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Abstract
1. Resource selection functions (RSFs) are among the most commonly used statis-

tical tools in both basic and applied animal ecology. They are typically param-
eterized using animal tracking data, and advances in animal tracking technology 
have led to increasing levels of autocorrelation between locations in such data 
sets. Because RSFs assume that data are independent and identically distrib-
uted, such autocorrelation can cause misleadingly narrow confidence intervals 
and biased parameter estimates.

2. Data thinning, generalized estimating equations and step selection functions 
(SSFs) have been suggested as techniques for mitigating the statistical problems 
posed by autocorrelation, but these approaches have notable limitations that 
include statistical inefficiency, unclear or arbitrary targets for adequate levels 
of statistical independence, constraints in input data and (in the case of SSFs) 
scale- dependent inference. To remedy these problems, we introduce a method 
for likelihood weighting of animal locations to mitigate the negative conse-
quences of autocorrelation on RSFs.

3. In this study, we demonstrate that this method weights each observed loca-
tion in an animal's movement track according to its level of non- independence, 
expanding confidence intervals and reducing bias that can arise when there are 
missing data in the movement track.

4. Ecologists and conservation biologists can use this method to improve the qual-
ity of inferences derived from RSFs. We also provide a complete, annotated 
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1  |  INTRODUC TION

Resource selection functions (RSFs) have been a mainstay of basic 
and applied ecology for decades (Boyce & McDonald, 1999; Manly 
et al., 2007), and are commonly used to answer questions such as 
‘What landscape features do animals seek or avoid during their move-
ments?’ (e.g. Lamont et al., 2019; Prokopenko et al., 2017b; Valls- Fox 
et al., 2018) and ‘In which areas of the landscape are animals at risk 
of predation or disease transmission?’ (e.g. Ali et al., 2017; Ng'weno 
et al., 2019; Rayl et al., 2019). They are typically conceptualized 
as a Poisson point process and fit in a use– availability framework, 
whereby environmental covariates at the locations where animals 
were known to be present (i.e. ‘used’ locations) are compared with 
covariates at locations taken from an area assumed to be available 
for selection (i.e. ‘available’ locations; Manly et al., 2007). RSFs are 
usually parameterized using logistic regression, which allows re-
searchers to easily estimate selection or avoidance of environmental 
features and to generate maps or data layers for use in downstream 
analyses (Northrup et al., 2013, 2022).

The relative ease of fitting RSFs has contributed to their pop-
ularity in animal ecology. However, the results of RSFs are influ-
enced by a number of methodological challenges (Aarts et al., 2008; 
Northrup et al., 2013, 2022). One major (and worsening) challenge 
is the degree of temporal autocorrelation in tracking data, which 
has increased considerably as advances in tracking devices facilitate 
the recording of animal locations at ever- smaller intervals (Fieberg 
et al., 2010). Conventional RSFs assume that data arise from Poisson 
point processes and are therefore sampled independently, which 
means that they do not allow for any autocorrelation in the data. 
Autocorrelated movement data are generally less informative than 
independent data when estimating coarse- scale parameters, be-
cause adjacent data points share information. In other words, an an-
imal's location at time ti is a function of both resource selection and 
its location at time ti−1. Estimates of resource selection are there-
fore overconfident and often biased when autocorrelated data are 
modelled as independent and identically distributed (IID). This is one 
form of pseudoreplication, which has long been acknowledged as a 
problem in ecology (Hurlbert, 1984). Modern animal tracking data 
are almost always positively autocorrelated (Noonan et al., 2019), 
which poses a major problem for RSFs.

Such pseudoreplication— and the incorrectly narrow confi-
dence intervals that arise from it— can cause random variation to 
be incorrectly identified as significant effects. This may (at least in 
part) explain why a growing number of studies have documented 

surprising levels of apparent variation in habitat selection within 
species and even populations (e.g. Leclerc et al., 2016; Montgomery 
et al., 2018; Newediuk et al., 2022). Individual animals undoubt-
edly vary somewhat in their habitat preferences because of differ-
ences in behavioural traits (Bastille- Rousseau & Wittemyer, 2019; 
Leclerc et al., 2016; Stuber et al., 2022), population density (Avgar 
et al., 2020; Matthiopoulos et al., 2015; van Beest et al., 2014) and 
habitat availability (Aarts et al., 2013; Godvik et al., 2009; Mysterud 
& Ims, 1998). However, substantial levels of Type I error in selection 
parameters can easily arise when pseudoreplication from autocor-
related data causes unimportant covariates to be misleadingly found 
to be significant. Accurate quantification of uncertainty is therefore 
paramount for accurate inference concerning habitat selection. In 
addition, RSFs that assume IID data are unable to account for vary-
ing levels of autocorrelation in movement data. This might happen 
when environmental covariates inhibit successful estimation of 
animal locations (e.g. dense vegetation blocking Global Positioning 
System [GPS] satellite reception), leaving unsampled gaps in an an-
imal movement track (Fleming et al., 2018; Frair et al., 2010; Lewis 
et al., 2007). When the gaps in data are correlated with specific 
covariates of interest, the level of autocorrelation in animal loca-
tions is also correlated with those covariates. Despite widespread 
awareness of these problems, no generally accepted solutions have 
been described, and researchers often fit IID RSF models to autocor-
related tracking data.

Historically, data thinning has been the most common sugges-
tion for reducing autocorrelation in tracking data used to inform 
RSFs (e.g. Hooten et al., 2014; Northrup et al., 2013; Swihart & 
Slade, 1985). While pragmatic and easy to implement, data thin-
ning suffers from a number of limitations as a method of mitigating 
autocorrelation. First, thinning inherently requires discarding data, 
which results in the loss of useful information and can lead to impre-
cise parameter estimates. Second, thinning typically involves using 
statistical tests for the presence of statistically significant levels of 
autocorrelation— a target which is both arbitrary and not optimized 
for the task of estimating distributions (Aarts et al., 2008). Under- 
thinning results in misleadingly narrow confidence intervals and 
possibly biased coefficient estimates, while over- thinning results in 
an unnecessary loss of information and statistical efficiency. Third, 
highly irregular time- series, such as those obtained from tracking 
aquatic animals (Breed et al., 2011; Fleming et al., 2018) or sam-
pling designs targeted at identifying behaviours at multiple temporal 
scales (e.g. Scantlebury et al., 2014; Ullmann et al., 2020), may not be 
particularly amenable to thinning.

analytical workflow to help new users apply our method to their own animal 
tracking data using the ctmm R package.

K E Y W O R D S
continuous- time movement models, habitat selection, home range, Ornstein– Uhlenbeck 
process, space use, spatial point process, stochastic process model, utilization distribution
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Increasingly, researchers use step selection functions (here-
after SSFs; Avgar et al., 2016, Fortin et al., 2005, Signer et al., 2019; 
Thurfjell et al., 2014) to account for autocorrelation in animal move-
ments during studies of resource selection (e.g. Alston et al., 2020; 
Dickie et al., 2020; Kohl et al., 2018; Merkle et al., 2016; Prokopenko 
et al., 2017a). This approach builds upon conventional RSFs by gen-
erating available points (or movement steps) using a biologically real-
istic, movement- informed sampling scheme. However, SSFs still have 
important limitations. First, because available points in conventional 
SSFs depend on distributions of step lengths and turning angles on 
a fixed sampling interval, conventional SSFs cannot handle irregu-
larly sampled data— SSFs can only be parameterized using animal 
location data that were sampled at a constant sampling interval (but 
see Brost et al., 2015; Christ et al., 2008; Johnson et al., 2008 for 
examples of models that are conceptually similar to SSFs, but that re-
place the correlated random walk movement model underlying con-
ventional SSFs with Gaussian stochastic processes, which can relax 
the assumption of a constant sampling interval). Second, parameters 
of SSFs are explicitly scale- dependent— parameters change as the 
sampling schedule of a movement track changes (Avgar et al., 2016; 
Fieberg et al., 2021; Signer et al., 2017). In other words, if the same 
movement track were to be sampled at different intervals, the SSFs 
parameterized using the different samples would provide different 
estimates of selection. Third, SSFs do not invariably mitigate the 
pseudoreplication that arises from treating autocorrelated data as 
IID— SSFs assume that steps are independent, so when the sampling 
interval is smaller than the length of time required for steps to be 
statistically independent of one another, SSFs will also produce mis-
leadingly narrow confidence intervals. Additional measures such as 
data thinning (Babin et al., 2011; Robb et al., 2022), variance infla-
tion (Nielsen et al., 2002), generalized estimating equations (Craiu 
et al., 2008; Prima et al., 2017) and modelling interactions between 
steps can be employed to widen confidence intervals associated 
with SSF parameters, but these methods lack an objective and eas-
ily implementable target for the appropriate width of confidence 
intervals.

Likelihood weighting offers another potential solution for miti-
gating the adverse effects of temporal autocorrelation on RSFs. In 
this framework, the contributions of individual animal locations are 
weighted according to a joint likelihood function such that the sum 
of all weights matches an ‘effective sample size’ derived from sto-
chastic process models that describe the autocorrelation structure 
of an animal movement track. This framework avoids two problems 
caused by data thinning. First, instead of considering one thinned 
subsample of data and its set of resulting parameter estimates, or 
several thinned subsamples of the data and an average over their 
parameter estimates (which would reduce noise— and potentially 
bias— arising from thinning), all subsamples of independent data and 
an average of their log- likelihoods are evaluated during parameter 
estimation. In other words, autocorrelated data are down- weighted 
rather than discarded. Second, instead of thinning the data to an ad 
hoc threshold (e.g. less than 5% autocorrelation), data are weighted 
using an objective estimate of ‘effective sample size’ that quantifies 

confidence in a home- range estimate. As an additional benefit, likeli-
hood weights can also account for sampling biases that arise from ir-
regular sampling. Such bias can occur, for example, when covariates 
are over-  or under- sampled, such as when environmental covariates 
are associated with differential probability of successful triangula-
tion of animal locations (Fleming et al., 2018; Frair et al., 2010; Lewis 
et al., 2007). This means that irregular sampling of non- independent 
data (which is incompatible with the IID assumption underlying con-
ventional RSFs) can be explicitly accounted for in an RSF model.

In this study, we introduce a method for autocorrelation- 
informed likelihood weighting of animal locations to mitigate pseu-
doreplication and bias in parameter estimates of RSFs. We provide 
a description of the mathematical principles underlying our method, 
demonstrate its practical advantages over conventional approaches 
using simulations and empirical animal tracking data for a water 
mongoose Atilax paludinosus, a caracal Caracal caracal, and a serval 
Leptailurus serval, and discuss pathways for continuing to improve 
upon our method. We also provide an annotated analytical workflow 
for using the ctmm R package (Calabrese et al., 2016) to apply our 
method to animal tracking data (Appendix S1).

2  |  MATERIAL S AND METHODS

2.1  |  Mathematical concepts and definitions

In a conventional RSF, the log- likelihood of n IID samples of an inho-
mogeneous Poisson point process model is given by

where !(x, y) is the intensity function, which contains all model pa-
rameters, and where, for simplicity, we have assumed that ! does not 
change in time. This likelihood function is typically approximated nu-
merically via weighted logistic regression, and ! is usually constructed 
to be an exponential model (Fieberg et al., 2021; Northrup et al., 2022), 
but other approaches have also been proposed and used (e.g. Cooper 
& Millspaugh, 1999; Lele & Keim, 2006; Nielson & Sawyer, 2013).

Within !, we include area terms (x, y and x2 + y2) that produce 
a bivariate Gaussian distribution of animal locations so that when 
no resource selection occurs, the weighted likelihood reproduces 
a Gaussian home range estimate that approximates the maximum 
likelihood estimate of the autocorrelation model. This Gaussian dis-
tribution becomes the null RSF model (i.e. the domain of availabil-
ity, and the area of movement when there is no habitat selection; 
Fieberg et al., 2021, Horne et al., 2008). The effective sample size is 
roughly the number of times an animal has crossed the linear extent 
of its home range, which dictates how well the area and shape of 
the Gaussian home range estimate can be resolved from the sam-
pled movement path of an animal (Fleming et al., 2019). When selec-
tion parameters are supported, then we obtain a synoptic model of 
habitat selection (sensu Horne et al., 2008) within a Gaussian area. 

(1)!(data| !) =
n∑

i

log!
(
x
(
ti
)
, y
(
ti
))

− nlog ∬ !(X ,Y)dXdY,
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Further details of this configuration of the RSF model are found in 
Appendix S3.

To the conventional IID log- likelihood, we incorporate our RSF 
log- likelihood weights, which are given by

where wAKDE

(
ti
)
 denotes weights optimized for non- parametric 

autocorrelated kernel density estimation at each sampled loca-
tion (Fleming et al., 2018), which sum to 1. N ≤ n is the effective 
sample size of the autocorrelated Gaussian area estimate so that 
our weights, w

(
ti
)
, sum to N. The AKDE weights minimize error in 

nonparametric kernel density estimation, where for a sample of n
, q- dimensional locations r

(
ti
)
 at times ti, a weighted kernel density 

estimate can be represented as

where ! denotes a Gaussian kernel with covariance !B (the band-
width matrix). Both the bandwidth matrix and the weight vector 
w with wi = w

(
ti
)
 are optimized to minimize the mean integrated 

square error

where ∫ dqr denotes the q- dimensional volume integral and ⟨L⟩ de-
notes the expectation value with respect to the distribution of 
the data, r

(
ti
)
 , which may be autocorrelated. Because the true 

density function p(r) is unknown and kernel density estimation is 
non- parametric, the MISE (4) must be approximated, and different 
approximations correspond to different methods of kernel den-
sity estimation— all being asymptotically optimal (Izenman, 1991; 
Silverman, 1986; Turlach, 1993).

The inclusion of area terms in the RSF model is a form of para-
metric Gaussian density estimation, which allows weights to serve a 
similar purpose in RSFs as for kernel density estimation. Weights (2) 
also provide identical estimates of the mean location in both kernel 
and Gaussian density estimation, indicating that they provide a bias 
correction for the Gaussian model. The weights w

(
ti
)
 are used to 

weight each sampled location so that the final log- likelihood is of 
the form

These weights can be used to re- weight data points for any method 
of approximating inhomogeneous Poisson point processes, but 
details of implementation will vary for different methods and 
software platforms. Likelihood (5) can be viewed as an example 
of a ‘composite likelihood’ (Varin et al., 2011) that produces an 
unbiased estimating equation for the mean location, but with the 

additional property that the total weight is fixed to the effective 
sample size.

2.2  |  Simulations

To validate our theoretical argument and demonstrate the value of 
our approach on animal location data, we performed three sets of 
simulations. For all three sets of simulations, we started by simulat-
ing movement paths for animals following an isotropic Ornstein– 
Uhlenbeck Foraging movement model (Fleming et al., 2014) with 
a location variance (!) of 200,000 m2, velocity persistence time- 
scale (!v) of 1/3 day and home range crossing time- scale (!p) of 
1 day. This is equivalent to an animal with a circular home range of 
3.76 km2, with three correlated bouts of movement each day, and 
which crosses its home range roughly once per day. Because range 
crossings occurred daily, the effective sample size in this move-
ment track is equivalent to the number of days the movement track 
is sampled, and sampling locations from the movement track more 
frequently than once per day yields autocorrelated data. We over-
laid each movement track on a raster consisting of equal amounts 
of two habitat types (hereafter, Habitat 1 and Habitat 2) that each 
take up half of the raster surface. All simulations were performed 
using the ctmm R package (v0.6.2; Calabrese et al., 2016) in the 
R statistical software environment (v3.6.2; R Core Team, 2020). 
Habitat rasters were created using the raster R package (v3.4– 10; 
Hijmans, 2021).

2.2.1  |  Scenario 1: Absolute vs. effective 
sample size

We first simulated a scenario that demonstrates that our weighting 
scheme does not reduce bias simply by inflating confidence intervals 
such that it becomes impossible to identify habitat selection when 
it occurs. For this scenario, we simulated habitat selection occur-
ring by arraying habitat in 10 m vertical stripes and then simulated 
habitat- independent movement tracks over this layer. We sampled 
these tracks while varying (1) the sampling rate (2, 4, 8, 16 and 32 
times per day for 90 days) or (2) the sampling duration (12 times per 
day for 16, 32, 64, 128 and 256 days). We then shifted every other 
location in Habitat 1 further right by 10 m, which moved those loca-
tions into Habitat 2. This alteration changed the fit of the underlying 
movement model very little, but led to the animals being located in 
Habitat 2 roughly three times as often as they were located in Habitat 
1, emulating habitat selection. Finally, we used weighted RSFs to es-
timate strength of selection for Habitat 2 compared with Habitat 
1, and the confidence intervals around this parameter estimate. In 
this scenario, parameter estimates should be constant around the 
expected parameter (ln(3)) in all scenarios, but confidence intervals 
should only meaningfully contract when the effective sample size 
(i.e. sampling duration) increases, and not just when the temporal 
resolution of the data increases.

(2)w
(
ti
)
= wAKDE

(
ti
)
N,

(3)p̂(r) =

n∑

i=1

w
(
ti
)
"
(
r − r

(
ti
))
,

n∑

i=1

w
(
ti
)
= 1,

(4)MISE
(
!B,w

)
=

⟨

∫ dqr||p(r)− p̂(r)||
2
⟩
,

(5)!(data| !) =
n∑

i

w
(
ti
)
log!

(
x
(
ti
)
, y
(
ti
))

− Nlog ∬ !(X ,Y)dXdY.
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2.2.2  |  Scenario 2: Data thinning

We then simulated a scenario that demonstrates that data thin-
ning creates substantially more variation around RSF parameter 
estimates than weighting. As in Scenario 1, we simulated habitat 
selection occurring by arraying habitat in 10 m vertical stripes and 
then simulated a habitat- independent movement track over this 
layer. The track was sampled 50 times per day for 64 days. We then 
shifted every other location in Habitat 1 further right by 10 m, which 
moved those locations into Habitat 2. We then created 50 subsam-
pled movement tracks (all possible regular subsamples of this data 
in which the absolute sample size is roughly equal to the effective 
sample size, rendering locations independent from one another). We 
used a weighted RSF to estimate strength of selection for Habitat 
2 compared with Habitat 1, and the confidence intervals around 
this parameter estimate, for the full movement track. We used IID 
RSFs to estimate strength of selection for Habitat 2 compared with 
Habitat 1, and the confidence intervals around this parameter es-
timate, for each subsampled movement track. In this scenario, the 
parameter estimates for the weighted RSF should be near the ex-
pected parameter (ln(3)), but thinning the data will create substantial 
variation in IID parameter estimates because of loss of information 
about the movement track.

2.2.3  |  Scenario 3: Triangulation failure

We finally simulated a scenario in which bias could arise when cer-
tain habitat covariates of interest cause disproportionate amounts 
of triangulation failure in GPS devices. This is known to happen, for 
example, in rugged terrain, thick vegetation and underwater (e.g. 
Breed et al., 2011; O'Neill et al., 2020; Streicher et al., 2021). For this 
scenario, we simulated no habitat selection occurring (i.e. the animal 
movement path was simulated independently of the habitat raster), 
but we censored every other location in Habitat 2, which would be 
consistent with a habitat- specific triangulation success rate of 50% 
(an extreme case of habitat- specific triangulation failure). Because 
the spatial configuration of habitat affects estimates of resource se-
lection (Northrup et al., 2013), we configured our habitat rasters in 
two different ways to illustrate how weighting responds to habitat 
configuration: (1) a highly clustered case, in which the two habitats 
were arrayed in two large contiguous blocks and (2) an unclustered 
case where the habitats were arrayed in alternating vertical stripes 
that were 10 m in width (identical to the raster in Scenarios 1 and 2). 
We sampled these tracks 1, 2, 4, 8 and 16 times per day, for 90 days, 
on 400 movement tracks in each habitat configuration. We finally 
used weighted and IID RSFs to estimate strength of selection for 
Habitat 1 compared with Habitat 2, and the confidence intervals 
around this parameter estimate.

This scenario demonstrates two useful properties of our weight-
ing scheme. First, by varying the sampling rate, we can demonstrate 
that an RSF that treats data as IID becomes increasingly confident in 
its parameter estimates as data become more autocorrelated— even 

when they are biased— while weighted RSFs maintain stable confi-
dence intervals as locations are sampled more frequently because 
the effective sample size of the data set is not increasing. In other 
words, reducing the time interval between sampled animal loca-
tions causes the confidence intervals around selection parameters 
to become narrower in IID RSFs (because increasing autocorrela-
tion in the data causes pseudoreplication) but not in weighted RSFs 
 (because autocorrelation is explicitly modelled and accounted for). 
Second, by simulating habitat- specific location failure, we demon-
strate that this weighting scheme can reduce sampling- induced bias 
in RSF parameter estimates compared with RSFs that assume data 
are IID. An IID RSF should detect a pattern of selection of Habitat 
1 over Habitat 2 that is a statistical artefact of triangulation failure; 
a weighted RSF will shift the parameter estimate towards zero and 
expand the confidence intervals around the parameter estimate, 
correctly inferring that no habitat selection is occurring when effec-
tive sample sizes are large enough to reliably estimate parameters. 
However, its ability to do this depends on the degree of spatial clus-
tering of habitat covariates— which is known to influence RSF param-
eter estimates (Northrup et al., 2013; Street et al., 2021). As more 
consecutive locations occur within a single habitat type, the average 
weights of locations in the habitat type with frequent triangulation 
failure become larger, allowing the model to reduce the influence of 
the habitat- specific sampling intervals on parameter estimates.

2.3  |  Empirical examples

To demonstrate the application of our method on real- world ani-
mal location data, we performed IID and weighted RSFs on tracking 
data from a water mongoose (144 locations over 58 days; Appendix 
S2, Figure S1), a caracal (504 locations over 85 days; Appendix S2, 
Figure S2), and a serval (3603 locations over 321 days; Appendix 
S2, Figure S3). All animals were tracked using GPS telemetry; fur-
ther details on the specifics of animal capture and tracking can be 
found in Streicher et al. (2021), Ramesh et al. (2016a, 2016b). All 
three animals are missing a meaningful number of locations because 
of GPS triangulation failure. For each animal, we estimated the ef-
fects of two land cover types (built- up [human settlements, roads, 
railways, and airfields] and plantation [exotic tree plantations]) on 
their habitat selection compared with a grouped reference category 
consisting of the remaining land cover types. For our land cover data, 
we used a land- use map with 20- m resolution from Ezemvelo KZN 
Wildlife (EKZN Wildlife & GeoTerraImage, 2018) reclassified into the 
three categories of interest (i.e. plantation, built- up and reference).

For each animal, we used variogram analysis (Fleming et al., 2014) 
to ensure animals were range- resident, fit and selected an autocor-
related movement model that best described the animal's move-
ments using perturbative Hybrid Residual Maximum Likelihood 
(Fleming et al., 2019) and Akaike's information criterion corrected 
for small sample sizes, estimated utilization distributions for each an-
imal (wAKDE for weighted RSFs [Fleming et al., 2018]; conventional 
KDE for IID RSFs [Worton, 1989]), and fit RSFs using the ctmm R 

 2041210x, 2023, 2, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14025 by C
ochrane G

erm
any, W

iley O
nline Library on [25/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



648  |   Methods in Ecology and Evolu!on ALSTON et al.

package (v0.6.2; Calabrese et al., 2016) in the R statistical software 
environment (v3.6.2; R Core Team, 2020).

For the caracal, we then examined how using IID RSFs on thinned 
datasets would alter inferences gained from this dataset. To do this, 
we created 27 subsampled movement tracks (all possible regular 
subsamples of this data in which the absolute sample size is roughly 
equal to the effective sample size, rendering locations independent 
from one another). We used a weighted RSF to estimate strength 
of selection for built- up areas (accounting for selection for planta-
tion), and the confidence intervals around this parameter estimate, 
for the full movement track. We used IID RSFs to estimate strength 
of selection for built- up areas (accounting for plantation), and the 
confidence intervals around this parameter estimate, for each sub-
sampled movement track.

3  |  RESULTS

3.1  |  Simulations

3.1.1  |  Scenario 1: Absolute vs. effective 
sample size

In our simulations of habitat selection, we found that weighted 
RSFs performed as expected, with parameter estimates of weighted 
RSFs remaining consistently around the expected parameter (ln(3); 
Figure 1). The width of confidence intervals remained stable as the 
sampling rate (i.e. autocorrelation) increased (Figure 1a), but con-
tracted as sampling duration (i.e. effective sample size) increased 
(Figure 1b). Weighted RSFs could detect habitat selection when ef-
fective sample sizes were ≥32 (or 32 days) in this example.

3.1.2  |  Scenario 2: Data thinning

In our simulations of data thinning, we found that RSFs performed 
as expected, with the parameter estimates of the weighted RSF 
very close to the expected parameter (ln(3)) while the IID RSFs 

parameterized using thinned datasets exhibited substantial varia-
tion in parameter estimates (range: [−1.94, −0.44]; Figure 2). The ex-
pected parameter fell within 48 out of 50 (96%) of the IID RSF 95% 
confidence intervals, indicating that our measure of effective sample 
size is a reasonable measure of independence. One IID RSF failed to 
identify statistically significant habitat selection.

3.1.3  |  Scenario 3: Triangulation failure

In our simulations of triangulation failure, we found that weighted and 
IID RSFs performed as expected. Across 400 individual movement 
paths, parameter estimates of weighted RSFs were closer to zero than 
parameter estimates of IID RSFs (Figure 3; Table 1). Confidence in-
tervals around parameter estimates of weighted RSFs contained zero 
much more often (Table 1, top half; Figures 3a,c) than confidence in-
tervals around parameter estimates of IID RSFs (Table 1, bottom half; 
Figures 3b,d). Confidence intervals around parameter estimates of IID 
RSFs became narrower as the sampling rate (and thus autocorrelation) 
increased, while the width of confidence intervals around parameter 
estimates of weighted RSFs remained similar across all sampling rates 
(Figure 3). Notably, weighted RSFs were better able to successfully 
identify a lack of habitat selection (i.e. weighted RSF parameter esti-
mates became increasingly closer to zero and a higher proportion of 
confidence intervals contained zero) as the sampling rate increased, 
while IID RSFs performed worse as the sampling rate increased (i.e. 
parameter estimates were largely consistent, but confidence inter-
vals around the [biased] estimates contracted sharply as the sampling 
rate increased). The benefits of weighted RSFs are also enhanced 
when habitat is more highly clustered, but likelihood weighting still 
improves both parameter estimates and confidence intervals when 
habitat is unclustered (Table 1).

3.2  |  Empirical examples

When analysing the water mongoose data (Figure 4a), we found 
that both IID and weighted RSFs identified statistically significant 

F I G U R E  1  Mean parameter estimates and confidence intervals around those parameter estimates for weighted resource selection 
functions (RSFs) during simulations of habitat selection. In this case, the animal is selecting habitat such that its movement path contains 
three times as many locations in Habitat 2 as in Habitat 1. Panel (a) shows the performance of weighted RSFs as the sampling rate (i.e. 
autocorrelation) increases, while panel (b) shows the performance of weighted RSFs as sampling duration (effective sample size) increases. 
As expected, point estimates of the selection parameter are constant across all scenarios, while confidence in those parameters increases as 
sampling duration (i.e. effective sample size), but not sampling rate (i.e. autocorrelation), increases.
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avoidance of plantation areas, but the point estimate of avoidance of 
plantation areas for the weighted RSF lies closer to zero and outside 
the 95% confidence interval generated by the IID RSF ("̂w = −1.23 
vs. "̂ IID = −1.90; CIw = [−2.04, −0.42] vs. CIIID = [−2.35, −1.45]). 
Furthermore, although point estimates for avoidance of built- up 
areas were similar between weighted and IID RSFs ("̂w = −2.22 vs. 
"̂ IID = −2.33), avoidance of built- up areas was only statistically sig-
nificant for the IID RSF (CIw = [−4.79, 0.35] vs. CIIID = [−3.66, −1.01]).

When analysing the caracal data (Figure 4b), we found that al-
though the IID RSF identified statistically significant avoidance of 

plantation areas ("̂ IID = −2.02; CIIID = [−3.96, −0.08]), the weighted 
RSF found little evidence for avoidance ("̂w = −1.17; CIw = [−8.25, 
5.91]). Moreover, although point estimates for selection of built- up 
areas were similar ("̂w = 1.68 vs. "̂ IID = 1.58), confidence intervals 
were substantially wider for the weighted RSF (CIw = [0.67, 2.69] vs. 
CIIID = [1.39, 1.78]).

When analysing the serval data (Figure 4c), we found that al-
though point estimates for avoidance of plantation areas were similar 
between weighted and IID RSFs ("̂w = −2.04 vs. "̂ IID = −1.88), avoid-
ance of plantation areas was only statistically significant for the IID 

F I G U R E  2  Parameter estimates and confidence intervals around those parameter estimates for one weighted resource selection function 
(RSF) performed on a complete movement track and 50 independent and identically distributed (IID) RSFs performed on subsamples of the 
movement track in which each sequential location was independent. In this case, the animal is selecting habitat such that its movement path 
contains three times as many locations in Habitat 2 as in Habitat 1. The larger point and bar on the far left represent the weighted RSF, while 
the smaller points and bars represent individual subsets. The light blue box outlines the confidence interval of the weighted RSF, while the 
darker blue horizontal line identifies the expected parameter (ln(3)). As expected, IID RSFs parameterized using thinned datasets exhibit 
substantial variation in their estimated parameters.

F I G U R E  3  Mean parameter estimates and confidence intervals for weighted resource selection functions (RSFs) vs. independent and 
identically distributed (IID) RSFs for 400 simulations of habitat- specific Global Positioning System (GPS) triangulation failure. Row 1 (panels 
a and b) shows the performance of RSFs in a scenario of highly clustered habitat, while row 2 (panels c and d) shows the performance of 
RSFs in a scenario of unclustered habitat. Black points in column 1 (panels a and c) indicate mean parameter estimates for weighted RSFs 
performed on 400 simulated movement tracks, while white points in column 2 (panels b and d) indicate mean parameter estimates for 
IID RSFs. Bars indicate mean confidence intervals for selection of Habitat 1 over Habitat 2 across all 400 simulated movement tracks. In 
this case, the animal is not selecting habitat, yet 50% habitat- specific triangulation failure creates the appearance of avoidance of Habitat 
2 in favour of Habitat 1. In both habitat scenarios, confidence intervals become narrower as sampling rate increases for IID RSFs, while 
weighted RSF confidence intervals remain stable. Parameter estimates improve (i.e. become closer to the truth at zero) for weighted RSFs 
as autocorrelation of the data increases, while parameter estimates of IID RSFs remain stable. The advantages of weighted RSFs are more 
clearly visible in the scenario of highly clustered habitat, but weighting still improves both parameter estimates and confidence intervals 
when habitat is not strongly clustered.
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RSF (CIw = [−5.65, 1.56] vs. CIIID = [−2.47, −1.30]). Point estimates for 
avoidance of built- up areas were also similar between weighted and 
IID RSFs ("̂w = −0.57 vs. "̂ IID = −0.66), but this avoidance was again 

only statistically significant for the IID RSF (CIw = [−1.88, 0.73] vs. 
CIIID = [−0.90, −0.43]).

When analysing how data thinning would influence inferences 
of habitat selection by the caracal, we found that IID RSFs parame-
terized using subsets of the caracal movement track exhibited sub-
stantial variation around the parameter estimate provided by the 
weighted RSF (Figure 5). The parameter identified by the weighted 
RSF fell within 27 out of 27 (100%) of the IID RSF 95% confidence 
intervals, but 7 out of 27 (26%) of the IID RSFs did not identify sta-
tistically significant habitat selection for this individual.

Our empirical analyses demonstrate that inferences gained from 
weighted and IID RSFs can diverge substantially. Weighted RSFs 
produce wider confidence intervals than conventional RSFs and 
meaningfully different parameter estimates when missing data are 
common, indicating that the results of our simulations translate to 
real- world data, even at absolute sample sizes that are relatively 
small for modern GPS datasets. When data are autocorrelated, thin-
ning data allows IID RSFs to generate more robust confidence inter-
vals, but with more variation in parameter estimates than weighted 
RSFs.

4  |  DISCUSSION

Although the autocorrelated nature of modern animal tracking 
data is known to pose statistical challenges for conventional RSFs 
that assume IID data (Boyce, 2006; Fieberg et al., 2010; Northrup 
et al., 2013), no generally accepted solutions to these challenges 
have been described. Wildlife biologists therefore often fit IID RSF 
models to autocorrelated tracking data, which can lead to both 
pseudoreplication and bias in parameter estimates of RSFs. In this 
study, we introduced a method of weighting individual locations to 
account for autocorrelation that reduces pseudoreplication and bias 
in RSFs. This method can improve estimates of confidence intervals 
provided by RSFs when tracking data are autocorrelated (as is the 
case for most modern animal tracking data sets), dramatically reduc-
ing the incidence of Type I error in studies of resource selection. It 
also reduces bias in parameter estimates when some covariates are 

TA B L E  1  The effect of sampling rate and habitat clustering 
on parameter estimates, the width of confidence intervals, and 
percentage of non- significant parameter estimates of weighted and 
independent and identically distributed (IID) resource selection 
function (RSFs) across 400 simulated movement paths. Movement 
paths occurred with no habitat selection but with habitat- specific 
triangulation failure. Parameter estimates of weighted RSFs are 
closer to zero than for IID RSFs, confidence intervals around wRSF 
parameter estimates are wider and more consistent than for IID 
RSFs, and wRSFs are more likely to identify that there is no habitat 
selection occurring when location data are autocorrelated

RSF type
Habitat 
clustering

Sampling 
rate

Parameter 
Est.

% non- 
significant

wRSF High 1 −0.59 83.8

2 −0.43 93.5

4 −0.23 99.3

8 −0.10 99.3

16 −0.07 99.5

Low 1 −0.60 51.5

2 −0.55 46.3

4 −0.50 58.0

8 −0.49 60.8

16 −0.49 62.5

IID High 1 −0.68 61.0

2 −0.68 37.5

4 −0.71 15.8

8 −0.71 7.3

16 −0.74 3.8

Low 1 −0.69 24.3

2 −0.68 1.5

4 −0.69 0.0

8 −0.69 0.0

16 −0.69 0.0

F I G U R E  4  Parameter estimates and confidence intervals for independent and identically distributed (IID) (white points) and weighted 
(black points) resource selection functions during empirical tests on a water mongoose (panel a), a caracal (panel b) and a serval (panel c). 
Weighting meaningfully alters point estimates of selection for built- up areas for the mongoose, and appropriately expands confidence 
intervals around parameter estimates, changing inferred habitat selection for all three animals.
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over-  or undersampled, such as when study animals inhabit areas 
where landscape features cause frequent triangulation failures in 
GPS devices, researchers employ duty cycling, or researchers use 
tracking technologies that do not produce regularly sampled loca-
tion data (e.g. VHF telemetry or visual searches for marked indi-
viduals). In the future, our approach could be extended further to 
address other statistical problems associated with RSFs, which we 
discuss below.

Rigorous estimation of confidence intervals on RSF parameters 
is a challenge using conventional RSF methods. Because consecutive 
data points in modern animal tracking data are rarely statistically 
independent, using all the data available in an autocorrelated move-
ment track leads to increasing (and increasingly misleading) confi-
dence in parameter estimates with increasing sampling rates. Data 
thinning can be used to reduce autocorrelation between successive 
locations, which can widen confidence intervals that are known to 
be too narrow. In practice, however, data thinning inherently in-
volves loss of useful information on an animal's movements, is gen-
erally applied in an ad hoc and non- optimized way and can pose 
other statistical problems (Noonan et al., 2020). Generalized esti-
mating equations can also be used to estimate more robust confi-
dence intervals while using all the data in a movement track, but the 
‘cluster’ sizes (akin to effective sample sizes) are often also chosen 
arbitrarily (Prima et al., 2017), and it is difficult to implement gener-
alized estimating equations jointly with other common techniques to 
mitigate statistical issues in RSFs (e.g. random effects). The method 
we propose in this study offers an objective way to estimate effec-
tive sample sizes for generating reliable confidence intervals.

In addition to estimating more robust confidence intervals, our 
method of weighting also offers potential to mitigate bias that can 
arise from inadequate sampling of landscape features that cause 
triangulation failure, irregular sampling designs intended to docu-
ment animal behaviour at multiple temporal scales, or technolo-
gies that do not allow regular sampling intervals. As shown by our 
simulations (Table 1; Figure 3), RSFs that assume IID data cannot 
handle frequent habitat- induced triangulation failure— estimates 
of selection of those habitats are negatively biased, and models 
become artificially more confident in this bias as the sampling rate 

increases. Our method of weighting reduces this bias, and the 
quality of estimated parameters improves rather than declines 
as the sampling rate increases (however, we note that the extent 
to which inference is improved is dependent upon the spatial ar-
rangement of environmental covariates). Duty cycling, by which 
researchers periodically suspend or reduce the sampling rate in an 
attempt to collect high- resolution data over longer total periods 
of time while conserving battery life, offers another promising use 
case for our method. For example, researchers may be interested 
in the foraging behaviour of a crepuscular animal and therefore 
program a tracking device to collect more locations near dawn and 
dusk, when an animal is actively foraging. In this case, an IID RSF 
would result in sampling foraging areas out of proportion to other 
areas where an animal spends its time, potentially underestimating 
use of landscape features that play important roles as rest sites, 
escape cover or thermal refugia. A weighted RSF could down- 
weight oversampled crepuscular locations more than undersam-
pled locations during the day and night, providing more objective 
parameter estimates for overall resource selection. Finally, many 
species are not amenable to wearing tracking devices that acquire 
fixes at regular intervals. Aquatic or semi- aquatic species may 
spend long periods of time underwater where they are inaccessi-
ble to satellites (Breed et al., 2011; Fleming et al., 2018), and many 
species remain too small for today's GPS technology (McMahon 
et al., 2017; Weller et al., 2016). Weighted RSFs provide a way for 
researchers to conduct RSFs that are less biased by such techno-
logical constraints.

Although applied here to tracking data of individual animals, 
the statistical principles underlying our method are also applica-
ble at the species and population levels, which would be of great 
use to researchers. Random effects are often used to account 
for non- independence of data for individuals within a population. 
Gillies et al. (2006) recommended using random intercepts to ac-
count for unequal sample sizes between individuals in studies of 
habitat selection, and random slopes to account for differences in 
habitat selection between individuals. Similarly, Hebblewhite and 
Merrill (2008) recommended using random intercepts to account 
for non- independence arising from correlated locations in socially 

F I G U R E  5  Parameter estimates and confidence intervals around those parameter estimates for one weighted resource selection function 
(RSF) performed on a complete caracal movement track and 27 independent and identically distributed (IID) RSFs performed on subsamples 
of the movement track in which each sequential location was independent. The larger point and bar on the far left represent the weighted 
RSF, while the smaller points and bars represent individual subsets. The light blue box outlines the confidence interval of the weighted RSF, 
while the darker blue horizontal line identifies the selection parameter identified by the weighted RSF. As expected, IID RSFs parameterized 
using thinned datasets exhibit substantial variation in their estimated parameters.
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structured populations (e.g. repeated observations from individ-
uals within the same herd or pack). Incorporating random effects 
into RSFs and SSFs has since become standard practice (Fieberg 
et al., 2010; Muff et al., 2020), but remains an imperfect solution 
for accounting for pseudoreplication. Random effects generate con-
fidence intervals that depend on variation in the point estimates 
of RSF parameters between individuals, which may or may not re-
flect true parameter uncertainty. If autocorrelation in individual 
movement tracks is not properly accounted for, individual sampling 
variance is underestimated, which inflates population variance esti-
mated using random effects. Checking for this is difficult and rarely 
(if ever) performed. Population- level likelihood weighting, however, 
has potential to serve similar purposes. Weighting based on effec-
tive sample sizes can account for individuals having been tracked for 
differing amounts of time, and autocorrelation- informed weighting 
can account for differing amounts of spatial or temporal autocor-
relation between individuals in a study area or study period. Iterated 
over both individuals and populations, such weight optimization ac-
counts for temporal sampling bias within individual time- series, as it 
did for the single- individual weighting described in this study, while 
also accounting for sampling biases among individuals, where cer-
tain individuals are better sampled than others.

Because location weights are generated from range distribu-
tions using weighted autocorrelated kernel density estimation, 
which can only be validly calculated on animals that are range- 
resident, this method cannot be used to conduct RSFs on indi-
viduals that are not range- resident (e.g. dispersing or migratory 
individuals). However, it should be noted that because conven-
tional IID RSFs assume stationary distributions of resource use 
and availability, conventional RSFs also assume range residency 
(but this assumption is often ignored). SSFs are therefore more 
appropriate for studying resource selection by migratory, dispers-
ing or nomadic animals because they do not assume stationary 
distributions of use and availability. The inferences gained from 
such studies should be treated with caution, however, because au-
tocorrelation can still lead to pseudoreplication and bias in infer-
ences gained from SSFs of these movement tracks.

Although ecologists and conservation biologists have access 
to better statistical and computational tools than ever before, new 
methods are still required to maximize the value of animal tracking 
data for informing our understanding of the natural world. In this 
study, we introduced a method of autocorrelation- informed weight-
ing to reduce pseudoreplication and bias when parameterizing RSFs 
with autocorrelated and irregular animal tracking data, which are 
pervasive in studies of animal movement. Our method is easily im-
plemented using the ctmm R package (Calabrese et al., 2016), and 
we provide an annotated workflow in our supplementary materials 
(Appendix S1) so that other researchers can implement weighted 
RSFs on their own animal location data. We hope that the analytical 
technique we have provided here, which is grounded in statistical 
theory and validated using simulations and empirical data, allows 
continued progress towards more statistical rigour in studies of re-
source selection by animals.
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