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Near-term quantum computers are expected to facilitate material and chemical research through
accurate molecular simulations. Several developments have already shown that accurate ground-
state energies for small molecules can be evaluated on present-day quantum devices. Although
electronically excited states play a vital role in chemical processes and applications, the search
for a reliable and practical approach for routine excited-state calculations on near-term quantum
devices is ongoing. Inspired by excited-state methods developed for the unitary coupled-cluster
theory in quantum chemistry, we present an equation-of-motion-based method to compute excitation
energies following the variational quantum eigensolver algorithm for ground-state calculations on
a quantum computer. We perform numerical simulations on Hz, H4, H2O, and LiH molecules to
test our quantum self-consistent equation-of-motion (g-sc-EOM) method and compare it to other
current state-of-the-art methods. g-sc-EOM makes use of self-consistent operators to satisfy the
vacuum annihilation condition, a critical property for accurate calculations. It provides real and
size-intensive energy differences corresponding to vertical excitation energies, ionization potentials
and electron affinities. We also find that g-sc-EOM is more suitable for implementation on NISQ
devices as it is expected to be more resilient to noise compared with the currently available methods.

I. INTRODUCTION

Quantum chemistry is expected to be one of the first
areas which can have demonstrable quantum advantage
in the near term [1-8]. This is owed to the fact that
the computational effort required for exact evaluation of
electron correlation on a classical computer-whose accu-
rate calculation is essential for a reliable comparison with
experimental values-scales factorially with the number of
molecular orbitals. This unfavourable scaling is expected
to reduce drastically when wavefunctions are instead pre-
pared on quantum devices.

For estimation of molecular ground-state properties on
noisy intermediate-scale quantum (NISQ) era devices,
variational quantum eigensolver (VQE) based algorithms
have gained popularity due to their relatively low circuit
depth and resilience to noise [9, 10]. This has led to a se-
ries of successful demonstrations involving the computa-
tion of molecular ground-state energies of small molecules
on present-day quantum devices and simulators [4, 6, 11—
22]. However, estimation of just the molecular ground-
state energy is not sufficient for describing many inter-
esting chemical processes that involve electronic excita-
tions in some form [23]. For example, accurate modelling
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of chemical phenomena such as photochemical reactions,
catalytic processes involving transition metal complexes,
photosynthesis, solar cell operation, etc. require an ac-
curate simulation of both molecular ground and excited
states. The electronically excited states of such systems
are generally strongly correlated and hence, require the
use of sophisticated quantum chemical theories for their
accurate description. A number of methods have been de-
veloped in this regard in the last few decades [24-32]. and
widely used through several software packages [33, 34].
The equation-of-motion coupled-cluster (EOM-CC) [26]
approach, originally developed by Stanton and Bartlett,
is a popular example that is routinely used to calculate
molecular excited-state properties such as excitation en-
ergies and transition dipole moments [35-39]. EOM-CC
has also been extended to calculate energies required to
add or remove electrons from the ground-state electronic
configuration [40-44]. For example, IP-EOM-CC [40, 42]
and EA-EOM-CC [41] approaches have been developed
which can compute accurate vertical ionization poten-
tials (IPs) and vertical electron affinities (EAs), respec-
tively. IPs/EAs are defined as the difference in energy
between the ground state and the states obtained by a
single electron detachment/attachment process. Some of
the other advantages associated with the EOM-CC for-
malism are its theoretical rigour, the accuracy and cor-
rect scaling behavior of energy differences computed, and
the ability to systematically improve the results. How-
ever, standard quantum chemistry methods like EOM-
CC sometimes face challenges in a quantitative determi-
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nation of excited states and their properties, notably for
same-symmetry conical intersections [45-48] and when
the ground state has a prominent multi-reference char-
acter [49-52]. Since VQE algorithms are expected to
provide accurate ground-state wavefunctions, even in the
case of strongly correlated systems, NISQ era devices can
help address these challenging problems with practical
computational expenses.

We would like to note that methods for the estima-
tion of molecular excited states on a quantum computer
based on other popular quantum algorithms have also
been proposed. A number of approaches are based on
quantum phase estimation algorithm [53-59] with new
developments for efficient implementation on quantum
computers [60-62]. Methods based on Krylov subspace
diagonalization [63, 64] and quantum annealing [65, 66]
have also been proposed. While these methods are theo-
retically exact (in absence of any noise) and expected to
provide a significant computational advantage over ex-
act treatment on a classical computer, they will mostly
be useful in fault-tolerant quantum computing and not
suitable for NISQ era quantum computers due to their
high quantum resource requirements and low tolerance
to noise.

Significant effort has been made in developing meth-
ods for the calculation of molecular excitation energies
within the framework of VQE in the last few years.
These techniques can be broadly classified into circuit
optimization and diagonalization-based approaches. In
the former approach, optimal parametrized circuits are
obtained for every excited state, usually by minimizing a
cost function involving energies of one or multiple excited
states. Subspace-search VQE (SS-VQE) [67], orthogo-
nal state reduction variational eigensolver (OSRVE) [68],
variational quantum deflation (VQD) [69, 70] and the
folded spectrum method [4] are some examples. These
approaches, however, generally require increased quan-
tum resources, specifically the gate depth. This makes
them challenging for near term applications. Moreover,
there is no guarantee for them to find the entire spec-
trum when the states are close in energy to one another.
On the other hand, the diagonalization-based approaches
use a classical computer to diagonalize the Hamiltonian
in a subspace and can provide several excited states si-
multaneously. In this regard, methods like the Quan-
tum Krylov subspace expansion [63, 71, 72], the Quan-
tum subspace expansion (QSE) [73-76], and the quantum
equation-of-motion (QqEOM) [77] have been developed re-
cently. QSE has had significant success in the last few
years and has also been extended to capture the miss-
ing correlation from large virtual orbital spaces [75, 78].
However, it requires an estimate of higher than 2-body
reduced density matrices (RDMs), prompting the use of
cumulant approximations [75] inspired by developments
in quantum chemistry [31, 32, 79]. Furthermore, a sig-
nificant drawback of the QSE approach is the lack of
size-intensivity of the computed excitation energies. The
property of size-intensivity ensures correct scaling of ex-

citation energies computed by a method with increasing
size of the system. The violation of this property can
lead to errors and even non-physical predictions, for in-
stance, the QSE excitation energies of a “super molecule”
consisting of two non-interacting systems is not guaran-
teed to be the same as the excitation energies of the two
systems calculated separately (see Fig. 7). This may be-
come a severe limitation when QSE will be applied to
larger systems in the future and the underlying ground-
state wavefunction is imprecise.

In search of a size-intensive alternative, the EOM for-
malism based qEOM method was proposed by Ollitrault
et al. [77] for electronic excitation energies (EEs). The
gqEOM method provides good agreement for EEs with
the exact results obtained by the full configuration in-
teraction (FCI) method. However, the gEOM formalism
(in Ref. [77]) does not necessarily satisfy the vacuum
annihilation condition (VAC), also known as the killer
condition [80, 81], which ensures that the ground-state
wavefunction cannot be de-excited. This may result in
the appearance of large errors when the formalism is ex-
tended to calculate properties like IPs and EAs. More-
over, the qEOM method, just like QSE, requires higher-
body RDMs which significantly increases the measure-
ment challenges.

In this work, we propose a generally applicable EOM-
based formalism for the calculation of molecular proper-
ties like EEs, IPs, and EAs following a VQE ground-state
calculation on a quantum computer. Our formalism,
which we refer to as q-sc-EOM, satisfies the VAC; pro-
duces size-intensive and real energy differences between
the ground state and the excited states/charged states;
does not involve measurements of higher than 2-body
RDM-type quantities; is expected to be more resilient
to noise than the current diagonalization-based state-of-
the-art methods.

This paper is organized as follows: Section IT A dis-
cusses the theoretical formalism of gq-sc-EOM using self-
consistent operators, while the implementation details
and circuit design are explained in Sec. II B. Section III
provides the computational details for the simulation
data in this paper. In Sec. IV, we discuss the results
obtained in this work. Specifically, Sec. IV A analyses
the performance of the g-sc-EOM method in calculating
EEs, IPs, and EAs of Hy, LiH, and HoO molecules, while
Section IV B compares the performance of the g-sc-EOM
method with the QSE and qEOM formalisms. Finally,
the key conclusions from the paper are summarized in
Sec. V.

II. THEORY

The excitation energy of a given excited state can be
obtained by the action of the commutator of the Hamil-
tonian and the corresponding excitation operator acting
on the exact ground-state wavefunction. For an arbitrary
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where |¥,,) is the ground-state wavefunction, and Eg,
and Ej refer to the energies of the ground and the Eth
excited state, respectively. H is the molecular Hamilto-
nian, which in the second quantization formalism can be
written as

= hygilig + 7 3 tpallrs)abainis,  (2)
pq Pa,T$
where hp, and (pq||rs) are the one- and two-electron el-
ements of the Hamiltonian, respectively. &Z, and a, re-
fer to the fermionic creation and annihilation operators
(with respect to physical vacuum), respectively. Follow-
ing common notations, here, we use indices {p,q,r,s...}
for arbitrary molecular orbitals while {a,b,...} and
{4,J,...} refer to unoccupied and occupied orbitals, re-
spectively in the Hartree-Fock (HF) wavefunction. The
state-transfer operator Oy is defined as

©k |\Ilgr> = |\Ijk> ) (3)

where |W}) is the wavefunction of the k'!' excited state.
These operators should ensure an important property,
referred to as vacuum annihilation or Killer condition,
which expresses that the ground state cannot be de-
excited [80-85]:

O} | W) =0 Vk. (4)

In the case of exact operators (O)IT( and an exact ground-
state (Vg ), the above equation can be reformulated as

O | W) = [Wgr) (Ty| W) =0 VE, (5)

where @L = |Uq) (Ug|. It can be seen that this con-
dition is automatically satisfied for exact state-transfer
operators acting on an exact ground-state due to the or-
thogonality of eigenstates. However, one needs to en-
sure that the VAC is satisfied when approximate state-
transfer operators are used [80, 85]. The state-transfer
operators that satisfy the VAC are referred to as the “self-
consistent” operators [80].

This work utilizes the framework of unitary coupled-
cluster (UCC) theory, where the ground-state wavefunc-
tion is given by

[Wyce) = e” | Vo), (6)

where |¥g) is the HF wavefunction, and e is a unitary
operator. An approximate form of &, which is a cluster
operator, can be written using single and double excita-
tions as
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where of and agjb are amplitudes for the associated ex-
citations. In order to capture the dominant electron-
correlation effects contributing to electronic excitations,
an excitation manifold can be constructed by includ-
ing all possible single and double excitations and de-
excitations, represented by {CAT’}} U {G;}. Here, G can
refer to any single (a,a;) or double (a}a}a;a,) excitation
operator. However, to satisfy the VAC, the excitation
operator manifold is rotated, forming the self-consistent
manifold {S}} U {S;}, where

S[ = e&éje_&. (8)
Similar excitation manifolds can also be constructed us-
ing particle number non-conserving excitation operators
that are needed for computation of IPs and EAs. This
technique was developed by Mukherjee and co-workers
in Refs. [80, 86]. This self-consistent operator manifold
can now be used to develop excited-state methods that
satisfy the VAC.

Following Eq. (8), the state-transfer operator for elec-
tronic excitations, (@k)EE, can now be written as a lin-
ear combination of all possible operators from the self-
consistent excitation manifold, given by

(Or)re =(BY)eE + (B)wE, 9)

where (R¥)gg and (RS)gg are single and double excita-
tion operators defined as

(R)em =) [(A¥)eSg — (BM)LSE],
oo (10)
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Here, (A¥); and (B¥);+ are the amplitudes corresponding
to the excitation (I) and de-excitation operators (IT),
respectively, for the k' excited state. Here I refers to
all possible single and double excitations. State-transfer
operators for singly charged states can also be defined in
a similar manner,

(Or)1p/Ea =(BY)1p/EA + (RE)1p/EA, (11)

where (le)IP/EA and (RS)IP/EA refer to the particle
number non-conserving single and double excitation op-
erators, defined as

(RN =) [(AF):8: — (B¥)'S7],
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A. g-sc-EOM method

In the VQE algorithm, the unitary evolution operator
U(0) (e in UCC theory) is implemented on a quantum
computer using a parameterized circuit. The parameters
(9) of the circuit are optimized to variationally minimize
the molecular energy and obtain the molecular ground
state |Uyqg), such that

|Wvqr) = U(0) Vo) . (14)

Projecting Eq. (1) onto the k' excited state wavefunc-
tion and using the state-transfer operator defined in
Eq. (9), the g-sc-EOM excitation energy from the ground
state to the k' excited state (FEoy) is given by

iy = (Pvaell©ODe, [, (O)eell¥var) 5

(Tvqel[(0])eE, (Ok)eE] [ ¥vqe)

Expressions for IPs and EAs can also be derived us-
ing the associated state-transfer operators defined in Eq.
(11). As discussed in Ref. [77], Eq. (15) provides size-
intensive energy differences. By inserting the expression
for (Ok)gr from Eq. (9) in Eq. (15), it can be seen that
the final equation for the excitation energy for the k"
excited state has a parametric dependence on the am-
plitudes (A¥); and (B*);+, where I refers to all possible
single and double excitations. A variational minimiza-
tion of the resulting equation (6 Egp, = 0) with respect to
these amplitudes leads to the following secular equation

M Q Ay - E A% w Ay
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where the matrix elements of matrices M, Q, V, W are
defined as

My =(Wvqel[S], [H, $5]]|%van), (17)
Vis =(Wvqel[S], S11[Tvae),

Q1 = — (Uvaul[S], [H, S} WvaE),

Wiy =~ (Uvael[S], 55| ¥vae).

Upon careful inspection, one can see that the matrices
W and Q are zero due to the use of self-consistent oper-
ators. This is a simplification (compared to the gEOM
formalism of Ref. [77]) as it reduces the secular equation
to

MA,, = Eo; VA (18)

The matrix elements of M and V can be further simpli-
fied as

My =(Uvqgl[S}, [H, S5))[vae),

=yl [U0)GLUT(0), [H,U0)G, U (0)]][Tvqe),
—=(Uo|GYUT(O)HU (0)G | Vo) — 01y % Egr,

(19)

and
Vs =(UvqellS}, $5]1PvaE),
(Tvqel[U(O)GUT(0),U(0)G U (0)]|WvqE),
(W [GL GJ]%o),
I.

(20)

Thus, in g-sc-EOM the overlap matrix (V) is guaranteed
to be the identity matrix and does not need to be com-
puted on a quantum computer. It has an two key bene-
fits, namely, it leads to a Hermitian formulation for exci-
tation energy and it converts the generalized eigenvalue
equation into an eigenvalue equation. The formalism de-
veloped so far can be written in the form of a concise
eigenvalue equation as

Msgs — Egr * Iss Msp AsF
Mbps Mbpp — Eg: * IpDp ApF

(21)
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where S and D refer to single and double excitations,
respectively. Thus, Mgg refers to the block of matrix M
with two single excitation operators in the double com-
mutator (see Eq. (17)), while Ixx is an identity matrix
of dimension X. It should be emphasized that, since the
above formulation is Hermitian, the eigenvalues obtained
using Eq. (21) are guaranteed to be real (unlike in EOM-
CCSD or qEOM) [45, 77, 87]. This also ensures that
this formulation is free from problems related to differ-
ent left and right eigenfunctions encountered in classical
EOM-CC methods [26].

Finally, each element of matrix M can be computed
on a quantum computer using Eq. (19). The resulting
eigenvalue equation can then be solved classically to ob-
tain g-sc-EOM EE values. Here, Krylov subspace based
formalisms, such as the Davidson algorithm [88-90], can
be used to obtain the excitation energies of a few low-
lying excited states while avoiding the explicit evaluation
and diagonalization of the M matrix. It should be noted
that this method is closely related to UCC-based excited-
state methods in quantum chemistry, and thus Eq. (21)
resembles the equation for EEs for UCC-based methods
as derived, for example, in Refs. [84, 87].

B. Circuit design and implementation details

Here, we discuss our proposed implementation of the
¢-sc-EOM formalism on a quantum computer. The dis-
cussion can be divided into two parts: circuit details to
evaluate the diagonal and the off-diagonal elements of
the matrix M in Eq. (19). The state preparation for
the diagonal elements involves the same circuit as the
one optimized for the ground state, but it is now ap-
plied to a classical state that represents an excited Slater
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FIG. 1. Proposed quantum circuit for the estimation of a representative element of the M matrix for the Ho molecule using (a)
an excited Slater determinant as the reference state needed to compute diagonal elements and (b) an entangled state involving
two excited Slater determinants as the reference required for the evaluation of off-diagonal elements.

determinant. We refer to this classical state as the ref-
erence state. Thus, the circuit can be prepared in two
steps: the first step is the creation of a reference state,
whereas the second step involves the action of the previ-
ously optimized ground-state VQE circuit on the newly
formed reference state. The molecular Hamiltonian is
then measured using this prepared state, as done for the
ground-state energy evaluation. To give an example of
a state preparation circuit, we consider the Hy molecule
in the STO-3G basis and use a singly excited determi-
nant in Eq. (19). We choose the single-excitation op-
erator for the excitation from 1s® to 2s” (represented
by |0011) — |1001) notation in the qubit representa-
tion using the Jordon-Wigner mapping). The classical
state that corresponds to such an excited Slater determi-
nant can be created by the action of two NOT gates, as
shown in the circuit in Fig. 1la. U(#) in Fig. la refers to
the optimized circuit prepared for the VQE ground-state
evaluation, and the shaded region represents the circuit
needed to create the reference state. Note that the or-
bitals 15, 1s?, 2s%, and 2s” are mapped onto the qubits
in the bottom-to-top order, such that the lowest energy
orbitals are at the bottom.

The off-diagonal elements of the matrix M can be
evaluated using an entangled state of two excited Slater
determinants, as shown below. A representative off-
diagonal element M; ; can be written in terms of di-
agonal elements as

Re[M; j] = Mry 145 — 1\421,1 - MQJ’J,
where the term My j 747 is given by

(22)

Mrygreg =
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A similar expression holds for the imaginary part of My ;.
The matrix elements M7 ; and My ; in Eq. (22) are di-
agonal elements that are evaluated using the method

described previously (without the ground-state energy
term). The element Mji ;74 can be evaluated using
Eq. (23), which involves the creation of the I + J state,
application of the unitary U(6), and finally, the measure-
ment of the Hamiltonian using this prepared state. The
state I + J is a superposition state of two classical states
I (G1|%y)) and J (G |¥o)). Notice that both of these
states are excited Slater determinants, which can be rep-
resented through qubit states in the computational basis.
An entangled state, such as I + J, is commonly created
by using an ancilla qubit (for example, see Ref. [13]).
In the case of g-sc-EOM, we can use a simpler method
to create this entanglement without adding any ancilla
qubit. Being classical states, I and J are trivial to create
on a quantum computer using NOT gates. An entangled
state can then be created using a Hadamard gate and a
series of CNOT gates. For example, the I state can be
created using NOT gates and then transformed to the
I + J state using Hadamard and CNOT gates. We can
take the example of two single excitations to demonstrate
this, specifically 1s® — 2s® and 1s? — 2s” (denoted as
|0011) — |1001) and |0011) — |0110) in the qubit rep-
resentation, respectively). Here, we need to create the
entangled state |I 4+ J) = %(HOOI) +]0110)). The cir-

cuit for creating this state and then evaluating My, j 145
is shown in Fig. 1b. The shaded region represents the cir-
cuit used to create the entangled |I + J) state. The gate
sequences can be stored for each excitation operator and
can be applied to the HF state at the start of the EOM
procedure. A maximum of 7 CNOT gates will be needed
to create any entangled state for the off-diagonal terms,
when using up to double excitations in Eq. (19). This
is a very small number compared with the total number
of CNOT gates required to prepare the ground state us-
ing VQE-based algorithms. It should be noted that this
proposed circuit design loses on the phase factor of exci-
tation operators in I and J classical states, but all our
numerical simulations have consistently shown that these
phase factors have no effect on the computed eigenvalues
of the eigenvalue equation. To preserve the phase factor,



an ancilla qubit based creation of entangled I 4+ J states
could be used instead.

Regarding the resource requirements for running the q-
sc-EOM method on a quantum computer, the number of
qubits required for the evaluation of each matrix element
is the same as that in the computation of the ground
state. The circuit that is implemented in the ground-
state VQE calculation remains unchanged in the genera-
tion of the EOM matrix elements as well. The only dif-
ference is that the reference state is changed from the HF
determinant to an excited Slater determinant or an en-
tangled state involving two excited Slater determinants,
as discussed above. Thus, unlike gEOM and QSE, where
the excitation operators are measured together with the
Hamiltonian, the excitation operators act directly on the
HF state in g-sc-EOM. This provides a notable advan-
tage that g-sc-EOM methods do not need the estimation
of higher than 2-body RDMs. Such a framework also
makes it easier to include higher excitations when re-
quired, such as triples, whose inclusion becomes impor-
tant in higher-accuracy charged-state calculations [91].
The calculation of elements of the M matrix can also be
run in parallel on a quantum computer. The evaluation
of the M matrix on a quantum computer requires the
measurement of O(o*v*) matrix elements, where o0 and v
are the number of occupied and unoccupied orbitals, re-
spectively. Despite this scaling, generally, the matrix M
is very sparse. The number of elements in the M matrix
can be drastically reduced using this sparsity through the
use of spatial symmetry, spin symmetry, etc., which will
be a topic of future study. The major advantages af-
forded by the use of quantum computers come from the
efficient evaluation of the g-sc-EOM matrix elements and
from the accurate ground state wavefunction provided by
the VQE-based algorithm.

III. COMPUTATIONAL DETAILS

All the computations in this work utilize the STO-3G
basis set. One- and two-electron integrals are calculated
using the PySCF [34] program with the HF reference
state. The Jordon-Wigner mapping and the transfor-
mation of the second-quantized operators to the Pauli
form are carried out using the OpenFermion [92] software
package. A classical noise-free simulator, where exact
unitary operations are applied to the state vector repre-
senting the wavefunction, is used to assess the accuracy of
the formalism developed in this work. The ground-state
wavefunction is calculated using the fermionic ADAPT-
VQE method using the generalized singles and doubles
(GSD) operator pool [11]. We use the gradient con-
vergence criterion with a threshold of 10~3 for all the
ground-state energy calculations. All the formalisms
discussed in this work, namely g-sc-EOM, qEOM, and
QSE, utilize the ground-state energy and wavefunction
obtained from the ADAPT-VQE simulation. It should
be noted that we have extended the qEOM formulation

of Ref. [77], originally developed for the calculation of
EEs, to calculate IPs and EAs for our theoretical inves-
tigation. The EE results obtained using the gEOM ap-
proach in this work are verified against Qiskit’s gEOM
implementation [93]. The code used for generating the
data in this work can be found in Ref. [94].

IV. RESULTS AND DISCUSSION

We test the accuracy of the g-sc-EOM approach for
three small molecules: Hy, LiH, and H2O, and compare
the results obtained with the exact FCI values. Com-
putations are carried out for EEs, IPs, and EAs for
these molecules. The total energies of the electronically
excited, single electron-detached and single electron-
attached states are computed by adding the EEs, IPs and
EAs, calculated using g-sc-EOM, to the ground-state en-
ergy obtained using the ADAPT-VQE simulations. Since
the ground-state energy computed using ADAPT-VQE is
near-exact for the molecules considered in this study, the
errors in the energies of the electronically excited states
and the single electron attached/detached states, with
respect to the FCI, are almost entirely due to the error
in the post-VQE procedure. For LiH and H2O, we in-
voke the frozen-core approximation. Thus, the number
of qubits required for the g-sc-EOM computation for Ho,
LiH, and H3O are 4, 10 and 12, respectively. We plot
energy errors relative to the FCI values and use shading
to indicate errors below 0.1 eV, as this value is generally
the desired accuracy for these properties, so that they
can be quantitatively compared with experiments. We
also compare the performance of the q-sc-EOM formal-
ism with QSE and qEOM in subsection IV B.

A. EE, IP, and EA calculations with gq-sc-EOM

In Fig. 2, we show the energies of the ground state
along with first few electronically excited, single electron-
detached and single electron-attached states of the Ho
molecule calculated using g¢-sc-EOM, as a function of
the inter-hydrogen distance. The corresponding FCI re-
sults are shown as gray lines. The errors in the ener-
gies with respect to the exact FCI values are shown in
the subgraph on top of each panel. It can be seen that
the errors in g-sc-EOM computed energies, or in other
words, g-sc-EOM evaluated EEs, IPs, and EAs are es-
sentially identical to FCI, with errors of less than 1078
Hartree. This is because the g-sc-EOM formalism for the
Hs molecule using the STO-3G basis set is exact, as the
singles and doubles excitations used in Eq. (19) span the
full excitation space and the VAC is satisfied. Figure 3
shows the energies of ground state along with the first
few electronically excited, single electron-detached and
single electron-attached states for the LiH molecule as a
function of the Li-H bond length in a similar layout as
the previous figure. For both EEs and IPs, the g-sc-EOM
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method gives nearly exact results, and as expected, er-
rors less than 10~® Hartree were obtained with respect
to the FCI values. However, we start to see the appear-
ance of non-negligible errors for the EA results. This is
because the computation of EAs for the LiH molecule
with g-sc-EOM is no longer exact due to the addition of
an electron. Thus, triple excitation operators should be
added to the excitation manifold for an exact treatment

for EAs. However, g-sc-EOM is still able to produce EAs
within the desired accuracy, as seen from the shaded re-
gion in the error plot at the top of Fig. 3c. For the
H50 molecule, we investigate the performance of g-sc-
EOM as a function of the O-H bond length where both
O-H bonds are stretched symmetrically. From Fig. 4,
one can see that the errors in EEs are within the desired
accuracy up to the O-H bond length of 1.4A. The errors
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build up as the two O-H bonds are broken further, due to
the appearance of strong correlation effects in the wave-
function. Classical EOM-based methods, such as EOM-
CCSD, show similar trends in errors as well. The errors
in IPs and EAs are larger compared to EEs and are above
our desirable error limit of 0.1 eV. This is well-known in
classical quantum chemistry, where EOM-based methods
require at least an approximate treatment of triple exci-
tations in the EOM framework to reach an accuracy of
0.1 eV relative to FCI values for IPs and EAs [91, 95, 96].
For higher accuracy in charged excitations, carefully se-
lected triple excitations can be added to the excitation
manifold in g-sc-EOM. This will be a subject of future
study.

B. Comparison with QSE and qEOM

In this subsection, we discuss the connections between
the g-sc-EOM, QSE, and qEOM formalisms and com-
pare them in the contexts of a) their accuracy in com-
puting energy differences, and b) quantum resource re-
quirements and sensitivity to noise. The EOM formula-
tion in Eq. (15) with excitation operators taken from the
excitation manifold represented as {G1}U{G} (not the
self-consistent excitation manifold) may lead to a viola-
tion of the VAC. There are two methods discussed in the
quantum chemistry literature to impose the VAC in the
EOM formalism: the projected operator approach (see
Ref. [81]) and the self-consistent operator formalism
(see Ref. [80]). If we use projected operators based on
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FIG. 5. Energies of (a) single electron-detached, and (b) sin-
gle electron-attached states along with the ground state (black
circles) of the Ha molecule plotted as a function of the H-H
bond length using the STO-3G basis. The FCI results are
plotted in gray.

Ref. [81], we arrive at a QSE-type formalism (as done
in Ref. [97]) to calculate excited-state properties. The
g-sc-EOM formalism developed in this work is based on
the use of the self-consistent excitation operators to im-
pose the VAC. It should be noted that this concept has
been utilized in the development of different excited-state
methods in classical quantum chemistry [87, 98-100].
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1. Accuracy of energy differences

The qEOM method, which uses the EOM formulation
in Eq. (16) with the conventional excitation manifold,
{G}} U{G} (details can be found in Ref. [77]), may lead

to large errors in calculated IPs and EAs due to the vio-
lation of the VAC. This can be seen through the gEOM-

evaluated IPs and EAs added to almost exact ADAPT-
VQE ground state of the Hy molecule in the STO-3G
basis in Fig. 5. Large deviation from FCI results can be
observed in this image. It should be noted that although
single and double excitations span all the possible exci-
tations in the case of Hy molecule in STO-3G basis, the
VAC is still not satisfied in qEOM. This is because the
excitation manifold is not complete with respect to the
exact ground-state when we use the {é;} U{G} opera-
tor manifold corresponding to electron detached/atached
states. One way to solve this issue is by increasing the
size of the operator manifold. However, this would signif-
icantly increase the computational cost. Figure 6 shows
the energies of the three lowest excited states evaluated
using qEOM and g-sc-EOM methods for a rectangle ge-
ometry Hy molecular system as a function of Hs---Hs
separation distance. The H-H bond distance is fixed at
1.5 A in the two Hy molecules. We observe from Fig. 6
that g-sc-EOM is more robust in strongly correlated sit-
uations, compared with the qEOM method. The first
and third excited states of Hy computed using the gEOM
method show qualitatively wrong behaviour in the region
shown in the figure.

The EEs obtained using QSE are not necessarily size-
intensive for an inexact ground state. This is due to
the inclusion of the identity operator in the operator
manifold used in QSE. We illustrate this point using
an Hs---Hy molecular system as an example. Fig 7
shows the difference in EEs computed for an isolated Ho
molecule and an Hj - - - H4 molecular supersystem with no
interaction between the Hy and Hy subsystems (the dis-
tance between Hy and Hy is taken as 1OOA). An inexact
ground state is taken using an ADAPT-VQE simulation
that is stopped after adding 3 operators. An identity op-
erator is added to the operator manifold of QSE which
uses the operator manifold represented by {G;} in Sec-
tion IT A. QSE computations give an error of ~81 mH in
this test, while the g-sc-EOM method shows the correct
behavior. In this scenario, the two EEs should be iden-
tical for a method that provides size-intensive EEs. The
magnitude of this size-intensivity error in QSE will de-
pend on the accuracy of ground state. Since it is expected
that near-term quantum computers may not provide ex-
act ground-state energies for all molecular cases, these
size-intensivity errors may cause problems. We note here
that, just like g-sc-EOM, qEOM method provides size-
intensive EEs, IPs and EAs as well.

2.  Noise-sensitivity

Along with the above mentioned thoeretical benefits,
g-sc-EOM also has important computational advantages.
g-sc-EOM is expected to be more noise-resilient com-
pared with qEOM and QSE. A prime reason for this is
because g-sc-EOM requires upto 2-RDM type measure-
ments while QSE and qEOM require measurement of
higher-body RDMs. Estimation of higher-body RDMs
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from noise in the computed overlap matrix, while the overlap matrix in g-sc-EOM is exactly the identity matrix and thus

noise-free.

can significantly increase the noise in measured matrix
elements. This has been noted in Ref. [101] and shown
using simple noise models that error in expectation value
will scale by a factor exponential in the number of qubits
measured together. g-sc-EOM strictly requires measure-
ment of upto 2-RDMs or 4 qubit measurements, while
QSE and qEOM require measurements of upto 12 qubits
at a time.

Additionally, we have also carried out a theoretical
study based on matrix perturbation theory to compare
the noise-resilience of QSE with g-sc-EOM on a noisy
quantum computer. The analysis is carried out for an
interacting pair of Hs molecules (Hy structure with a
rectangular geometry with 1.5 A and 2.0 A bond dis-
tances). We model the effect of noise by adding ran-
dom errors directly to each matrix element utilized by
the two methods. It should be noted that in real imple-
mentations where these matrix elements are measured on
quantum computers, there will be multiple sources of er-
rors (gate errors, measurement errors, etc.), which will
finally create a net error in each matrix element. In our
noise study, it is reasonable to add errors directly as we
assume that all matrix elements, both in QSE and g-sc-
EOM, will have errors of same magnitude when the same
quantum resources are used. This is an appropriate (and
rather conservative) assumption for two reasons: First,
all measurements in both g-sc-EOM and QSE utilize the
same ground-state quantum circuit (with the difference
being that in g-sc-EOM the circuit is applied on differ-
ent reference states). Second, g-sc-EOM makes use of at
most 2-body RDMs, while QSE requires the estimation of
higher-body RDMs as well, which is expected to generate
errors of same or higher magnitude in the case of QSE.

A more detailed noise analysis performed on an actual
quantum device will be the subject of future studies.

In Fig. 8a, we show the performance of QSE compared
with g-sc-EOM, where to each matrix element we add
random offsets sampled from a uniform distribution in-
line with matrix perturbation theory. The horizontal
axes in the figure correspond to the upper bound of this
distribution (i.e., the maximum allowed error). The EEs
are calculated after solving the eigenvalue equation of g-
sc-EOM and the generalized eigenvalue equation of QSE
(the latter resembles Eq. (18)). Errors are defined with
respect to the EE values obtained from the associated
method in the absence of noise. Figure 8a shows the er-
ror averaged over 100,000 calculations of the EEs with
different random offsets in each case. We can observe in
the figure that QSE produces much larger errors at the
same level of noise compared to g-sc-EOM, thus show-
ing that we can expect g-sc-EOM to be more resilient to
noise than QSE.

A key difference to consider between QSE and ¢-sc-
EOM is that the overlap matrix V in q-sc-EOM is exactly
known to be the identity matrix and thus does not need
to be measured, while in the case of QSE, the overlap ma-
trix must be measured on the quantum computer. Note
that the latter is also true for qEOM. Figure 8b shows
that if the overlap matrix is exactly known in QSE (i.e.,
we compute it exactly without noise), the noise-resilience
of QSE is similar to that of g-sc-EOM. This suggests that
the knowledge of the exact overlap matrix in g-sc-EOM
is critical in providing noise-resilience, whereas methods
that measure the overlap matrix and thus solve the gen-
eralized eigenvalue problem (such as QSE and qEOM)
are expected to be more sensitive to noise. This noise-



sensivity, we believe, is a direct result of a noise-sensitive
matrix inversion step in solving generalized eigenvalue
problem. A detailed analysis of this problem for general
quantum algorithms for ground and excited state estima-
tion will be presented in a future work.

V. CONCLUSION

In this work, we propose a new method, named g-sc-
EOM, for calculating molecular excitation energies using
a quantum computer. The method can be implemented
on top of any quantum variational algorithm used to ob-
tain the ground state of the target molecule. Our ap-
proach is inspired by excited-state methods developed in
quantum chemistry, specifically the ones based on the
UCC theory. g-sc-EOM has several important benefits
compared to current state-of-the-art excited-state meth-
ods for NISQ era, with theoretical benefits including (a)
q-sc-EOM uses the self-consistent operators that satisfy
the vacuum annihilation condition, thus it can be gen-
eralized to evaluate accurate vertical excitation energies,
ionization potentials, and electron affinities; (b) Energy
differences obtained using g-sc-EOM are strictly size-
intensive, an important property that ensures their cor-
rect scaling with the size of the molecular system; (c)
¢-sc-EOM is a Hermitian theory, providing guaranteed
real energy differences. The major computational benefit
of g-sc-EOM is that it can be expected to more resilient
to noise because (a) q-sc-EOM does not require higher
than 2-body RDMs; and (b) it requires classical solu-
tion of eigenvalue equation, bypassing the noise-sensitive
step associated inversion of overlap matrix in solving gen-
eralized eigenvalue equation in QSE and qEOM. These
benefits provide important theoretical and practical ad-
vantages for the computation of excitation energies on
near-term quantum devices.

NISQ era devices are expected to be noisy with lim-
ited resources. Thus, to achieve an advantage through
these devices in quantum chemistry problems over classi-
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cal computation, one should use methods that are mean-
ingfully accurate, while at the same time resistant to er-
rors and resource-efficient. The g-sc-EOM method pro-
posed in this work is promising in this regard because it
exhibits many of the crucial properties of the highly suc-
cessful EOM-based quantum chemistry methods. At the
same time, it remains resource-efficient and is expected to
be resilient to noise compared to the currently available
diagonalization-based methods. Our future studies will
combine g-sc-EOM with the recently developed transcor-
related Hamiltonian formalism [102, 103] to obtain quan-
titatively accurate excited-state properties with minimal
utilization of quantum resources, which otherwise gener-
ally requires the use of large basis sets.
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