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Abstract

1. Projects focused on movement behaviour and home range are commonplace, but

beyond a focus on choosing appropriate research questions, there are no clear
guidelines for such studies. Without these guidelines, designing an animal track-
ing study to produce reliable estimates of space-use and movement properties
(necessary to answer basic movement ecology questions), is often done in an ad

hoc manner.

. We developed ‘movedesign’, a user-friendly Shiny application, which can be uti-

lized to investigate the precision of three estimates regularly reported in move-
ment and spatial ecology studies: home range area, speed and distance travelled.

Conceptually similar to statistical power analysis, this application enables users to

Inés Silva assess the degree of estimate precision that may be achieved with a given sam-
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pling design; that is, the choices regarding data resolution (sampling interval) and
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battery life (sampling duration).

3. Leveraging the ‘ctmm’ R package, we utilize two methods proven to handle many
common biases in animal movement datasets: autocorrelated kernel density es-

Handling Editor: Edward Codiing timators (AKDEs) and continuous-time speed and distance (CTSD) estimators.
Longer sampling durations are required to reliably estimate home range areas via
the detection of a sufficient number of home range crossings. In contrast, speed
and distance estimation requires a sampling interval short enough to ensure that
a statistically significant signature of the animal's velocity remains in the data.

4. This application addresses key challenges faced by researchers when designing
tracking studies, including the trade-off between long battery life and high reso-
lution of GPS locations collected by the devices, which may result in a compro-
mise between reliably estimating home range or speed and distance. ‘movedesign’
has broad applications for researchers and decision-makers, supporting them to
focus efforts and resources in achieving the optimal sampling design strategy
for their research questions, prioritizing the correct deployment decisions for in-
sightful and reliable outputs, while understanding the trade-off associated with

these choices.
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1 | BACKGROUND

Modern tracking technologies are advancing the fields of ecol-
ogy and other fields of biology, with data-rich studies revealing
how movement shapes ecological processes, biological interac-
tions and behavioural responses to natural or human-induced
environmental changes (Kays et al., 2015; Nathan et al., 2022).
Biologging and telemetry devices, such as global positioning sys-
tem (GPS) and very-high-frequency (VHF) transmitters, are com-
mon sampling methods in this field, and have been used to answer
a multitude of research questions—the majority of which rely on
estimates of large-scale processes, such as home ranges (Fleming
& Calabrese, 2017; Horne et al., 2019), or fine-scale processes,
such as speed or distance travelled (Gurarie et al., 2016; Noonan,
Fleming, et al., 2019).

The technology is improving, with cheaper, less invasive tags
available (Foley & Sillero-Zubiri, 2020; Gottwald et al., 2019), allow-
ing researchers access to high-volume high-resolution movement
data for an increasing number of species (Kays et al., 2015): the ani-
mal tracking data platform Movebank (www.movebank.org) already
hosts 2.4 billion locations for over 1000 species. Although these
data are critical for conservation, tracking devices can be costly and/
or logistically difficult to deploy (Hays et al., 2016), requiring us to
weigh their benefits against their costs to ensure optimal outcomes.
VHF transmitters—here referring to their use in triangulation or
homing of tracked animals (White & Garrott, 2012)—remain a cost-
effective method for data collection on small animals, as well as most
reptiles, due to constraints in weight and/or tag attachment (such as
surgical implantation).

Researchers often track as many animals as possible, for as
long as possible, recording new locations at regular, short sampling
intervals—particularly if the goal is to identify finer movement be-
haviours (Nathan et al., 2022). However, although the use of GPS
loggers typically allows for locations to be recorded at higher rates
than VHF transmitters (which, without access to automated meth-
ods, would require triangulation/homing to be performed regularly
every few seconds/minutes for high-frequency data), achieving
both long battery life and high sampling frequency is challenging.
Excluding other factors that may further reduce the longevity of
tracking devices in the wild (e.g. additional sensors, signal acquisition
time, algorithm efficiency and data recovery method), GPS battery
life shortens with shorter sampling intervals (Forrest et al., 2022;
Moriarty & Epps, 2015). Successfully designing an animal tracking
study therefore requires a compromise between sampling duration
(how long an animal should be tracked for) and sampling interval
(time between which new locations are recorded; reciprocal of sam-
pling frequency). Moreover, target analyses and sampling design
are tightly linked, so we must keep specific goals in mind: there are

circumstances where we may be able to address either large-scale or
fine-scale questions, but not both concurrently.

Our objective is to provide a more rigorous a priori approach,
analogous to statistical power analysis (Steidl et al., 1997), for de-
termining the ideal sampling duration and sampling interval of an
animal tracking project. We consider three common estimates—
home range area, speed and distance travelled—through the lens
of continuous-time movement models and the ‘ctmm’ R package
(Calabrese et al., 2016). The ‘ctmm’ methods are insensitive to the
sampling schedule and deal with many of the biases present in mod-
ern movement datasets (such as those due to autocorrelation, small
sample sizes, irregular or missing data or measurement error), facil-
itating robust comparisons across individuals, species and ecosys-
tems (Fleming et al., 2015, 2018, 2019; Fleming & Calabrese, 2017;
Silva et al., 2022). However, like many statistical tools, these methods
still require adequate sample sizes to achieve high accuracy in their
outputs; for example, pHREML-AKDE estimates (designed to handle
small effective sample sizes) still tend to be negatively biased with
effective sample sizes below 30 (Silva et al., 2022). Furthermore, like
all proper estimators, statistical uncertainty decreases with increas-
ing (effective) sample sizes. We chose to implement this in the Shiny
R application, ‘movedesign’ (version 0.2.0) to facilitate adoption and
accessibility to the broadest possible audience, and hope that we
can contribute to the increase in comparable and reliable movement
ecology studies. We note that, for most use cases, this application
may require existing datasets. This application was built using the
‘golem’ framework (Fay et al., 2021), and is available as an installable
R package at https://github.com/CASUS/movedesign.

2 | CONCEPTUALIZATION
2.1 | Parameters

Explicitly modelling all the complex interactions between inter-
nal states, biophysical constraints, environmental cues and social
dynamics that determine animal movement is generally consid-
ered impossible (Codling et al., 2008). However, by interpreting
movement as a continuous-time stochastic process (Calabrese
et al., 2016; Fleming et al., 2014a; Gurarie & Ovaskainen, 2011),
we can efficiently summarize behaviour using characteristic
timescales, including the position autocorrelation (‘rp) and veloc-
ity autocorrelation (r,) timescale parameters, and describe long-
term dispersal behaviour and short-term movement behaviour
across levels of data resolution and duration. The autocorrela-
tion timescales indicate the time required for the correlations in
the focal quantity (here position or velocity) to decay by a fac-
tor of 1/e—conventionally, the data are considered effectively
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independent when 5% or less autocorrelation remains (Gurarie &
Ovaskainen, 2011). These timescales impose constraints on the
sampling design that must be met in order to evaluate both small-
scale (speed and distance) and large-scale phenomena (home
range) (Fleming et al., 2014b). If these constrains are not met, it
could lead to biases and estimate uncertainty.

The position autocorrelation parameter (z,) can be interpreted
as the home range crossing time, or the time taken on average for
an animal to cross the linear extent of its range (Silva et al., 2022).
As 7, increases, we can expect an animal to take longer to travel
this linear extent. Range-resident animals tend to travel away from
their point of origin at a rate controlled by the location variance
parameter (s,) while simultaneously reverting back to it at a rate
driven by 7, (Péron et al., 2017). As 7, = oo, movement becomes
endlessly diffusive (op — o0) with no range residency behaviour;
for range-resident species, ¢, is asymptotically constant and pro-
portional to home range area (Calabrese et al., 2016; Fleming
et al., 2014a).

The velocity autocorrelation parameter (r,) describes how
velocity persists through time (directional persistence; Fleming
et al., 2014a). Animals with strong directional persistence —longer
bouts of constant speed and constant direction— will tend to have a
large r, parameter (such as a migratory species), while animals with
more tortuous movement —less linear, more diffusive— tend towards
smaller z,. Speed and distance travelled are two of the properties of
an animal's velocity process, with variance s, = o, / (7, X 7, ) for sta-
tionary processes (Noonan, Fleming, et al., 2019). For any value of

o, as , — oo, the movement process approximates ballistic motion.

2.2 | Sampling design

Study design optimization requires clearly defined research ques-
tions and objectives (Fieberg & Borger, 2012), and an understanding
of existing constraints, both those related to the study species (char-
acterized by 7, 7, 6, and 6,) and the sampling parameters (duration
and interval).

Our choice of sampling parameters largely determines our abil-
ity to detect the characteristic timescales of the movement process:
it is the sampling duration and interval relative to characteristic
timescales that determine whether there will be any signature of
the animal's range crossing time (z,), or its directional persistence
(z,). Typically, sampling duration (T) should be at least as long as z,,
(and ideally many times longer) for home range estimation (Fleming
et al., 2019; Fleming & Calabrese, 2017; Silva et al., 2022). For esti-
mating speed and distance, the sampling interval (At) needs to be less
than or equal to the velocity autocorrelation timescale for distance
and speed estimation, that is, At < z,, (Noonan, Fleming, et al., 2019).
If At > 3z, then no statistically significant signature of the animal's
velocity will remain (Noonan, Fleming, et al., 2019).

We can evaluate how much information is present in an animal
tracking dataset by considering the effective sample size (N). This
concept, while well-discussed in statistical literature, is frequently

ignored in movement ecology studies. Effective sample sizes are
the number of independent locations that provide the same infor-
mation as the nonindependent data under consideration (Fieberg
& Borger, 2012; Fleming et al., 2019; Silva et al., 2022)—and differ
depending on the parameter in question. For the purposes of home
range estimation, if an animal crosses its home range once per day
and we collect locations for 100days, our effective sample size (N)
will be roughly 100. This equivalence is irrespective of sampling in-
terval At (provided that At < 1day), as N here is driven by the number
of days sampled, and not by the number of samples per day. Simply
put, the information present in this autocorrelated tracking dataset
will not change if we collected new locations once a day (for an abso-
lute sample size, n, of 100 locations), every hour (n=2400 locations),
or every minute (n=144,000 locations). Considering that recorded
locations are frequently autocorrelated in modern tracking datasets
(and that most species take longer than a day to cross their home
range; Calabrese et al., 2016; Patterson et al., 2017), obtaining a
satisfactory effective sample size (N > 30) can be challenging but is
essential for a reliable movement metric or space-use estimate. For
example, if the study species takes months to cross its home range,
as is the case of the Mongolian Gazelle (average z,, of 6.6months;
Fleming et al., 2014b), achieving an N = 30 could require an individ-
ual to be tracked for over 16 years, which is substantially longer than
their average lifespan.

The choice between tracking devices further complicates sam-
pling design. For GPS/satellite loggers, as sampling is automated and
conducted by satellite systems, battery life is inherently linked to
both sampling duration and frequency—that is, choosing a higher fix
rate (shorter intervals between recorded locations) leads to lower
battery life (and, therefore, shorter sampling durations); excluding
self-charging models such as solar tags, researchers are required
to choose one over the other. For VHF transmitters, battery life is
decoupled from any specific sampling interval, and depends only
on the sampling duration specified by the manufacturer—that is,
researchers choose a transmitter based on its battery life, but the
interval between new locations is subject only to the data collection
employed manually in the field (locating the animal every hour, or
every day, has no influence on the battery life).

In contrast with conventional radio-telemetry, GPS loggers have
a higher potential to resolve fine-scale movements; however, the
trade-off between battery life and resolution is more conspicuous,
and with a greater impact on potential outputs. To facilitate sampling
design within ‘movedesign’, we visualize this trade-off (sampling du-
ration vs. sampling interval) by simulating GPS battery life as a three-
parameter log-logistic function (Appendix S1), based on the battery
life-resolution trade-off of several GPS models of animal tracking
devices.

2.3 | Analytic scope

Our evaluation of sampling design focuses on the precision of three
estimates at two different scales—large scale (home range area) and
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fine scale (speed and distance travelled). As the choice of statistical
estimator can further obscure estimate interpretation and compari-
son (Fieberg & Borger, 2012; Fleming et al., 2015), we leverage the
‘ctmm’ package to develop a reliable inferential framework for sam-
pling design evaluation, generating comparable estimates with con-
fidence intervals (Calabrese et al., 2016; Fleming et al., 2018, 2019;
Fleming & Calabrese, 2017).

Home range area is one of the core outputs of movement or spatial
ecology studies and provides information on the long-term space-
use requirements, which are invaluable for conservation policies
and protected area delimitation (Barton et al., 2019; Lambertucci
et al., 2014). Here, we follow the definition of home range as the
area repeatedly used throughout an animal's lifetime for all its nor-
mal behaviours and activities, excluding the occasional exploratory
excursions (Burt, 1943; Calabrese et al., 2016; Silva et al., 2022), and
estimate it using the autocorrelated kernel density estimator (AKDE;
Calabrese et al., 2016), which accounts for the autocorrelation pres-
ent in tracking data.

Both speed and distance travelled provide quantifiable links
between behaviour and energetics, as demographic outcomes and
population dynamics are affected by how far and how fast ani-
mals must travel to meet their nutritional and reproductive needs
(Morales et al., 2010; Noonan, Fleming, et al., 2019). Distance
travelled is usually equated with the sum of the straight-line dis-
placement (SLD) between all subsequent locations, while speed
is the sum of SLD divided by time. Here, we use the continuous-
time speed and distance (CTSD) estimator instead, as it over-
comes important limitations of SLD estimation (Noonan, Fleming,
et al., 2019). Specifically, SLD tends to overestimate speed and
distance travelled at small sampling intervals and underestimates
these quantities at large sampling intervals (see Noonan, Fleming,
et al., 2019).

There are two objective metrics that quantify the performance
of these estimators: the effective sample size for home range es-
timation (N,.,), or how many independent location fixes would be
required to calculate the same quality home range estimate, and the
effective sample size for speed estimation (Nyjeeq), OF how many in-
dependent velocity fixes would be required to calculate the same
quality mean speed estimate.

In addition, the accuracy and precision of the estimates
above—calculated from any sampling design—is judged by the rel-
ative error of both point estimates compared to the exact expec-
tation values from simulations, and their confidence intervals. For
home range areas, we derive the exact expectation value of the
true 95% area based on the model from which data are simulated
(see Fleming et al., 2014b; Noonan, Tucker, et al., 2019; Silva
etal,, 2022). For speed and distance travelled, the expected values
are extracted from a fine-scale error-free trajectory simulated for
10days at a sampling interval of z,/10 (Noonan, Fleming,
et al., 2019), functioning as a Riemann sum approximation of the
path length that achieves a relative error of (9(10"3) while reduc-

ing computation time.

3 | WORKFLOW

The main goal of ‘movedesign’ is to determine if a particular
sampling design is sufficient to answer an a priori defined re-
search question, following the conceptual workflow presented
in Figure 1. First, users should consider a proxy dataset (typically
the same species, or one with similar movement behaviours; see
below for further details) from which to extract the aforemen-
tioned measures: characteristic timescales (z), location variance
(0,) and velocity variance (o, ). These measures are extracted dur-
ing automated model fitting and selection (Fleming et al., 2019)—a
step that allows users to proceed with study design experimenta-
tion without requiring prior knowledge of the underlying move-
ment process. If known a priori, users can also directly input these
measures and skip the extraction step. Second, we input sampling
design parameters—duration (T) and interval (At)—to generate
simulated datasets conditional on the previously fitted model.
Third, we run estimators for home range and/or speed/distance
travelled on the simulated data, while calculating the expected
values in the background, from the model and parameters used
in the simulation. Finally, we compare the estimates with the ex-
pected values (‘truth’) and with simulation results from previous
studies (Noonan, Fleming, et al., 2019; Silva et al., 2022), providing
an overview of the reliability of that sampling design for estimat-
ing home range areas or speed and distance travelled.

The application consists of four main sections, organized as
easy-to-navigate tabs seen in the left sidebar. Once the user has
set their data source and research question(s), the sidebar will
automatically subset to only the required steps. We advise users
to follow along the guided tutorial available in the ‘Home’ tab,
until they feel confident with the application's workflow. Each
run-through of the entire workflow may take a few minutes up
to several hours to run; computation bottlenecks arise from the
ctmm::ctmm.select() and ctmm:speed() functions, particularly if
the absolute sample size exceeds 10° locations, or for very short
sampling intervals.

3.1 | Importing movement data

There are three data source options available in ‘movedesign’: (1)
Importdata, (2) Selectdataand (3) Simulate data. For the first option,
and prior to using ‘movedesign’, users should find an animal track-
ing dataset for their intended study species (e.g. from Movebank,
published studies, requesting directly from data owners), prefer-
ably in a similar environment to the focal study site (e.g. natural
vs. human-dominated environment); if this is not available, search
for species with a similar physiological and behavioural phenotype
(e.g. the same genus or family, occupying the same ecological niche,
similar body size). As the outputs from ‘movedesign’ depend heav-
ily on the extracted species parameters from pre-existing datasets,

this step is crucial to ensure the interpretability and reliance of all
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FIGURE 1 Conceptual workflow of
the key elements of the ‘movedesign’
application, providing a R/Shiny-powered
find or test user interface to test different sampling
parameters designs for specified tracking projects.
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subsequent steps. Correctly importing data into the ‘movedesign’
application requires that datasets conform to Movebank naming
conventions (http://www.movebank.org/). We recommend that
users first upload their datasets (privately if needed) to Movebank,
as this will facilitate data preparation. For the second option, the
user can select one of the seven example species available within
the ‘ctmm’ package and extract their parameters, which serve as
worked examples, but may also help inform animal tracking studies
of species with similar movement behaviours to those listed. For
the third option, the user can simulate an animal tracking dataset
from scratch by inputting model parameters (z,, 7z,) and associ-
ated measures (o, 6,) directly; if chosen, this option requires pre-
vious knowledge of the study species' movement behaviour, and
an educated guess regarding their species parameters. For range-
resident species, 7, is generally on the order of days to weeks, while

l with Continuous-Time Speed and Distance, CTSD

7, is generally on the order of minutes to hours (Noonan, Tucker,
et al., 2019); however, these parameters are likely to differ between
species, populations and individuals.

For options 1 and 2 (‘Import data’ and ‘Select data’), the applica-
tion checks if datasets are valid: specifically, if there is still a signature
of the animal's position or velocity autocorrelation parameter. For
example, if the user is interested in speed estimation but provides
only a coarsely sampled tracking dataset (At > r,) then the property
of continuous velocities is not supported by the data and the result-
ing movement model is fractal (i.e. we cannot proceed with speed
estimation). Data visualization boxes are also available to assist in
additional validation steps that cannot be done automatically, such
as variograms to confirm range residency if the goal is home range
estimation (Fleming et al., 2014a), or plots to identify outliers (which
should be removed and the data re-uploaded before proceeding).
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FIGURE 2 Initial stepsin the
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FIGURE 3 Example outputs shown in the ‘Device’ tab, including the simulated trade-off between sampling duration and sampling interval
(shown in logarithmic scale) for the specified device settings, with the chosen interval selected from the plot (1 fix every hour), and the

absolute and effective sample sizes extracted from the new model fit.

For option 3 (‘Simulate data’), the application will simulate au-
tocorrelated tracking data using an isotropic Ornstein-Uhlenbeck
with foraging (OUF) Gaussian process, which incorporates both

correlated velocities and constrained space use. This OUF model is
also the most frequently selected across modern GPS tracking data-
sets (Noonan, Tucker, et al., 2019).
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3.2 | Choosing sampling design

The Device section allows for the simulation of a new dataset, con-
ditioned upon previously extracted parameters, and based on the
sampling design of the user's choice. First, users are prompted to
input their desired device type (GPS/Satellite loggers or VHF trans-
mitter) as appropriate sampling design is dependent on the device's
battery life: for GPS/Satellite loggers, battery life depends on both
duration and frequency, while for VHF transmitters, battery life de-
pends only on duration. For the GPS option, if users do not intend
to visualize the trade-off curve and already have a specific sampling
design in mind, they can uncheck the ‘Select from plot’ to ‘Set regime
manually’ located in the footer of the Device settings box (this is

equivalent to setting VHF transmitter as the device of choice).
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The application will once again validate all current inputs, and
inform the user of the expected run time of the simulation step.
For home range estimation, we recommend that the user check the
range residency assumption through the variogram in the data visu-
alization boxes. The user can also check the effective sample sizes
extracted from the new model fit, which will assist in decision mak-
ing (to continue with the current sampling design, or to make further

adjustments before proceeding).

3.3 | Running estimators and building the report

In the Analyses section, there will be one or two tabs available to

the user, based on the chosen outputs: (1) Home range and/or (2)
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FIGURE 4 Example outputs shown in the ‘Analyses’ tabs, including the point estimates (and corresponding confidence intervals below
the point estimate in small, black text) and/or expected errors associated with both home range and speed/distance. We can also visualize
the home range estimate (with the true 95% area for comparison), and the instantaneous speed estimates at different timescales—other
visualizations (such as those related to distance) are not shown here but are available within the app.
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Speed and distance. Each tab will run an estimator on the simulated
dataset, created during the previous section. For each output, there
will be two sets of values in the main output box: ‘Estimate’, which
is the point estimate followed by the 95% confidence intervals (Cls),
and ‘Expected error’, which is the relative error (in %) of the point
estimate (and of the 95% Cls) in relation to the expected values. The
user can utilize these outputs (as well as effective sample sizes) to
plan an appropriate sampling duration and interval so the confidence
intervals are sufficiently narrow and relative errors acceptably low:
typically, a more reliable home range estimate requires a longer
sampling duration than the one specified, while a more reliable
speed and distance estimation requires shorter sampling intervals.
However, we advise caution in two scenarios for speed and distance
estimation: (1) producing a CTSD estimate at At > 3z, does not guar-
antee a meaningful output, and (2) At < z, may only yield a marginal
benefit over At <z, while markedly increasing computation time
(see Noonan, Fleming, et al., 2019 for more details). Users can then
navigate to the last section, the ‘Report’ tab, to see a summary of all
previous inputs and outputs, and the final recommendations regard-

ing home range and/or speed and distance estimation.

4 | CASESTUDY

To present the application's key features, we used the African Buffalo
(Syncerus caffer) data available within the ‘ctmm’ R package as a case

study. These individuals were tracked in Kruger National Park, South

Africa (Cross et al., 2009). Our objectives were to reliably estimate
home range area and speed/distance travelled (Figure 2) using GPS
loggers for a hypothetical tracking project with the same speciesin a
similar study site. We choose a GPS model with a maximum lifespan
of 2years if four new locations were collected every day (At = 1 fix
every 6 h; Figure 3).

We selected the individual ‘Cilla’ for parameter extraction; once
validated, we extracted parameters from the fitted OUF anisotropic
model for a 7, of approximately 7.5days (Cl: 4.4-12.7), and a 7, of
42min (39.6-44.7). We plotted our sampling design options based
on the chosen tracking device parameters (Figure 3), which revealed
that a rough estimate of N,., for any sampling interval was substan-
tially smaller the N4 (as expected, since 7, > ,). As our focus was
both home range and speed/distance estimation, we wanted to max-
imize N, e, and Npeeq, S0 We selected a sampling interval of 1h (which
sets our sampling duration to 5.7 months, due to the battery/resolu-
tion trade-off discussed earlier). Once we successfully validated and
ran our new simulation, our sample sizes weren = 4012, N,,., = 18.1
and Ngeeq = 3991

With an appropriate movement model available, the next step
was to estimate home range area, mean speed and total distance
travelled (Figure 4). Once the final report was built, the AKDE esti-
mates showed high uncertainty, while the CTSD estimates did not.
Based on these results and the effective sample sizes, we deter-
mined that our sampling design was adequate for speed/distance
estimation, but could be insufficient for home range (Figure 5). After

exploring further sampling designs for our choice of GPS model, we

bl < a Report: AKDE error CTSDerror
© ‘ These outputs are based on parameters
extracted from Cilla and species African
Buffalo (Syncerus caffer).
A ¢
A The ideal sampling duration for home
L : . . 50% 0 50% 2% 1% 0% 1% 2
g range estimation should be at least
g 30 x T, OF = 7.6 months. Your current
= Report % duration is 22 x 1, = 5.7 months, for a
effective sample size equivalent to 18 Py
independent locations. 25% v ; Estimate error (%)

The minimum sampling interval for
speed & distance estimation should be
near or less than r,, or = 42.1 min.

-9~ AKDE error for 128 days (s = 400)

@ AKDE error for 167.2 days

-9~ CTSD error for 1 fix every 45 min (ng;,s = 400)
@ CTSD error for 1 fix every hour

Your current interval (At) is 1.4 X t, = 60

minutes, resulting in an effective sample
size equivalent to 3918 independently

sampled velocities.

Your current tracking regime may be insufficient
for home range estimation, but likely sufficient for
speed and distance estimation.

FIGURE 5 Final report for a workflow that requested both home range and speed/distance as the research questions, for a hypothetical
tracking study of the African buffalo Syncerus caffer species with a sampling duration of 5.7 months and a sampling interval of 1h—based on
a GPS model with a maximum battery life of 2years if the sampling interval was set to 6 h.
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decided upon one fix every 2 h for a sampling duration of 11 months,
reducing the uncertainty associated with home range area—although
at the cost of increased uncertainty in speed/distance estimation
(follow along the guided tutorial in the ‘Home’ tab for this particular
workflow).

5 | FINAL CONSIDERATIONS

Data collection and sampling design optimization allows research-
ers to better address key ecological questions, as conclusions drawn
from lower-resolution data may not be appropriate to detect fine-
scale movement properties, while higher-resolution datasets may
still be unsuitable to detect patterns at larger spatial or temporal
scales (e.g. space use), if the sampling duration is too short (Nathan
et al., 2022). Our workflow allows users to evaluate a wide range of
potential sampling designs, which can then serve as a solid founda-
tion for future tracking projects, or even the evaluation of on-going
and published studies. One limitation of our study is that our GPS
simulations do not consider the case of solar tags. As a workaround,
users can test the minimum expected battery life or the duration of
the entire tracking study. Our application also assumes, for the pur-
poses of home range estimation, that the intended study species is
range resident; if users plan to track migratory species, they should
consider assessing resident periods (before and/or after migration, if
applicable) as separate study design scenarios, each requiring their
own assessment. We recommend that users employ the same meth-
ods during the study planning phase (facilitated here through the
‘movedesign’ application) and the final analyses after data collection
to ensure similar effective sample sizes. We are continuously work-
ing to improve the application's code, and have plans to explore new

use cases and address more challenging sampling design questions.
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Additional supporting information can be found online in the
Supporting Information section at the end of this article.

Appendix S1: Description of GPS battery trade-off function.
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