ N3
p. As explained

in Johnson et al. [49], this is due to the use of sparse matrix
algebra. The exact scaling depends on details such as
memory transfer, sparse matrix representation transforms,
parallel computation across CPU cores, and matrix layout,
all of which differ depending on the exact PTA analysis that
is performed. But empirically, this typically results in a
∝ N2

p dependence. The 45-pulsar PTA free-spectrum refit
likelihood takes 53 microseconds while the GFL Lite
likelihood takes 88 microseconds. These are 226 and
136 times faster than the CURN full likelihood respec-
tively. The GFL Lite likelihood evaluation is sublinear as
the number of pulsars increases. The PTA free spectrum is
the fastest; however, a new free spectrum must be produced
if we wish to change the number of pulsars in the array.

III. RESULTS

We present the results of our analyses of 100 simulated
PTA datasets that contain injected SGWB signals, compar-
ing the performance of the full PTA likelihood to our refit
techniques. In each analysis, we model intrinsic red noise
as a 10-frequency power law in each pulsar in addition to a
10 frequency power-law common process, unless otherwise
specified. These frequencies are linearly spaced from 1=T
to 10=T, where T is the total observing time of the array.
We assess the ability of the PTA free-spectrum refit and
GFL Lite techniques to recover SGWB parameter

FIG. 1. The likelihood evaluation time as a function of the
number of pulsars on a simulated dataset, ran on an AMD EPYC
7702 64-core processor. The CURN (red) and HD-correlated
(purple) full PTA likelihoods scale ∝ Np and ∝ N2

p respectively.
GFL Lite (orange) is scale independent with the number of
pulsars. The PTA free-spectrum refit (dashed blue) is the most
rapid method, being 102–104 times faster than the CURN and
HD-correlated full PTA likelihoods.
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posteriors that are comparable to the full likelihood, and
investigate tolerance factors.
To quantify the difference between the posteriors recov-

ered by our techniques compared to the full likelihood, we
use the Hellinger distance [50], a measure of the similarity
between two probability distributions. The Hellinger dis-
tance is bounded 0 ≤ H ≤ 1, where H ¼ 0 implies that
distributions are identical, whileH ¼ 1 implies that they do
not have any overlap and are completely different distri-
butions. For our refit techniques to be robust and accurate,
we seek Hellinger distances to be low with respect to results
from using the full likelihood. See Appendix B for more
details and guiding values for interpretation. We compare
Hellinger distances between the 2D posteriors, as well as
the 1D marginalized posteriors for each parameter in a
power-law spectral model for the SGWB signal, γ and
log10 A, as defined in Eq. (9).

A. Simulations

Our simulated dataset creation follows Pol et al. [9]. The
pulsar datasets are based on the observational timestamps
and TOA uncertainties from the 45 pulsars of the
NANOGrav 12.5 year dataset [10]. We extended the
timespan of the dataset by drawing new TOAs and
uncertainties from the distributions of the final year of
each pulsar’s observations to form a 15 year dataset.
However, we kept the number of pulsars fixed, rather than
adding new ones over time. We injected intrinsic red noise
in each pulsar at linearly-spaced frequencies of 1=T to
10=T, where T ¼ 15 years. The injected spectral character-
istics of a pulsar’s intrinsic red noise were based on
measured values taken from a CURN search in the
NANOGrav 12.5 year dataset.
Finally, 100 SGWB signal realizations were injected into

100 copies of our simulated PTA dataset. We randomly
drew SGWB spectra from a bank of 234,000 that had been
fit to SMBHB population realizations [51] (see also [52]).
Figure 2 shows the total distribution of SGWB spectral
characteristics in blue, and the spectral characteristics
injected into our simulations in red. Typical PTA analyses
use priors of γ ∈ ½0; 7& and log10 A∈ ½−18;−12&. Following
this convention, we also ensured that the randomly-drawn
SGWB spectral characteristics satisfied these prior con-
straints. Unless otherwise stated, all models search for a
CURN process to ensure the most fair comparison between
the full PTA likelihood and the refitting techniques.

B. Parameter estimation fidelity

We choose one of our simulations as a case study of our
refitting techniques. The chosen simulation has spectral
characteristics comparable to the CURN detected in
the NANOGrav 12.5 year dataset, and has one of the
smallest Hellinger distances between the uncorrelated full-
likelihood power-law analysis and the PTA free-spectrum
refit. As a first exploration, given that each GFL-Lite per-

pulsar free spectrum has already been marginalized over
intrinsic red noise parameters, the combined product of
those likelihood distributions across pulsars should be
consistent with the PTA free-spectrum. This is shown in
the left panel of Fig. 3, where there is broad consistency
between the techniques.
The comparison of power-law–model posterior distribu-

tions for our case-study simulation is shown in the right
panel of Fig. 3, where credible regions correspond to 68%
and 95% levels for the spatially-uncorrelated full-
likelihood, the PTA free-spectrum refit, and the GFL
Lite analysis. Both refit methods perform well, recovering
posteriors consistent with the full production-level PTA
likelihood, with both achieving 2D Hellinger distances of
0.10. The 1D-marginalized posteriors on log10 A and γ have
distances with respect to the full PTA likelihood of 0.06 and
0.07 for the PTA free-spectrum, and 0.09 and 0.05 for GFL
Lite. In this case, the PTA free-spectrum refit and GFL Lite
performances are on par. We see a similar consistency when
comparing the Hellinger distances of all 100 dataset
realizations. The distributions of Hellinger distances for
the 2D and 1D marginalized posteriors are shown in Fig. 4,
from which we quote the median, 16th percentile, and 84th
percentile values. The 2D Hellinger distances between the
PTA free-spectrum refit and the full likelihood are 0.260.400.17,
while GFL Lite has 2D Hellinger distances of 0.270.400.20. We
conclude that the PTA free-spectrum refit and GFL Lite
analysis are consistent with each other.
To better understand the origin of discrepancies between

our refit methods and the full likelihood, we investigate the
magnitude of interfrequency correlations in the Bayesian
free-spectrum posteriors, using Pearson’s correlation coef-
ficient [53]. If interfrequency correlations are weak, the
correlation matrix of the posterior samples should be
mostly diagonal in structure. Pearson’s correlation

FIG. 2. The blue regions are the 68%, 95%, and 99% credible
regions of the distribution of SGWB spectral characteristics from
the 234,000 SMBHB population realizations of Rosado et al.
[51]. We randomly selected 100 SGWB realizations from this
distribution (red markers). The dashed black line designates
γ ¼ 13=3, the realization-averaged expected SGWB spectral
index from a population of SMBHBs.
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coefficient quantifies how ‘diagonal’ a correlation matrix
is, with a coefficient of 1 indicating a perfectly diagonal
matrix (i.e., no interfrequency correlations), and lower
values indicating off-diagonal structure (i.e., interfrequency
correlations). In the limit that there are no interfrequency
correlations, Pearson’s correlation coefficient becomes
unity, and our approximation becomes an identity.
The median, 16th, and 84th percentile values of this
coefficient across all 100 realizations of the PTA free-
spectra is 0.920.980.86, suggesting weak correlations between
GW frequencies. We also compute the coefficient for all
45 per-pulsar free-spectra from the GFL Lite pipeline
across all 100 simulation realizations, giving 0.991.00.91;
per-pulsar free-spectra appear to be uncorrelated across
frequencies. Hence our assumption throughout of inde-
pendence between frequencies is justified, and suggests
that information being lost from our refit pipelines is
through the compounding of small inaccuracies in our
density estimators.

Finally, we test the efficacy of Bayesian recovery between
our proposedmethods and the full likelihoodwithp-p plots,
as shown in Fig. 5. If we were to draw our injected spectral
characteristics from the same priors as employed in our
Bayesian analysis, then we would expect to recover
our injections within the p%-credible region for p% of
our simulations. However in our analyses—even with the
full likelihood—we see bias, causing deviation from the
diagonalp-p plot, sincewe drew our injected characteristics
from the SMBHB populations of Rosado et al. [51], and
other analysis approximations. Instead, we compare the
relative efficacy of our refit methods to the full likelihood
analysis by taking the difference in p-p recovery between
the full likelihood and our refit methods. A perfect com-
parison would give zero difference for all p. The PTA free-
spectrum refit has the smallest differences from the full
likelihood, showing deviations around zero mostly within a
1σ confidence interval, where σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1 − pÞ=100

p
is the

binomial standard error for a sample of 100 realizations [54].

FIG. 4. Hellinger distances between the posteriors of the full likelihood and for each refitting technique for all 100 SGWB dataset
realizations. Both methods have a similar distribution of Hellinger distances, thereby demonstrating similar performance when
compared to the full PTA likelihood analysis.

FIG. 3. Left panel: A comparison of the free-spectrum from a full PTA likelihood analysis (blue) with a product of the per-pulsar free-
spectra from the GFL Lite pipeline (green) on a simulated dataset. The two violins are nearly identical and follow the injected SGWB
power-law (gray line). Right panel: Posteriors of a 10 frequency power-law analysis with the full likelihood (orange), PTA free-spectrum
refit (blue), and GFL Lite methods (green), for the simulated dataset shown in the left panel. Credible regions enclose 68% and 95% of
the posterior. The injected SGWB spectral characteristics are shown as the dashed gray lines, with log10 A ¼ −14.7 and γ ¼ 4.17. The
PTA free-spectrum refit and GFL Lite posteriors match well to the full likelihood.
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GFLLite showsmore deviation from the full likelihood than
the PTA free-spectrum refit, but these remain typically
within a 1σ confidence interval on log10 A, and within 2σ
for the spectral index.
For more context, we compare Fig. 5 to a gallery of toy

univariate distribution comparisons in Fig. 13. For the PTA
free-spectrum refit, the p-p plot for log10 A is similar to the
center top panel of Fig. 13, which suggests this method may
underestimate log10 A relative to the full PTA likelihood.
Meanwhile, the spectral index recovery appears similar to
the left-middle panel, suggesting that the width of the
recovered γ posterior is narrower than the full PTA like-
lihood. By contrast, the p-p plot for log10 A and γ for GFL
Lite appear similar to the right middle panel and top center
panel of Fig. 13 respectively, suggesting a typically wider
recovered log10 A posterior, and a slightly underestimated γ
recovery. These are again likely due to compounding of
small inaccuracies in our density estimators over many
frequencies (and pulsars). However, overall these refitting
methods achieve excellent parameter posterior recovery
when compared to the full PTA likelihood.

C. Model selection

We now explore the efficacy of our refitting techniques
for spectral model selection. The SGWB spectrum is
typically modeled as a power-law, but other astrophysical
and cosmological phenomena, and potentially even noise
contamination, may influence its inferred shape. We would
like to test whether these models better fit PTA data than a
simple power-law, and make astrophysical and cosmologi-
cal interpretations from their spectral characteristics.
Model selection with the current production-level PTA

analysis pipeline is challenging given the relatively slow
computation time of the PTA likelihood compared to the
size of the parameter space that must be searched over.

We must compare the Bayesian evidence of our data given
our hypothesis models, pðδt!jHÞ, to derive a Bayes factor
B12 ¼ pðδt!jH1Þ=pðδt

!jH2Þ, and interpret those values to
reject or accept H1 overH2. The interpretation is problem-
specific, but some rules-of-thumb are given in Kass and
Raftery [55]. In PTA analysis, model selection is typically
conducted via calculating the Savage-Dickey density
ratio [56] for low-contrast nested models, or with prod-
uct-space sampling for mildly disjoint nested models [see,
e.g., [57–59]].
One model selection technique that is currently imprac-

tical for production-level PTA analyses on large arrays
(≳40 pulsars) is nested sampling, for which one analyzes
each model separately to compute the Bayesian evidence
[60,61]). Nested sampling is computationally expensive
and cannot be realistically used with the full PTA likelihood
given the combination of parameter dimensionality and
slow evaluation time for larger arrays. In the PTA literature,
nested sampling has been used before, but only for a small
collection of pulsars [62]. Our new techniques now make
spectral model selection via nested sampling feasible for
larger PTAs.
Table I compares Bayes factors between various spectral

models and the injected power-law behavior from the same
case-study simulation as Fig. 3, using the PTA free-
spectrum refitting technique. A broken power law has
power-law behavior at low frequencies that then transitions
into (in this case) a flat spectrum at higher frequencies in
order to account for a white-noise floor in real data. This is
used often in production-level analyses as a data-driven
way of identifying the optimal number of frequencies with
which to model a common red-noise process such that the
inference is not biased by white noise [10]. A turnover
model is similar in spirit to the broken power-law—in that it
is effectively two power-laws connected by a bend—but
motivated as a way to model low-frequency SGWB spectral
attenuation from a binary population’s interactions with
their respective galaxy environments [17,63]. A t-process
model has an underlying power-law behavior, but with per-
frequency deviations that are constrained by an inverse-
gamma prior. This is used to account for spectral fuzziness
owing to noise conflation with the CURN, or potentially
even binary-population finiteness influencing the spectral

FIG. 5. The difference in p-p plots between the full likelihood
and the PTA free-spectrum refit or GFL Lite. Equivalent recovery
would show zero for all p% credible regions. The PTA free-
spectrum refit is centered close to zero and mostly within the 1σ
confidence region, where gray curves show 1σ, 2σ, 3σ regions.
GFL Lite is also close to zero, and mostly within the 2σ
confidence region for both parameters.

TABLE I. Bayes factors for different 10-frequency CURN
spectral models compared to a power-law when refitted to a
PTA free-spectrum via the ULTRANEST nested sampler [65]. As
expected, a power-law model is favored over every other tested
model.

Disfavored model Favored model B

Broken power-law Power-law 21.1' 6.0
Turnover Power-law 1.71' 0.44
t-process Power-law 50.7' 11.8
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shape [64]. Unsurprisingly, the power-law is the most
favored model, since it is the injected spectrum.
However, the power law is only slightly favored over
the turnover model with B ¼ 1.71. This is because we
allowed the range of turnover frequencies to be in any of the
10 modeled GW frequency bins. The model favored the
lowest frequency bin, which made it behave mostly like a
power law. The broken power-law’s bend frequency was
also allowed to vary across all frequencies, however it is
much less favored than the power-law because its spectral
index at frequencies greater than the bend frequency is
fixed at zero, which the data do not support. Similarly, the
injected power-law signal is so strong that any noise-
induced deviations from it are small, thereby disfavoring
the t-process model.
Using our spectral refitting techniques, it is now possible

to systematically explore the evidence for various realistic
SGWB spectra in PTA data. We however emphasize that
this is currently only for spectral model selection; necessary
developments for performing model selection between
interpulsar correlated models (e.g., monopole, dipole,
Hellings–Downs), or to assess evidence for the presence

of a CURN process over only intrinsic per-pulsar noise, are
discussed in Sec. IV.

D. Evolution of Bayesian spectral constraints with
number of GW frequencies and pulsars

Given that spectral characterization is now trivial with
our refitting techniques, we use our simulations to study
how the Bayesian inference of spectral characteristics
evolves with the number of modeled GW frequencies
and pulsars.

1. Dependence on number of GW frequencies

In Fig. 6 we recover the Bayesian posterior for a CURN
power-law process on our case-study simulation as a
function of the number of modeled GW frequencies.
Typically, we fit a common-process model to the Nf lowest
GW frequencies; this is shown by the blue regions.
However, we may also fit a power-law to our highest
Nf frequencies, given by the gray contours. This gives a
comparison between the information content of the highest
versus lowest frequencies. The SGWB spectrum from

FIG. 6. The median, 1-σ, and 2-σ posterior credible constraints on log10 A, γ for a power-law process as a function of the number of
modeled frequencies, Nf . The blue regions signify the constraints from fitting to the lowest frequency upwards (where these frequencies
are explicitly shown in blue on the top x-axis), while the gray signifies fitting from the tenth frequency downwards. As the number of
frequencies increase, the posteriors become more constrained towards the injected parameter values (dashed black lines). For the PTA
free-spectrum refit, we see the expected behavior of the blue contours constraining the parameters more quickly than the gray.
Qualitatively, GFL Lite (right column) performs as well as the PTA free-spectrum refit (left column).
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astrophysical or cosmological sources is expected to be red,
with more power at lower frequencies. Hence, PTAs should
be more sensitive to the SGWB at frequencies of∼1=T than
at higher frequencies, where intrinsic per-pulsar red noise
and white noise can dominate [66,67]. Therefore, we
expect the blue contours to converge toward the lines of
injected values faster than the gray contours; we see this for
both the PTA free-spectrum refit and GFL Lite techniques,
where the posterior spread in recovered parameters
decreases significantly after only two frequencies. The
gray contours (representing fitting from higher frequencies
downwards) remain wide for a larger number of modeled
frequencies, where both techniques require eight frequen-
cies to converge on the spectral index γ, while the recovered
amplitude converges on the injection after only four
frequencies. As expected, PTAs derive most information
on SGWB spectral characteristics from the lowest analyzed
GW frequencies, by virtue of the fact that red noise
processes have more power there.

2. Dependence on number of pulsars

We may also analyze the SGWB parameter posterior
recovery as a function of the number of pulsars Np in our
PTA (Fig. 7), this time using the GFL Lite technique.
Given the large number of combinations with which Np

pulsars can be chosen from the array of 45, we only look at
two sets of analyses, where we either add pulsars by
decreasing or increasing timespan. Similar to Sec. III D 1,
pulsars with longer observational timespans should be
more informative of lower GW frequencies, where the
signal is expected to be strongest. Therefore, we expect,
and indeed observe, that the blue contours converge on the
injected parameter values faster than the gray contours,
requiring only the ∼8 longest-timespan pulsars before the
median and posterior credible regions of the recovered
spectral characteristics become approximately constant.
By contrast, the ∼35 shortest-timed pulsars are required to
recover the same precision as those eight longest-timed
pulsars.

3. Characterization through the effective number
of pulsars

From these analyses, it is clear that not all pulsars and
frequencies contribute equally toward spectral characteri-
zation. Frequencies with more noise than others will be
down-weighted in spectral model fitting, as will pulsars
whose overall noise level exceeds that of others. Using the
GFL Lite free spectrum of each pulsar, we can calculate the
effective number of pulsars Neff in an Np-pulsar PTA
searching for anNf frequency power-law SGWB spectrum.
We adapt and modify Eq. (8) in Cornish and Sampson [68]
to the case of spectral characterization, also accounting for
the uncertainty on the free-spectrum measurements,

Neff ¼
PNp

p¼1

PNf
k¼1 1=σðlog10ρp;kÞ2

max1≤p≤Np

PNf
k¼1 1=σðlog10ρp;kÞ2

; ð13Þ

where σ is measurement uncertainty. The free-spectrum
posteriors log10 ρp;k come from the pth pulsar and kth
frequency of the GFL Lite free-spectrum pipeline. We
estimate the measurement uncertainty of the posterior of
the pth pulsar and kth frequency with σG, a rank-based
estimate of the standard deviation to account for distribu-
tion non-Gaussianity, σG ≈ 0.7413 × IQR, where IQR is
the interquartile range, and the prefactor originates from
computing the IQR of a Gaussian [69]. However, some
posteriors are prior dominated and uninformative, and
estimating the standard deviation will return, at worst, that
of the prior. We determine which pulsar and frequency
posteriors are uninformative by computing the Savage-
Dickey density ratio [56], which, in this case, is used to
estimate the Bayes factor between a model with and
without a CURN process in a given pulsar, at a given
frequency. B > 1 suggests that a CURN process is

FIG. 7. The median, 1σ, and 2σ posterior credible constraints
on log10 A, γ for a power-law process as a function of the number
of modeled pulsars, Np. The blue regions signify posterior
constraints of a 10-frequency power-law CURN fitted to the
Np-pulsars with the longest observing time spans, while the gray
regions are the corresponding constraints from the Np shortest-
timed pulsars. The black dashed line denotes the injected SGWB
spectral characteristics.
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supported, while if B < 1, we determine that it is unin-
formative and set σ ¼ ∞. The normalization of Eq. (13)
ensures that Neff ≥ 1 for all Np and Nf. Therefore, Neff is
the effective number of pulsars relative to the most con-
strained (i.e., least noisy, and therefore most informative)
pulsar for spectral characterization in the array. For a
PTA with heterogeneous pulsar spectral uncertainties,
Neff < Np, while a PTA with homogeneous uncertainties
would have Neff ¼ Np.
Figure 8 shows the relationship between the power-law

parameter uncertainties as a function of Neff . We fitted a
10-frequency, Np-pulsar power law with the GFL Lite pipe-
line, adding pulsars in order of the greatest to smallest value ofPNf

k 1=σGðlog10 ρp;kÞ2, i.e., in order of most-constrained to
least-constrained pulsar spectrum. We computed the margin-
alized posterior uncertainty on both power-law parameters
using the rank-based standard-deviation estimate σG, defined
es earlier. We see here that increasing the number of real
pulsars increases the effective number of pulsars in the PTA,
and decreases σG for both parameters. These studies allow us
to posit a general relationship for spectral constraints in
Bayesian PTA analyses, where σG ∝ 1=

ffiffiffiffiffiffiffiffi
Neff

p
, as one may

expect for a standard-deviation-type quantity computed from
a data sample.

E. Recreating the results of the NANOGrav
12.5-year dataset

We now apply our refitting techniques to the NANOGrav
12.5-year dataset to assess performance against published
results. Analysis of the NANOGrav 12.5-year dataset did
not find significant evidence for Hellings and Downs
interpulsar correlations, however, there was strong evidence
for a CURN process. The posterior probability density for
an analysis with a 5-frequency power-law CURN process

(including 30-frequency power-law per-pulsar intrinsic red
noise) is shown in Fig. 9, along with a PTA free-spectrum
refit and GFL Lite analysis on this dataset. The PTA free-
spectrum refit is consistent with the published full like-
lihood with a Hellinger distance of H ¼ 0.13.
For GFL Lite, we modeled a 5-frequency free- pectrum

and 30-frequency power law (to model the intrinsic red
noise), and refit to the 5 free-spectrum posteriors. We found
that, because there is excess unmodeled noise in the real
dataset,2 modeling a greater number of frequencies with the
free-spectrum in each individual pulsar resulted in noise
corruption, causing the free-spectrum to be conflated with
intrinsic red noise in some pulsars. This is not a problem in
the PTA free-spectrum refit, where the strength of theCURN
from all of the pulsars inhibits the potential conflation with
intrinsic red noise in pulsars that have misspecified noise
models. Keeping the GFL Lite free spectrum to just 5
frequencies, and allowing the intrinsic red noise to be
informed by 30 frequencies, attempts to limit this confusion.
Unfortunately for pulsar B1855þ 09, the power law is a
poor model for its intrinsic red noise, resulting in the free-
spectrum posterior recovering the strong-intrinsic red noise
of this pulsar rather than the CURN. When a 5-frequency
GFLLite refit is conducted, this pulsar is influential, causing
theGFLLite refit posterior to appear slightly offset from that
of the full PTA likelihood in Fig. 9, with a Hellinger distance
of H ¼ 0.31. Removing this pulsar results in a more

FIG. 8. The relationship between the effective number of
pulsars in a PTA, Neff , and the uncertainty on the spectral
parameters (see text for a definition of σG), derived using GFL
Lite. We increase Np and keep the number of GW frequencies as
10. The recovered parameter uncertainties scale approximately as
the expected 1=

ffiffiffiffiffiffiffiffi
Neff

p
for both log10 A and γ.

FIG. 9. Fitting a 5-frequency power law to the NANOGrav
12.5-year dataset via the PTA free-spectrum refit technique (blue)
and GFL Lite analysis (green and dotted black). We compare our
analyses to the published posterior (orange). We find excellent
agreement between the published result and the PTA free-
spectrum refit, which attains a Hellinger distance of H ¼ 0.13.
The 45-pulsar GFL Lite analysis does not recover the full-
likelihood posterior as well (H ¼ 0.31). However, removing one
mismodeled pulsar results in better performance (green,
H ¼ 0.12)—see text for details.

2The potential for model misspecification in pulsar timing
datasets when only simple noise models are used has now been
recognized. Ameliorating this requires custom noise modeling.
This has been challenging to incorporate in large-array studies,
but is recognized as the correct path forward.
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consistent refit, with a Hellinger distance of just H ¼ 0.12.
For the remainder, unless otherwise specified, we conduct
the GFL Lite refit with just 44 pulsars. Improving the
modeling of B1855þ 09 is beyond the scope of this paper
and we discuss how we can improve analysis of pulsars like
it in Sec. IV.
Table II shows the results of model selection for various

5-frequency spectral models with the PTA free-spectrum

refit via nested sampling, a technique that estimates the
Bayesian evidence of a model, and which we introduced in
Sec. III C. We see that a varied-γ power-law is barely
favored over a γ ¼ 13=3 power-law, and γ ¼ 13=3 is not
ruled out by these data. There is a little more evidence to
favor a power law over broken power-law, turnover, and
t-process spectra, however none of these are substantial.
We also characterize the spectral recovery as a function

of the number of modeled GW frequencies and pulsars. The
PTA free-spectrum refit to increasing numbers of low GW
frequencies (blue) in the left panel of Fig. 10 shows a
similar “shallowing” of the spectrum as seen in
Arzoumanian et al. [10], where γ trends toward ∼2–3,
potentially due to coupling with unmodeled excess higher-
frequency noise. Meanwhile, increasing the number of
frequencies from f ¼ 30=T downwards tends to have a
broad, unconstrained posterior for all frequencies consis-
tent with low γ i.e., a flatter power spectrum typified by
white noise. Fitting up to the first five frequencies, GFL
Lite is consistent with the PTA free-spectrum refit. In the

TABLE II. Bayes factors B for different 5-frequency common-
process spectral models compared to a power law, when refitted
to a PTA free spectrum for the NANOGrav 12.5-year dataset. The
power law has varied spectral index γ unless stated.

Disfavored model Favored model B

γ ¼ 13=3 power-law Power-law 1.17' 0.40
Broken power-law Power-law 1.82' 0.34
Turnover Power-law 2.23' 0.57
t-process Power-law 1.83' 0.57

FIG. 10. Left: The median, 1σ, and 2σ posterior credible constraints on log10 A, γ for an Nf frequency power law as a function of
number of GW frequencies in the NANOGrav 12.5-year dataset. In blue, we show increasing number of frequencies from the lowest bin
and increase upwards to f ¼ 30=T for the free-spectrum refit, and in green, we show the same analysis for GFL Lite upwards to 5=T
which is consistent with the blue contour. In gray, we show addition of frequencies from f ¼ 30=T downwards for the free-spectrum
refit. We observe a similar shallowing of the spectrum as Arzoumanian et al. [10] when a larger number of frequencies are modeled
because of the contribution of white noise. Right: A 5-frequency power-law is fit to an increasing number of pulsars in the NANOGrav
12.5-year dataset, where green regions show constraints from adding pulsars in longest- to shortest-timed order. The blue posteriors are
well-constrained after ∼14 pulsars, while the gray posterior require ∼36 pulsars out of 45 to be constrained. Hence, the longest 14
pulsars are the most important for spectral characterization in this dataset.
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right panel, we use GFL Lite to fit a 5-frequency power law
to an increasing number of pulsars (including B1855þ 09),
added by decreasing pulsar timespan (green) and increasing
pulsar timespan (gray). As with Fig. 7, the green posterior
is constrained after relatively few pulsars are added (∼14),3
while the gray posterior is unconstrained, particularly for γ,
until the final ten pulsars are added.
Finally, we also analyze the measurement uncertainty of

flog10 A; γg as a function of the effective number of
pulsars, Neff , using the GFL Lite technique. Figure 11
shows σG of parameters for a 5-frequency power law model
as a function ofNeff as we increase the number of pulsars in
the array in order of greatest to the smallest value of
PNf

k 1=σGðlog10 ρp;kÞ2. We use the same methods as
Sec. III D 3. Again, we observe an approximate 1=

ffiffiffiffiffiffiffiffi
Neff

p

scaling relationship. We need at most four pulsars that are
equivalent to the best modeled pulsar in order to effectively
recover the spectral characteristics of the CURN from this
dataset. We also notice that the real dataset has fewer
numbers of effective pulsars than our earlier simulated
datasets, due to the data model of the simulations being
entirely known and prescribed.

IV. CONCLUSIONS AND FUTURE PROSPECTS

We have developed a set of rapid and robust spectral
refitting techniques that operate on posterior samples from
pulsar and PTA Bayesian periodogram analyses, where the

power spectral density is jointly modeled by free param-
eters at each GW frequency (sometimes referred to in the
PTA literature as free-spectrum analyses). This is a gen-
eralization of our previously developed factorized like-
lihood (FL) technique [31], where GW background
amplitude posteriors for fixed power-law spectral index
models are combined in postprocessing, under the
assumption that spectral characterization is mostly driven
by autocorrelation information in the PTA covariance
matrix. The main limitation of FL was its conditioning
on a GW-background spectral model with a fixed power-
law spectral index. Our new formulations loosen that
assumption, allowing for refitting and inference of arbitrary
spectral models.
In order of generality, we assessed the performance of a

model that refits on a Bayesian PTA free-spectrum (PTA
free-spectrum refit) and one that refits on the combination
of per-pulsar free spectra, which act as proxies for the
CURN signal in each pulsar, with intrinsic per-pulsar red
noise modeled separately (GFL Lite). These techniques are
several orders of magnitude faster in evaluating their
likelihood functions when compared to the production-
level PTA pipeline, and also scale much more favorably
when adding new pulsars. These gains in speed and
scalability will be important in safeguarding PTA analyses
from future bottlenecks, as significantly more data and
pulsars are added to arrays through IPTA combinations and
high-cadence observations in MeerTime [70], CHIME [71],
and (farther in the future) the SKA [72].
We assessed the fidelity of parameter estimation using a

set of 100 realistic PTA datasets based on the NANOGrav
12.5-year dataset that is extended into the future, and into
which realizations of a GW background are injected with
power-law spectral characteristics based on supermassive
black hole binary population models. Through Hellinger-
distance comparisons—which assess the distance between
probability distributions—we found that the PTA free-
spectrum refit and GFL Lite analyses are equivalent in
performance, and consistent with the full production-level
PTA likelihood analysis. While equivalent, we recommend
using these refit methods in the following cases. For the
PTA free-spectrum refit, it should be used when one is
analyzing the evolution of spectral characterization with the
number of GW frequencies, because combined influence of
the PTAwill make it less likely to confuse a CURN process
with high-frequency white and/or mismodeled noise. If
available, this technique can also be used to refit on PTA
free-spectral posteriors that have an assumed interpulsar
correlation signature. For example, in the case study
presented in Fig. 3, the Hellinger distance (closer to zero
is better) of the PTA free-spectrum refit was 0.06 when
refitting on the HD-correlated free spectrum, compared to
0.10 from the CURN free-spectrum. Additionally, we
showed that the PTA free-spectrum refit technique allows
us to trivially perform spectral-model selection. The GFL

FIG. 11. Similar to Fig. 8, using the NANOGrav 12.5-year
dataset, minus B1855þ 09. We fit a 5-frequency power law to an
increasing number of pulsars in the array. About 12 pulsars
(Neff ∼ 3.6) inform the spectral characteristics of the CURN, with
a scaling of 1=

ffiffiffiffiffiffiffiffi
Neff

p
. We use the single-pulsar free spectra from

GFL Lite for calculating Neff .

3The 14 pulsars are J1744-1134, J1455-3330, J1012þ 5307,
B1937þ 21, J2145-0750, J1909-3744, J1918-0642, J1643-
1224, J2317þ 1439, B1855þ 09, J1713þ 0747, J0030þ 0451,
J1640þ 2224, and J0613-0200. It is likely that removing
B1855þ 09 would result in better constraining power.
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Lite technique should be used in studying how different
subsets of frequencies and pulsars—e.g., long-baseline
pulsars versus short-baseline pulsars—affect the spectral
characterization of a CURN process (which is used as an
approximate spectral model of the GW background). Care
must be taken to ensure that, at the single pulsar level, the
CURN process and intrinsic pulsar noise are not being
conflated, as this will reduce the accuracy of the refitted
posterior when compared to the full PTA likelihood. GFL
Lite is more sensitive to noise misspecification than the
PTA free-spectrum refit, since the latter has the benefit of
many other pulsars to mitigate the impact of noise and
CURN conflation.
We plan for a further generalization of the GFL Lite

method, called GFL, which will have the advantage of
allowing trivial changes to the spectral models and priors of
the intrinsic red noise in each pulsar. This method will
enable quick GW-background analyses in the presence of
advanced per-pulsar red-noise models that are customized
to each pulsar, which is currently not tractable with the
production-level PTA pipeline for large arrays. As shown in
Sec. III E, model misspecification of intrinsic red noise
results in an inaccurate refitted posterior; advanced noise
modeling, in concert with GFL, will improve SGWB
spectral characterization for more pulsars and numbers
of GW frequencies [73]. We also suspect that the main loss
of information and fidelity at the moment is through the
sampling and representation of the distribution tails of the
per-pulsar free-spectral posteriors. A potential solution to
this is to use Gibbs techniques and to draw directly from
the analytic conditional posteriors of our free-spectral
parameters, which has been shown to have better tail
sampling [74,75]. This work will appear in a future
publication.
Improvements to the representation of the posterior

densities could be achieved through alternative KDE kernel
functions that have more gradual drop-offs in support. If
information is being lost in our density estimation, then
performance gains may be made through multivariate
KDEs across frequencies, or other higher-dimensional
density estimation techniques based on neural network
architectures, such as normalizing flows [76]. Another
avenue is based on likelihood reweighting techniques,
where an approximate distribution that is easier to sample
is used to generate many random draws, then a subsequent
reweighting stage updates these samples based on their
support under the correct (potentially computationally-
expensive) distribution [see, e.g., [77], for a recent PTA
application]. Given the speed with which GFL refit
analyses can be conducted, we could subsequently
reweight these samples to match the full PTA likelihood.
While this procedure will add extra computation time, it
would still be quite a bit faster than a full pipeline analysis.
We also envision that future development of GFL-style

refitting techniques will include interpulsar correlations,

which would be the zenith of stochastic GW-background
modeling through compressed sufficient statistics. While
our current techniques are based on power-spectrum
modeling, we would need to recover the Fourier coeffi-
cients of the timing residuals in order to retain phase
information among the pulsars. We would then need to
accurately represent the likelihood distribution of these
Fourier coefficients, using density estimation techniques, to
act as sufficient statistics for interpulsar correlation studies.
There is ongoing development along these lines to replace
the current production-level PTA pipeline and ensure that
future Bayesian PTA analyses with significantly larger
datasets will continue to be tractable.
The new techniques presented in this paper will have

several immediate benefits for astrophysical- and cosmo-
logical-model testing with PTA data. The demographics
and dynamics of supermassive black-hole binary popula-
tions is encoded in the amplitude and shape of the GW
characteristic strain spectrum in the PTA band. Our
techniques offer a path to use intermediate data products
(i.e., Bayesian free-spectrum posteriors) for rapid spectral
parameter estimation and model selection. Likewise, sev-
eral potential sources of early-Universe GW-background
signals give rise to strain spectra that deviate from the
expected form of the supermassive black hole binary
population signal, e.g., a phase transition may produce a
more peaked spectrum than the power-law expected from
binaries.
We plan to use our fast and flexible techniques to study

milestones for PTA spectral estimation, such as what can be
inferred in the near future about SMBHB populations, and
the conditions under which cosmological background
signals could be inferred beneath a dominant astrophysical
signal. Answering these questions, and developing the
spectral-estimation techniques with which they are
addressed, are key to illuminating the path for PTA science
in the next decade.

A. Software

The introduced refit methods are featured in a new
analysis suite called CEFFYL for quick model selection and
parameter estimation of spectra given PTA data. This is
achieved by creating condensed data products representing
the Bayesian spectra of a PTA’s timing residuals. The data
are represented by highly optimized KDEs from which we
can extract probabilities to form Bayesian likelihoods to
estimate our PTA likelihoods and to rapidly recover
posteriors to our models. The suite employs code from
enterprise [36], which was also used to create our free-
spectra and the full-likelihood posteriors to which our
analyses were compared. The PTA free-spectrum refit
method is featured in the wrapper code, PTArcade [78].
We conducted parameter estimation via MCMC with
PTMCMC [79], which utilizes parallel tempering and
empirical proposal distributions for more efficient sampling
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of the parameter space, while the nested sampler
ULTRANEST [65] is used for model selection. To calculate
the relevant KDE bandwidths, we translated the Sheather-
Jones algorithm from an R implementation [80] into
Python; this code is now contained within the CEFFYL

suite. The KDEs are created using the FFTKDE method in
KDEpy [81], and we use ChainConsumer [82] to create
our corner plots to compare posteriors. The suite of PTA
simulations were created with LIBSTEMPO [83].
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APPENDIX A: KERNEL DENSITY ESTIMATORS

Selecting the optimal kernelK and bandwidth h typically
focuses on minimizing the asymptotic mean integrable
squared error (AMISE) between the underlying distribution
f and the reconstructed estimator f̂ given N samples,

AMISEðhÞ ¼ RðKÞ
Nh

þ 1

4
σKh4Rðf00Þ: ðA1Þ

Here, RðgÞ ¼
R
gðxÞ2dx for any function g, and σ2K ¼R

x2KðxÞdx > 0 is the second moment of the kernel, at
a given point x. The second derivative f00 is with respect to
x. Note that if the kernel is normal with standard deviation
σ, σ2K ¼ σ2.

The optimal bandwidth h( is found by minimizing
Eq. (A1) with respect to h such that

h( ¼
"

RðKÞ
σ4KRðf00Þ

#1
5

N−1
5: ðA2Þ

If the kernel is normal with standard deviation σK ¼ 1, and
the underlying distribution f is known to be normal with
standard deviation σ, bandwidth selection is trivial;
h( ¼ 1.06σ̂N−1=5, where σ̂ is the standard deviation of
the samples.
However, f is not always known and a method is

required to reduce the AMISE without prior knowledge
of f. One such method is the Sheather-Jones plug-in
selector [48]. It computes the optimal bandwidth h(

by estimating Rðf00Þ and iteratively solving Eq. (A2)
with the Newton-Raphson method. This is a fast and
effective bandwidth selector which we use in our KDE
reconstructions.
After the optimal bandwidth is selected, substituting

Eq. (A2) into Eq. (A1) finds the following relation between
the AMISE and the kernel:

AMISEðh(Þ ∝ ½σKRðKÞ&45: ðA3Þ

The optimal kernel is the kernel which minimizes this
relation. This is the Epanechnikov kernel [47] which has
the form

KðxÞ ¼ 3

4
ð1 − x2Þ; x∈ ½−1; 1&: ðA4Þ

We expect to collect samples at the lower boundary of the
free-spectrum prior. To ensure accurate KDE representation
of the samples at the boundary, we mirror the data at the
boundary point and fit the KDE to the mirrored data. This
reduces the bias induced at the boundary. We then compute
probability densities along a grid of log10 ρ within the prior
boundaries that is finer than the bandwidth size.
Figure 12 shows a toy model of using KDEs to recreate

a distribution. We randomly drew 100, 1000, and 10000
points from a Rayleigh distribution, fðxÞ ¼ x exp ð−x2=2Þ,
and recreate the distribution from those random samples
using a KDE with the aforementioned optimizations.
The reconstruction improves as the number of random
draws in the training sample increases. Constructing a KDE
with 10,000 random samples from the distribution more
accurately estimates the original distribution than using
less number of samples. Therefore, the more data points
we draw from the original distribution, the smaller the
absolute difference between the distribution and its
reconstruction.
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APPENDIX B: THE HELLINGER DISTANCE

Given probability density functions fðx⃗Þ and gðx⃗Þ in
N-dimensional parameter space, the Hellinger distanceH is
defined as

H2ðf; gÞ ¼ 1

2

Z & ffiffiffiffiffiffiffiffiffi
fðx⃗Þ

p
−

ffiffiffiffiffiffiffiffiffi
gðx⃗Þ

p '
2
dNx ðB1Þ

¼ 1 −
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðx⃗Þgðx⃗Þ
p

dNx: ðB2Þ

We choose the Hellinger distance as a metric for
refitting accuracy over other distance measures—such as

Jensen-Shannon—as it is bounded 0 ≤ H ≤ 1, and valid for
multivariate distributions. A value of H ¼ 0 implies that
distributions are identical, while H ¼ 1 implies that they
do not have any overlap and are completely different
distributions.
Our goal in building rapid and accurate refitting tech-

niques is to ensure the Hellinger distance with respect to the
posterior derived from the full PTA likelihood is suffi-
ciently small. The interpretation of what sufficiently small
means is problem specific, but some guiding intuition can
be gleaned from simple analytic examples. One can show
that the Hellinger distance between two univariate normal
distributions, f ∼N ðμ1; σ1Þ and g ∼N ðμ2; σ2Þ, is

H ¼
!
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ1σ2
σ21 þ σ22

s

exp
(
−
1

4

ðμ1 − μ2Þ2

σ21 þ σ22

)$1=2

; ðB3Þ

where μ and σ are the mean and standard deviation of the
respective distributions. For distributions of equal standard
deviation, but with their means offset from one another
by a certain number, n, of these standard deviations, the
Hellinger distance is

H ¼
(
1 − exp

"
−
n2

8

#)
1=2

: ðB4Þ

A 1-σ offset between these normal distributions may not
typically be regarded as a significant disparity, and corre-
sponds to a Hellinger distance of 0.34. Values for other n
are given in Table III.
In Fig. 13 we show some examples of univariate normal

distributions with different means and standard deviations.
Assuming we generate n ¼ 100 realizations from these
distributions, we show what the associated p-p plots would
be, and the Hellinger distance between the distributions.

FIG. 12. A demonstration on the importance of good sampling
to construct an accurate KDE. We randomly drew 100, 1000, and
10000 points from a Rayleigh distribution fðxÞ, and created the
KDE f̂ðxÞ with the Epanechnikov kernel [47] and a bandwidth
selected by the Sheather-Jones method [48]. The bottom panel
shows the absolute difference between the actual distribution and
its reconstruction.

TABLE III. The Hellinger distance, H, between two univariate
normal distributions with equal standard deviations, yet with
means offset by a certain number of standard deviations, n.

n 0.25 0.50 0.75 1.0 1.5 2.0 3.0 4.0
H 0.09 0.18 0.26 0.34 0.50 0.63 0.82 0.93
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FIG. 13. Examples of what p-p plots look like for distributions that are approximately, but not entirely, equal to the true posterior (here
the standard normal distribution N ð0; 1Þ—the blue curves in the insets), if we assume that we create n ¼ 100 realizations of data. The
orange curves in the insets show a modified normal distribution N ðμ; σÞ: our approximated posterior. The large figures show the
corresponding p-p plots. At the top we have indicated the associated Hellinger distance between the two posteriors.
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