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We explore the use of Gibbs sampling in estimating the noise properties of individual pulsars and
illustrate its effectiveness using the NANOGrav 11-year dataset. We find that Gibbs sampling noise
modeling (GM) is more efficient than the current standard Bayesian techniques (SM) for single pulsar
analyses by yielding model parameter posteriors with average effective-sample-size ratio (GM/SM) of
6 across all parameters and pulsars. Furthermore, the output of GM contains posteriors for the Fourier
coefficients that can be used to characterize the underlying red noise process of any pulsar’s timing
residuals, which are absent in current implementations of SM. Through simulations, we demonstrate the
potential for such coefficients to measure the spatial cross-correlations between pulsar pairs produced by a

gravitational wave background.
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I. INTRODUCTION

Pulsar timing arrays (PTAs) [1,2] are low-frequency
gravitational-wave (GW) detectors that use high-precision
measurements of the times-of-arrival (TOAs) of pulses
produced by an array of millisecond pulsars (MSPs). MSPs
have ultra-stable spin periods on the order of milliseconds,
and if their TOAs are measured to sufficient accuracy using
large and sensitive radio telescopes, they can be used as
cosmic clocks spread throughout our galaxy. Accurate
models are constructed to predict the time at which each
pulse is expected to arrive, and small deviations from the
expected TOAs caused by GWs can be detected by
searching for quadrupolar spatial correlations in those
deviations between pulsars in the PTA [3].

In recent years, multiple PTA searches for an isotropic
stochastic gravitational wave background (GWB) have
uncovered a common red noise process [4—7]. This process
was recently observed to posses a quadrupolar correlation
signature matching the predictions of Einstein’s general
theory of relativity with various levels of significance [8—11].

The sensitivity of PTAs to a GWB depends primarily on
the number of pulsars in the array [12]. This is due to the
fact that, at late times, the lowest frequencies in PTA
datasets become GW-dominated, and the significance of
the cross-correlations grows with the square root of the time
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span of the data and linearly with the number of pulsars in
the array. In this regime, increasing the number of pulsars is
the best way to maximize PTA sensitivity to the GWB.
Currently, the International Pulsar Timing Array (IPTA)
monitors 65 millisecond pulsars with 27 of such pulsars
observed for more than 10 years [5]. For this reason, in each
new release of a PTA dataset the number of pulsars used in
GWRB detection analyses is expected to grow, which in turn
makes the computational cost of noise modeling and
parameter estimation increase significantly. This poses a
significant challenge for Bayesian inference as typical
searches for a GWB involve working with a very large
parameter space making the use of computationally effi-
cient algorithms a necessity.

The standard Bayesian techniques for single and multi-
pulsar noise modeling often result in a joint probability
distribution for all of the model parameters (see Sec. II D).
Despite the flexibility that this approach offers in choosing
and implementing various noise models, the computational
cost of parameter estimation using Markov Chain
Monte Carlo (MCMC) simulations becomes prohibitive
quickly. For instance, in the case of single-pulsar analyses,
the number of parameters required to describe a pulsar’s
noise may well exceed forty (see Sec. III). This problem is
more severe for the case of multipulsar analyses as even the
simplest noise models require a number of parameters that
is larger than twice the number of pulsars in the PTA.
Hence, more computationally efficient data analysis tech-
niques are critical for the future of PTA analyses.

© 2023 American Physical Society
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To mitigate these problems, there have been numerous
efforts toward the development of more efficient Bayesian
GWB detection techniques to analyze PTA datasets, such
as those presented in [13—19]. In particular, the work of van
Haasteren and Vallisneri [ 14] provides an outline for single-
pulsar noise analyses in which Gibbs sampling can be used
to characterize the red noise component of each pulsar’s
timing residuals. In this paper, we explore the capabilities
of the Gibbs sampling method in single-pulsar noise
analyses by applying it on the NANOGrav 11-year dataset
201]] as well as simulated datasets. We show that the Gibbs
sampling method is well suited for PTA single-pulsar
analyses and results in probability distribution functions
for all model parameters in a significantly shorter timescale
compared to those obtained via the standard MCMC
methods. Furthermore, we show, via simulated datasets,
that the Fourier coefficients that result from the Gibbs
sampling procedure can be used to identify the shape of the
underlying spatially-correlated signal in a PTA dataset.

The paper is structured as follows. In Sec. II, we review
and simplify the methods presented in van Haasteren and
Vallisneri [14] to outline the Gibbs sampling method and its
accompanying noise modeling. Furthermore, in order to
use the output of Gibbs sampling in a subsequent multi-
pulsars analysis, and inspired by Anholm et al. [21], we
introduce our version of a frequency domain optimal
statistic which follows from the PTA multipulsar likelihood
function. In Sec. III, we employ the outlined method in
order to analyze the NANOGrav 11 year dataset and
compare the results to those obtained by the standard
Bayesian PTA detection techniques. Finally, in Sec. IV, we
analyze PTA simulated datasets to reveal the potential of
the Gibbs sampling technique in searches for a common
correlated signal across an array of pulsars.

II. METHODS

We begin our review of the Gibbs sampling method [14]
by writing a simple model for a pulsar’s post-fit timing
residuals, r, in terms of a set of Fourier coefficients a,
Fourier design matrix F, linear timing model parameters €,
timing design matrix M, and white noise w':

r=Me + Fa+w
=Tb+w, (1)

where b = [¢,a] and T = [M, F]. Assuming Gaussian
white noise, parametrized by the set of parameters n with
prior p(n), the above model allows for the construction of
posterior probability density functions following Bayes’
theorem:

Refer to Table I and Sec. A for more details on the definitions
of the quantities used throughout this paper.

b.n)p(a)p(e)p(p)p(n),  (2)

pp.b.nlr) « p(r

where,
_exp{- Hr—=Tb)"N"'(r —Th)]}
prip.n) = det {20V} - G
_exp{-3la’¢p'a]}
PO = e (@) @
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plp) = 11 P_s (5)
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¢ = (aa"), (6)
B = (bbT), (7)

and p denoting the collective set {p;,ps,...,pr} Whose
elements are used to parametrize a pulsar’s power-spectral-
density, frequency-bin by frequency—bin,2 and describe the
variance of the Fourier coefficients. Additionally, a log-
uniform (conjugate) prior p(p;) = 1/p; is considered as
seen in Eq. (5).

Moreover, we have assumed an unbounded improper
prior for the linear timing model parameters and have set
(ee”) = diag{oo}. Such choices for the linear timing
model parameters are typical of PTA noise analyses due
to the lack of physically motivated priors for all of the
timing model parameters and are acceptable as long as the
data is informative with respect to such parameters. Hence,

we can write
0 0
B = [ } (8)
0 ¢!

To proceed with Gibbs sampling, the posterior for each
of the model parameters needs to be cast into a conditional
probability distribution form where each model parameter
is conditioned upon the other model parameters and the
timing residuals. In the following two subsections, we
derive such conditional probabilities for parameters b
and p.

A. Conditional probability of coefficients

For the coefficients b, the conditional probability can be
found by rewriting the full posterior [i.e., the product of
Eqgs. (3)—(5)] while ignoring all factors not depending on b

*Note that the total number of frequency-bins is k, but there are
two Fourier coefficients per each frequency-bin. Both a{* and
a$™ have the same variance parametrized by p2. This is reflected
in Eq. (4).
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coefficients explicitly. In other words, all model parameters
are treated as constants and only the b coefficients are
allowed to vary:

1

In p( n) E [(r=Tb)'N~'(r — Th) + b"B~'b]
S WTETNT 4 B
- % —2BTTT N7, 9)

The above equation suggests that the b-dependence of the
probability p( ,n) is Gaussian. Using the maximum
a posteriori estimate of b found by maximizing Eq. (9) as
an estimate of the mean of the Gaussian, one can write the
conditional probability distribution of the b coefficients,
Eq. (9), in the form

. _exp{—%(ﬁ—b)TZ(ﬁ—b)}
p(blp.r.n) = S (10)

where,

L=T'N"'T+ B, (11)
p=X"'"TTN . (12)

B. Conditional probability of red noise
power-spectral-density

Similar to the b coefficients, the conditional probability
of the p parameters can be found by taking advantage of the
full posterior and ignoring all the factors not depending on
p explicitly. Additionally, we make the observation such
that the relevant probability distributions can be factorized
over frequency-bins:

p(pla.r.n) =[] plp
1L e {50

k a-a
ol -(2)
x| |—=exp<—
Eﬂ? { ( Ps

k
= HInvGamma(a =1,p= %). (13)

s=1

slagr.n)

In the above, the dot-product denotes the sum of the square of
the cosine and sine Fourier coefficients for each frequency-
bin that is a; - a; = (a%*)? + (a$")2. Furthermore, despite

3The definition of X in Eq. (11) is chosen so that this paper’s £
represents the same quantity as the X defined in the PTA GWB
detection literature.

the analytic form for the dependence of p on the Fourier
coefficients a, the lower and the upper bounds of the inverse-
gamma distribution extending to zero and infinity would lead
to astrophysically and statistically incorrect assumptions as
such bounds need to be finite and constrained to avoid the
implicit use of improper priors in the modeling of red noise
processes. Thus, a truncated version of the derived inverse-
gamma distribution needs to be considered. In Sec. B, we
show how to obtain such a truncated distribution.

C. Conditional probability of white noise parameters

In contrast to b and p, the white noise parameters cannot
be written in terms of standard statistical distributions. This
is mainly due to the dependence of the white noise
parameters to various radio telescope receivers (i.e., each
backend of each radio telescope needs its own white noise
parameters). Solving the full-likelihood for the white noise
parameters, collectively denoted by n, results in

Inp(nlp,b,r) 22 {r=Tb)'N"'(r —Tb)}
%Z: n (det {27NY), (14)

where the sum is over the TOAs. Since Eq. (14) cannot be
simplified further in any useful way, we have no choice but
to utilize a non-Gibbs MCMC procedure to sample the
posterior.

D. Standard method of single-pulsar analyses

The standard method of single-pulsar analyses involves
an analytical marginalization of the product of Egs. (3)
and (4) over the coefficients b. The result is

1 1
rlp) = ——ex ——rTC‘lr}, 15
plr) = e | - 13
C=N+TBIT, (16)
C'=N"'=-N'TZ'TTN !, (17)

where in the last line, we have used the Woodbury identity:
1 Vx—l ,
(18)

and X is defined in Eq. (11). The dependence of Eq. (15) on
the red noise parameters p;, is through the elements of the
matrix X~!. Once Eq. (15) is multiplied by the appropriate
priors of the model parameters, the resulting joint proba-
bility distribution of p(p|r) is ready to be given to a non-
Gibbs MCMC algorithm for parameter estimation.

X+Uuyv)!'=x"'-x"u(y-' +vx-lu)-
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E. Gibbs sampling

Gibbs sampling [22] is a MCMC algorithm designed to
take advantage of the conditional probability distributions
of all model parameters in order to perform parameter
estimation. It is often used in statistical inferences where a
joint probability distribution of all parameters is difficult to
sample, yet each model parameter’s probability distribution
can be written in terms of the rest of the parameters and the
data. Gibbs sampling allows for random draws from the
conditional probability distributions of model parameters
whose analytic functional form must be found prior to the
start of the sampling process as we have done for the case of
single-pulsar noise analyses by deriving Egs. (10) and (13).
Due to the existence of analytic forms for the probabilities,
the concept of rejection of random states, an integral part of
the other MCMC algorithms, does not belong to the Gibbs
sampling as all draws are considered accepted. Nevertheless,
Gibbs sampling is still a MCMC algorithm as it possesses
features such as no long-term-memory and the need for burn-
in of the final Markovian chain. We will outline a step-by-
step implementation of Gibbs sampling for a single-pulsar
noise analysis in the remaining part of this section.

Knowing the conditional probabilities of our model
parameters, p, b, and n, it is simple to implement Gibbs
sampling in the following way:

(1) Step I: Make initial guesses of p and n denoted by p,,
and ny.

(ii) Step 2: Using Eq. (10), find an estimate of b, given p,
and ny.

(iii) Step 3: To start the first iteration, find an estimate of p,
given b, and n, using Eq. (13).

(iv) Step 4: Continuing the first iteration, find an estimate
of n; given b, and p; with a very short MCMC
procedure sampling Eq. (14).

(v) Step 5: To end the first iteration, find an estimate of b,
given p; and n; using Eq. (10).

Figure 1 provides an illustration of the explained
procedure. The above steps can be repeated until all the
model parameters reach satisfactory convergence. Due to
the analytical draws of the p and the b coefficients,
convergence will be reached quickly compared to the fully
non-Gibbs MCMC algorithms. This is one of the most
desirable features of Gibbs sampling as the overall run-time
of the PTA single-pulsar noise analyses will be reduced
significantly.

F. Frequency domain multipulsar likelihood

The outlined Gibbs sampling procedure is an efficient
Bayesian scheme capable of estimating each pulsar’s
power-spectral-density as well as the Fourier coefficients
required to describe the total red noise (i.e., GWB plus
spatially-uncorrelated intrinsic red noise process) compo-
nent of the timing residuals. However, the information
required in characterizing a GWB requires subsequent
multipulsar analyses. As will be demonstrated in this

5q]10 Eq|10

q[13 Eq|14

FIG. 1. A schematic representation of the first three steps of the
outlined Gibbs sampling procedure. The first step of the sampling
process (blue) starts by guesses of the p and the white noise
parameters and results in an estimate of the coefficients b
following Equation (10) using the previously guessed values.
The second (red) and the third (green) steps of the sampling
continue the sequence by estimating the next remaining model
parameter given the most recent estimates of the other two
parameters using the conditional probability distributions of
Egs. (10), (13), and (14).

section, the output of Gibbs sampling provides enough
information to perform multipulsar analyses aiming at
detecting a GWB.

Using only the Fourier coefficients a, one can construct a
factorized likelihood in the frequency domain in the
following way:

€xp {_ % wg;lq);sl QS;J)}
plaI®) = —L s (19)

28Y {_ % (aglq)zsl as;J) }

=11 : (20)
det{ (27) D, }
for
o, O 0
0 @y 0
o = , (21)
0 0 D,
@il Li12Pky CictmPig
Fk;ZIP%;g P2 DiomPrg
O, = . (22)
r 2 T 2
k;mlpk;g k;mZ/)k;g IR Pk,m

where A denotes the collection of Fourier coefficients,
across all pulsars and all frequencies, (i.e., A = {a,,}),
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Pk Parametrizes the common power-spectral-density of the
GWB (indicated by the subscript g) observed across the
entire pulsar array at frequency k, and I';; represents
the functional form of the cross correlations (e.g.,
Hellings and Downs curve).

One can use this equation to derive an optimal estimator
of the signal-to-noise analogous to those presented in
Anholm et al. [21] and Chamberlin et al. [23]. We leave
the details of the derivation to our future project [24] where
we explore the use of the Fourier coefficients in GWB
characterization in great detail. Here, we simply report the
results in the form of the optimal estimators of the cross-
correlations 4;; and their uncertainty o;;:

Yl - gy
stsil 53/ Ps;1Ps,y

p2
Yo
S Qs 1¥si0

Ay = ’ (23)

1

o = {Z i r. (24)

s (ps;l(ps;J

Without a need for a detailed derivation, Eqs. (23) and (24)
can be understood by following a very simple rational. The
numerator is the weighted product of ay; - a;.;. The weights
associated with such product, 1/¢; and 1 /¢, have the role of
suppressing the contributions from pulsars whose total non-
GWB noise power is substantial (i.e., dominant spatially-
uncorrelated intrinsic red noise). Moreover, the choice for the
normalization in the denominator ensures that the estimated
correlations would yield A2I';; if averaged over many
realizations of GWB as is shown in Sec. C.

Additionally, estimates of the amplitude, the uncertainty
of the estimated amplitude, and the signal-to-noise-ratio
(SNR) can be made from Egs. (23) and (24) by minimizing
a weighted-chi-squared statistic of the form

(11.1 - A2F11)2
r=y (25)
7 oL

with respect to Ag which results in

P

A= Ltsipsdsst AU g, (26)
g P%I 9
ZIJ;I#:JZsF%J 1Pt
P
0y = 7, — ] R (27)
! |:]J;Z¢] Zx Y PrsPrs
AZ
SNR = £, (28)
O

g

When estimating the optimal correlations using Eq. (23),
one has a few options to select from for the choice of a;

and a;. The trivial option is to draw randomly from the
multivariate probability distribution of each pulsar’s a (the
output of Gibbs sampling) and obtain the cross product of
such random draws for each pulsar pair. Another option is
to construct posteriors of the mean, ji, following Eq. (10),
and draw randomly from such posteriors. Similar to the
previous case, the cross product of the random draws can be
used in Eq. (23) and with the difference that the normali-
zation factor in the denominator of Eq. (23) should be
recalculated (see Appendix C for more details). Lastly, for
the choice of ¢;, we use the total red noise power P;.

As a final note, it is important to recognize the limitations
of the presented technique as well as the optimal statistic in
general. In practice, optimal statistic results in biased
estimates of the GWB amplitude and the signal-to-noise
ratio if one does not have separate estimates for the
spatially-uncorrelated as well as the common red noise
power. In other words, if one uses the red noise power
estimates from the single-pulsar analyses instead of
obtaining separate estimates for a common red noise signal
and intrinsic red noise signal, one cannot characterize a
common correlated signal correctly. This has been explored
in depth in [25].

III. ANALYSIS OF THE NANOGrav
11 YEAR DATASET

To test the capabilities of the outlined single-pulsar data
analysis technique, we analyze the NANOGrav 11 year
dataset [20] using Gibbs sampling. The results are then
compared to the ones obtained via standard Bayesian
modeling detection routine used by the NANOGrav col-
laboration in their most recent work [4]. To ensure the
fairness of the convergence comparisons, we allow each
technique to sample the dataset for two hours for each
pulsar. After the two hours time-limit, we compare the
posteriors’ effective-sample-size (ESS) and rank-normal-
ized-split R-hat (7) values using the diagnostic tools
provided by Kumar ef al. [26].

A. Details of the Bayesian modeling

The Gibbs sampling implementation used for the 11 year
dataset models the data as outlined in Sec. II. This Bayesian
modeling together with Gibbs sampling is referred to as
Gibbs Method (GM) from hereon. Moreover, the compet-
ing method of analyzing the NANOGrav 11 year dataset
follows the standard single-pulsar analyses currently imple-
mented in the most recent GWB searches [8-10] and
explained in Sec. II D. The PTMCMC sampling package
[27] as well as the structure of the Bayesian modeling
accompanying this sampling is referred to as Standard
Method (SM) from hereon.

For both SM and GM, we have allowed each pulsar’s set
of red noise parameters, p, to follow a 30 frequency free-
power-spectral-density model with frequencies ranging
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FIG. 2. A comparison of posteriors for all model parameters of PSR J1713 4 0747 for the NANOGrav 11 year dataset obtained via

GM (blue) and SM (red). The posteriors on the left column belong to

the red noise model parameters, collectively referred to as p,

whereas the posteriors on the right column belong to the white noise parameters EFAC, EQUAD, and ECORR. There is one p;
parameter for each frequency (k = 30 frequencies in total) and three white noise parameters for each receiver (8 receivers in total). To
obtain the plots via GM, 30 steps of a Metropolis Hasting algorithm within each step of Gibbs sampling has been implemented for the
white noise parameters. The above plots show a great level of consistency in extracting the posteriors between the two methods.

from 1/T s to 30/T s in which T, denotes the obser- ECORR|s] ~ log-Uniform(-8.5, -5), (31)
vational baseline of each considered pulsar. The choice of

prior for the model parameters are listed below. For each EFAC ~ Uniform(0.01, 10), (32)
pulsar, the white noise parameters are per receiver/backend

system while the p parameters are per frequency: for [s] denoting the unit of the quantities, which is seconds.

p[s] ~ log-Uniform(-9, —4), (29) B. Comparison of posteriors
) For the sake of brevity, out of the thirty four pulsars of
EQUAD]s] ~ log-Uniform(-38.5, =5), (30)  the NANOGray 11 year dataset, we have chosen to feature
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FIG. 3. A histogram showcasing the distribution of the Hel-
linger distance values for the log;yp posteriors (blue) and the
white noise parameters (orange) obtained by comparing the
outputs of GM and SM. The histogram contains the Hellinger
distances of model parameters across all frequencies and pulsars.
As evident by the distribution, GM and SM result in sufficiently
similar distributions with a few exceptions whose inconsistencies
can be attributed to the differences in the level of convergence of
posteriors resulting from GM and SM even though we have
allowed sufficient time for SM to converge (i.e., more than two
hours). GM posteriors follow the general shape of SM posteriors
but are significantly more converged.

a GM vs SM posterior comparison plot for only PSR
J1713 + 0747 as this pulsar has the longest observational
baseline as well as the largest number of TOAs making it
the most computationally expensive pulsar to analyze. As
shown in Fig. 2, the two techniques yield consistent
posteriors for both the red noise and the white noise model
parameters for PSR J1713 + 0747 showcasing the robust-
ness and the capability of GM to be implemented on real
PTA datasets. The same consistency is also observed in all
the remaining thirty three pulsars. For a quantification of
the degree of consistency between the two sets of poste-
riors, refer to Fig. 3 which highlights the differences in the
output of GM and SM in the form of a histogram of
Hellinger distance [28]4 values across all pulsars. With the
exception of a few white noise parameters, the Hellinger
distances are concentrated between 0 and 0.2 indicating an
adequate degree of consistency between the GM and the
SM posteriors. We attribute the higher Hellinger distance
values of some model parameters (especially the white
noise parameters) to the differences in the level of con-
vergence of the posteriors as GM is more successful at
yielding converged posteriors than SM. Refer to Sec. III D
for a more detailed discussion.

*Hellinger distance is a measure of similarity between two
probability distributions ranging from 0 (identical distributions)
to 1 (disagreeing distributions). For two discrete probability
distributions p and ¢, the Hellinger distance H is defined as

H :%1/21'(\/17'_ V/4;)?. where i ranges over the binned
quantities of interest whose probability distribution is described
by p and g¢.

200 =3 30 Vs 5 Steps
150
-
5
S 100
@)
50 | \
0— T T
0.00 0.05 0.10 0.15

Hellinger Distance

FIG. 4. A histogram showcasing the distribution of the Hel-
linger distance values between the logqp posteriors obtained
using GM with two different number of MCMC steps (30 and 5
steps) for each step of Gibbs sampling for the white noise
parameters. The figure is made by combining the Hellinger
distance values across all of the pulsars and all of the frequencies.
As evident by the distribution, choosing a much lower number of
MCMC steps for each step of Gibbs sampling for the white noise
parameters does not change the shape of the target log;,p
posteriors significantly. This effect can be attributed to the
knowledge of GM about the analytical shape of the log;,p
parameters prior to the start of the sampling.

C. The effect of using different number
of MCMC steps in GM

To obtain the white noise posteriors of Fig. 2, 30 steps of
a Metropolis Hasting algorithm for each step of Gibbs
sampling has been implemented. The choice for the number
of MCMC steps for each step of the Gibbs sampling
depends on factors such as the number of TOAs, one’s
threshold and preferred measure of convergence for the
posteriors as well as the efficiency of the type of MCMC
algorithm used in the white noise parameter estimation.
However, the red noise parameters’ posteriors are not
overly sensitive to this choice as the target distributions
for p, parameters are all analytically determined prior to the
start of sampling. To test the sensitivity of the red noise
parameters to the choice for the number of MCMC steps for
each step of Gibbs sampling, we have applied GM on all of
the NANOGrav 11 year pulsars using only 5 steps of
MCMC. As shown in Fig. 4, the estimated Hellinger
distance values between the two sets of posteriors of
log,op parameters are sufficiency low suggesting a weak
degree of correlation between the red noise parameters’
posteriors to the white noise parameters’ if analyzed via
GM. Nevertheless, our current implementation of GM is
adequately optimized to handle large number of MCMC
steps without much of a sacrifice in the overall run-time of a
single-pulsar analysis.

D. Comparison of convergence levels

Despite resulting in consistent posteriors, SM and GM
differ significantly in their state of convergence of the
model parameters, especially those pertaining to the effec-
tive-sample-size (ESS). Figure 5 shows the spread of the
ratio of ESS values (GM divided by SM) across all of the
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FIG. 5. A scatter-plot showcasing the differences in the spread
of the effective-sample-size (ESS) values for the log;,p and the
white noise parameters expressed in the form of the ratio of GMs’
ESS over SMs’ ESS (blue circles). For each pulsar, there is one
logq pi for each frequency (30 frequencies in total) and three
white noise parameters for each receiver. Across all of the pulsars,
GM is more capable at yielding posteriors with significantly
higher ESS levels given the two hour time limit. Considering all
model parameters, the average ESS ratio is 6. The values of ESS
are found using the functionalities provided in Kumar et al. [26].

1071 5 ~
E Model [ 7’
] Parameter //
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FIG. 6. A scatter-plot showcasing the differences in the spread
of rank-normalized-split-R-hat, 7, values obtained from the
log|op and the white noise parameters analyzed by GM and
SM. Each blue circle represents a single model parameter and the
figure is obtained by combining the 7 — 1 values of all model
parameters for all pulsars and across all frequencies. As evident
by the figure, GM is more capable at resulting in posteriors with a
lower 7 level given the two hour time limit. The 7 values are
estimated by dividing each Markov chain into two sub-chains and
applying the rank-normalized-split-R-hat test [26] on it.

model parameters for every pulsar. As evident by Fig. 5, a
significant majority of each pulsar’s model parameters have
higher ESS values when analyzed using GM as compared to
SM. The average ESS ratio across all parameters and pulsars
is 6. Figure 5 proves our claim about the high efficiency of
GM. Additionally, the same observation can be made about
the rank-normalized-split R-hat (7) values calculated for both
GM and SM posteriors for each pulsar. Figure 6 points
toward the higher state of convergence of a significant
majority of the model parameters that were analyzed by GM.

IV. SIMULATIONS

Despite the successful implementation of GM on the
NANOGrav 11 year dataset, we have not tried to analyze

the correlation content of the dataset using the concepts
discussed in Sec. I F as the 11 year dataset lacks a common
correlated signal across pulsar pairs [20]. For studying the
correlations, we will dedicate future projects to the analysis
of the NANOGrav 15 year [8] and the upcoming IPTA’s
DR3 datasets. Meanwhile, to explore the capability of the
Fourier coefficients a in characterizing a common spatially
correlated signal, we make use of simulated PTA datasets.

A. Details of the simulations

We have chosen two types of simulated datasets, referred
to as SIMO and SIM1, with 300 realizations for each type,
to analyze in order to explore the capability of the Fourier
coefficients a to characterize a common correlated signal.
The two simulated datasets are identical in every aspect
except the content of their spatially-uncorrelated intrinsic
red noise: for SIMO, the log of the amplitude of the
spatially-uncorrelated intrinsic red noise of each pulsar is
randomly chosen from a uniform distribution between
107'¢ and 10~'* while for SIMI1 this range is between
10~ and 10713, For both datasets’ pulsars, the spectral
index of the spatially-uncorrelated intrinsic red noise
follows a uniform distribution with lower and upper bounds
of 0 and 7 respectively. Additionally, each dataset has 90
pulsars uniformly scattered across the sky timed for
20 years with random timing cadences between 14 to
30 days. Furthermore, each dataset contains 10 microsec-
onds of white Gaussian noise for each pulsar as well as a
unique realization of a GWB with amplitude of A, =
2x 1075 and spectral index of vy = 13/3. Lastly, to
employ GM on each dataset, we keep the white noise
parameters constant and use the same range of frequency-
bins for all pulsars which is {1/20 yrs, 2/20 yrs, 3/20 yrs,
4/20 yrs,5/20 yrs}.

It is worth mentioning that our intention is not about
simulating realistic datasets and analyzing it with GM. We
have already shown the capability of GM in single-pulsar
analyses of real datasets. Our intention is to highlight what
the Fourier coefficients can potentially reveal about an
existing GWB signal, hence the reason behind our choices
for the specific parameters of the two simulated datasets.
Nonetheless, we have introduced very high levels of
spatially-uncorrelated intrinsic red noise in the SIMI
dataset (higher than what is observed in the real PTA
datasets) as dealing with such processes is an extremely
challenging part of GWB searches using PTAs whose
impact on the correlation recovery using the Fourier
coefficients is nontrivial.

B. Reconstruction of red noise signal
using Fourier coefficients

The a coefficients are capable of reconstructing the red
component of the timing residulas as suggested by
Equation (1). The reconstructed signal is pre-fit and
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FIG. 7. A comparison between postfit time series

reconstruction using the Fourier coefficients obtained from
GM (blue), the injected red noise time series (red), and the total
residuals (green) for one of SIMO’s pulsars. The reconstructed
residuals are made by considering the entire posterior probability
distribution of the recovered Fourier coefficients. As evident by
the figure, the reconstructed post-fit red noise signal matches the
underlying red noise signal closely.

white-noise-free. Once the reconstructed signal obtained by
Fa is fitted for the timing model parameters, it mirrors the
underlying total post-fit red noise signal in the dataset
closely. Figure 7 highlights this case for one of SIMO’s
pulsars. As suggested by the figure, the Fourier coefficients
are capable of reconstructing the underlying red noise
process of the total timing residuals. This fact allows the
Fourier coefficients to be adequate replacement for the
timing residuals in the frequency domain with the added
benefit that one no longer needs to take into account a white
noise process or be concerned with the complications of the
timing model parameters when using the a coefficients in a
subsequent analysis. In fact, the effects of the timing model
parameters and the white noise levels are implicit in the
posteriors for the Fourier coefficients obtained via GM.

C. Searching for correlations using Fourier coefficients

To characterize the GWB signal in each of the realiza-
tions of SIMO and SIM1, we use Eqgs. (23) and (24) with ji;
as the quantity representing the Fourier coefficients of each

6 |= SIMo
1 — v
Injected
4l GWB Amplitude
U—l H
a
~
2 -
0 S N H N H |
-15.0 —-14.8 —-14.6 -14.4
log10(Amplitude)

FIG. 9. Two histograms comparing the distributions of the
recovered common correlated signal between SIMO (blue) and
SIM1 (red) dataset using the method provided in Sec. II F. The
blue and the red vertical lines indicate the 16th and the 84th
percentiles (dotted lines) as well as the mean (dashed line) of each
distribution. Each distribution is obtained by combining the
estimates of the amplitude [Eq. (26)] of the cross-correlated
signal over 300 realizations. The injected GWB signal is
indicated with a vertical dashed gray line. The figure suggests
that the Fourier coefficients contain the right amount of infor-
mation about the amplitude of the cross-correlated signal in the
case of SIMO. In the case of SIMI1, due to the existence of
significantly higher non-GWB red noise power, the recovered
GWB amplitude is more scattered.

pulsar [see Eq. (10)]. Furthermore, since our goal is to
showcase the potential of the Fourier coefficients in
revealing information about the GWB signal rather than
outlining a complete and practical pipeline capable of fully
characterizing a GWB signal, the weights ¢, are set to the
total red noise power that was used to generate the
simulated datasets.

The shape of the correlation recovery is depicted in Fig. 8
for both simulated datasets. This shape is obtained by
dividing the pulsar pairs of each realization into 15 different
angular separation bins such that all bins have 267 pulsars
pairs in them. Additionally, the average, 16th, and 84th
percentiles (over the 300 realizations) of the correlations for
each angular separation bin is computed and indicated in
Fig. 8. Furthermore, the histogram of the estimated
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FIG. 8.

A plot depicting the reconstruction of the Hellings and Downs correlation (gray dashed curve) using GM’s estimates of the

Fourier coefficients obtained for both SIMO (blue circles) and SIM1 (red stars) datasets. The reconstructions are the average over 300
realizations of both datasets. The error-bar of each point indicates the range between the 16th and the 84th percentiles over the 300
realizations. Remarkably, the recovery of the shape of the correlations is not affected significantly by the introduction of extremely high

levels of spatially-uncorrelated red noise to each pulsar in SIM1.
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FIG. 10. Two histograms comparing the distributions of the
signal-to-noise ratio (SNR) between SIMO (blue) and SIM1 (red)
dataset using the method provided in Sec. Il F. The blue and the
red vertical lines indicate the 16th and the 84th percentiles (dotted
lines) as well as the mean (dashed line) of each distribution. Each
distribution is obtained by combining the estimates of the SNR
(Equation (28) of the cross-correlated signal over 300 realiza-
tions. As expected, SIM1 dataset exhibits a lower SNR due to
containing a significantly higher non-GWB red noise power than
the GWB power.

amplitude A , and signal-to-noise ratio of all the 300
realizations of each dataset are stacked on top of each other
(i.e., no averaging is performed) and presented in Figs. 9 and
10 respectively. The impact of introducing extreme levels of
intrinsic  spatially-uncorrelated red noise to the dataset
manifests itself in the form of lowering the signal-to-noise
ratio and more scattered amplitude recovery. However, the
shape of the correlations recovery remains remarkably close
to the Hellings and Downs curve over many realizations.

V. DISCUSSION AND FUTURE WORK

In this paper, we have shown that the Gibbs method (GM)
is an efficient single pulsar Bayesian noise analysis technique
capable of producing posteriors for the single-pulsar free-
power-spectral-density and the white noise model parameters
with convergence properties that are superior to those
obtained using standard Bayesian methods (SM). GM is a
robust and computationally efficient alternative to SM for
future PTA noise analyses. Additionally, we have shown that
the Fourier coefficients resulting directly from GM contain
adequate information about the shape the cross-correlations
signal through the use of simulations. In effect, GM produces
the frequency domain representation of each pulsar’s red
noise signal, free of white noise and timing model param-
eters, hence providing all the necessary information to start
performing subsequent GWB detection analyses exclusively
in the frequency domain.

GM results in raw information in the frequency domain
which may need to be processed further depending on the
needs of the subsequent analyses. For instance, the astro-
physical interpretation of a pulsar’s red noise signal will
require a more constrained model of the power spectral
density than the free-spectrum model which could be
achieved by fitting for the parameters of such a model

using the output of GM (e.g., a power-law fit to the free-
spectrum model) [19]. Combined with the fitting utilities
provided by Lamb et al. [19], GM can become a powerful
and efficient tool for use in the future PTA GWB detection
analyses.

A. Software

The GM code takes advantage of the functionalities
provided by ENTERPRISE [29] and ENTERPRISE-exten-
sions [30], and PTMCMC sampler [27]. The package Arviz
[26] has been used for diagnosing MCMC chains. Python
packages Matplotlib [31] and plotly [32] have been used for
generating the figures in this paper.
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APPENDIX A: GWB DETECTION
TERMINOLOGY

Most of the PTA noise analysis concepts have been
developed over many years and scattered over many papers
[12-14,21,23,33-37]. To help readers better understand the
methods used in this paper, we define the necessary PTA
noise analysis quantities and concepts in this section.
Additionally, refer to Table I for a short description of
the mathematical symbols used throughout this paper.

1. Basis matrices and their coefficients
To model the contribution of any red noise process to the
timing model residuals of a given pulsar, rg.4, we employ a
Fourier basis matrix and a vector of coefficients such that

rred = Fa, (A1)
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TABLE I. A table listing the symbols most commonly used throughout this paper and a short description of what
they represent. Refer to Sec. A for more details on the definition of some of the quantities.
Symbol Description
T obs Observational baseline
Time
Frequency

Pulsar indices
Indices for the frequency bins

v N

Number of TOAs for a given pulsar
Number of timing model parameters
Timing residual

Fourier design matrix

Timing model design matrix

White noise covariance matrix

Fourier sin-cos coefficients
Estimated cross correlations
Linear timing model parameters

White noise time series
Collection of all white noise parameters

Amplitude of a red noise process

TR I ISR G/ ETIIZNETNYIST I AN

Index for the number of pulsars in the array

Combination of F and M such that T = [M, F]

Covariance matrix for the linear timing model parameters and the Fourier coefficients (i.e., (bb”))
Hellings and Downs cross correlation matrix

Collection of fourier coefficients across pulsars and frequencies {ay., },

Single-pulsar red process covariance matrix

Multi-pulsar red process covariance matrix

Combination of a and ¢ such that b7 = [e, d]

Free-spectrum parameter used in describing power-spectral-density (p> = (aa’))

Power-spectral-density of a red noise process
Spectral shape of a red noise process obtained by P/A?

sin(2zft;) cos (2zfit;)
sin (2zft,) cos (2nfit,)
F =
sin (2zft,) cos(2zf t,)
al = (am, a5, ..., a", a5®), (A3)

for 7, denoting the last measured TOA, f} denoting the kth
considered frequency-bin, and a*" and a°* referring to the
coefficients of sin and cos elements of the F matrix
respectively.

To model the contribution of any linear timing model
parameter to the timing residuals, rp, we use a basis matrix
known as the timing-design-matrix such that

rp = Me, (A4)

sin (2zft;)  cos (2zfity)

sin (2zfty)  cos (2mfyts)
: (A2)
sin (2zft,) cos (2xfit,)
|
1 n B
1 1, B
M= | (A5)
11, o

While the first three columns of the design matrix models
the quadratic spin down of all millisecond pulsars, the
unspecified columns of the matrix are populated with
various timing model contributions specific to each pulsar.
Moreover, it is often convenient to project the residuals
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onto a subspace orthogonal to the timing model parameters,
or in other words, to create fitted timing residuals. The so-
called G matrix is a useful matrix obtained via singular-
value-decomposition of the design-matrix constructed to
perform the fitting:

M =USVT

G,y =U, (A6)

Vo

where x ranges from 1 to p (the number of TOAs) while y
ranges from ¢ to p for g being the total number of the linear
timing model parameters.

To model the contribution of the white noise to the
timing model residuals, r,,, we consider a m x m identity
matrix as the basis with the coefficients n such that

r,=mw, (A7)
w; ~ Normal (mean = 0, scale = o,,, ), (A8)
oy, = efi\/0? + eq?, (A9)

for o, being the TOA error of observation i, and ef and eq
being the usual EFAC and EQUAD parameters [20]. Note
that the Gaussianity of the white noise is an assumption
included in our all of our models.

2. Noise power-spectral-density modeling

In this paper, we only consider one-sided power-spectral-
densities (PSD). Most commonly for PTA noise analyses,
the PSD is expressed in two ways:

(1) Power law: assuming the PSD to follow a simple
power-law relation with amplitude A and spectral
index y as well as a reference frequency f.; across
all frequency-bins

2 -y
= (5) 7 @)
P(f) = %. (A11)

The quantity P describes the shape of the spectrum and
is used in Sec. IV C.

(i1) Free-spectrum: allowing the PSD to have independent
amplitude in each frequency-bin with normalization
constant 7', equal to a fixed observation time. The
observation time can either be the baseline of each
pulsar or the baseline of the total PTA experiment.

P(fk) = Tobsp%' (A12)

3. Covariance matrices

The white noise covariance matrix N plays a key role in
posterior probability calculation of all model parameters.
This matrix is modeled as

N = diag(o,,,, ....0,, ). (A13)
Note that the introduction of ECORR white noise param-
eter will complicate this picture. See chapter 7 of Taylor
[35] for more details. Furthermore, the red process covari-

ance matrix is obtained via the discretized form of the
Wiener-Khinchin theorem

<rred(ti)rred(tj)> = [F(pFT],-/-, (A14)
@ = diag{Pred(fl)’Pred(fl>’
-'-’Pred(fk)7Pred(fk)}7 (AIS)

where P4 is the one-sided PSD of a red noise process and
the diagonal matrix ¢ is the matrix representation of
that PSD.

APPENDIX B: TRUNCATED INVERSE-GAMMA
DISTRIBUTION

To obtain a truncated inverse-gamma distribution, we
take advantage of inverse-transform sampling method.
However, first, we need to find a normalization factor,
Norm, for the truncated inverse-gamma distribution defined
between the lower bound p,,;, and the upper bound p,,.:

po= ), (B1)
max -1
Nom = [ anGgee (5}

exp (=) —exp (=)

Note that the above process can be repeated for all
frequency bins. Equation (B2) allows for calculation of
the cumulative distribution function (CDF), which in turn
can be used to find a distribution for p; given a uniform
random number U defined between 0 and 1 based on
inverse-transform sampling method. This yields the follow-
ing as the target distribution for the p, parameters:
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s
p(plag. r.n) = — : 0 AR (B3)
In {exp ( pmm> U(0,1) [exp (_pmax) — exp (— p—ﬂ }
|
APPENDIX C: DERIVATION OF THE
NORMALIZATION FACTOR IN EQ. (23) _ Z (T, AZP,)P, (C6)
The choice of normalization in the denominator of X P19y
Eq. (23) enforces the condition that the estimated cross
correlations must yield GWB amplitude if averaged over
many realizations as is shown below: Z p2
=TI,A2 g (C7)
ptop 1% ’
— , C1 PPy
17 = Norm (C1) k
aa,;
Prop = ZE%P (€2) " Which makes Norm = Ek o P, - consequently.
Furthermore, when the quantlty it of Eq. (12) is used in
ﬂ a; 4 P, (€3) estimating the correlations following Eq. (23), the nor-
(Puop) (p vy malization need to be reestimated since (a;a’) # (a;a7) for
an average over many GWB realizations. The new nor-
aa; malization factor is found to be
Z P (C4)
T \P19;/
(aa,)P (py) = (X, FDy'Fraa) Fj (D7) F X))
(O8] - -
; go,goj (©5) = X, F| D' Fla,a])F7 (D) F /2] (C8)
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