Machine Learning with Applications 10 (2022) 100429

Contents lists available at ScienceDirect -
Machine
Learning
wi

Applications

Machine Learning with Applications

journal homepage: www.elsevier.com/locate/mlwa

Tabular machine learning using conjunctive threshold neural networks n

Check for

Weijia Wang *, Litao Qiao, Bill Lin updates
Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, 92093, CA, United States

ARTICLE INFO ABSTRACT

Keywords:

Tabular machine learning
Neural networks

Explainable machine learning

We propose a novel three-layer neural network architecture with threshold activations for tabular data
classification problems. The hidden layer units correspond to trainable neurons with arbitrary weights and
biases and a step activation. These neurons are logically equivalent to threshold logic functions. The output
layer neuron is also a threshold function that implements a conjunction of the hidden layer threshold functions.
This neural network architecture can leverage state-of-the-art network training methods to achieve high
prediction accuracy, and the network is designed so that minimal human understandable explanations can be
readily derived from the model. Further, we employ a sparsity-promoting regularization approach to sparsify
the threshold functions to simplify them, and to sparsify the output neuron so that it only depends on a small
subset of hidden layer threshold functions. Experimental results show that our approach outperforms other

state-of-the-art interpretable decision models in prediction accuracy.

1. Introduction

In machine learning applications like healthcare and criminal justice
where human lives may be deeply impacted, creating decision mod-
els that can provide human understandable explanations is critically
important (Rudin, 2018). In these applications, the datasets are often
provided as tabular data with samples as rows in a table and a common
set of naturally meaningful features as columns. A toy example of a
tabular dataset is shown in Table 1.

Due to their inherent explainability, decision rule sets (Cohen, 1995;
Dash, Giinliik, & Wei, 2018; Lakkaraju, Bach, & Leskovec, 2016; Wang
et al., 2017) are often a popular model class in these tabular learning
problems. Decision rule sets not only provide accurate predictions,
but the corresponding matching rules also provide explanations that
humans can easily understand. In particular, the explanations are ex-
pressed directly in terms of meaningful categorical (e.g., Cholesterol
equal to Normal or High) or numerical (e.g., age) input attributes,
where the binary encoding of categorical and numerical attributes is
well-studied (Dash et al., 2018; Wang et al., 2017). However, they
are not the winning model class in these domains in terms of predic-
tion accuracy. For example, gradient boosted and ensemble decision
trees (Breiman, 2001; Chen & Guestrin, 2016; Ke et al., 2017) and
neural network models (Abutbul, Elidan, Katzir, & El-Yaniv, 2020;
Arik & Pfister, 2019) are generally superior in prediction performance.
However, these models are generally considered to be black-box mod-
els (Rudin, 2018) where the predictions are difficult or impossible
to interpret. This is in sharp contrast to the interpretability of rule-
based sentences that decision rule sets provide, which can be easily
understood by humans.

* Corresponding author.

In this paper, we propose a new neural network architecture for
tabular data called a Conjunctive Threshold Neural Network, or CT-
Net for short. The proposed structure comprises a hidden layer of
threshold logic functions, which are just conventional neurons with
a step activation function that are trainable with arbitrary (positive
or negative) full-precision weights and biases. This neural network
architecture can be trained to achieve high prediction accuracy, but
unlike conventional neural network models, gradient boosting decision
trees, and random decision forests, human understandable explanations
in terms of meaningful input features similar to decision rules can be
easily derived from CT-Net. Also, unlike existing interpretable rule-
learning methods (Dash et al., 2018; Qiao, Wang, & Lin, 2021; Wang
et al.,, 2017) that provide human understandable explanations, we
do not ever explicitly generate a decision rule set from CT-Net. This
means that our network of threshold functions can implicitly encode
potentially complicated rules to achieve high prediction accuracy, but
yet the explanations generated can nonetheless be understandable. In
particular, the explanation derived is provably minimal in the number
of features in the conjunction. Therefore, we believe CT-Net can be
widely used as an replacement for tree ensemble methods (random
forest and gradient boosting trees) in the area where both accuracy and
interpretability are required.

The outline of the paper is as follows: Section 2 summarizes related
work. Section 3 describes our proposed CT-Net architecture. Section 4
describes how provably minimal explanations can be easily derived
from a CT-Net inference. Section 5 describes a sparsity-promoting reg-
ularization approach for training CT-Nets. Section 6 provides extensive
evaluation of our proposed approach. Section 7 concludes the paper.

E-mail addresses: wweijia@eng.ucsd.edu (W. Wang), 11giao@eng.ucsd.edu (L. Qiao), billlin@eng.ucsd.edu (B. Lin).

https://doi.org/10.1016/j.mlwa.2022.100429

Received 21 July 2022; Received in revised form 20 October 2022; Accepted 21 October 2022

Available online 29 October 2022

2666-8270/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.mlwa.2022.100429
https://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2022.100429&domain=pdf
mailto:wweijia@eng.ucsd.edu
mailto:l1qiao@eng.ucsd.edu
mailto:billlin@eng.ucsd.edu
https://doi.org/10.1016/j.mlwa.2022.100429
http://creativecommons.org/licenses/by-nc-nd/4.0/

W. Wang, L. Qiao and B. Lin

Table 1
A toy example of a tabular dataset. The first seven columns are input features, and the
last column is the classification.

Gender Age BP Cholesterol ~ Glucose ~ Smoker Drinker Disease
Male 34 Normal Normal Normal No Yes No
Female 62 High Normal High Yes No Yes
Male 55 High High Normal No No Yes
Female 25 High Normal Normal Yes No No

2. Related work

Besides decision rule sets (Cohen, 1995; Dash et al., 2018; Lakkaraju
et al.,, 2016; Wang et al., 2017), decision lists (Letham, Rudin, Mc-
Cormick, & Madigan, 2015; Rivest, 1987) and decision trees (Breiman,
Friedman, Stone, & Olshen, 1984) are also interpretable rule-based
models. Decision lists are ordered rules in an if-then-else sequence,
and decision trees have paths that can be interpreted as rules. In
addition to providing prediction, these methods also provide human
understandable explanations that can be derived from the matching
rule.

Gradient boosting decision trees (Chen & Guestrin, 2016; Ke et al.,
2017) and random forests (Breiman, 2001) have also been used to pro-
vide better predictions in tabular data classification problems. Although
these methods provide superior prediction performance in comparison
to rule-based methods, they are generally not interpretable. In certain
application areas, their lack of interpretability may make it difficult
to gain public trust for their use, which may hinder their widespread
adoption in these domains.

Building on the notable success that deep neural networks have
shown on perceptual learning tasks, like image classification (He,
Zhang, Ren, & Sun, 2015), researchers have recently turned to neural
network models for tabular data learning as well (Abutbul et al,
2020; Arik & Pfister, 2019; Qiao et al., 2021). The work in Abutbul
et al. (2020) and Arik and Pfister (2019) aim to capture aspects of
gradient boosting decision trees and random forests that have made
these models successful, and they are able to achieve comparable
performance as these approaches with neural models. However, like
gradient boosting decision trees and random decision forests, these
models remain uninterpretable in the sense that they do not provide
explanations that are easily understandable by humans.

In contrast, Qiao et al. (2021) recently proposed a neural network
architecture that directly maps to a decision rule set in disjunctive
normal form. In this architecture, the neurons in the hidden layer
are restricted in a way so that they map directly to a conjunction
(AND) of input features that correspond to interpretable decision rules,
followed by an output neuron that maps to a disjunction (OR) operation
that aggregates a collection of decision rules into a set. This approach
achieves better performance than traditional rule-based and decision
tree methods (Breiman et al., 1984; Cohen, 1995; Dash et al., 2018;
Lakkaraju et al., 2016; Wang et al., 2017) while retaining the ability to
provide human understandable explanations. However, the restrictions
imposed on the hidden layer neurons to have direct one-to-one map-
pings to conjunctive rules unnecessarily limits the search space during
neural net training.

Another body of work aims to develop post-hoc explainers that can
explain predictions from black-box models. Heuristic algorithms are
employed in Ribeiro, Singh, and Guestrin (2016, 2018) to generate
explanations without the knowledge of the entire model. Although a
primary objective of these algorithms is to achieve high fidelity of the
explanations to the original model, the derived explanations cannot
be guaranteed to be completely consistent with the underlying model
distribution.

Finally, the works in Audemard, Koriche, and Marquis (2020), Choi,
Shi, Shih, and Darwiche (2017), Ignatiev, Narodytska, and Marques-
Silva (2018), Izza and Marques-Silva (2021), Shi, Shih, Darwiche, and

Machine Learning with Applications 10 (2022) 100429

Choi (2020) and Shih, Choi, and Darwiche (2018) are on the compila-
tion of models into tractable forms. In these approaches, explanations
consistent with the original model can be queried from the model’s
equivalent tractable form. Our work is complementary in that we aim
for an approach in which a simple and fast algorithm can be applied to
directly derive human understandable explanations from our proposed
model.

3. Conjunctive Threshold Neural Networks

In this section, we introduce the architecture of the proposed Con-
junctive Threshold Neural Network, or CT-Net for short. The network
is designed for tabular classification problems where besides making
accurate predictions, the explanation of decisions is also essential. In
particular, CT-Net is a simple three layer neural network architecture,
comprising an input layer of » input units, a hidden layer of k units,
and an output layer with a single output unit. A toy example is shown
in Fig. 1 for predicting heart disease risk, which we use to illustrate
several key ideas in this section.

Input layer: The input layer consists of » input units, each passing
its corresponding assigned binarized value to each neuron in the hid-
den layer. Tabular datasets often comprises binarized, categorical and
numerical attributes. To handle categorical and numerical attributes,
well-studied pre-processing procedures in the machine learning litera-
ture can be used to encode them into binarized input vectors': standard
one-hot encoding can be used for categorical attributes, and standard
quantile discretization can be used for numerical attributes.

Hidden layer of threshold functions: The hidden layer comprises k
neurons that are trainable with arbitrary (positive or negative) full-
precision weights and biases. They implement threshold functions by
means of a binary step activation function. In Fig. 1, the blue dashed
lines at the inputs of a hidden neuron indicate that the corresponding
features have zero weights, which means they do not appear in the
corresponding threshold function. As discussed in the next section, each
threshold function implicitly implements an underlying Boolean logic
function that encodes logical conditions on the inputs that will lead to
a positive prediction.

Output conjunction layer: The output unit implements a conjunction
of a subset of the k threshold functions in the hidden layer, which is also
implemented as a single threshold function with trainable binarized
weights (more details are discussed in Section 5), where a weight of
1 or 0 indicates if the corresponding threshold function in the hidden
layer is included in or excluded from the conjunction, respectively (a 0
weight is shown as a blue dashed line at the input of the output neuron
in Fig. 1). Further, a dynamic bias based on the weights is employed as
follows:

k
b== w +e. 1
i=1

where ¢ is a small number between 0 and 1 (e.g., ¢ = 0.5), and w is the
binary weight (i.e., 1 or 0) as just discussed. This output threshold unit
implements a logical-AND operation since the output unit can make a
positive prediction (with the logits of €) only if all threshold functions
(that are not excluded with a zero weight) in the hidden layer are
activated, whereas by default, it makes a negative prediction due to
the negative summation of the weights. Since each threshold function
implicitly implements an underlying Boolean logic function, the logical-
AND of these threshold functions also implicitly implements a Boolean
logic function for the network. This conjunction of threshold functions
can be trained to implement any Boolean logic function at the output,

1 Interpretable rule-learning methods (Dash et al., 2018; Qiao et al., 2021;
Wang et al., 2017) widely studied to model tabular classification problems also
commonly assume this input binarization pre-processing step.

W. Wang, L. Qiao and B. Lin

Machine Learning with Applications 10 (2022) 100429

binarized hlgh heart
fi | disease
eature R
risk
vector

blood pressure > 125

Fig. 1. A toy example of the CT-Net architecture with hidden layer neurons as threshold logic functions and the output neuron implementing a conjunction.

which can model any prediction problem that can be encoded into a
binary classifier.

Straight-through estimator: As discussed earlier, the proposed neural
network incorporates the binary step activation function, which is al-
most non-differentiable everywhere. Therefore, we adopt the
straight-through estimator (Bengio, Léonard, & Courville, 2013) to
address this issue. In particular, it was originally proposed in Bengio
et al. (2013) to use the identity function as the derivative of a step
function, while (Courbariaux & Bengio, 2016) further incorporates the
gradient clipping technique to cancel the gradients when the activation
is too large, i.e., the backward function is similar to ReLU, which
also introduces non-linearity into the network. In our approach, we
empirically found it is better to clip the gradients when the full-
precision activation (pre-step activation) is either too large or too small,
which is analogous to the backward function of the clipped ReLU
activation. This approach in practice effectively prevents the weights
from getting infinitely large or small. Mathematically, the straight-
through estimator with the gradient clipping technique that we use to
address this problem is as follows:

83 = 2)

i

0, ifz;<—-lorz>0
8z, otherwise

where z and 2; are the full-precision activation and the binarized
activation after our step function, respectively. L is the classification
p)

loss. g;, = % and g, = f, which are the gradients of classification

loss w.r.t. 2; and z;, respectively.

Similar to the clipped ReLU activation function with a clipping
boundary of 1, the outputs produced by the step function always fall
into the range between 0 and 1. Therefore, our step activation function
can be essentially viewed as a low-precision clipped ReLU function.
However, we note that a floating-point 0 will be directly binarized
to 1 in our approach, which corresponds to a shift introduced by the
binarization, which should be addressed in backward propagation. As
a result, we propose to clip the gradient at —1 and 0 rather than 0 and
1 as in the clipped ReLU activation, and experimental results show this
straight-through estimator work very well in practice.

An example: Consider again the toy example shown in Fig. 1 for pre-
dicting heart disease risk. The input variables x,, x,, ..., x5 correspond
to whether or not the individual is a smoker, overweight, or older than
50, or has high cholesterol or blood pressure, respectively. The instance
shown (in red) is the input assignment (x,,x,, x3,x4,x5) = [10110].
With this instance, threshold functions f; and f; evaluate to true
(i.e., evaluate to 1), whereas threshold function f, is directly turned off
by the output layer. For f;, the threshold function evaluates to true if
either the individual is a smoker or overweight as the weights of x; and

x, are both individually greater than 0.8. For f3, the threshold function
evaluates to true if any two out of the three conditions (older than 50,
high cholesterol, or high blood pressure) are true, since the sum of the
weights of any two conditions will be sufficient to exceed 1.9. Indeed,
the classifier will make a positive prediction that this individual is at a
high risk of heart diseases since both f; and f; are activated.

To guarantee CT-Net makes a positive prediction, both f; and
f3 need to evaluate to true at the same time (because the output
neuron implements a conjunction of inputs with 1 weights), where the
individual being a smoker suffices the first threshold function, and what
sufficiently activates f is that the individual is older than 50 and has
high cholesterol. Therefore, the explanation for why this individual is
predicted to have a high heart disease risk is smoker, older than 50 and
high cholesterol. While the explanation for this prediction is unique, it
is possible that there exist multiple explanations for certain positive
predictions in some scenarios. As detailed later in the paper, provably
minimal explanations can be readily derived for any given positive
prediction.

Unlike existing rule-learning methods (Dash et al., 2018; Qiao et al.,
2021; Wang et al.,, 2017), we do not ever explicitly generate a de-
cision rule set from the conjunction threshold network. This means
that our network of threshold functions can implicitly encode poten-
tially complicated rules to achieve high prediction accuracy. State-
of-the-art stochastic gradient descent training methods can be used
to achieve high prediction accuracy. Also, well-developed sparsity-
promoting techniques can be invoked to simplify the network in a
way that leads to succinct threshold functions, as discussed later in the
paper. In the next section, we describe more formally how provably
minimal explanations can be readily derived for positive predictions
made using CT-Net.

4. Deriving explanations

In this section, we describe how provably minimal human under-
standable explanations can be readily derived from a CT-Net prediction.

4.1. Threshold functions and slack
It should be clear from the previous section that a neuron in the

hidden layer of the CT-Net corresponds to a threshold function of the
form

z2(x) = wI'x + b, 3
1 ifzx)20
fo = {0 otherwise. “

When the n inputs are binary features, a threshold function f im-
plements an underlying Boolean logic function f : {0,1}" — {0,1}.

W. Wang, L. Qiao and B. Lin

As discussed, a CT-Net is a conjunction (logical-AND) of k threshold
functions, F = {fj, f,...., fi}. As such, a CT-Net also implements an
underlying Boolean logic function F {0,1}" — {0,1}. Therefore,
Boolean algebra terminologies and properties are applicable to both
individual threshold functions as well as the overall CT-Net, which we
summarize here.

An instance « € {0, 1}" is a specific assignment to the input features.
With respect to the CT-Net F, a positive instance is one such that
F(a) = 1, and a negative instance is one such that F(a) = 0. A literal ¢,
is a feature (positive literal) or its negation (negative literal), denoted
as ¢; = x; and ¢; = x;, respectively. A term z is a consistent conjunction
of literals, e.g., x| A X, A x3, or simply x,X,x3.? The length of z, denoted
as |z|, is the number of literals that it includes. We say that a term z;
covers or contains another term m;, written as z; = x;, if and only if 7
includes all the literals in z; (e.g., x; X, covers x;X,x3).

An implicant = of a Boolean function F is a term that satisfies F,
written as 7 = F, meaning all instances covered by = are positive
instances. A prime implicant (or simply a prime) is an implicant that is
not covered by any other implicant.®

We next describe several concepts that we will use in the algorithm
for generating explanations for positive predictions of the CT-Net.

Definition 1 (Slack). For an instance a, the slack of a with respect to a
threshold function f corresponds to z(«) in Eq. (3). Therefore, f(a) =1
if the slack is non-negative, and 0 otherwise. For a term x, the slack
of z is defined as the minimum slack achieved by the instances that =
covers:

z(r) = min z(a), S.t. a = 7. 5)

The slack of = can be directly computed by setting every feature x;
to its worst-case value if it does not appear in the term z: i.e., set x; = 0
if w; > 0 and x; = 1 otherwise. As such, z(z) is minimized.

Definition 2 (Group Slack). Let F be the Boolean logic function defined
by the conjunction of k threshold logic functions, { f|, f5. ..., f}. For an
instance a, let z;(a) be the slack of « with respect to the corresponding
threshold function f;. Then the group slack of a with respect to F cor-
responds to the minimum among the slacks of the threshold functions:

zp(a) = miin z;(a). 6)

Therefore, F(a) = 1 if the group slack is non-negative, which implies
the slacks of all individual threshold functions to be non-negative, and 0
otherwise. For a term z, the group slack of r is defined as the minimum
slack achieved by the instances that = covers:

zp(7n) = minzp(a), st a= x. (2]

Here also, the group slack of z can be directly computed by setting
every feature x; to its worst-case value if it does not appear in the term
7 e, set x; = 0if w; > 0 and x; = 1 otherwise. As such, zp(r) is
minimized. Note that for zp(z) to be non-negative, the slacks of all
individual z;(x) must also be non-negative.

4.2. Generating explanations

As discussed, a CT-Net F is equivalent to an underlying Boolean
logic function, which can be viewed as a binary classifier, where F(a) =
1 means the decision is positive, and negative otherwise. Intuitively, an
explanation for a positive instance is some subset of its literals.

2 We will use [101] as a shorthand for the term x, %,x;. As another example,
we will use [10—] as a shorthand for the term x,%,, with “~” to mean that a
literal for the corresponding feature is not included in the term.

3 The terminologies term, implicant, and primes apply to any Boolean logic
function, including both the individual threshold functions f; and the overall
logic function F induced by the CT-Net.

Machine Learning with Applications 10 (2022) 100429

Referring to the example depicted in Fig. 1, an explanation for the
overall CT-Net requires it to be an explanation for both f, and f3, as
the CT-Net output is a conjunction of both threshold functions. In this
example, being a smoker suffices to activate f|, and being older than 50
with high cholesterol suffices to activate f;. Therefore, an explanation
as to why this individual is predicted to have a high heart disease risk
is because the individual is a smoker and older than 50, and has high
cholesterol. We formalize below what explanations are and how they
can be readily derived from a CT-Net prediction.

Definition 3 (Explanation). An explanation for a positive decision on an
instance a is an implicant that contains the instance.

Definition 4 (Minimal Explanation). A minimal explanation is a prime
that contains the instance.

There can be different explanations that are consistent with the
prediction that a CT-Net makes for a particular instance. From a user’s
perspective, simpler explanations are better, i.e. its length should be
short, so that it can be easily comprehended. Also, shorter explanations
usually cover more feature space, and thus provide users with more
insights into the behavior of the CT-Net.

Algorithm 1 Derive Minimal Explanation

Input: A set of threshold functions F = {f}, 5, ...
stance «

Output: A minimal explanation r

, fx}, positive in-

T <o
while = # ¢ do
L=90
for 7, € = do
if zp(x \ {¢;}) > 0 then
L=LuU(t)
end if
end for
if £ = ¢ then
return
else
12: ¢; < select_candidate(L)
13: 7w —x\{¢}
14: end if
15: end while
16: return =

— =
HQYRNDADAR W

We now describe our algorithm for finding a minimal explanation
for a positive prediction of a CT-Net. The pseudo code is outlined in
Algorithm 1. In this algorithm, we start by treating the instance «
itself as the current explanation z, and we then iteratively remove one
feature at a time from the current explanation as long as a candidate
feature can be identified such that the slack z;(x) remains non-negative
for all threshold functions or until there are no more features.

There are two key parts to Algorithm 1. The first key part is in
Lines 3-8, in which a list £ of features are identified as candidates for
removal. A feature 7; is a candidate for removal if its removal does not
cause the slack of any threshold function to become non-negative. That
is

2\ {£;1) 2 0.V,

If no such candidate exists or if there are no more features, then we
have arrived at a minimal explanation.

The second key part is in Line 12, in which the select_candidate
function is called to select a candidate feature from the set £. One
approach is to select the feature #; from £ that maximizes the average
slack among the threshold functions. That is, let z;(x\ {#;}) be the slack

W. Wang, L. Qiao and B. Lin

for threshold function f; by removing ¢;, and let

Z4e = average{z;(z \ {¢; D} 8

We then select the #; that maximizes z,,,.
Alternatively, we can select the feature #; from £ that maximizes
the minimum slack among the threshold functions. That is, let

Zyin = 2p(@ \ {£;}) = min{z;(x \ {£;D}. ©

In this alternative approach, the #; that maximizes z,,;, would be
selected.

Experimentally, we found that maximizing the average slack (i.e.,
Eq. (8)) to be more effective, and thus this is the approach that we
adopted in our evaluation section (cf. Section 6).

Theorem 1. The explanation derived using Algorithm 1 is minimal.

Proof. We prove this theorem by contradiction. Assume the explana-
tion 7, generated with Algorithm 1 is not minimal. Then there must
exists another prime 7z, such that =, = =, (z, covers ;). This implies
there exists a literal #; such that ¢, € z; and ¢; ¢ =,. Since 7z, is a
prime, it must guarantee that all threshold functions in the hidden layer
evaluate to true, i.e., zp(7,) > 0. This would mean further removing
¢; from x; would still produce a positive group slack. However, this
is contradictory to Algorithm 1 since removing any additional feature
from z; would lead to a negative group slack (i.e., £L=¢). [

5. Sparsity-Promoting training of CT-Net

We leverage the stochastic gradient descent (SGD) algorithm to
efficiently train CT-Net. In particular, a binary cross-entropy function
is used as the loss function to measure the error between the predicted
output and the real labels. We recognize that the step functions have
zero-gradients everywhere except 0, and we tackle this problem by
employing a straight-through estimator approach (Bengio et al., 2013)
with a gradient clipping technique to back-propagate gradient updates
through the activations of threshold functions in the hidden layer.

It should be clear from the previous section that zero weights in a
threshold function mean that the corresponding inputs will not have
any effect on the logic of that threshold function, and the correspond-
ing threshold formula becomes simpler. Intuitively, maximizing the
sparsity of the threshold functions in the hidden layer encourages
simpler explanations. Further, our algorithms for deriving explanations
can also benefit from having weights that have small absolute values.
This is because they will less impact on the available slack of the
corresponding threshold function when removed.

To incorporate the idea proposed above in the training process,
we propose to add a sparsity-promoting regularizer to encourage both
zero weights and weights with small absolute values. In particular, we
employ an improved version of L; regularization called reweighted
L, regularization (Candes, Wakin, & Boyd, 2007), which drives the
weights with smaller absolute values down to zero faster by giving
those weights relative larger gradients. Mathematically, the reweighted
L, minimization can be achieved by employing a log-sum penalty term
as the regularization loss

LrW) =log(IWl; +e), (10)

where ¢ > 0 is a small value added to ensure numerical stability
(e.g., € = 0.1). To even encourage more zero weights in the threshold
functions, we further prune the weights with absolute values below a
certain threshold by setting them directly to zero (Han, Pool, Tran, &
Dally, 2015).

As discussed in the previous section, zero weights in the output layer
are also helpful in excluding the unnecessary threshold functions of
the hidden layer from the conjunction. Therefore, the reweighted L,
minimization is applied again to the output layer to promote sparsity.
However, since the binarized weights are required for the output

Machine Learning with Applications 10 (2022) 100429

Table 2
The details of the datasets used in the experiment. The imbalance ratio is calculated
as the number of negative instances divided by the number of positive instance.

Dataset # Instances # Features Imbalance ratio
Adult 30162 14 3.02
Magic 19020 10 1.84
House 22784 16 0.42
Recidivism 8680 16 1.72
Chess 28056 6 1.48
Retention 10000 8 1.96
Churn 7032 19 2.76
Airline 25893 22 1.28
Heloc 10459 23 1.09
Churn2 10000 10 3.91
Surgical 14635 24 2.97

layer, along with pruning the weights below a certain threshold as
in the hidden layer, during the feed-forward phase, we also set the
weights above the threshold directly to one, while we maintain and
keep updating the full-precision values of the weights through back-
propagation. Note that negative weights are not expected in the output
layer, so we initialize the full-precision weights to be all one and always
prune the weights below the positive threshold (whereas weights are
also compared with a negative threshold in the hidden layer).

With the regularizer applied to the hidden layer and output layer,
the overall loss function we optimize for becomes as follows: we add a
regularization term into the loss function of the form

L=CLpop+aLy + MLy, an

where L pcp is the binary cross-entropy loss, L and L, are the regu-
larization loss as explained in Eq. (10) for the hidden layer and output
layer, respectively, and 4, and 4, are their corresponding regularization
coefficients.

6. Experimental evaluation

Datasets. In this section, we evaluated the proposed CT-Net along
with a set of baseline approaches on 11 publicly available tabular
classification datasets. Three datasets are from UCI Machine Learn-
ing Repository (Dua & Graff, 2017): Adult Census (adult), MAGIC
Gamma Telescope (magic), and Chess: King-Rook vs. King (chess).
Four datasets are from Kaggle: Telco Customer Churn (churn), Churn
Modeling (churn2), Dataset Surgical binary classification (surgical),
and Airline Passenger Satisfaction (airline). The other four datasets
are: House_16H (house) (Vanschoren, van Rijn, Bischl, & Torgo, 2013),
TED Dataset (retention) (Arya et al., 2019), Predicting Recidivism in
North Carolina, 1978 and 1980 (recidivism) (Schmidt & Witte, 1988)
and Home Equity Line of Credit Dataset (heloc) (Chen et al., 2018).
Most of these datasets consist of more than 10,000 instances that
originally include binary, categorical, and numerical attributes. More
details of the datasets are shown in Table 2 As we can see from the
“imbalance ratio” column of Table 2, the datasets selected vary from
nearly balanced (1.09) to considerably imbalanced (3.91). Although
other evaluation metrics such as Fl-score might be better suited for
imbalanced datasets, we choose to use the test accuracy that is much
easier to interpret and widely used in the experiments of papers (Dash
et al., 2018; Wang et al., 2017) on the similar topic.

Baselines and Pre-processing. The baseline approaches evaluated as
comparisons consist of four rule learners, including Decision Rule Net
(DR-Net) (Qiao et al., 2021), the Column-Generation-Based algorithm
(CG) (Dash et al., 2018), RIPPER (Cohen, 1995), and Bayesian Rule
Sets (BRS) (Wang et al., 2017); and three traditional machine learning
classifiers, including decision trees (CART), random forests (RF), and
gradient boosting trees (XGB). In particular, RIPPER is an old variant
of the Sequential Covering algorithm for greedily mining rule set from

W. Wang, L. Qiao and B. Lin

Table 3
Average test accuracy based on the nested 5-fold cross-validation. Standard deviations
are in parentheses.

Dataset CT-Net DR-Net CG RIPPER BRS CART RF XGB
Adult 84.08 8255 82.60 82.25 78.78 82.44 84.03 84.41
(0.46) (0.61) (0.62) (0.85) (0.58) (0.35) (0.55) (0.19)
Magic 84.91 83.91 83.33 82.86 81.37 83.18 86.71 87.16
s (0.56) (0.53) (0.59) (0.52) (0.73) (0.44) (0.48) (0.36)
House 88.47 86.07 83.80 81.43 83.26 85.10 88.49 88.92
(0.40) (0.41) (0.78) (3.19) (0.55) (0.60) (0.19) (0.35)
R 66.24 64.09 64.57 64.84 61.98 62.85 66.77 64.33
Recidivism
(1.00) (0.46) (0.67) (0.36) (0.75) (0.87) (0.66) (1.25)
Chess 91.47 84.47 81.93 85.46 74.66 85.36 92.63 94.98
(0.42) (0.51) (0.50) (1.04) (2.15) (0.40) (0.42) (0.36)
. 93.85 87.78 90.77 88.92 89.37 90.11 93.43 94.29
Retention
(0.46) (0.37) (0.57) (0.58) (1.60) (0.65) (0.42) (0.28)
Churn 80.36 78.85 79.21 78.27 76.74 79.00 80.35 77.45
(1.30) (0.61) (1.07) (0.39) (1.28) (0.57) (0.93) (0.96)
Airline 95.03 93.32 90.10 93.08 90.71 90.21 94.79 95.94
(0.41) (0.30) (0.31) (1.27) (0.46) (0.43) (0.42) (0.23)
Heloc 71.69 71.36 70.05 68.85 70.82 70.00 71.95 70.39
(0.80) (0.75) (0.43) (1.19) (0.74) (1.19) (0.67) (0.56)
Churn2 85.35 8597 85.68 85.07 85.890 84.33 86.05 85.26
(0.34) (0.07) (0.59) (0.39) (0.55) (0.08) (0.54) (0.68)
. 83.64 84.78 80.38 83.35 80.25 79.40 8290 85.26
Surgical

(0.75) (0.58) (0.58) (1.05) (0.49) (0.59) (0.31) (0.33)

the dataset, whereas DR-Net, BRS and CG are more recent rule-set-
generation classifiers that optimize interpretability and accuracy at the
same time. We use the CART (Breiman et al.,, 1984) algorithm for
learning decision trees, whereas random forest (RF) (Breiman, 2001)
and XGBoost (XGB) (Chen & Guestrin, 2016) serve as uninterpretable
baselines to illustrate the typical performances that black-box models
can achieve on the evaluated datasets. We used scikit-learn (Pedregosa
et al., 2011) implementations for CART and RF. The implementations of
all baseline models are publicly available on GitHub.* For all datasets,
we encoded the categorical and numerical attributes into binarized
features according to the scheme described in Qiao et al. (2021).
Moreover, for BRS and CG, negations of the binarized features are
appended along with their positive counterparts, e.g., non-smoker vs.
smoker, according to the steps described in their experimental sections
so that negative literals can be considered in their rule sets, which is
required in their papers.

CT-Net Configurations and Parameter Tuning. We used the Adam
optimizer with a fixed learning rate of 10~ when evaluating CT-
Net. In addition, we incorporated the sparsity-promoting regularization
discussed before, so we did not further apply L, regularization (weight
decay) to the experiments. The neural networks were constructed with
100 neurons in the hidden layer and we let our regularization technique
prune the unnecessary neurons. For simplicity, we used a mini-batch
size of 2000 and all networks were trained for 2000 epochs to guarantee
complete convergence. We employed the nested 5-fold cross-validation
to select the parameters that maximize the training accuracy. In par-
ticular, each dataset was shuffled (with a fixed seed to ensure the
consistency for all approaches) and split into 5 training—testing pairs,
for each of which we derived a set of parameters that maximize the
accuracy on the training subset. The parameters were then adopted to
evaluate the corresponding training-testing pair and the final results
were produced by averaging the performance over the 5 pairs. To

4 DR-Net (https://github.com/Joeyonng/decision-rules-network); CG (ht
tps://github.com/Trusted-Al/AIX360); RIPPER (https://github.com/imoscov
itz/wittgenstein); BRS (https://github.com/wangtongada/BOA); scikit-learn
(https://github.com/scikit-learn/scikit-learn); xgboost (https://github.com/
dmlc/xgboost).

Machine Learning with Applications 10 (2022) 100429

Table 4

Statistics of CT-Net after pruning, where # pruned is the average number of neurons
pruned in the hidden layer and sparsity represents the average percentage of the zero
weights in the remaining neurons.

Dataset # Pruned Sparsity
Adult 97.0 63.28%
Magic 96.8 47.00%
House 97.2 54.21%
Recidivism 79.2 44.75%
Chess 45.4 72.57%
Retention 72.8 71.83%
Churn 97.2 71.20%
Airline 89.6 65.30%
Heloc 98.2 43.05%
Churn2 77.2 79.59%
Surgical 96.8 67.93%

be specific, we tune the regularization coefficients 4, and A, for CT-
Net, the minimum number of samples per leaf for CART and RF, the
regularization term for XGBoost, and the same parameters for DR-Net,
CG, RIPPER, and BRS as discussed in Qiao et al. (2021).

Classification Performance. The classification performances of CT-
Net and other baseline approaches were evaluated based on accuracy.
In particular, the accuracy is the test accuracy computed based on the
nested 5-fold cross-validation as previously explained. The accuracies
for all models are summarized in Table 3. As can be observed in Table 3,
CT-Net achieves the best test accuracy among all interpretable models
across all datasets except for churn2 and surgical, which is close to
or even higher than the black-box classifiers on some of the datasets
(e.g., adult, recidivism, and retention). This reflects the significant
advantage of CT-Net on its generalization capability.

We further analyzed the results in Table 3 using a two-step proce-
dure recommended in Demsar (2006), which consists of a Friedman
test to check whether all classifiers perform similarly and a follow-up
Nemenyi test to compare pairs of the classifiers. Applying the Friedman
test, we derived Friedman statistic to be 40.39, which is larger than the
critical value of the chi-squared distribution with 7 degrees of freedom
;(72 = 14.07 for a = 0.05. Thus we can reject the null hypothesis that
all classifiers tested have the equal performance. Then we continue to
use Nemenyi test to compare whether there is significant difference
between all pairs of the classifiers and the results are shown in Fig. 2.
As we can see from the figure, CT-Net has the second highest average
rank that is positioned between Random Forest and XGBoost, proving
that CT-Net can achieve the state-of-the-art predictive performances
similar to other black-box models. Compared with the interpretable
models, CT-Net has shown to be statistically significantly better than
RIPPER, CART, and BRS in terms of the testing accuracy, which demon-
strates that CT-Net can be considered as a great alternative to other
interpretable models.

Effects of Sparsity-Promoting Regularization. In our evaluation, the
number of threshold functions, i.e., the number of effective neurons in
the hidden layer, can be up to 100 depending on the parameter tuning,
which at the same time guarantees enough generalization capacity
and increases the complexity. As discussed in Section 5, we employed
the sparsity-promoting regularization technique in our training pro-
cedure to attenuate overfitting and simplify the threshold functions.
In particular, our regularization approach can not only sparsify the
hidden layer, but also directly turn off the entire threshold function
by pruning its corresponding weight in the output layer. We evalu-
ated the performance of our regularization technique in both ways
and the results are summarized in Table 4. As can be observed, the
number of pruned neurons varies significantly from 45% (chess) to
98% (heloc), which validates the effectiveness of our regularization
approach in removing redundant capacity while preserving the nec-
essary neurons based on the complexity of the dataset. Further, the
average sparsity of the remaining neurons is generally greater than

https://github.com/Joeyonng/decision-rules-network
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/Trusted-AI/AIX360
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/imoscovitz/wittgenstein
https://github.com/wangtongada/BOA
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
https://github.com/dmlc/xgboost

W. Wang, L. Qiao and B. Lin

Machine Learning with Applications 10 (2022) 100429

3}
b {
1 2 3 4 5 6 7 8
RF BRS
CT-Net CART
XGB RIPPER
DR-Net «©

Fig. 2. Results of Nemenyi test for all classifiers. Groups of classifiers that are not significantly different at « = 0.1 are connected.

50% except for the magic, recidivism, and heloc datasets, indicating
the training procedure effectively excludes any literals that have little
contribution to the prediction. In particular, it can be seen that while a
relatively small number of neurons are pruned for chess, the remaining
sparsity is higher than other datasets. This suggests that regularization
can capture the underlying logic of the datasets and find a correct
direction to simplify the neural network without severely hurting the
generalization.

7. Conclusion

In this paper, we proposed a three-layer neural network architec-
ture called CT-Net that can be trained for classifying tabular data to
achieve high prediction accuracy. In particular, the trainable hidden
layer neurons with step activation function logically correspond to a
set of threshold logic functions, while the output layer further con-
structs a conjunction of these threshold functions. In addition, once
the network is trained, for any positive prediction, a provably minimal
explanation can be readily derived from the model. We further adopt
a sparsity-promoting regularization technique to sparsify the network
and simplify the threshold functions. Experimental results demonstrate
that our approach has significant advantages on producing accuracy
predictions over other state-of-the-art interpretable decision models.

Several potential improvements can be developed in the future
work. First, while our proposed output layer essentially performs a
logical conjunction (AND), other logic operations can also be used
in place of the conjunctive operation, including OR, XOR, or simply
a standard fully-connected layer. Second, multiple proposed layers
that encode a logical operation can be stacked together to provide
higher network capacities. Third, the current work is focused on binary
classification with a single output neuron. Future work may extend the
network to be a multi-class classifier by increasing the number of output
neurons with additional modifications.

CRediT authorship contribution statement

Weijia Wang: Methodology, Formal analysis, Writing — original
draft. Litao Qiao: Software, Validation, Data curation, Writing — orig-
inal draft. Bill Lin: Conceptualization, Writing — review & editing
Supervision, Funding acquisition.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
Data availability

Data will be made available on request.

Acknowledgments

This research has been supported in part by the National Science
Foundation, United States (NSF IIS-1956339).

References

Abutbul, A., Elidan, G., Katzir, L., & El-Yaniv, R. (2020). DNF-net: A neural architecture
for tabular data. CoRR, abs/2006.06465, Retrieved from URL https://arxiv.org/abs/
2006.06465.

Arik, S. O., & Pfister, T. (2019). TabNet: Attentive interpretable tabular learning. CoRR,
abs/1908.07442, Retrieved from URL http://arxiv.org/abs/1908.07442.

Arya, V., Bellamy, R. K. E., Chen, P.-Y., Dhurandhar, A., Hind, M., Hoffman, S.
C., Houde, S., Liao, Q. V., Luss, R., Mojsilovi¢, A., Mourad, S., Pedemonte, P.,
Raghavendra, R., Richards, J., Sattigeri, P., Shanmugam, K., Singh, M., Varshney, K.
R., Wei, D., & Zhang, Y. (2019). One explanation does not fit all: A toolkit and
taxonomy of ai explainability techniques. Retrieved from https://arxiv.org/abs/
1909.03012.

Audemard, G., Koriche, F., & Marquis, P. (2020). On Tractable XAI Queries based
on Compiled Representations. In Proceedings of the 17th international conference on
principles of knowledge representation and reasoning (pp. 838-849). http://dx.doi.org/
10.24963/kr.2020/86, Retrieved from https://doi.org/10.24963/kr.2020/86.

Bengio, Y., Léonard, N., & Courville, A. C. (2013). Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432,
Retrieved from http://arxiv.org/abs/1308.3432.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. http://dx.doi.org/
10.1023/A:1010933404324, Retrieved from.

Breiman, L., Friedman, J., Stone, C., & Olshen, R. (1984). Classification and regression
trees. Taylor & Francis, Retrieved from https://books.google.com/books?id=JwQx-
WOmSyQC.

Candes, E. J., Wakin, M. B., & Boyd, S. P. (2007). Enhancing sparsity by reweighted L1
minimization. http://dx.doi.org/10.48550/ARXIV.0711.1612, arXiv, Retrieved from
https://arxiv.org/abs/0711.1612.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. CoRR,
abs/1603.02754, Retrieved from http://arxiv.org/abs/1603.02754.

Chen, C., Lin, K., Rudin, C., Shaposhnik, Y., Wang, S., & Wang, T. (2018). An
interpretable model with globally consistent explanations for credit risk. CoRR,
abs/1811.12615, Retrieved from http://arxiv.org/abs/1811.12615.

Choi, A., Shi, W., Shih, A., & Darwiche, A. (2017). Compiling neural networks into
tractable boolean circuits. Intelligence.

Cohen, W. W. (1995). Fast effective rule induction. In Proceedings of the twelfth
international conference on international conference on machine learning (pp. 115-123).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc..

Courbariaux, M., & Bengio, Y. (2016). BinaryNet: Training deep neural networks with
weights and activations constrained to +1 or -1. CoRR, abs/1602.02830, Retrieved
from http://arxiv.org/abs/1602.02830.

Dash, S., Giinliik, O., & Wei, D. (2018). Boolean decision rules via column generation.
CoRR, abs/1805.09901, Retrieved from http://arxiv.org/abs/1805.09901.

Demsar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research, 7, 1-30.

Dua, D., & Graff, C. (2017). UCI machine learning repository. Retrieved from http:
//archive.ics.uci.edu/ml.

Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and connections
for efficient neural networks. CoRR, abs/1506.02626, Retrieved from http://arxiv.
org/abs/1506.02626.

He, K., Zhang, X., Ren, S.,, & Sun, J. (2015). Deep residual learning for image
recognition. CoRR, abs/1512.03385, Retrieved from http://arxiv.org/abs/1512.
03385.

Ignatiev, A., Narodytska, N., & Marques-Silva, J. (2018). Abduction-based explanations
for machine learning models. CoRR, abs/1811.10656, Retrieved from http://arxiv.
org/abs/1811.10656.

Izza, Y., & Marques-Silva, J. (2021). On explaining random forests with SAT. CoRR,
abs/2105.10278, Retrieved from https://arxiv.org/abs/2105.10278.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y.
(2017). LightGBM: A highly efficient gradient boosting decision tree. In Proceedings
of the 31st international conference on neural information processing systems (pp.
3149-3157). Red Hook, NY, USA: Curran Associates Inc..

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint
framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining (pp. 1675-1684).
New York, NY, USA: Association for Computing Machinery, http://dx.doi.org/10.
1145/2939672.2939874, Retrieved from.

http://arxiv.org/abs/2006.06465
https://arxiv.org/abs/2006.06465
https://arxiv.org/abs/2006.06465
https://arxiv.org/abs/2006.06465
http://arxiv.org/abs/1908.07442
http://arxiv.org/abs/1908.07442
https://arxiv.org/abs/1909.03012
https://arxiv.org/abs/1909.03012
https://arxiv.org/abs/1909.03012
http://dx.doi.org/10.24963/kr.2020/86
http://dx.doi.org/10.24963/kr.2020/86
http://dx.doi.org/10.24963/kr.2020/86
https://doi.org/10.24963/kr.2020/86
http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/1308.3432
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
https://books.google.com/books?id=JwQx-WOmSyQC
https://books.google.com/books?id=JwQx-WOmSyQC
https://books.google.com/books?id=JwQx-WOmSyQC
http://dx.doi.org/10.48550/ARXIV.0711.1612
https://arxiv.org/abs/0711.1612
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1603.02754
http://arxiv.org/abs/1811.12615
http://arxiv.org/abs/1811.12615
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb11
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb12
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb12
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1602.02830
http://arxiv.org/abs/1805.09901
http://arxiv.org/abs/1805.09901
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb15
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb15
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1811.10656
http://arxiv.org/abs/1811.10656
http://arxiv.org/abs/1811.10656
http://arxiv.org/abs/1811.10656
http://arxiv.org/abs/2105.10278
https://arxiv.org/abs/2105.10278
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb21
http://dx.doi.org/10.1145/2939672.2939874
http://dx.doi.org/10.1145/2939672.2939874
http://dx.doi.org/10.1145/2939672.2939874

W. Wang, L. Qiao and B. Lin

Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers
using rules and Bayesian analysis: Building a better stroke prediction model. The
Annals of Applied Statistics, 9(3), http://dx.doi.org/10.1214/15-a0as848, Retrieved
from.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn:
Machine learning in python. Journal of Machine Learning Research, 12(null),
2825-2830.

Qiao, L., Wang, W., & Lin, B. (2021). Learning accurate and interpretable decision
rule sets from neural networks. CoRR, abs/2103.02826, Retrieved from https:
//arxiv.org/abs/2103.02826.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?": Explaining
the predictions of any classifier. http://dx.doi.org/10.48550/ARXIV.1602.04938,
arXiv. Retrieved from https://arxiv.org/abs/1602.04938.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic
explanations. In AAAI Retrieved from https://www.aaai.org/ocs/index.php/AAAI/
AAATI18/paper/view/16982.

Machine Learning with Applications 10 (2022) 100429

Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2(3), 229-246.

Rudin, C. (2018). Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. http://dx.doi.org/10.48550/ARXIV.
1811.10154, arXiv. Retrieved from https://arxiv.org/abs/1811.10154.

Schmidt, P., & Witte, A. D. (1988). Predicting recidivism in north Carolina, 1978 and
1980. Inter-university Consortium for Political and Social Research.

Shi, W., Shih, A., Darwiche, A., & Choi, A. (2020). On tractable representations of
binary neural networks.

Shih, A., Choi, A., & Darwiche, A. (2018). A symbolic approach to explain-
ing Bayesian network classifiers. http://dx.doi.org/10.48550/ARXIV.1805.03364,
arXiv. Retrieved from https://arxiv.org/abs/1805.03364.

Vanschoren, J., van Rijn, J. N., Bischl, B., & Torgo, L. (2013). Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2), 49-60. http://dx.doi.org/
10.1145/2641190.2641198, Retrieved from.

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., & MacNeille, P. (2017). A
Bayesian framework for learning rule sets for interpretable classification. Journal
of Machine Learning Research, 18(70), 1-37, Retrieved from http://jmlr.org/papers/
v18/16-003.html.

http://dx.doi.org/10.1214/15-aoas848
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb24
http://arxiv.org/abs/2103.02826
https://arxiv.org/abs/2103.02826
https://arxiv.org/abs/2103.02826
https://arxiv.org/abs/2103.02826
http://dx.doi.org/10.48550/ARXIV.1602.04938
https://arxiv.org/abs/1602.04938
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16982
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb28
http://dx.doi.org/10.48550/ARXIV.1811.10154
http://dx.doi.org/10.48550/ARXIV.1811.10154
http://dx.doi.org/10.48550/ARXIV.1811.10154
https://arxiv.org/abs/1811.10154
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb30
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb31
http://refhub.elsevier.com/S2666-8270(22)00104-9/sb31
http://dx.doi.org/10.48550/ARXIV.1805.03364
https://arxiv.org/abs/1805.03364
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1145/2641190.2641198
http://jmlr.org/papers/v18/16-003.html
http://jmlr.org/papers/v18/16-003.html
http://jmlr.org/papers/v18/16-003.html

	Tabular machine learning using conjunctive threshold neural networks
	Introduction
	Related Work
	Conjunctive Threshold Neural Networks
	Deriving Explanations
	Threshold Functions and Slack
	Generating Explanations

	Sparsity-Promoting Training of CT-Net
	Experimental Evaluation
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

