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Abstract
1.	 Projects focused on movement behaviour and home range are commonplace, but 

beyond a focus on choosing appropriate research questions, there are no clear 
guidelines for such studies. Without these guidelines, designing an animal track-
ing study to produce reliable estimates of space-use and movement properties 
(necessary to answer basic movement ecology questions), is often done in an ad 
hoc manner.

2.	 We developed ‘movedesign’, a user-friendly Shiny application, which can be uti-
lized to investigate the precision of three estimates regularly reported in move-
ment and spatial ecology studies: home range area, speed and distance travelled. 
Conceptually similar to statistical power analysis, this application enables users to 
assess the degree of estimate precision that may be achieved with a given sam-
pling design; that is, the choices regarding data resolution (sampling interval) and 
battery life (sampling duration).

3.	 Leveraging the ‘ctmm’ R package, we utilize two methods proven to handle many 
common biases in animal movement datasets: autocorrelated kernel density es-
timators (AKDEs) and continuous-time speed and distance (CTSD) estimators. 
Longer sampling durations are required to reliably estimate home range areas via 
the detection of a sufficient number of home range crossings. In contrast, speed 
and distance estimation requires a sampling interval short enough to ensure that 
a statistically significant signature of the animal's velocity remains in the data.

4.	 This application addresses key challenges faced by researchers when designing 
tracking studies, including the trade-off between long battery life and high reso-
lution of GPS locations collected by the devices, which may result in a compro-
mise between reliably estimating home range or speed and distance. ‘movedesign’ 
has broad applications for researchers and decision-makers, supporting them to 
focus efforts and resources in achieving the optimal sampling design strategy 
for their research questions, prioritizing the correct deployment decisions for in-
sightful and reliable outputs, while understanding the trade-off associated with 
these choices.
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1  |  BACKGROUND

Modern tracking technologies are advancing the fields of ecol-
ogy and other fields of biology, with data-rich studies revealing 
how movement shapes ecological processes, biological interac-
tions and behavioural responses to natural or human-induced 
environmental changes (Kays et al.,  2015; Nathan et al.,  2022). 
Biologging and telemetry devices, such as global positioning sys-
tem (GPS) and very-high-frequency (VHF) transmitters, are com-
mon sampling methods in this field, and have been used to answer 
a multitude of research questions—the majority of which rely on 
estimates of large-scale processes, such as home ranges (Fleming 
& Calabrese,  2017; Horne et al.,  2019), or fine-scale processes, 
such as speed or distance travelled (Gurarie et al., 2016; Noonan, 
Fleming, et al., 2019).

The technology is improving, with cheaper, less invasive tags 
available (Foley & Sillero-Zubiri, 2020; Gottwald et al., 2019), allow-
ing researchers access to high-volume high-resolution movement 
data for an increasing number of species (Kays et al., 2015): the ani-
mal tracking data platform Movebank (www.moveb​ank.org) already 
hosts 2.4 billion locations for over 1000 species. Although these 
data are critical for conservation, tracking devices can be costly and/
or logistically difficult to deploy (Hays et al., 2016), requiring us to 
weigh their benefits against their costs to ensure optimal outcomes. 
VHF transmitters—here referring to their use in triangulation or 
homing of tracked animals (White & Garrott, 2012)—remain a cost-
effective method for data collection on small animals, as well as most 
reptiles, due to constraints in weight and/or tag attachment (such as 
surgical implantation).

Researchers often track as many animals as possible, for as 
long as possible, recording new locations at regular, short sampling 
intervals—particularly if the goal is to identify finer movement be-
haviours (Nathan et al.,  2022). However, although the use of GPS 
loggers typically allows for locations to be recorded at higher rates 
than VHF transmitters (which, without access to automated meth-
ods, would require triangulation/homing to be performed regularly 
every few seconds/minutes for high-frequency data), achieving 
both long battery life and high sampling frequency is challenging. 
Excluding other factors that may further reduce the longevity of 
tracking devices in the wild (e.g. additional sensors, signal acquisition 
time, algorithm efficiency and data recovery method), GPS battery 
life shortens with shorter sampling intervals (Forrest et al.,  2022; 
Moriarty & Epps, 2015). Successfully designing an animal tracking 
study therefore requires a compromise between sampling duration 
(how long an animal should be tracked for) and sampling interval 
(time between which new locations are recorded; reciprocal of sam-
pling frequency). Moreover, target analyses and sampling design 
are tightly linked, so we must keep specific goals in mind: there are 

circumstances where we may be able to address either large-scale or 
fine-scale questions, but not both concurrently.

Our objective is to provide a more rigorous a priori approach, 
analogous to statistical power analysis (Steidl et al., 1997), for de-
termining the ideal sampling duration and sampling interval of an 
animal tracking project. We consider three common estimates—
home range area, speed and distance travelled—through the lens 
of continuous-time movement models and the ‘ctmm’ R package 
(Calabrese et al., 2016). The ‘ctmm’ methods are insensitive to the 
sampling schedule and deal with many of the biases present in mod-
ern movement datasets (such as those due to autocorrelation, small 
sample sizes, irregular or missing data or measurement error), facil-
itating robust comparisons across individuals, species and ecosys-
tems (Fleming et al., 2015, 2018, 2019; Fleming & Calabrese, 2017; 
Silva et al., 2022). However, like many statistical tools, these methods 
still require adequate sample sizes to achieve high accuracy in their 
outputs; for example, pHREML-AKDE estimates (designed to handle 
small effective sample sizes) still tend to be negatively biased with 
effective sample sizes below 30 (Silva et al., 2022). Furthermore, like 
all proper estimators, statistical uncertainty decreases with increas-
ing (effective) sample sizes. We chose to implement this in the Shiny 
R application, ‘movedesign’ (version 0.2.0) to facilitate adoption and 
accessibility to the broadest possible audience, and hope that we 
can contribute to the increase in comparable and reliable movement 
ecology studies. We note that, for most use cases, this application 
may require existing datasets. This application was built using the 
‘golem’ framework (Fay et al., 2021), and is available as an installable 
R package at https://github.com/CASUS/​moved​esign.

2  |  CONCE​PTU​ALI​ZAT​ION

2.1  |  Parameters

Explicitly modelling all the complex interactions between inter-
nal states, biophysical constraints, environmental cues and social 
dynamics that determine animal movement is generally consid-
ered impossible (Codling et al.,  2008). However, by interpreting 
movement as a continuous-time stochastic process (Calabrese 
et al., 2016; Fleming et al., 2014a; Gurarie & Ovaskainen, 2011), 
we can efficiently summarize behaviour using characteristic 
timescales, including the position autocorrelation (�p) and veloc-
ity autocorrelation (�v ) timescale parameters, and describe long-
term dispersal behaviour and short-term movement behaviour 
across levels of data resolution and duration. The autocorrela-
tion timescales indicate the time required for the correlations in 
the focal quantity (here position or velocity) to decay by a fac-
tor of 1∕e—conventionally, the data are considered effectively 

K E Y WO RD S
biologgers, experimental design, GPS sampling, GPS tracking, home range, simulations, space 
use

 2041210x, 2023, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14153, W
iley O

nline L
ibrary on [06/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.movebank.org
https://github.com/CASUS/movedesign


2218  |   Methods in Ecology and Evolu
on SILVA et al.

independent when 5% or less autocorrelation remains (Gurarie & 
Ovaskainen,  2011). These timescales impose constraints on the 
sampling design that must be met in order to evaluate both small-
scale (speed and distance) and large-scale phenomena (home 
range) (Fleming et al., 2014b). If these constrains are not met, it 
could lead to biases and estimate uncertainty.

The position autocorrelation parameter (�p) can be interpreted 
as the home range crossing time, or the time taken on average for 
an animal to cross the linear extent of its range (Silva et al., 2022). 
As �p increases, we can expect an animal to take longer to travel 
this linear extent. Range-resident animals tend to travel away from 
their point of origin at a rate controlled by the location variance 
parameter (�p) while simultaneously reverting back to it at a rate 
driven by �p (Péron et al., 2017). As �p → ∞, movement becomes 
endlessly diffusive (�p → ∞) with no range residency behaviour; 
for range-resident species, �p is asymptotically constant and pro-
portional to home range area (Calabrese et al.,  2016; Fleming 
et al., 2014a).

The velocity autocorrelation parameter (�v) describes how 
velocity persists through time (directional persistence; Fleming 
et al., 2014a). Animals with strong directional persistence —longer 
bouts of constant speed and constant direction— will tend to have a 
large �v parameter (such as a migratory species), while animals with 
more tortuous movement —less linear, more diffusive— tend towards 
smaller �v. Speed and distance travelled are two of the properties of 
an animal's velocity process, with variance �v = �p ∕

(

�p × �v

)

 for sta-
tionary processes (Noonan, Fleming, et al., 2019). For any value of 
�v, as �v → ∞, the movement process approximates ballistic motion.

2.2  |  Sampling design

Study design optimization requires clearly defined research ques-
tions and objectives (Fieberg & Börger, 2012), and an understanding 
of existing constraints, both those related to the study species (char-
acterized by �p, �v, �p and �v) and the sampling parameters (duration 
and interval).

Our choice of sampling parameters largely determines our abil-
ity to detect the characteristic timescales of the movement process: 
it is the sampling duration and interval relative to characteristic 
timescales that determine whether there will be any signature of 
the animal's range crossing time (�p), or its directional persistence 
(�v). Typically, sampling duration (T) should be at least as long as �p 
(and ideally many times longer) for home range estimation (Fleming 
et al., 2019; Fleming & Calabrese, 2017; Silva et al., 2022). For esti-
mating speed and distance, the sampling interval (Δt) needs to be less 
than or equal to the velocity autocorrelation timescale for distance 
and speed estimation, that is, Δt ≤ �v (Noonan, Fleming, et al., 2019). 
If Δt > 3𝜏v then no statistically significant signature of the animal's 
velocity will remain (Noonan, Fleming, et al., 2019).

We can evaluate how much information is present in an animal 
tracking dataset by considering the effective sample size (N). This 
concept, while well-discussed in statistical literature, is frequently 

ignored in movement ecology studies. Effective sample sizes are 
the number of independent locations that provide the same infor-
mation as the nonindependent data under consideration (Fieberg 
& Börger, 2012; Fleming et al., 2019; Silva et al., 2022)—and differ 
depending on the parameter in question. For the purposes of home 
range estimation, if an animal crosses its home range once per day 
and we collect locations for 100 days, our effective sample size (N ) 
will be roughly 100. This equivalence is irrespective of sampling in-
terval Δt (provided that Δt < 1 day), as N here is driven by the number 
of days sampled, and not by the number of samples per day. Simply 
put, the information present in this autocorrelated tracking dataset 
will not change if we collected new locations once a day (for an abso-
lute sample size, n, of 100 locations), every hour (n = 2400 locations), 
or every minute (n = 144,000 locations). Considering that recorded 
locations are frequently autocorrelated in modern tracking datasets 
(and that most species take longer than a day to cross their home 
range; Calabrese et al.,  2016; Patterson et al.,  2017), obtaining a 
satisfactory effective sample size (N > 30) can be challenging but is 
essential for a reliable movement metric or space-use estimate. For 
example, if the study species takes months to cross its home range, 
as is the case of the Mongolian Gazelle (average �p of 6.6 months; 
Fleming et al., 2014b), achieving an N = 30 could require an individ-
ual to be tracked for over 16 years, which is substantially longer than 
their average lifespan.

The choice between tracking devices further complicates sam-
pling design. For GPS/satellite loggers, as sampling is automated and 
conducted by satellite systems, battery life is inherently linked to 
both sampling duration and frequency—that is, choosing a higher fix 
rate (shorter intervals between recorded locations) leads to lower 
battery life (and, therefore, shorter sampling durations); excluding 
self-charging models such as solar tags, researchers are required 
to choose one over the other. For VHF transmitters, battery life is 
decoupled from any specific sampling interval, and depends only 
on the sampling duration specified by the manufacturer—that is, 
researchers choose a transmitter based on its battery life, but the 
interval between new locations is subject only to the data collection 
employed manually in the field (locating the animal every hour, or 
every day, has no influence on the battery life).

In contrast with conventional radio-telemetry, GPS loggers have 
a higher potential to resolve fine-scale movements; however, the 
trade-off between battery life and resolution is more conspicuous, 
and with a greater impact on potential outputs. To facilitate sampling 
design within ‘movedesign’, we visualize this trade-off (sampling du-
ration vs. sampling interval) by simulating GPS battery life as a three-
parameter log-logistic function (Appendix S1), based on the battery 
life-resolution trade-off of several GPS models of animal tracking 
devices.

2.3  | Analytic scope

Our evaluation of sampling design focuses on the precision of three 
estimates at two different scales—large scale (home range area) and 
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fine scale (speed and distance travelled). As the choice of statistical 
estimator can further obscure estimate interpretation and compari-
son (Fieberg & Börger, 2012; Fleming et al., 2015), we leverage the 
‘ctmm’ package to develop a reliable inferential framework for sam-
pling design evaluation, generating comparable estimates with con-
fidence intervals (Calabrese et al., 2016; Fleming et al., 2018, 2019; 
Fleming & Calabrese, 2017).

Home range area is one of the core outputs of movement or spatial 
ecology studies and provides information on the long-term space-
use requirements, which are invaluable for conservation policies 
and protected area delimitation (Bartoń et al.,  2019; Lambertucci 
et al.,  2014). Here, we follow the definition of home range as the 
area repeatedly used throughout an animal's lifetime for all its nor-
mal behaviours and activities, excluding the occasional exploratory 
excursions (Burt, 1943; Calabrese et al., 2016; Silva et al., 2022), and 
estimate it using the autocorrelated kernel density estimator (AKDE; 
Calabrese et al., 2016), which accounts for the autocorrelation pres-
ent in tracking data.

Both speed and distance travelled provide quantifiable links 
between behaviour and energetics, as demographic outcomes and 
population dynamics are affected by how far and how fast ani-
mals must travel to meet their nutritional and reproductive needs 
(Morales et al.,  2010; Noonan, Fleming, et al.,  2019). Distance 
travelled is usually equated with the sum of the straight-line dis-
placement (SLD) between all subsequent locations, while speed 
is the sum of SLD divided by time. Here, we use the continuous-
time speed and distance (CTSD) estimator instead, as it over-
comes important limitations of SLD estimation (Noonan, Fleming, 
et al.,  2019). Specifically, SLD tends to overestimate speed and 
distance travelled at small sampling intervals and underestimates 
these quantities at large sampling intervals (see Noonan, Fleming, 
et al., 2019).

There are two objective metrics that quantify the performance 
of these estimators: the effective sample size for home range es-
timation (Narea), or how many independent location fixes would be 
required to calculate the same quality home range estimate, and the 
effective sample size for speed estimation (Nspeed), or how many in-
dependent velocity fixes would be required to calculate the same 
quality mean speed estimate.

In addition, the accuracy and precision of the estimates 
above—calculated from any sampling design—is judged by the rel-
ative error of both point estimates compared to the exact expec-
tation values from simulations, and their confidence intervals. For 
home range areas, we derive the exact expectation value of the 
true 95% area based on the model from which data are simulated 
(see Fleming et al.,  2014b; Noonan, Tucker, et al.,  2019; Silva 
et al., 2022). For speed and distance travelled, the expected values 
are extracted from a fine-scale error-free trajectory simulated for 
10 days at a sampling interval of �v ∕10 (Noonan, Fleming, 
et al., 2019), functioning as a Riemann sum approximation of the 
path length that achieves a relative error of 

(

10−3
)

 while reduc-
ing computation time.

3  | WORKFLOW

The main goal of ‘movedesign’ is to determine if a particular 
sampling design is sufficient to answer an a priori defined re-
search question, following the conceptual workflow presented 
in Figure 1. First, users should consider a proxy dataset (typically 
the same species, or one with similar movement behaviours; see 
below for further details) from which to extract the aforemen-
tioned measures: characteristic timescales (τ), location variance 
(�p) and velocity variance (�v ). These measures are extracted dur-
ing automated model fitting and selection (Fleming et al., 2019)—a 
step that allows users to proceed with study design experimenta-
tion without requiring prior knowledge of the underlying move-
ment process. If known a priori, users can also directly input these 
measures and skip the extraction step. Second, we input sampling 
design parameters—duration (T) and interval (Δt  )—to generate 
simulated datasets conditional on the previously fitted model. 
Third, we run estimators for home range and/or speed/distance 
travelled on the simulated data, while calculating the expected 
values in the background, from the model and parameters used 
in the simulation. Finally, we compare the estimates with the ex-
pected values (‘truth’) and with simulation results from previous 
studies (Noonan, Fleming, et al., 2019; Silva et al., 2022), providing 
an overview of the reliability of that sampling design for estimat-
ing home range areas or speed and distance travelled.

The application consists of four main sections, organized as 
easy-to-navigate tabs seen in the left sidebar. Once the user has 
set their data source and research question(s), the sidebar will 
automatically subset to only the required steps. We advise users 
to follow along the guided tutorial available in the ‘Home’ tab, 
until they feel confident with the application's workflow. Each 
run-through of the entire workflow may take a few minutes up 
to several hours to run; computation bottlenecks arise from the 
ctmm::ctmm.select() and ctmm::speed() functions, particularly if 
the absolute sample size exceeds 103 locations, or for very short 
sampling intervals.

3.1  |  Importing movement data

There are three data source options available in ‘movedesign’: (1) 
Import data, (2) Select data and (3) Simulate data. For the first option, 
and prior to using ‘movedesign’, users should find an animal track-
ing dataset for their intended study species (e.g. from Movebank, 
published studies, requesting directly from data owners), prefer-
ably in a similar environment to the focal study site (e.g. natural 
vs. human-dominated environment); if this is not available, search 
for species with a similar physiological and behavioural phenotype 
(e.g. the same genus or family, occupying the same ecological niche, 
similar body size). As the outputs from ‘movedesign’ depend heav-
ily on the extracted species parameters from pre-existing datasets, 
this step is crucial to ensure the interpretability and reliance of all 
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subsequent steps. Correctly importing data into the ‘movedesign’ 
application requires that datasets conform to Movebank naming 
conventions (http://www.moveb​ank.org/). We recommend that 
users first upload their datasets (privately if needed) to Movebank, 
as this will facilitate data preparation. For the second option, the 
user can select one of the seven example species available within 
the ‘ctmm’ package and extract their parameters, which serve as 
worked examples, but may also help inform animal tracking studies 
of species with similar movement behaviours to those listed. For 
the third option, the user can simulate an animal tracking dataset 
from scratch by inputting model parameters (�p, �v) and associ-
ated measures (�p , �v) directly; if chosen, this option requires pre-
vious knowledge of the study species' movement behaviour, and 
an educated guess regarding their species parameters. For range-
resident species, �p is generally on the order of days to weeks, while 

�v is generally on the order of minutes to hours (Noonan, Tucker, 
et al., 2019); however, these parameters are likely to differ between 
species, populations and individuals.

For options 1 and 2 (‘Import data’ and ‘Select data’), the applica-
tion checks if datasets are valid: specifically, if there is still a signature 
of the animal's position or velocity autocorrelation parameter. For 
example, if the user is interested in speed estimation but provides 
only a coarsely sampled tracking dataset (Δt ≫ 𝜏v) then the property 
of continuous velocities is not supported by the data and the result-
ing movement model is fractal (i.e. we cannot proceed with speed 
estimation). Data visualization boxes are also available to assist in 
additional validation steps that cannot be done automatically, such 
as variograms to confirm range residency if the goal is home range 
estimation (Fleming et al., 2014a), or plots to identify outliers (which 
should be removed and the data re-uploaded before proceeding).

F IGURE  1 Conceptual workflow of 
the key elements of the ‘movedesign’ 
application, providing a R/Shiny-powered 
user interface to test different sampling 
designs for specified tracking projects. 
The application is divided into four 
main sections: ‘Species’ (where data are 
uploaded, selected or simulated to extract 
relevant parameters and measures), 
‘Device’ (where users input device 
parameters, visualize potential trade-
offs and evaluate effective sample sizes), 
‘Analyses’ (where users can estimate 
home range areas, and speed and distance 
travelled, using the ‘ctmm’ R package) and 
‘Report’ (a summary page of all inputs, 
outputs and final recommendations).
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For option 3 (‘Simulate data’), the application will simulate au-
tocorrelated tracking data using an isotropic Ornstein–Uhlenbeck 
with foraging (OUF) Gaussian process, which incorporates both 

correlated velocities and constrained space use. This OUF model is 
also the most frequently selected across modern GPS tracking data-
sets (Noonan, Tucker, et al., 2019).

F IGURE  2 Initial steps in the 
‘movedesign’ Shiny application workflow 
(‘Home’ and ‘Species’ tabs). For the case 
study presented here, set a fixed seed to 
reproduce all outputs, the correct data 
source, both research questions, and the 
stated species and individual from the list 
(before validation and extraction).

F IGURE  3 Example outputs shown in the ‘Device’ tab, including the simulated trade-off between sampling duration and sampling interval 
(shown in logarithmic scale) for the specified device settings, with the chosen interval selected from the plot (1 fix every hour), and the 
absolute and effective sample sizes extracted from the new model fit.
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3.2  |  Choosing sampling design

The Device section allows for the simulation of a new dataset, con-
ditioned upon previously extracted parameters, and based on the 
sampling design of the user's choice. First, users are prompted to 
input their desired device type (GPS/Satellite loggers or VHF trans-
mitter) as appropriate sampling design is dependent on the device's 
battery life: for GPS/Satellite loggers, battery life depends on both 
duration and frequency, while for VHF transmitters, battery life de-
pends only on duration. For the GPS option, if users do not intend 
to visualize the trade-off curve and already have a specific sampling 
design in mind, they can uncheck the ‘Select from plot’ to ‘Set regime 
manually’ located in the footer of the Device settings box (this is 
equivalent to setting VHF transmitter as the device of choice).

The application will once again validate all current inputs, and 
inform the user of the expected run time of the simulation step. 
For home range estimation, we recommend that the user check the 
range residency assumption through the variogram in the data visu-
alization boxes. The user can also check the effective sample sizes 
extracted from the new model fit, which will assist in decision mak-
ing (to continue with the current sampling design, or to make further 
adjustments before proceeding).

3.3  |  Running estimators and building the report

In the Analyses section, there will be one or two tabs available to 
the user, based on the chosen outputs: (1) Home range and/or (2) 

F IGURE  4 Example outputs shown in the ‘Analyses’ tabs, including the point estimates (and corresponding confidence intervals below 
the point estimate in small, black text) and/or expected errors associated with both home range and speed/distance. We can also visualize 
the home range estimate (with the true 95% area for comparison), and the instantaneous speed estimates at different timescales—other 
visualizations (such as those related to distance) are not shown here but are available within the app.
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Speed and distance. Each tab will run an estimator on the simulated 
dataset, created during the previous section. For each output, there 
will be two sets of values in the main output box: ‘Estimate’, which 
is the point estimate followed by the 95% confidence intervals (CIs), 
and ‘Expected error’, which is the relative error (in %) of the point 
estimate (and of the 95% CIs) in relation to the expected values. The 
user can utilize these outputs (as well as effective sample sizes) to 
plan an appropriate sampling duration and interval so the confidence 
intervals are sufficiently narrow and relative errors acceptably low: 
typically, a more reliable home range estimate requires a longer 
sampling duration than the one specified, while a more reliable 
speed and distance estimation requires shorter sampling intervals. 
However, we advise caution in two scenarios for speed and distance 
estimation: (1) producing a CTSD estimate at Δt > 3𝜏v does not guar-
antee a meaningful output, and (2) Δt ≪ 𝜏v may only yield a marginal 
benefit over Δt < 𝜏v while markedly increasing computation time 
(see Noonan, Fleming, et al., 2019 for more details). Users can then 
navigate to the last section, the ‘Report’ tab, to see a summary of all 
previous inputs and outputs, and the final recommendations regard-
ing home range and/or speed and distance estimation.

4  |  CASE STUDY

To present the application's key features, we used the African Buffalo 
(Syncerus caffer) data available within the ‘ctmm’ R package as a case 
study. These individuals were tracked in Kruger National Park, South 

Africa (Cross et al., 2009). Our objectives were to reliably estimate 
home range area and speed/distance travelled (Figure 2) using GPS 
loggers for a hypothetical tracking project with the same species in a 
similar study site. We choose a GPS model with a maximum lifespan 
of 2 years if four new locations were collected every day (Δt = 1 fix 
every 6 h; Figure 3).

We selected the individual ‘Cilla’ for parameter extraction; once 
validated, we extracted parameters from the fitted OUF anisotropic 
model for a �p of approximately 7.5 days (CI: 4.4–12.7), and a �v of 
42 min (39.6–44.7). We plotted our sampling design options based 
on the chosen tracking device parameters (Figure 3), which revealed 
that a rough estimate of Narea for any sampling interval was substan-
tially smaller the Nspeed (as expected, since 𝜏p ≫ 𝜏v). As our focus was 
both home range and speed/distance estimation, we wanted to max-
imize Narea and Nspeed, so we selected a sampling interval of 1 h (which 
sets our sampling duration to 5.7 months, due to the battery/resolu-
tion trade-off discussed earlier). Once we successfully validated and 
ran our new simulation, our sample sizes were n = 4012, Narea = 18.1 
and Nspeed = 3991.

With an appropriate movement model available, the next step 
was to estimate home range area, mean speed and total distance 
travelled (Figure 4). Once the final report was built, the AKDE esti-
mates showed high uncertainty, while the CTSD estimates did not. 
Based on these results and the effective sample sizes, we deter-
mined that our sampling design was adequate for speed/distance 
estimation, but could be insufficient for home range (Figure 5). After 
exploring further sampling designs for our choice of GPS model, we 

F IGURE  5 Final report for a workflow that requested both home range and speed/distance as the research questions, for a hypothetical 
tracking study of the African buffalo Syncerus caffer species with a sampling duration of 5.7 months and a sampling interval of 1 h—based on 
a GPS model with a maximum battery life of 2 years if the sampling interval was set to 6 h.
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decided upon one fix every 2 h for a sampling duration of 11 months, 
reducing the uncertainty associated with home range area—although 
at the cost of increased uncertainty in speed/distance estimation 
(follow along the guided tutorial in the ‘Home’ tab for this particular 
workflow).

5  |  FINAL CONSIDERATIONS

Data collection and sampling design optimization allows research-
ers to better address key ecological questions, as conclusions drawn 
from lower-resolution data may not be appropriate to detect fine-
scale movement properties, while higher-resolution datasets may 
still be unsuitable to detect patterns at larger spatial or temporal 
scales (e.g. space use), if the sampling duration is too short (Nathan 
et al., 2022). Our workflow allows users to evaluate a wide range of 
potential sampling designs, which can then serve as a solid founda-
tion for future tracking projects, or even the evaluation of on-going 
and published studies. One limitation of our study is that our GPS 
simulations do not consider the case of solar tags. As a workaround, 
users can test the minimum expected battery life or the duration of 
the entire tracking study. Our application also assumes, for the pur-
poses of home range estimation, that the intended study species is 
range resident; if users plan to track migratory species, they should 
consider assessing resident periods (before and/or after migration, if 
applicable) as separate study design scenarios, each requiring their 
own assessment. We recommend that users employ the same meth-
ods during the study planning phase (facilitated here through the 
‘movedesign’ application) and the final analyses after data collection 
to ensure similar effective sample sizes. We are continuously work-
ing to improve the application's code, and have plans to explore new 
use cases and address more challenging sampling design questions.
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