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ABSTRACT: We consider anisotropic black holes in the context of holographic renormalization
group (RG) flows. We construct an a-function that is stationary at the boundary and the
horizon and prove that it is also monotonic in both the exterior and the interior of the black
hole. In spite of the reduced symmetry, we find that the “radial” null energy condition is
sufficient to ensure the existence of this monotonic a-function. After constructing the a-
function, we explore a holographic anisotropic p-wave superfluid state as a concrete example
and numerical testing grounds. In doing so, we find that the a-function exhibits nontrivial
oscillations in the trans-IR regime while preserving monotonicity. We find evidence that
such oscillations appear to drive the trans-IR flow into nontrivial fixed points. We conclude
by briefly discussing how our work fits into both the broader program of holographic RG
flow and quantum information approaches to probing the black hole interior.
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1 Introduction

The AdS/CFT correspondence [1] provides a framework to study the renormalization group
(RG) structure of strongly coupled field theories. In the context of holographic RG flows [2],
the radial coordinate in the bulk corresponds to an energy scale at the boundary and
parametrizes the RG flow of the dual theory. Thus, in Einstein gravity coupled to matter,
the evolution of bulk fields along the radial direction encodes how observables in the dual
field theory change with the energy scale [3-8]. Specifically, one considers a relevant operator
that deforms the ultraviolet (UV) boundary CFT and triggers an RG flow. By the rules
of AdS/CFT, this operator is dual to bulk matter, and the backreaction sourced by that
matter describes the flow.



One may immediately ask how to understand black holes in this framework. Holographic
RG flow in the exterior region of a black hole geometry can be understood as the RG flow
of an excited state between a UV fixed point at the boundary and an IR fixed point at
the horizon. In the interior, the situation is more subtle. The radial extra dimension is
timelike, and so interior slices describe an imaginary energy domain of the flow. This can
be seen as a “trans-IR” analytic continuation of the “conventional” UV — IR part of the
flow described by the exterior [9, 10]. In other words, the notion of trans-IR flows provides
an overarching framework in field-theoretic language with which to conceptualize the black
hole interior and its quantum informatics [10].

In [10], we explored whether such holographic trans-IR flows represent coarse graining
like conventional flows do. This idea is made concrete by the existence of monotonic
functions which decrease from the UV to the IR and thus “count” degrees of freedom,
like Zamolodchikov’s c-function [11], Cardy’s a-function [12, 13], and their holographic
analogs [14-16]. We constructed [10] a thermal analog to the usual holographic a-function
of [14-16] which, assuming the null energy condition (NEC), monotonically decreases along
the full low. Thus, we interpreted the trans-IR as describing coarse graining.

However, the black hole solutions we studied in [10] were highly symmetric — namely
planar and isotropic. Many holographic RG flows, such as those employed in AdS/CMT as
toy models of realistic non-Lorentzian systems, are not as symmetric. So, it is natural to
ask to what extent the results of [10] rely on the symmetric nature of the background. Can
we construct a monotonic function along the entire flow — including the trans-IR — in
less symmetric cases? If so, is the NEC still a sufficient condition? In this work, we answer
those questions in the affirmative.

Specifically, we study anisotropic black holes which spontaneously break Lorentz
symmetry to investigate whether assuming the NEC is sufficient to construct an a-function
which is monotonic even in the trans-IR and has fixed points at both the UV and the IR.
More specifically, we use only the “radial” NEC — the condition corresponding to the null
vector pointing along the radial extra dimension p — to construct our a-function. From the
holographic RG flow perspective, this is the natural thing to do because p corresponds to
the energy scale parameterizing the flow; this radial NEC essentially imposes positivity of
energy (density) along the flow.

A priori, the existence of an a-function is not obvious. Indeed, it is known that
entanglement entropy, which plays the role of a monotonic function in Lorentz-invariant
flows [17, 18], does not do so in generic Lorentz-breaking flows [19]. However, previous work
on anisotropic deformations of black holes [20] and vacuum states [21, 22] observed that
the reduced symmetry actually gives rise to multiple independent NECs, and by assuming
all of them it is possible to construct multiple independent functions (including our own')
monotonic from the UV to the IR. Nevertheless, how these functions behave in the trans-IR
is unclear — the focus of all previous work on anisotropic RG flows has been the exterior of

'In [20], the radial NEC appears to have a privileged role as being directly derivable from Einstein’s
equations. So even with multiple independent monotonic functions available, our a-function may be said
to be more fundamental in that the NEC need not be separately assumed on top of considering Einstein
gravity. We thank Juan Pedraza for emphasizing this point.



the black hole. In studying monotonicity in the trans-IR, we employ just the radial NEC
because that is the condition which is most naturally interpreted as energy positivity along
the RG flow.

1.1 Anisotropic flows

Concretely, we consider a class of anisotropic flows for which the (d + 1)-dimensional bulk
is Einsteinian and has a geometry of the form

ds? = A0 | f(p)?dt? + Y0 dz? + da}| + dp?, (1.1)

wheret e R, p >0, 71 € R‘Sl, and Zy € R%. §; and J, are integers such that 61 +do =d — 1.
By introducing the warp factor e2¥(?), we break the rotational symmetry of the

constant-p slices as

SO(d — 1) — SO(61) x SO(62). (1.2)

This is a rather mild breaking of the original rotational symmetry. Thus, although (1.1) has
reduced symmetry, it should be a tractable setting in which to probe our central questions.
Ultimately, in terms of the coordinates of (1.1), we propose that
d—1
agl)(p) ~ 6751X(p) (d - 1)f(p) (13)
51(A(p) + X'(p)) + 024/ (p)

is the monotonic a-function for flows (1.1) whose dynamics are dictated by the Einstein
equations. Note that this is also one of the monotones of [20].

Anisotropic flows of this kind have been studied in the holographic literature as
realizations of holographic p-wave superfluid states [23, 24]. In those cases, the anisotropy
is introduced by a normalizable vector mode in the near-UV which “picks out” and warps
one of the spatial directions, thereby spontaneously breaking full rotational symmetry.?
After providing more general arguments about monotonicity, we study a holographic p-wave
superfluid state as a concrete example.

1.2 Outline

In section 2, we first review and discuss the constructions of holographic a-functions done
in symmetric domain-wall solutions, with some technical details discussed in appendix A.
We use the symmetric cases to motivate the central conjecture of this paper: that only
the radial NEC corresponding to the direction of the RG flow is needed to guarantee a
monotonic a-function.

In section 3, we present a systematic procedure to determine a candidate a-function
from the radial NEC that is also applicable to the anisotropic ansatz (1.1). This candidate a-
function supports both the previous cases considered in the literature (vacuum deformations
and thermal deformations) and their anisotropic counterparts. However, our initial procedure
for construction only guarantees monotonicity of the holographic a-function in the exterior.

2That this symmetry breaking is spontaneous is because the vector mode decays to 0 at the conformal
boundary. There are also hairy solutions which have a source on the boundary, but we do not consider these
in the context of holographic RG flow.



Thus, we prove trans-IR monotonicity separately; this requires changing to a more convenient
set of coordinates.

After our general construction, in section 4 we consider the holographic p-wave superfluid
state constructed by [24]. These satisfy the radial NEC, as we show in appendix B, and so
they support monotonic a-functions. We also elaborate on some technical details about
the numerical construction of such states in appendix C. We numerically compute the
anisotropic a-function and show that it exhibits nontrivial fluctuations in the interior.
Interestingly, we find that the derivative of this a-function has roots, providing evidence
that the fluctuations in a drive this trans-IR flow into novel fixed points. Nonetheless, in
spite of the fluctuations, the a-function in this holographic p-wave superfluid state still
exhibits monotonicity.

We conclude with some discussion in section 5. We make some statements about
the remaining mysteries surrounding field-theoretic interpretations of trans-IR flows. We
also mention how our work may connect to the quantum-information approach to black
hole interiors.

2 Lessons from symmetric flows

We first briefly summarize the standard constructions of holographic a-functions in the
symmetric flows considered in the literature. The arguments presented in this review
are sparse, with the details concerning vacuum deformations in [15, 16] and the details
concerning thermal deformations in [10].

These symmetric flows typically only use one of the null energy conditions — the one
corresponding to the radial extra dimension of the AdS bulk. Such a NEC is essentially a
statement about the positivity of energy density along the direction of the RG flow. So, we
conjecture that this radial NEC is all that is needed to guarantee a monotonic a-function.

2.1 Review of a-functions in symmetric flows

Holographic a-functions interpolate from the UV trace anomaly coefficient ¢4~ [25] (where
¢ is the bulk AdS curvature radius). They were first constructed [14-16] in backreacting
(d + 1)-dimensional AdS describing deformations of the UV vacuum state,

ds® = ¢2A(P) (—dt2 4 d:EQ) +dp?, (4,7 eRL p>0. (2.1)

In Einstein gravity,® one may suggest that the a-function for vacuum deformations takes
the form*

! rl (2.2)

Al(p)

%Note that [15, 16] also considers Gauss-Bonnet gravity, in which the a-function takes a different form.

ale) ~ |

However, the usual argument of monotonicity is the same as in Einstein gravity.

“There is technically an overall prefactor of 7%/2/[I'(d/2)¢47!]. Because only the p-dependence is
important, we omit such prefactors involving d and ¢p for convenience, using ~ in place of = whenever we
do so.



The metric must be asymptotically AdS, so at large p we have that A(p) ~ % By plugging
this into (2.2), we quickly see that the a-function reduces to the holographic trace anomaly
in the UV. Once (2.2) is in hand as a suitable candidate, it is acceptable to set ¢ = 1
for convenience.
Now, let k* be any null vector in the spacetime of interest. The null energy condi-
tion (NEC),
Twk'E” >0, (2.3)

imposes constraints on the matter sector of Einstein’s equations,

d(d—1)

Guw — 5

G = Ty (2.4)
Using the NEC corresponding to the radial null vector k* = e~ 4§t 4 6% in (2.3), one can
show that (2.2) is monotonic [15, 16],?

da 1

e~ —— (TP _Tt

5"~ TP (17, —1%) >0, (2.5)
validating its interpretation as a count of degrees of freedom along the flow.

To explore monotonicity in the trans-IR, we had constructed a holographic a-function
from backreacting (d 4 1)-dimensional AdS-Schwarzschild describing deformations of the
UV thermal state,

ds? = *A0) [~ f(p)?de? + di?| + dp?, (2.6)

f has a simple root at p = 0 (the horizon), and the interior is accessed by analytic
continuation of ¢t and p to complex values,

kel
27"
eA(O) f/(O)

t =t; —sgn(tr) p = ik. (2.7)

Here, t; € R, ~ is some half-integer, T = is the temperature of the black hole,

T
and k > 0. The proposed a-function in this geometry is written as ap and is given as [10]

f(p) ]dl
ar(p) ~ { : (2.8)
A'(p)
To show monotonicity along both the interior and the exterior,
d d
aarl o, YT o, (2.9)
dp |0 dk x>0

we may transform p to a radial coordinate 7 which is real everywhere, as done in [10]. This
is done to avoid branch-cut ambiguities arising from imaginary factors arising from analytic

5The proof of monotonicity for odd d is rather subtle. If A’ is nonpositive anywhere along the flow, then
monotonicity of a is no longer assured. [16] uses a proof by contradiction demonstrating that the NEC is
enough to keep A’(p) > 0, but they only briefly touch on a particular edge case. We provide a more complete
proof in appendix A.



continuation of p to the interior, but the trade-off is that 7 itself is not a well-defined energy
scale since it will need to furnish a coordinate singularity. Specifically, we set

1 e dr
e?4() = 72 f(p)* = F(r)e X, dp = _FiF(F)’ (2.10)

where F' has a simple root at some 7 = 7, > 0. This transformation yields

+d2?|,  ap(F) ~ e (@TIXM/2, (2.11)

1 . di?
ds? = = |=F(F)e X"dt?
s = (r)e + P
Again, monotonicity follows from the NEC of just one radial null vector. Thus, it is
meaningful to think of the trans-IR flow as a coarse-graining procedure.

2.2 Physicality of the radial NEC

The null energy condition is sufficient, but not necessary, to prove monotonicity. One may
ask whether our assumptions may be made laxer. For example, we may consider weaker
energy conditions for the matter, such as the average null energy condition (ANEC) [26] or
quantum null energy condition (QNEC) [27, 28]. From the standpoint of covariance, this
seems sensible. However, there is evidence in top-down models that completely sacrificing
the NEC also does away with monotonicity of all known holographic a-functions [29]. And
so, the correct general weakened condition might be less constraining than the full NEC
but more constraining than the lack of the NEC.

That being said, in the language of holographic RG flow, it would actually make sense
to treat the p coordinate as special. This is because the p coordinate describes the energy
scale. Thus, if we want to describe how degrees of freedom may change along the flow, it is
reasonable to constrain only a measure of bulk energy density specifically along the flow
(i.e. along the p direction). To this effect, we conjecture:

Only the radial NEC computed from a null vector pointing along the radial
extra dimension is needed to prove the existence of a monotonic function in a
holographic RG flow.

This is true in the examples above. However, in the case of vacuum deformations (2.1),
the conjecture is trivial — any null vector yields the same condition up to multiplication by
a nonnegative function.” Meanwhile, the statement is not as trivial in thermal deforma-
tions (2.6) in which have multiple truly independent NECs depending on the null vector
chosen. In that case, the radial NEC is all we need [10].

Anisotropic flows present another test of our conjecture. Even anisotropic flows from the
vacuum, let alone the flows into black holes, support different independent NECs. Previous

A possible counterpoint here is that the usual holographic a-functions are all constructed via the NEC
anyway, and so eliminating it would also eliminate such constructions. One convincing argument for this
position would be to find monotonic functions which cannot be constructed from the NEC, but rather from
some other looser conditions, and which retain monotonicity even when the NEC is violated.

"This can be shown by explicit computation by contracting the stress tensor T,. against a generic
null vector.



work [20-22] assumed all of these NECs to construct multiple independent monotones.
However, we only care about whether one such monotone can be constructed from just the
radial NEC and whether the resulting function is monotonic in the trans-IR. We find this
to be the case.

3 Monotonicity in anisotropic flows

Consider the following (d 4 1)-dimensional domain-wall ansatz,

ds® = 24() [— F(p)2dt? + e>¥ P az2 + df%} +dp?,  teR, p>0, T €R", 7 e R

(3.1)
Note that d; + 2 = d — 1. For now, we place no restrictions on the metric aside from having
the constant-p slices be Lorentzian on p > 0, i.e.

p>0 = f(p) >0, (3.2)

and having it be asymptotically AdS with curvature radius ¢, which means that at large p,
p
Alp) ~ 5, X(p) ~0, f(p) ~1. (3.3)
This ansatz not only includes the previous cases of isotropic vacuum and thermal deforma-
tions, but it also supports anisotropic deformations of either kind. As such, it is a more
generalized domain-wall ansatz than (2.1) and (2.6).
In this section we construct the a-function,

é
ait (p

 e—01X(p) (d—=1)f(p)
) S+ ) + BA )| (34)

and prove that it is monotonic both in the exterior and the interior of the black hole.

Our strategy is to first focus on the exterior of the black hole and arrive at (3.4)
by integrating the radial NEC. This is a more systematic approach than starting with
the holographic trace anomaly, and it automatically yields a monotonic a-function for
anisotropic flows from the vacuum. However, as we are interested in the black hole interior,
we subsequently change coordinates to prove that our construction is also monotonic in
the trans-IR.

3.1 a-functions from integrating the radial NEC

We first attempt to establish a systematic approach to constructing monotonic a-functions
starting from the radial NEC. We use the previously established symmetric cases discussed
in section 2 to guide our general approach, but we find that it needs to be generalized
slightly to work for anisotropic flows.

First, observe that we can arrive at (2.2) and (2.8) by starting with the NEC along
some null vector in the (¢, p) plane. For example, for vacuum deformations and using the
null vector k# = e~ AWk 4 6% in (2.1), the NEC reads

—(d—1)A"(p) > 0. (3.5)



It helps to rewrite this in the form,
d 1/(d-1)
Cp)g, a0 V] = 0, (3.6)

where C is a positive-definite real function while a'/(4=1) is the principle branch of the (d—1)th
root of some real function a. If we can write the NEC like this, then we may immediately
identify a function a'/(¢=1) which is manifestly monotonic in p, since its derivative would
be nonnegative. For example, to recover (3.5) specifically, we may substitute

d—1
=55 - cw=w-naer (3.7)

We identify a as our candidate a-function (2.2). Since C > 0, the monotonicity of al/(d=1)

follows from (3.6). Furthermore, by assuming an asymptotically-AdS metric, the radial
NEC may be used to show that, for any d,

1
(d-2)/(d-1) — - 5
a T 20 (3.8)
or, equivalently, that A’(p)? > 0 — see [15, 16] and appendix A.1. Thus, because we
may write
L= & 1/(d-1) ‘H] _ (@-2)/(@-1) 4 [0 1/-1)
5,80 =2 [(a@) )| = (@=1alp) A G R DR

it follows that a is also monotonic, and from (3.3) the a in (3.7) asymptotes to the appropriate
UV trace anomaly coefficient ¢4,
Similar logic holds for the exterior (p > 0) region of thermal deformations (2.6). In this

case, we find that the NEC from k# = ef?;)p) o + ok is
04 - 1A 20 (3.10)
We may write this in the form (3.6) by taking
_[fe) _ (d=1DA(p)?
alp) = [A’(p)} - = flp) (3.1)

We thus recover (2.8), and similar reasoning as in the vacuum case utilizing the asymp-
totics (3.3) and the radial NEC implies that this a is monotonic in the black hole exterior
— see appendix A.2. Furthermore, observe that this a also asymptotes to the UV trace
anomaly coefficient. As a good sanity check on our equations, we note that (3.11) reduces
to (3.7) by forcibly setting f(p) = 1.8

8We point out that one may set f(p) = f«, where f. is any constant, and simultaneously recover the
ansatz (2.1) (after rescaling the ¢ coordinate) but not obtain the appropriate normalization for a. However,
this choice for f violates the specified boundary condition (3.3), so we may only consider the case of f, = 1.



For anisotropic backgrounds of the form (3.1), we find it unfeasible to write the radial
NEC in the form (3.6). One way forward is to generalize our strategy. Since all we need to
do is to ensure the existence of some a and C satisfying (3.6), it is sufficient to attempt to

write the NEC as p

“ 1/(d-1)| 2
C(p) i [a(p) ] K(p)® =0, (3.12)
where C and a are as before, and K is some real function. By rearranging, we write (3.12) as
d -1 < K(p)?
— > ————2>0. 1
o [0 = L8 2 0 (313)

Thus, if the NEC may be written in this way, we immediately have that a'/(4=1) is monotonic.
From here, the argument is the same as before; a is a monotonic a-function if a(@=2)/(d=1) > ¢
and a ~ ¢971 in the UV.

As a caveat, while this systematic approach yields a candidate a-function which is
naturally monotonic in the exterior of the black hole, we are not immediately guaranteed
monotonicity in the trans-IR. This is because of ambiguities with signs and factors of i.
Proving monotonicity in the trans-IR is more easily done in coordinates where the radial
direction is real in the interior, e.g. (2.10). Nonetheless, the approach of rewriting the
NEC in the form (3.12) is still a useful way to construct the candidate a-function in the
first place.

3.2 Monotonicity in the exterior

Just as in previous constructions [10, 14-16], we consider the radial null vector

e—Ap)
kH = W&f + &1 (3.14)
The corresponding radial NEC is then
B F'(p)A(p) — f(p)A"(p) . / / ne N o f'(p)X'(p) ()2
(@-1) 0 = [4)2/0) + 2700 - EEZLE w7 >0
(3.15)
This may be written in the form (3.12) by setting
_ 01 X(p) (d—1)f(p) r_l
) ' lcsl (W) + 2p) + 2 A)|
1 / / / 2 & —
Clp) = @=0f) [61(A'(p) + X'(p)) + 24" (p)]” P ¥/ @=1), (3.16)

K(p) =/ %X’(p)-

So, unlike in the isotropic cases, the left-hand side of the radial NEC is not just the product
of a total derivative and positive function, since K is not identically 0. Nonetheless, as
discussed in section 3.1, we may still use a as a viable candidate a-function. For flows of
the form (3.1), we denote this candidate as

20D () 01X () (d=1)f(p)
T (p) P lél(A'(P)-FX’(P))—HSZA'(p) : (3.17)



From (3.3), this asymptotes to the appropriate UV trace anomaly ¢9=1. To ensure that this
function is monotonic in p > 0 of the deformed black hole, we only need to show that
d d—2
o—01(d=2)X(p)/(d—1) / (d— ll)f(ﬂ) / >0. (3.18)
31 (A'(p) + X'(p)) + 024" (p)

The exponential and (d — 1) f factors are always positive in the exterior. Thus we only need
to prove that
d
[51(A'(p) + X'(p)) + 824'(p)]* > 0. (3.19)

This is automatically true for even d. The case of odd d, however, is not as straightforward
— we must explicitly show that

51(4'(p) + X' (p)) + 24'(p) = 0. (3.20)

The proofs discussed in appendix A may be adjusted to apply here. First, we first note
that (3.20) is already true in the UV by assumption—A’ asymptotes to £~! > 0 while A’
asymptotes to 0. So then, we assume that there exists a p = p, > 0 such that the quantity
on the left-hand side of (3.20) is 0 at p, and positive for p > p.. By analyticity, we may
Taylor-expand,

31(A'(p) + X'(p)) + 524" (p) = clp — p)?* + Ol(p — ps)? ™), (3.21)

where p, > 1 is the degree of the root while ¢, # 0. We now define a small ¢ > 0 and
consider the point p = p. + €. Here, we use the approximation

61(A(ps +e) + X' (pe + ) + 02A (ps + €) & cue, (3.22)

to deduce that ¢, > 0. Next, we differentiate (3.21) to write
31(A"(p) + X" (p)) + 624" (p) = cupu(p — )P " + Ol(p — pu)P]. (3.23)

By evaluating this at p = p. 4+ ¢, we have the approximation
61(A" (ps+2) + X" (ps + €)) + 624" (ps + &) ~ cupuc? L. (3.24)

We may now approximate the left-hand side of the radial NEC (3.15) at p = p. + €.
Specifically, we solve for A'(p. +¢) and A”(p, + €):

Al(ps +e) = [ciePs — 61X (ps + €)] (3.25)

(d—1)

1
5 [epuc? = 518" (p. + )| (3.26)

" "y

For notational convenience, let us denote the left-hand side of (3.15) as N, so the NEC is
written as N, > 0. The behavior of NV, around p, is

0162

_ eof/(pte) i X (pot o)
p=pxte _(d _ 1) o

f(,O* + 5) (d - 1)
(3.27)

Np| X,(P* + 5)2 - C*p*5p*_1 + P~ {

~10 -



Note that we may truncate the eP* term because it is dominated by the eP~! term.
Mathematically, this means that
0102

Nolpmpore ™ ~ gy ¥ (e + £)? — cupueP L. (3.28)

We have not assumed anything about the root structure of X’ (let alone its square), and
so we do not know the order of X'(p, + €)? in the ¢ expansion. However, this does not
matter; (3.28) is certainly negative and thus represents a violation of the NEC. Thus we
have proven that (3.20) holds and that (3.17) is a monotonic function on p > 0.

Anisotropic vacuum deformations. We may reduce the ansatz (3.1) to one describing
anisotropic deformations of the UV vacuum state by setting f(p) = 1,

ds? = £240) [—dt2 + eQX(p)dfﬂ + dp?. (3.29)

In this case, we are left with the monotonic a-function,

a(51)(p) ~ e 01X(p) l (d—1) (3.30)

d—1
01(A'(p) + X'(p)) + 52A’(p)] '

That this is monotonic only requires a single radial NEC. We thus infer that spontaneously
broken symmetry away from the UV is not necessarily tied to the monotonicity of holographic
RG flow.

Indeed, in a sense we observe that monotonicity becomes stronger in the anisotropic
case. Specifically, consider the radial NEC (found by setting f(p) = 1 in (3.15)) in its
general form (3.12). Unlike in the isotropic cases, the K? term is not uniformly zero; it
may be positive. As such, the total-derivative term may be more sharply bounded within
the flow.

3.3 Monotonicity in the trans-IR

We now prove that (3.17) is monotonic in the trans-IR, i.e. in the analytic continuation
p =ik where k > 0 (2.7). To do so, we define the coordinate transformation’

eAlp) —

S0

. f(p)P = F()e X, e‘”@:G;), dp:_%_ (3.31)

Implicit in this coordinate transformation is that the UV curvature scale £ is set to 1. We

take x to be some generic real function, G to be some positive function, and F to have a
simple root at 7 = rp, such that

F(r<rp) >0, F(r>r) <0. (3.32)

9We emphasize that our ultimate goal is to bound the derivative of the a-function with respect to the p
coordinate. For technical reasons, we find it more practical to do so in a coordinate system for which the
interior radial coordinate runs over R, rather than say iR. The details of this auxiliary coordinate system
do not matter so long as we know its Jacobian with p coordinate system, which is needed to convert the
derivative back to the p coordinate.
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Thus, 7 is a real coordinate which covers both the exterior (7 < 75,) and interior (7 > 74)
of the black hole, just like the radial coordinate defined for the isotropic ansatz via (2.10).
However, we reiterate that 7 is not itself the energy scale. The metric (3.1) in these new
coordinates takes the form

_ 1
=5

dir? dz?

ds* [—F(f)e—xw dt* + +

+di%| . (3.33)

F) G

When G(7) = 1 (corresponding to X(p) = 0), this indeed reduces to the isotropic met-
ric (2.11).

We now write the a-function (3.17) in these new coordinates. Specifically, by using the
chain rule to write

A(p)+ 220 = Fo) [14 5 50 (334

we deduce that the a-function in 7 coordinates is

G G’(T)] ~(d=1)
d—1G()

Note that the number of warped dimensions 47 is implicit in G and does not appear explicitly

a0 (7) ~ G(F)e- (@~ VX2 {1 n (3.35)

in this expression.
To show monotonicity everywhere, we ultimately need to prove that

dal  dF dalV
= > )
dp dp dr ~— 0 (3.36)
dap") _ dp drdap?) _
dk  drdp dr —
The first condition states that the a-function decreases from the UV to the IR, while the
second condition states that the a-function decreases from the IR to the singularity. We

Exterior (r < rp):

Interior (r > rp): (3.37)

have already proven (3.36) directly in p coordinates, but we also check for consistency by
proving it in 7 coordinates. We reiterate that we have yet to show (3.37).

Derivative with respect to . We first compute the derivative of the a-function with
respect to 7 and show that the radial NEC demands that it is negative everywhere. We
take the radial NEC in (3.33) corresponding to

k= eX(D/258 4 P(F)6%. (3.38)
The contraction of this against the stress tensor is
(r
Ni = T kP k" = ;2"") (Tg - T';) . (3.39)

By computing the stress tensor explicitly, solving for G” in terms of Nz, and plugging its
solution into the derivative of the a-function with respect to 7, we find that

) 025G () Poam, 52 (G _2]
dr " F(r)? 1+d—1GWJ N}+M—1ﬁ1(G@J Py

(3.40)
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This expression may also be reproduced by applying a coordinate transformation to the
left-hand side of (3.12), which we denote as N,. In doing so, we must be careful to note
that NV, and A are computed by null vectors with different overall scales and are thus

related as
-2

Ny, = =—=N;. (3.41)
As a further sanity check, we may set G(7) = 1 in order to reproduce both the a-function
and the derivative in the isotropic case [10].

This derivative is proportional to the quantity N bounded by the NEC plus a square,
and this sum must be nonnegative. However, unlike in the isotropic case, there is an
ambiguous factor in front. Specifically, we know that

PGP dal) e OX0)/25G () & (G L
s e} B T e lr+u—na<aw0'ﬂﬂﬂ§&

(3.42)
by the radial NEC and the positivity of 7, G, F?, and the exponential of y, but we still
need to prove that
FG'(F)

B WeTs

>0, (3.43)

everywhere in the geometry. This follows from the asymptotics of the expression and the
radial NEC, just as it does for the analogous expression in p coordinates (3.20), except this
time the proof applies both to the exterior and interior regions of the black hole.

Indeed, following the same procedure as before, we start by noting that

FoG(F)
d—1G(r)

mnb+ =1>0. (3.44)

r—0

Furthermore, we assume that there is an r = r, for which the expression vanishes and
below which the expression is positive. By defining a small € > 0, we may approximate to
leading-order in €:

1+

I [(;/7* —c } (3.45)

d—1 [G(r« —¢)
1 lG’( £) + (Te —)G"(Fs —€)  (Fs — )G (74 — €)?

d—1 |G —e) G(re—e) G —e)? ] ~ cape(—e) !, (3.46)

where ¢, # 0 and p, > 1. By solving for G'(7. — ¢) and G" (7, — ) and subsequently
plugging into the radial NEC, we get (after dropping terms which are certainly subleading)

Wi = - A= DEE T

T=Ty«—€ ,r,z

02

— CapaTi(— 5)p*1} . (3.47)
01

If p, > 1, then we find that N7 is negative and we have a contradiction. If p, = 1, then we
must use the fact that the left-hand side of (3.45) is positive by assumption to state that
cx < 0 when p, = 1, so we still conclude that N is negative even in this case.
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There is one edge case. Note that the expression (3.47) is actually 0 if 7. = 73, and
thus our argument breaks down here. However, we may simply rescale the null vector and,
thus, A so there is no overall factor of F' to contend with in the first place.

So, to summarize, using analogous arguments to those of the exterior of the domain-wall
ansatz, we have proven that

=

Q
—~

=3
~

1 > 4
+d—1G(f)—0’ (348)
everywhere in the black hole. It follows that
da%S )
<0. 3.49
e (3.49)

Chain rule. We are now ready to show (3.36)—(3.37). We simply use the chain rule in
conjunction with (3.49) to do so. For the exterior 7 < 7, we first write

dr da
= R /FR) <0 = L
i T/ E(r) <0 ap

in agreement with the general argument employed in 3.2. As for the interior 7 > 75, however,

>0, (3.50)

T

we must recall that (2.7) to write

dp . dp dr _ - -
D e == > 0. .
== o i ir\/ F(r) = 7\/|F(r)| > 0 (3.51)

This is because F' is negative in the interior, and so it produces an additional factor of i.
Thus, we have that
daéﬂsl)

<0. 3.52
I (3.52)

r>Tp

We conclude that agp v is monotonic along the full flow, including the trans-IR.

As an aside, observe that employing the chain rule at the horizon allows us to state
that the derivative of the a-function vanishes identically at the horizon © = 7. This is
consistent with the horizon being the IR fixed point.

4 Holographic p-wave superfluids

As a simple test case, we consider the anisotropic p-wave superfluid solution of [24]. This
is a concrete example of a holographic flow geometry exhibiting aniostropy, and so we
may study an explicit a-function. In keeping with their conventions, we set d = 4 in this
section. We thus consider a (4 + 1)-dimensional Einstein-Yang-Mills theory with SU(2)
gauge symmetry whose bulk action is (setting ¢ = 1)

1
(R+12) — 4A2F5VF‘W” (4.1)

IEYM = /d TN/ — [253

¢ is the Yang-Mills coupling while a = 1,2,3 runs over the generators of the (three-
dimensional representation of the) SU(2) gauge group. These generators are denoted as
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a
T4 = G—,, where {o!, 02,03} are the Pauli matrices. Fg, is the SU(2) field strength related

i
to the gauge field A}, by

F,LCLLV = aqu - 8I/-AZ + GabcAZAlcn (42)
and with the Levi-Civita normalized as €123 = +1. The full equations of motion are then [24]
~ 1~
Ry +4g,, =03 (TW -37% gw,) : (4.3)
Y FoH = o ALFH, (4.4)
where Tw’ is
T 1 o 1 ap
Ty = 7 Trsy(o) | Fout™, — Zgw,FapF : (4.5)
The class of solutions with which we are concerned is found by using the ansatz,
1
ds? = _N(r)a(r)thQ + N >d7"2 + rzh(r)_4dx2 + 7"2h(7“)2 (dy2 + dz2> , (4.6)
r
A = ¢(r)r3dt + w(r)T'dz, (4.7)

where r = oo is the conformal boundary, r = r;, denotes the horizon (at which N has a
simple pole), and r = 0 is the singularity. Observe that (4.6) is an anisotropic solution.
Note that this r is not the same as 7.

2
Defining a function m(r) by N(r) = — m2(7") + 72, [24] rewrites the independent
r
components of the equations of motion in terms of the functions {m, o, h,¢,w} (using
3/2
primes to denote derivatives and defining a constant o = Pf):
[Y
m/ _ oz2rh4w2¢2 N OéQTS(b/Z N 7“3]1,2 N oz2rh4w’2 , (48)
6N o2 602 h? 6
) oz2h4w2¢2 . 2Th,2 N oz2h4w’2 | (49)
3rN2o h? 3r
2h5 212 2h5 2 3 h N’ /
pr— _Qhwe” | ot —h’(—++g>, (4.10)
3r2N2g2 3r2 r h N o
h*w? ¢ 3 o
"_ P 4.11
¢ r2N ¢ <7‘ + 0) ’ (4.11)
2 / ! /
" we (1 4h" N o >
=—— - -+ — 4+ —+—. 4.12
YT TN w<r+h+N+a (4.12)

We note that the above ansatz indeed satisfies the radial NEC. This can be shown by
employing the equations of motion. The details are discussed in appendix B.

4.1 Writing the anisotropic a-function
We write the a-function corresponding to the metric (4.6). The first step is to transform (4.6)
into a domain-wall slicing. We use the coordinate transformation r — p:

dr

=dp N(T)O‘(T)2 _ €2A(P)f(p)2 T2h(7“)74 _ e2[A(p)+X(p)} T2h(T)2 _ €2A(p).
N(I”') ) b b

(4.13)
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a(r)
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(a) Exterior a-function (b) Interior a-function

Figure 1. Plots of the a-function (4.17) in the holographic p-wave superfluid state of [24], in terms
of r (in units r, = 1). In the exterior (a), the function is relatively constant until r < 10, at which
point it sharply declines prior to reaching the horizon (in red). Within the interior (b), the function
then exhibits fluctuations as it continues decreasing.

This yields the anisotropic domain-wall metric (3.1) with d; = 1 and 69 = 2,
ds? = €24 {—f(p)zdt2 + ¥ ap? + dy? + dzz} + dp?. (4.14)

In these coordinates, we know that the a-function is

(1) f(p) ’
a ~ e_X(p) - - . .
7 (p) [ )+ 1 X,(p)] (4.15)

So now we convert back to r coordinates. We find that

o)+ 320 =0 = YR o e (g

Combining all of this, we write
aV(r) ~ a(r), (4.17)

Furthermore, we may write the derivatives of the a-function with respect to energy in both
the exterior and interior. Defining A to represent p in the exterior and x in the interior,

we write
(1) 30(r)%a’ (r)\/N(r), if r >y,
a) (302 /N "
dA —30(r)%d’ (r)\/IN(r)], if r<mry,.

4.2 The a-function in a p-wave superfluid

Our purpose for employing the p-wave superfluid is to concretely observe the behavior of our
a-function in a single known solution. To this end, we only seek to reconstruct the solution
shown in figure 1 of [24]. See appendix C for technical details regarding how the solutions
are generally constructed. First, we note that the physical parameters used by [24] are

rn=1,  a=0.316. (4.19)
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~0.0010
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(a) Exterior a-function derivative ( dT ) (b) Interior a-function derivative ( dT )
0 K

Figure 2. Plots of the derivative of the a-function with respect to the energy scale (4.18) in the
holographic p-wave superfluid state of [24]. In the exterior (A = p), the derivative is positive, so the
a-function indeed monotonicially decreases with energy. Furthermore, the derivative goes to 0 both
at r — oo and r = rp, in agreement with these being, respectively, the UV and IR fixed points. In
the interior (A = k), note that the derivative does not obviously go to 0 at » = r;, due to numerical
instability, but it is negative as expected. Additionally, it undergoes nontrivial oscillations before
apparently diverging, unlike in the free Kasner flows of [10]. Tt is possible that the local maxima are
fixed points of the trans-IR flow.

When shooting from the horizon, we perform series expansions of the functions {m, o, h, ¢, w}
about r = r, (C.1)—(C.5). However, both general physical reasoning and the equations of
motion imply that there are ultimately four free coefficients which we call the “shooting
parameters.” These are {0y, ho, wp, ¢1}. From figure 1 in [24], we read off the first three
shooting parameters as

wo — 6.8, ho = 1.061, gy — 0.719. (4.20)

This leaves ¢1. However, since we are working with flows which are asymptotically isotropic
and AdS in the UV, we know that
lim A(r) = lim =o(r) = 1. (4.21)

r—00 r—00

This only happens given the above parameters for a specific value of ¢1. We find this to be
¢ ~ 0.131. (4.22)

Thus, we have enough information to construct a black hole solution to the Einstein-Yang-
Mills theory (4.1) which may be seen as an anisotropic RG flow.

With these parameters, we perform the shooting both in the exterior as validation
(see appendix C.1) and the interior which is not done by [24] (see appendix C.2) us-
ing the initial conditions (C.16). With these functions in hand, we are ready to plot
both the a-function (4.17) and its derivative (4.18). These are shown in figure 1 and
figure 2, respectively.

These plots satisfy a variety of sanity checks. For instance, we have been working with
a normalization of the a-function whereby it is 1 in the UV, and we see that reflected in our

17 -



plot. Furthermore, the plots are consistent with the analytic statements that the derivative
with respect to the energy scale are 0 at the horizon and as r — co. In other words, the
plots are consistent with r» = r;, and r = co being, respectively, the IR and UV fixed points.

Nonetheless, this a-function is less trivial than those seen in free Kasner flows [10],
in which the bulk matter sector only consists of a free massive scalar field. Indeed, we
see fluctuations in the a-function which leave an imprint on the derivative. This and the
other fluctuations in the interior functions (appendix C.2) are reminiscent of the Josephson
oscillations in the holographic superconductor [30, 31]. Furthermore, our numerics suggest
that such oscillations in the derivative can allow it to reach 0. This serves as preliminary
evidence that oscillations in the interior may drive trans-IR flows into additional nontrivial
fixed points. However, we emphasize this an analytic demonstration of this phenomenon
is still necessary. That being said, we leave further exploration of interior oscillatory
phenomena and their imprint on the holographic a-function to future work.

5 Discussion

To summarize, although we work in flows which spontaneously break rotational symmetry
and are thus invariant, we still find that a single NEC corresponding to positivity of
energy along the flow direction is sufficient to realize a monotonic a-function. This includes
holographic trans-IR flows, providing evidence that the a-function is a robust means of
probing the physics of black hole interiors.

Indeed, this work includes the first application of our holographic a-function to a rather
nontrivial p-wave superfluid state. Unlike in free Kasner flows [9, 10], we may have expected
that the nontrivial dynamics in the interior of this black hole would be reflected in the
a-function. We have shown this expectation to be true.

Within the context of modern AdS/CFT, there are two general lines of research to
which our work connects: the general interpretation of holographic RG flow in the context
of black hole states and the quantum-information approach to the black hole interior. The
statements we make have implications for both.

5.1 Mysteries of the trans-IR flow interpretation

In the usual story of holographic RG flow, the classical Hamilton-Jacobi dynamics of
gravity precisely correspond to renormalization group (RG) equations dictating the coarse
graining of some lower-dimensional quantum state. For example, Hamilton-Jacobi recovers
the Callan-Symanzik equations when considering 5-dimensional supergravity and a dual
4-dimensional large-N gauge theory [3]. Imposing the radial NEC essentially means that
classical energy density is positive along this flow, so intuitively we may interpret the
radial NEC as a unitarity condition for the states on which the RG equations act, in line
with [32, 33]. Since the radial NEC implies the existence of a monotonic a-function, it
makes sense to interpret the a-function as a count of degrees of freedom.

However, whether this is the right way to think about holographic trans-IR flows is not
as clear. While we have the notion of a monotonic a-function, we do not have a clear idea
of what the states or even the RG equations are. In other words, while we may say that
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the trans-IR flow describes some coarse graining if we take seriously the a-function as a
count of degrees of freedom, it is not clear what is being coarse-grained.

There has been some recent progress; [34] argues that the appropriate analog to
the Hamilton-Jacobi is the Wheeler-DeWitt equation in the interior. As such, we may
ask if analytic continuations of a-functions to the black hole interior describe a coarse
graining of Wheeler-DeWitt states. It would also be interesting to formulate path integral
complexity [35] using these states and see if that may also capture the degrees of freedom
along the trans-IR flow.

One complication is seen in the p-wave superfluid solution above; it is not clear if the
a-function goes to 0. This runs counter to the discussion in [10] (supported by numerically
constructed free Kasner flows) in which we had argued that the a-function should reach 0
for Belinskii-Khalatnikov-Lifshitz (BKL) singularities [36-38]. There are two possibilities:
either the numerical p-wave superfluid solution is not reliable close to the singularity, or
there is more subtlety concerning when the a-function does or does not go to 0 at the
singularity. A more fundamental understanding of what exactly the a-function is counting
may provide additional insight into this problem.

5.2 Quantum information and trans-IR flows

The quantum information of the UV state is commonly viewed as a framework with which
to think about the interior of the black hole [39-49]. Since we are proposing that the
language of trans-IR flows is also such a framework, it behooves us to connect our picture
to the various quantum-information-theoretic results.

In [10], we do so by asking how far the holographic geometric duals of various information-
theoretic measures probe into the interior. This provides an alternate way to phrase the
statement that classical entanglement [41-43] and complexity from volume [44-46] are
generally “not enough” to probe the full interior [46]. Specifically, whenever we have
extremal surface “barriers” (which are believed to be generic features of AdS gravity [50]),
both prescriptions only cover a finite part of the trans-IR flow and never probe close to the
singularity. Meanwhile, geodesic approximation of 2-point functions [39, 40] and complexity
from the action of the Wheeler-DeWitt patch [47, 48] are sufficient to probe the full interior,
because the associated geometric objects are capable of reaching the singularity.

Our arguments in [10] were exemplified by relatively simple free Kasner flows. However,
we may ask whether a similar story may be told for more complicated black holes, such
as those with charge [51] or anisotropy. There has been some work on this; [52] considers
such charged black holes with backreaction, admitting an RG flow interpretation. It would
be interesting to more concretely interpret their results in the language of holographic RG
flow, radial NECs, and a-functions.

More tangibly to the point of making contact with quantum information, recall that
entanglement entropy is associated with the holographic a-function in Lorentzian flows [15,
16]. However, it is known that entanglement entropy is not guaranteed to be monotonic
along Lorentz-violating flows [19] unless additional constraints are applied [53]. It is thus
reasonable to ask whether entanglement is truly the quantum-information quantity related
to the a-function. As a first step, one may ask if the holographic flows considered here always
satisfy the additional constraints of [53] which imply monotonicity of entanglement entropy.
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Figure 3. The Wheeler-DeWitt patch corresponding to some constant boundary-time slice ¢t = ;.
The radial NEC corresponding to the null vectors k1 produces a monotonic a-function.

Nonetheless, whether or not Lorentz symmetry is spontaneously broken, we may take
the radial NEC as our starting point. This condition can be related to the Wheeler-DeWitt
patch (figure 3). To see how, observe that the patch whose action computes holographic
complexity [47, 48] at some boundary time t = ty is defined by null sheets anchored at
this boundary-time slice. The tangent vectors of the null sheets are precisely the sort of
null vectors needed in the radial NEC. Thus, one way to state our conjecture regarding
monotonicity (section 2.2) is as follows:

If we have energy positivity along the null sheets bounding the Wheeler-De Witt
patches which compute complexity as a function of boundary time, the we have
a monotonic function along the full flow.

Since Wheeler-DeWitt patches cross black hole horizons, this statement applies to trans-IR
flows. Furthermore, we may claim that it is really holographic complexity from action that
properly captures the holographic a-function. We leave more precise explorations of this
idea to future work.

5.3 Other future directions

There are other concrete avenues for future work. We list some of these below.

Phase transitions. It would be interesting to conduct a more thorough analysis of
holographic p-wave superfluid states [24, 54] so as to see how the a-function may be sensitive
to the phase structure of the underlying theory. One may also consider the a-function in
other setups exhibiting phase transitions, such as the holographic superconductor [30, 31]
or round black holes [55].

Increased symmetry breaking. The anisotropic ansatz studied in this paper is a
rather minimal model of symmetry breaking which still maintains two rotationally invariant
subspaces (1.2). We may ask whether the story of monotonicity being guaranteed by the
radial NEC still goes through for ansétze that further break Lorentz invariance. We expect
this to be the case, but it would be satisfying to systematically demonstrate as much in a
more general class of flows.
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Breaking translation symmetry. We may also study holographic configurations with
other types of spontaneous symmetry breaking. For example, we may consider flows which
break translation invariance and thus describe phonons. Simple flows of this kind include
those for which the dynamics are governed by ODEs [56-60]. We may also take the striped
superconductor [61, 62], but this is more complicated because the dynamics are governed
by PDEs and would thus require more powerful numerical techniques. Nonetheless, our
approach to deriving the a-function should go through for ansdtze supporting broken
translational invariance in the bulk.

5.4 Conclusions

In conclusion, even with reduced symmetry, the monotonicity of our holographic a-function
is rooted in the assumption of just the radial null energy condition — even in the interior of
black holes. While we interpret such a condition as the imposition of energy positivity along
the holographic RG flow direction, there are still mysteries concerning what exactly is flowing
in the trans-IR. Nonetheless, even if the trans-IR flow does not have an interpretation as a
coarse-graining flow between states, our a-function is a well-defined and general gravitational
construct which has access to the singularity and thus warrants further study.
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A Corrected proof for isotropic deformations

In this section, we provide more complete analytic proofs of the positivity of the metric
functions required for monotonicity of a-functions in odd d. We focus on the isotropic
deformations, but the general technique used herein may also be applied to the anistropic
cases (see section 3.2). In the language of section 3.1, these are proofs that a(p)@=2/(@=1) > @
when such a term is not already a square.

Regarding our assumptions, we always take the metric functions to be analytic and
smooth on spacetime and to have behavior as p — oo such that the metric is asymptotically
AdS. We also work in the domain p > 0 and assume that the constant-p slices are Lorentzian,
so these proofs are not enough to prove monotonicity in trans-IR regimes. Lastly, we only
require the radial NEC.
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A.1 Vacuum deformations

Given the metric (2.1),
ds? = 240 (—dt? + di?) + dp?, (A.1)

we wish to show that A’(p) > 0 on p > 0 so long as the metric is asymptotically AdS and
the radial NEC is true. The former implies that, at large p, A’ asymptotes to a positive
constant. The latter implies that

—A"(p) > 0. (A.2)

Suppose that A’ indeed crosses zero at some point p = p,. In other words, we are assuming
that there exists a p, at which A’(p.) =0 and A’(p) > 0 if p > p,.. We can Taylor-expand
around this point to write

A(p) = calp=po) +0 [(p— po*1]. (A.3)

px > 1 is the degree of this root of A’, and ¢, is some real nonzero constant. Now, consider
some arbitrarily small number ¢ > 0. We may approximate A’ at p = p, + € as

Al(py + €) = cyeP*. (A.4)

Our assumption of the positivity of A’ implies that ¢, must be positive. Furthermore, we
may differentiate (A.3) to write

A"(p) = capulp — p )P+ O[(p — pa)P]. (A5)
Again by considering the point p = p. + €, here we may approximate A” as
A" (ps + ) & c*p*sp*_l. (A.6)

This is certainly positive and thus contradicts the NEC (A.2). Hence, no such p, exists,
and A’(p) >0 on p > 0.1

A.2 Thermal deformations

Now we take the metric (2.6),
ds? = A0 [ f(p)dt* + di®) + dp?, (A7)

where f has a simple root at p = 0. For this metric to be asymptotically AdS, we must
have that, as p — oo,

o) ~1, Alp) ~ 2. (A.8)
This time, we wish to show that
f(p)
> 0, A9
() > )

10Note that this proof actually shows that A’ is strictly positive p > 0, although for our purposes it is
sufficient to just say that A’(p) > 0.
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on p > 0. However, since we are working in the exterior of the black hole, we have that
f(p) > 0. Thus, it is sufficient to prove

A(p) > 0. (A.10)
The radial NEC (3.10) states that

F/(0)A'(p) = F(p)A"(p) = 0. (A.11)

We take a similar approach as in the case of vacuum deformations. Given that A’ asymptotes
to a positive constant, suppose there is a p = p, such that A’(p.) = 0 and A’(p) > 0 if
p > p«. We again perform the Taylor expansion (A.3), and we again define a small £ > 0 in
the course of showing that the coefficient ¢, must be positive. We are also still allowed to
differentiate in order to write down the p = p, expansion for A”.

However, simply writing (A.6) does not contradict the NEC. Rather, we must evaluate
the left-hand side of (A.11) at p = px +¢,

F(pete) A (pute)—f(pute) A" (pute) m cue? H ef (e +2) — fpe +)pa] - (A.12)

Because f(p) >0 on p > 0, f(p«+¢) is approximated by an O(e”) factor. Thus, the second
term in the brackets dominates the first. We conclude that this quantity is negative, in
contradiction with the radial NEC. This proves that A’(p) > 0 on p > 0.

B Null energy condition in the holographic p-wave superfluid

As we had assumed the radial NEC in our derivation of the monotonic a-function, it
behooves us to ensure that this is satisfied in the holographic p-wave superfluid used as our
concrete example.

Consider some null vector k* in (4.6). Observe that the equation of motion (4.3) may
be used to write its contraction against the matter stress tensor TW as

1242 1 v
EFEYT,, = ﬁkuk Ry (B.1)
P
The radial null vector of (4.6) may be written as
1
k* = ——6l' + N(r)oF, (B.2)

a(r)

where the normalization is chosen to avoid factors of i. The corresponding contraction
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So the radial NEC is the statement that this expression is nonnegative. Indeed, one of the

reads as

independent equations of motion (4.9) may be rearranged as
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As all the metric functions are real, the right-hand side of (B.3) is manifestly nonnegative
by virtue of being a sum of squares.
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C Numerically constructing holographic p-wave superfluids

We briefly discuss the procedure for obtaining the holographic p-wave superfluid solutions
of (4.1). We assume the metric ansatz (4.6). We start by expanding the functions around
the horizon r = ry:

m (r) = mo +ma (r =) + O [(r =)’ , (C.1)
o (r)=0co+o1(r—r) +0[(r—m)’], (C.2)
h(r) =ho+hy (r —ra) + O |(r = m)?] (C.3)
6(r) =0+ 1 (r—ra) +0 [(r = )], (C.4)
w (r) = wo+wi (r =)+ O [(r = )] (C.5)

Some of these coefficients are already determined by the physics. Specifically, recall that m
is defined according to

2
Ny =20 2 8
r
where N is the blackening factor. Since N(r;) = 0, we may write
2 4
O:—@jw"% = mozr—h. (C.7)
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Furthermore, for the one-form potential (4.7) to be a well-defined one-form at the horizon,
we must have that A¢,._, =0 [63]. Indeed, note that
¢(r)
Al =g A = —W (C.8)
blows up at r = rp, unless A; vanishes there. Thus, we have that ¢y = 0.

Equipped with these constraints on ¢¢ and mg, we plug the series expansions into
the equations of motion (4.8)—(4.12) and expand around r = ry. This yields five sets of
order-by-order constraints on the coefficients. From the leading O[(r —73,) ] terms in (4.10)
and (4.12), respectively,

hl == O, w1 = 0. (Cg)
Applying these, the equations of motion become
2,.3 12
<m1 X ThdT Wl) +O(r — ) =0, (C.10)
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4 h 1 — ) = 0. 14
l wy + 103 (1 — 272 +O(r—ry) =0 (C.14)
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rp, and « are “physical parameters,” so we keep them fixed in the course of numerically solving
the equations of motion. As for the “shooting parameters” defining a particular solution,
the number of such free parameters may be distilled down to the list {0, ho, wo, ¢1} (as also
stated by [24]). Higher-order coefficients may