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Trans-IR flows to black hole singularities
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We study analytic continuations of holographic renormalization group (RG) flows beyond their infrared
(IR) fixed points. Such “trans-IR” flows are a natural framework for describing physics inside of black
holes. First, we construct a monotonic holographic a-function which counts degrees of freedom along a
trans-IR flow. Using this function, we argue that the degrees of freedom “thin out” and vanish when flowing
to a trans-IR endpoint, represented by a Kasner singularity. We then recast well-studied quantum
information probes in the language of trans-IR flows, finding that entanglement and complexity from
volume generally fail to fully probe the trans-IR while 2-point correlations and complexity from action

generally do so in a complementary manner.
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I. INTRODUCTION

A “trans-IR” flow is constructed by analytically contin-
uing a renormalization group (RG) flow beyond its IR fixed
point to complex energy scales. In holographic setups
where an RG flow is simply gravity, there is a natural
interpretation of following the trans-IR flow of a UV
thermal state—accessing a black hole’s interior by flowing
towards the singularity [1]. That analytic continuation is
needed to sensibly relate boundary field-theoretic data to
bulk geometry probing the interior is well-known in the
AdS/CFT correspondence [2-6]. In this spirit, we propose
that the language of trans-IR flows is a natural framework
for discussing physics inside of black holes.

From bulk metric functions, we first construct a
“thermal” analog to more conventional holographic
a-functions [7,8], calling it ap. While a; is stationary
at both the boundary (the UV) and the horizon (the IR),
it is still monotonic even along the trans-IR flow, thus
satisfying an extension of the holographic a-theorem
[9,10] to imaginary energy scales. When looking to “free
Kasner flows” [1,11], we find a; — O at the singularity
(the trans-IR endpoint). In other words, all degrees of
freedom are lost at the singularity. We then discuss
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quantum information in the context of trans-IR flows
corresponding to static black holes. Entanglement
[12,13] and complexity from volume [14-16] only probe
the trans-IR partially, but 2-point correlations [3,17] and
complexity from action [18,19] probe it fully.

Let us briefly review holographic RG flow [20]. The bulk
“radial” extra dimension p of AdS is treated as an energy
scale parametrizing an RG flow from a UV conformal field
theory (CFT) on the boundary to an IR field theory deep in
the bulk. The bulk gravitational dynamics are also the
dynamics of this flow [21-26]. We trigger RG flows by
adding dynamical bulk fields which are dual to relevant
operators on the boundary [27]. For example, take the
deformation

(1)

FIG. 1. A two-sided asymptotically anti—de Sitter (AdS) black
hole, with the exterior in gray and the interior in red. The lines are
constant radial slices, with the horizon being the dashed lines.
The black arrow represents a conventional UV — IR holographic
RG flow while the red arrow indicates a trans-IR flow para-
metrized by a timelike radial coordinate.
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QO is arelevant scalar operator and ¢ is a source. In the bulk,
we have a gravity + scalar theory. For Einstein gravity, these
flows have been studied extensively [28-31].

This approach naturally yields field-theoretic trans-IR
states. There are gravitational solutions for which p changes
signature from spacelike to timelike—black holes (Fig. 1).
Thus, timelike “scaling” from the horizon to the singularity
is recognized as a trans-IR flow. Such flows have been
studied for scalar deformations [1]; the black hole interiors
behave as Kasner universes [32-34].

So, we may understand black hole interiors as trans-IR
flows. However, what does it mean to follow a trans-IR
flow in the language of field theory? We address this broad
question by focusing on three specific questions:

(Q1) Do trans-IR flows obey a monotonicity condi-

tion? (Sec. II)
(Q2) What happens to the degrees of freedom near the
endpoint of a trans-IR flow? (Sec. III)
(Q3) How does quantum information of the UV state
encode the trans-IR flow? (Sec. IV)
Using holography, we answer each of these in order.
Ancillary discussion regarding time in the interior
(Appendix A), extremal surfaces (Appendix B), and
quantum information probes of the trans-IR regime
(Appendixes C and D) is left to the appendixes.

II. THE MONOTONIC a;-FUNCTION
A. Defining the function

We first construct the thermal generalization of the
a-function of [8-10] in Einstein gravity with negative
cosmological constant. Take a domain-wall ansatz,

ds®> = V) [—f(p)2dt* + dX?] + dp?, (2)

with t € R, ¥ € R¥!, p > 0. A(p) and f(p) are generally
arbitrary functions. p is the energy scale, with the con-
formal boundary p — oo representing the UV.

Setting f(p) = 1 yields a domain wall with flat slicing
[8]. We then get vacuum AdS,,; with radius £ when
A(p) = p/¢." 1t is immediate that A'(p) = 1/, so we may
introduce p dependence to the a central charge.

'In most of the paper, we will just set # = 1. However, we
retain factors of £ in this subsection as they are necessary to
construct the function of interest.

2Early AdS/CFT literature [7,8] identified this as the coefficient
of the even-d trace anomaly, but [9,10] later noted that a appears for
any d in entanglement entropy.

/2 1

-1
= a(p) = W [A’(p)] . (4)

For nontrivial holographic RG flows with A(p) ~p/¢
only near the fixed points, not only does (4) become non-
constant but it can also become monotonic (da/dp > 0).
Monotonicity is achieved if the matter sourcing the RG
flow satisfies the null-energy condition (NEC) [8—10]—for
any null vector k* and the bulk stress tensor T,

KRT,, > 0. (5)

However, we are concerned with black holes, so we take

f(p) > Owithahorizonatp = 0,i.e., f(p) = f1p + O(p?).
We get the AdS-Schwarzschild solution® when [35]

2 dp 2/d dp
Alp) — —
e cosh <2 ) , f(p) = tanh (2 . (6)

This time, we use that £ = f(p)/A’(p) to write the extension
of (4) allowing finite temperatures as

arp) = 1]

r@er
ar for AdS-Schwarzschild matches a for empty AdS,, |—a
consequence of both geometries being dual to states of the
same UV CFT. This is true even in the interior accessed by
analytic continuation of (6) to

(7)

{= 1, — sen(ty) AL (8)

p=1% 27

where k > 0, t; € R, y is a half integer,4 and

€A(O)f1
5 9)

is the black hole temperature.
Equation (8) describes the trans-IR, so we answer (Q1)
by exploring ar in this coordinate domain.

B. Proof of monotonicity

The usual procedure to confirm monotonicity of ay is to
analyze its derivative along the flow,

day _ (d=1)z'? f(p)*>
dp — Tt Ap)
x [f'(p)A'(p) = f(p)A" (p)]. (10)

*Note that the temperature of this black hole is set to 1/(2z7).

We elaborate on y in Appendix A, but for now it suffices to
note that it depends on how we choose to analytically continue
coordinate time into the interior, and that past work [1,3,35]
typically has taken |y| = 1/2.
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The general Einstein equations G,, + Ag,, = ¢$7'T,,
[now setting £ = 1, so A = —d(d — 1)/2] imply that

P ro_ (d ) () A "
,-T, = ZErTp )[ (P)A(p) = f(P)A"(p)]  (11)

dap _ an'? [f(/))

d
o T A'<p>} =T (12)

Using the null vector k = [e~
write the NEC (5) as

ALY/ f(p)]o; + 0,, we can

17, =T >0. (13)

Equation (13) holds everywhere and, in conjunction with
the positivity of A’(p) near the boundary, implies that a;
decreases along the flow towards the horizon.” However,
proving monotonicity everywhere requires separate treat-
ment of the interior. In fact, even checking that the horizon
is the IR fixed point is problematic in these coordinates
because finiteness of day/dp is not obvious.

For these reasons, we find it easier to prove monotonicity
in another set of coordinates where the exterior and interior
are connected along a real radial coordinate. We transform
p — r [with r € (0, )] by setting

1
24(p) —
e2Alp) =,

Flpf =F(e, ==

Here, y(r) is an analytic function of r with y(0) =0,
while F(r) must have a simple root r = r,—the horizon
radius in the r slicing.6 Furthermore r < ry, is the exterior
(F(r) > 0), while r > r, is the interior (F(r) < 0). The
resulting metric is the Schwarzschild-like one of [1,11]

1 o 2
dszzﬁ —F(r)e )(Udtz—l-m—i—dxz . (15)

which has temperature,

|F/(rh>|e_)((rh)/2

T = . (16)
We may also use (14) to rewrite (7) as
ar(r) = L/ze—(d—l)x(r)/% (17)
r9F

>This reasoning is analogous to the monotonicity argument for
the a-function that [9,10] construct in Gauss-Bonnet gravity.

®This reparametrization rescales the black hole temperature. It
now depends on ry,.

Then, by differentiating and applying the Einstein equa-
tions in the Schwarzschild-like coordinates, we get

da ﬂ'd/z e—(d—l))((r)/Z
C= e F)(T =T (18)

dr r'(4) rF(r)?

Now, we use k = *(1/29, + F(r)a, to write the NEC as
F(r)(T", =T",) 20, (19)

which implies that da;/dr < 0 everywhere.

Note that we are not done proving monotonicity. Strictly
speaking, we care about whether a; monotonically
decreases with respect to the energy scale p, even when
we analytically continue to the trans-IR flow:

UV > IR (r<ry): @zo, (20)
dp
daT

Trans-IR (r > ry,): S <0. (21)
K

(20) is immediate upon using the chain rule; in the exterior,
dr/dp <0. In fact, dr/dp =0 at the horizon, and as
day/dr at the horizon is explicitly finite (being a combi-
nation of y and y’), we have dar/dp|,_, = 0. This
corroborates the horizon being the IR fixed point.

As for (21), from (8) and (14),

1d
r>rh:>——r: r/|F :>—>0 (22)

We thus conclude that a; indeed monotonically decreases
both from the UV to the IR and along the trans-IR flow
towards the singularity, answering (Q1).

III. LOSING EVERYTHING AT THE
SINGULARITY

Holographically, the endpoint of a trans-IR flow from a
UV thermal state is identified as the spacelike singularity of
the corresponding black hole interior. Thus, we can answer
(Q2) by analyzing how the near-singularity geometry is
affected by backreaction. Describing backreaction is more
easily done after specifying the matter sector, so we focus
on the minimal case of [1,11]—Einstein gravity with a free
massive scalar. In the resulting flows, we will find that
ar — 0 at the singularity, around which the local geometry
is that of a Kasner universe [32-34]. We thus call these
geometries “free Kasner flows.”

It is reasonable to ask how to generalize from free Kasner
flows. One way is to construct Kasner flows sourced by
more complicated matter sectors [36—40], via numerical
methods, and plot ay—a concrete but ad hoc approach.
Another is to assume a Belinskii-Khalatnikov-Lifshitz
(BKL) singularity [41-43]—reviewed by [44]—as the
trans-IR endpoint and analyze the near-singularity
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geometry. These approaches allow for exotic behavior,
such as infinite sequences of distinct Kasner “epochs”
describing mixmaster dynamics [45-47].

A. Free Kasner flows

The free-scalar-field matter sector of our theory is
described by the action

I
Ig=-
T

/ 4 GV o+ m2gR). (23)

The bulk equations of motion are the usual Klein-Gordon
equation and the Einstein equations sourced by free scalar
matter. For this theory, we will numerically determine the
metric functions and compute a7 explicitly. This is done in
the Schwarzschild-like coordinates.

1. Numerical construction

Consider a radial ansatz for the field ¢ = ¢(r) with
m? < 0. This is dual to a constant relevant boundary scalar
operator O which triggers an RG flow from the UV CFT
through the deformation (1). Its conformal dimension A
satisfies [27]

m* = A(A - d). (24)

For this ansatz, the Klein-Gordon equation and the Einstein
equations reduce to

¢//+<F/_d:1_)(/>¢/+A(cj_A)¢:0, (25)

/) N T
YT (d=1)rF - 0. (26)

r

¥ = @R =0, @)

where the primes denote derivatives with respect to r.

To solve (25)—(27) numerically, we expand {F,y, ¢}
around the horizon r =r,, then perform a two-sided
shooting method towards both the boundary r =0 and
the singularity » = oo. The mathematical details are in [11].
The near-singularity geometry is a Kasner universe,

ds? ~ —dt* + 121 df? + 72 dX2, ¢~—\/§p¢logr, (28)
where 7 € R is a reparametrization of r, and {p,, p,, p,}
are Kasner exponents satisfying

pi+(d=1)p,=1,  pj+p;+(d=1)p;=1. (29)

‘We remark that some of the literature [44,46,47] refers to this
as “Kasner-like” or “generalized Kasner” geometry, because
of the p,. We will simply call it “Kasner” for convenience.

ar
1.0

0.9¢F
0.8¢F
0.7¢
0.6 f
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, 1
207

FIG. 2. The monotonic ay-function (in units of 2ﬂzf;2) for a
selection of free Kasner flows with d =3, A =2 and as a
function of the dimensionless ratio r/r;,. Each curve corresponds
to a value of ¢y /T. The dashed line is the horizon, with the trans-
IR regime to its right.

daT
dE - ¢To=0
0.2}
¢TO=1°
0.0 0 s
. 0
— 2220
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FIG.3. The derivatives of a; (again in units of 2z#3%) along the
free Kasner flows in Fig. 2, computed as piecewise functions of r.
E is a stand-in for p in the exterior r < r;, and for « in the interior
r > r,. ar is stationary at the horizon r = r;, because this is the
IR fixed point.

The backreacted geometries are labeled by a dimension-
less quantity called the “deformation parameter.” Explicitly
this is ¢po/T% 2, where T is the black hole temperature (16)
and ¢, is the source of the scalar field read from the near-
boundary (r — 0) expansion

P(r) ~ por=* + —2203 drA,

r—0. (30)
Getting ¢, from ¢(r) depends on the choice of
quantization—whether we take A > d/2 or A < d/2 for
a given m [48].7 Here we use “standard” quantization,

d
A> 5= o = linérA‘d(ﬁ(r). (31)

Upon choosing d and A, one can plug the solutions of
(25)—(27) into (17) for various deformation parameters.

'At A =d/2 exactly, the near-boundary expansion (30)
becomes functionally different and there are two ways to
quantize [49].
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We do so in Fig. 2 for d = 3, A = 2. We also show how ar
evolves along the entire flow in Fig. 3.

2. Probing the singularity

From our numerics, ar decreases monotonically along
both the UV — IR and trans-IR segments of the free Kasner
flow, validating the general monotonicity argument. The
rate’s dependence on ¢,/T appears nontrivial, but how
much we can study this detailed analytic behavior is limited
because our solutions are numerical.®

Nonetheless, we can still address (Q2) in free Kasner
flows analytically because we at least know the behavior of
the metric functions near the singularity. We first combine
the usual near-singularity logarithmic divergence of the
scalar field (for some ¢ € R) [50,51],

¢(r) ~(d=1)qlogr,

with the equations of motion (25)—(27). Then [1,11],

r— o0, (32)

x(r)~(d=1)g*logr+y;,  r—oco,  (33)
where y; is another number. By plugging this into (17), we
have that for free Kasner flows,
ar(r) ~ Cyr@=-1¢'/2, r— oo, (34)

where C,; > 0 is a constant. This expression goes to 0 at the
singularity for any ¢ > 0, signaling a total loss of degrees
of freedom. Because of monotonicity, the degrees of
freedom “thin out” as we approach the singularity.

We can also compute the near-singularity behavior of
dar/dx by noting for some positive number f,

F(r) ~ =i @02, r el (35)
Thus, we have that
d d -
Ge= VIO G ~=Corr r oo (36)

where C,; > 0 is another constant and ¢ is

__2d-gd-1)(2d-3)
_ - :

(37)

This expression is more meaningful if it is written in terms
of the Kasner exponent p,, which is directly related to g in
the literature [1,11]. For any d,

8Reference [1] found that, in d = 3, A = 2, the near-singu-
larity Kasner exponent p, has nontrivial dependence on ¢ /T,
achieving a maximum in the range 24 < ¢,/7T < 25. It would be
interesting to determine if this is related to the behavior in Fig. 3.
9q = 0 corresponds to AdS-Schwarzschild, i.e., no RG flow.

> Z[d(l + Pt) - 2]

~(d-D(1-p)
_ (d=1D)[d(1 + p,) 3]
=o0= P . (38)

A priori, there are three parametric regimes: ¢ < 0, 6 = 0,
and o > 0. ¢ has both aroot at p, = —1 +3/d = p; and a
discontinuity at p, = 1 at which

lim 6 = —oo0,

3 lim o = +oo. (39)
Pi=

pr—>lJr

Additionally, do/dp, < 0 for any d > 2. Thus,

c<0 pr<p <l
c=0, s P =pi . (40)
c>0 p;<p;iorp >1

There are two ways to make use of (40). One is to
numerically compute the range of p, for particular free
Kasner flows so as to constrain o. [1] does the first step for
free flows with d = 3, A = 2, and their numerics indicate
that ¢ > 0 (implying that day/dx — —o0). Thus, a numeri-
cal analysis can be used to examine the evolution of ar on a
case-by-case basis.

The second approach is to take the negative blow-up of
dar/dk near the singularity as a given, thus insisting that
o > 0 for all free Kasner flows. This is more of a stretch,
but if this holds then one would obtain analytic bounds on
the near-singularity Kasner exponent p,.

We reiterate that our analysis takes place in the near-
singularity region, which is why p, has so much control
over the evolution of ay. This is powerful enough to
address (Q2) since it concerns only the endpoint of the
trans-IR, but one may ask about the rest of the trans-IR
flow. Does ay feature any interesting dynamics aside from
its monotonicity? We would expect such physics to be
highly dependent upon the fields in the interior but
infinitely far from the singularity.

B. Considerations for generalization

The above discussion is focused on free Kasner flows,
so we are motivated to extract whatever lessons we can for
more general types of flows featuring both more intricate
behavior along the trans-IR and more general singularity
structure. We now make some broad statements regarding
such generalizations, leaving further examination to future
work. Based on these statements, we conjecture that ar
vanishing at the singularity is a general feature of holo-
graphic trans-IR flows.

1. General Kasner singularities

One may ask about Kasner flows sourced by more
complicated matter sectors, such as the self-interacting ¢*-
scalar theory of [36] or ¢ coupled to Maxwellian and/or
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axionic fields [37-39]. One could even consider dimen-
sional reductions of supergravity theories [40] or modify
the gravitational theory to include higher-curvature terms
[52] (upon appropriate changes to ar (7) [9,10]). Either
scalar hair [53,54] or vector hair [55] generally prevents the
formation of inner horizons in black holes, so trans-IR
flows even in these theories will still end at a spacelike
singularity, just as in the free scalar theory. Assuming a
Kasner singularity, we may conjecture that ay still vanishes
at the trans-IR endpoint.

There is evidence for our conjecture. Take the minimal
holographic superconductor of [37] with a massive scalar
field charged under a Maxwell field. The hairy black holes
in this theory exhibit physics dependent upon the charge,
such as Josephson oscillations of the scalar field and
Kasner inversions—changes to the Kasner exponent due
to instability. In fact, their numerics suggest the possibility
of some flows'® with infinitely many Kasner inversions;
these flows never “settle down” and instead exhibit chaotic
mixmaster behavior [45-47].

This rich geometrical structure suggests interesting
dynamics for ay along the trans-IR flow. However, even
in this case, a; decays with large r (34). The power in this
asymptotic expression for ay is always negative, so we
would still expect a; — 0 in the strict limit r — oo.
Assuming oscillations and inversions affect ay, we expect
them to emerge in the derivative da;/dk, which need not
even be monotonic. One could numerically examine ¢ in
order to better understand the evolution of ay.

2. BKL singularities

The BKL program [41-43] characterizes the near-
singularity geometry allowed by the Einstein equations.
Instead of obtaining numerical solutions for a particular
matter sector, one can asymptotically analyze the equations
of motion for classes of theories. We lose subtlety in ar
away from the singularity in exchange for more near-
singularity analytic power. To consider holographic RG
flows, one would need matter fields dual to relevant
deformations on the boundary and a negative cosmological
constant (realizable as a constant potential term [47]).

The expected near-singularity geometry is either a
Kasner universe or an infinite sequence of Kasner epochs
undergoing mixmaster behavior, depending on the types of
fields and the number of spacetime dimensions D = d + 1
[46,47]. For example, free Kasner flows have the former,
and the flows of [37] with infinite Kasner inversions have
the latter. If a; — O at spacelike singularities in both of
these examples, it is natural to conjecture that a; — 0 at
either kind of BKL singularity, too. One way forward may
be to utilize the description of near-singularity dynamics as
billiards in hyperbolic space [46].

""These occur at discrete values of the temperature (relative to
the holographic superconductor’s critical temperature).

IV. PROBES OF TRANS-IR FROM QUANTUM
INFORMATION

While holographic RG flow is one perspective of the
relationship between the bulk and the boundary, we may
also take the view that bulk geometry encodes information-
theoretic quantities about the boundary quantum states. By
combining these two perspectives, such quantities can be
thought of as probes of the trans-IR regime. Concretely, we
may ask which quantities reach the singularity and thus
probe the full trans-IR.

We examine several quantities for which holographic
prescriptions have been well studied. For each one, we are
concerned with the maximal radius r,, that is reached by the
dual bulk object—a measure of how far that particular
information-theoretic quantity probes into the trans-IR.
First, we argue that both entanglement entropy from the
Ryu-Takayanagi (RT) and Hubeny-Rangamani-Takayanagi
(HRT) prescriptions [12,13] and complexity from
Complexity = Volume (CV) [14-16] typically probe only
some of the trans-IR; r,, is bounded from above. Then, we
find that both the 2-point correlator from geodesic approxi-
mation [3,17] and complexity from Complexity = Action
(CA) [18,19] see the full trans-IR, with r,, running over the
full interior.

For static black holes, we generally have a “critical” time
t. > 0 controlling which of the latter two quantities—the
2-point correlator or CA—at a particular boundary time #,,
is a “good” probe of the trans-IR. This critical time has
appeared before in work examining each probe individually
[3,56], but through the lens of holographic RG flow ¢, is a
scale that characterizes the trans-IR flow. Concretely,
noting that the maximal radius of either probe is a function
of boundary time, a probe is good for the range of ¢, for
which r,, has continuous support. Given some critical time,
we find that the 2-point correlator is the early-time
(|ty| < t.) probe of the trans-IR while CA is the late-time
(|ty| > t.) probe. This “complementarity” between corre-
lations and CA follows from a geodesic analysis of
Schwarzschild-like black holes (15).

However, there are some caveats. First, the failure of
entropy and CV to probe the full trans-IR mostly hold except
for very specific, finely tuned situations. Specifically, there
are particular choices of the number of spatial dimensions d
in which entanglement (d = 2) or CV (d = 1) may probe the
full trans-IR. Additionally, there are also certain geometries
(i.e., d =2 AdS-Schwarzschild black holes) for which
correlations and CA are not complementary; both are instead
“good” for all ;. In fact, lack of complementarity becomes
more common in charged or rotating black holes, as we
discuss later.

Nonetheless, we reiterate that our focus is on flows
represented by static black holes, in which case such
exceptions require some sort of fine-tuning and so should
not be drawn upon as general examples.
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123 P1S

FIG. 4. Extremal spacelike surfaces of dimension > 2 which
symmetrically connect the disjoint boundaries of a two-sided,
asymptotically AdS black hole at various boundary times #;,. The
maximal radius r,, as a function of #, takes on values in the
interval [ry, r.), approaching r. as |t,| — oo.

A. Entanglement and CV are not enough

We first make the case that both entanglement entropy
and CV usually fail to fully probe the trans-IR. That is not
to say that neither probes at least some of the trans-IR, nor
are we asserting that they never probe the full trans-IR.
Indeed, there are finely tuned situations for which the latter
happens,11 but entanglement entropy and CV fail to do so in
general. In the interest of brevity, we leave most of the
technical details to Appendix B.

Fundamentally, this failure is because of the existence of
“barriers” preventing the pertinent boundary-anchored
extremal spacelike surfaces from continuously (with respect
to the 7, = 0 slice) reaching the singularity (Fig. 4). Such
barriers have been seen explicitly in both AdS-
Schwarzschild [35] and free Kasner flows [1,11] (reviewed
in Appendix B 1) for particular surfaces but are supposed to
be rather general features of asymptotically locally AdS
spacetimes [57,58]. For these extremal spacelike surfaces, r,,
is bounded from above by a finite radius ., so there is an
upper limit for how far into the trans-IR they can probe.

We start with entanglement entropy, which is known to
be a monotonic function in both holographic [9,10] and
nonholographic [59,60] RG flow. Recall the RT presecrip-
tion [12] and its covariant extension [13]: for a boundary
CFT subregion R, its entanglement entropy S(R) is
calculated to leading order in 1/Gy by minimizing the
area functional on codimension-2 extremal surfaces X
homologous to R,

AlZ
) = min ext 2] . (41)
>~R 4GN

“
)

We consider R at a particular boundary time t;,, and denote
the corresponding minimal-area surface as Z,. If R is a
Cauchy slice of one of the disjoint boundaries, then % is
just the black hole horizon. Furthermore, by entanglement

“Entanglement entropy works in d = 2, while CV works in
d = 1. This is specifically because they are encoded by geodesics.

wedge nesting [61,62], if R is a subregion of this Cauchy
slice then X is entirely in the black hole exterior.

To get a X, which probes the interior, R must include
intervals on both sides. Fixing a constant xp € R, the
symmetrical case for which we take R to be

t=1, x! € [xg, ), (42)
yields a Hartman-Maldacena (HM) surface [35]. These are
the surfaces obtained in Appendix B for £ = 1. However,
these still fail to probe the full trans-IR regime unless d = 2
(in which case HM surfaces are geodesics).

We now discuss CV [14-16], in which the boundary-
time-dependent complexity of the UV state Cy(z,) is

identified as the volume of a maximal, codimension-1
bulk slice V(z,),

kY2
Cy(ty) = @V(tb)- (43)
Such volumes are straightforward to write as integrals of
metric functions when considering spherically symmetric
metrics such as (15) [56,63]. Indeed, the volume is
explicitly written in (B4) by setting k = 0.

Just like HM surfaces, this bulk slice will fail to probe the
full trans-IR (apart from if d = 1, when these slices are
simply geodesics). In general, just like the HM surfaces, r,,
will be bounded and the slices will get stuck infinitely far
from the singularity.

B. Complementarity of correlations and CA

While entanglement and CV are not enough to probe the
full trans-IR flow, there are two quantities describing
quantum information of the boundary state which do.
These are the (secondary sheet of the [3]) 2-point correlator
and CA.

Assume flows corresponding to static black holes. In this
case, we will see that the 2-point correlator and CA
generally probe the trans-IR in a complementary manner
dictated by a flow-dependent critical time,

o) e)((r)/Z
t, = P/ dr, (44)
o F(r)

so long as t. > 0.

To see why this happens, without loss of generality,
consider #, > 0. In the early-time (0 < t, < ¢,) part of the
UV state, the 2-point correlator probes the full trans-IR.
Any symmetric spacelike geodesic dual to this correlator at
a particular boundary time will have a maximal radius 7,
between the horizon and the singularity. However, as
t, — t. from below, r,, - co and the geodesic becomes
“nearly” null—approaching the appearance of two sym-
metric null rays fired from opposite connected components
of the boundary.
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(a) Early time: 0 < ¢ < t.

(b) Late time: tp > t¢

FIG. 5. The complementarity of the 2-point correlator (a) and
holographic complexity from CA (b) for ¢, > 0. From the figure,
it is evident that the null limit of the symmetric spacelike
geodesics coincides precisely with the past-directed null sheet
bounding the WDW patch at ¢, = ¢,.

Precisely at that moment, such null geodesics constitute
the past-directed null sheet bounding the Wheeler—DeWitt
(WDW) patch at 1, = t., with their intersection being a
“joint” located at the singularity. This particular joint
moves towards the horizon as 7, — oo; taking its position
as the maximal radius r,, for CA, r,, — r;, for the WDW
patches encoding late-time (7, > ¢.) complexity of the UV
state. The point is that the UV state sees the full trans-IR
flow through different probes for complementary intervals
of 1,:

|t,] < t. < 2-point correlator, (45)
|t,| > t. < Complexity = Action. (46)

See Fig. 5 for a visual representation of this phenomenon.

However, note that this complementarity is not the only
possibility, since 7. need not be positive a priori.12 Even in
the static case, there are specific finely tuned black holes for
which ¢, = 0 where complementarity is not a feature—we
instead have a “simultaneity” of the probes because the
symmetric spacelike geodesics never become null. More
generally, black holes with angular momentum or charge
may not feature complementarity for larger regions of
parameter space consisting of black holes with 7, < 0. We
briefly discuss these cases in Sec. IV B 3. Nonetheless,
there we argue that 7. > 0 is a general condition for the
static case, and our numerics for free Kasner flows
(Appendix C) serve as evidence.

1. Early times: 2-point correlator

In AdS/CFT, correlation functions of the boundary are
encoded by bulk paths connecting the insertion points [17].

12Complementarity will turn out to be related to the shape of
the black hole, which can be diagnosed by a formula for the
critical time ¢... Specifically, complementarity is a feature of black
holes with 7, > 0, which when drawn with vertical boundaries
have future singularities bending “down” [64].

Specifically, for a scalar operator O with conformal
dimension A, the 2-point correlator is a path integral,

DPe AL, (47)
G1—8

(O)0()) =

where P is a bulk path from {; to ¢, while L[P] is the

renormalized" length of . In the “heavy” limit A — oo, ®
is irrelevant and (47) becomes a sum over saddles of the
length functional, i.e., a sum over geodesics,

OO ~ Y eBHaa),

geodesics

A - 0. (48)

We are concerned with the 2-point correlator between
symmetric insertions on disjoint boundaries of asymptoti-
cally AdS black holes. Thus, the pertinent bulk objects are
symmetric spacelike geodesics.'* They are described by the
expressions in Appendix B with k = d — 1, so they each
have a characteristic energy & corresponding to some
boundary time ¢, and maximal radius r,,.

To see how the correlator evolves in time, we consider
how the geodesics evolve with respect to 7, (or, equiv-
alently, £). Starting at ¢, = 0, regardless of the geometrical
details, the geodesic resides entirely on the r =0 bulk
Cauchy slice and has energy € = 0. A priori there are two
possibilities:

(i) We can take the limit || — co. (B6) implies that
r, — oo (by regularity of the metric functions)
while (B8) implies that 7, goes to the aforemen-
tioned critical time,

ooe)((r)/2
|ty| = P 0 dr=1t.>0. (49)

(ii) |€] is bounded from above. Nonetheless we may still
take r,, — 0. In the integrand of (B8), we cannot
suppress the pole as r,, — oo because we cannot first
take |E| - oo. Thus, |z,| — oo.

These two cases are illustrated in Fig. 6. Figure 6(a) is the
first case in which taking |€| — oo produces the nearly null
geodesics. Figure 6(b) is the second case where we simply
have spacelike geodesics for all ¢,,.

There is a simple way to test which case we have—by
assuming the first case and explicitly computing the
integral in (49). We will always get ¢, > O for the first
case. However, if the integral yields . = 0, our assumption

Bwe may renormalize by either using a cutoff surface or
performing background subtraction. We do not specify a re-
normalization scheme here.

Reference [3] notes that such geodesics actually encode a
branch of the analytic continuation of the boundary theory’s
correlator. We will address this point later, but for now we allow
ourselves an abuse of terminology in referring to this branch as
“the correlator.”
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(a) General (tc > 0) (b) Finely tuned (t. = 0)
FIG. 6. The symmetric spacelike geodesics in asymptotically
AdS static black holes which are homotopic to the geodesics
anchored at #,, = 0. Generally, the geodesics take the form shown
in (a), becoming nearly null and thus producing a light-cone
singularity. In specific finely tuned cases however, the geodesics
may appear as in (b) in which case there is no light-cone
singularity. For the purposes of our discussion, we will focus
more on the general cases.

must be wrong since we would get that 7, = 0 for both
€ =0and |£| = oo. Thus, |£| must be bounded and we are
left with the second case. We call the first case “general”
and the second case “finely tuned,” since the geometry must
be chosen such that t. = 0 for the latter.

For example, consider the planar AdS-Schwarzschild
black holes discussed by [3] and for which we compute ¢,
in Appendix C as (C2). The critical time is 0 if and only if
d = 2. Additionally, plugging the appropriate metric func-
tions (y(r) =0, F(r) = 1= (r/r,)%) into (B6) yields

d-2 1
g=tm__ 50
- (50)

So |€| monotonically goes from O to 1/r;, as r,, — oo if
d = 2, whereas d > 2 implies that || monotonically goes
from 0 to oo as r,, = oo. Setting d = 2 is the fine-tuning
needed to get Fig. 6(b).

So far, we have that 7, > 0 and the corresponding nearly
null geodesics shown in Fig. 6(a) feature in general black
holes. Furthermore, r,,(1,) in these geometries starts at r;,
(for |t,] = 0) and goes to oo (as |t,| — £.). So, the 2-point
correlator encoded by these geodesics only probes the
trans-IR flow for |7,| < .. Reference [3] argues that this
correlator has a “light-cone” singularity,

1 =
[tp—tc[*

(O (1,) Og(1})) ~ )

|tb+tc‘2&

if tb d [C,

(51)

if tb - _tc“

O, /r(t) is the value of the operator O on the left/right
boundary at #,. However, this light-cone singularity is not

BReference [3] focuses on AdS-Schwarzschild, but this
singularity is also seen in Kasner flows by [1]. See also [4].

FIG. 7. A cartoon depiction of the Wheeler-DeWitt patch
W(t,) (the green solid wedge) obtained by shooting null rays
from a constant-, boundary slice into the bulk.

expected from general properties of the boundary theory.
The resolution of [3] is that the expected boundary-state
correlator is realized as a “complexified” geodesic (as in
& € C), and that the light-cone singularity merely occurs on
a secondary sheet of the analytic continuation of that
correlator. Thus, our precise statement is that it is the
secondary sheet of the 2-point correlator which probes the
trans-IR regime for |t,| < ..

2. Late times: Complexity =Action

We now consider CA [18,19], in which we associate
the boundary-time-dependent complexity of the UV state
Ca(1,) with the action evaluated on the corresponding
WDW patch W(z,,). This WDW patch is properly defined
as the union of all bulk spatial slices anchored to the z,, slice
of the boundary, so it is found by shooting both past-
directed and future-directed null rays into the bulk (Fig. 7).
Concretely, we write

V(1))

Culty) = h

, (52)
where IWV(t,)] is the bulk action on W(1,).

CA is a rather unwieldy prescription compared to CV.
On top of integrating the bulk action on the codimension-0
interior of the WDW patch, we must also account for the
codimension-1 boundary terms and, notably for our pur-
poses, the codimension-2 joint terms, with careful attention
towards the null parts of the geometry [65]. Thus, IV(t,,)]
truly consists of three types of contributions,'®

I[W(tb)] :Iw+IB+IJ, (53)
which are, respectively, the bulk WDW, boundary, and
joint terms.

'“This is the formal prescription, but generally the action
diverges. This can be sidestepped by introducing regulator
surfaces, but this also introduces additional boundary and joint
terms.
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For two-sided black holes, we can think of the WDW patch
corresponding to a particular ¢, as being formed by shooting
symmetric null rays from both asymptotic regions. However,
the null rays can reach the singularity without intersecting
one another. We use the null rays discussed in Appendix A to
note that there exists a branch-independent'” critical time
t. >0,

) e)((r>/2
t.=P / dr, (54)
o F(r)

for which there is a “null-to-null” joint (whose position is
taken as the maximal radius r,,) if and only if |z,] > ¢,.
Specifically, for 7, < —t,., the joint formed by future-directed
null rays goes from the bifurcation point (r,, = r;,) at
t, = —oo to the future singularity (r,, = o) as t, = —f,.
If |7,| < 1., there is no joint. Then, as 7, — ¢, a joint formed
by past-directed null rays emerges at the past singularity
(r,, = o), subsequently moving towards the bifurcation
point again as #, — 0.

So long as t. > 0—the general case from before—the
presence of a joint occurs in a complementary range of
boundary time to the interval for which we have the
symmetric spacelike geodesics of Sec. IV B 1. In the finely
tuned geometries for which 7, = 0, we have one joint for all
t;, except for at the instantaneous moment ¢, = 0 at which
there are two. Thus, there is essentially no phase transition
of the WDW patch for this case.

We can relate the location of the joint to boundary time.
Using the expressions for coordinate time along the null ray
in (A2), we write (assuming |z,| > 7..)

|t | P /rm e)((’)/2 d (55)
= r.
b o F(r)

This can be differentiated to yield

e?m2E(r,) if 1, > 1.,
if |t,] <1, (56)

—e 22 F(r,)) if 1, < —t..

dr,
dt,

The emergence and evolution of the joint control the time
dependence of complexity; dC,/dt, # 0 if and only if
|ty| > t.. This is seen through the explicit evaluation
of (53) (with appropriate regulator cutoffs) in terms
of metric functions. The calculations are performed in
AdS-Schwarzschild by [56] but should generalize to the
Schwarzschild-like ansatz (15) due to both spherical
symmetry and time-reversal symmetry being maintained.
The calculation is performed by breaking the WDW patch
and its boundary into sections:

"This refers to the y discussed in Appendix A.

(1) Zyw (Bulk): Consider (I) the future interior piece, (II)
the exterior piece, and (III) the past interior piece.
(D) is always time independent, while (I) and (III)
are each time dependent [56]. These time depend-
encies cancel exactly when the WDW patch reaches
both the future and past singularities, which happens
if |t,| < t. but not if |z, > £..

(i) Zp (Boundary): An appropriate affine parametriza-
tion of the normal vectors for the null sheets will
make their contributions to the action vanish, so the
only boundary terms are those of the regulator
surfaces. For |7,| < t., we have surfaces near the
UV boundary, the future singularity, and the past
singularity. Only the latter two contribute time
dependence to complexity; their respective time
dependencies cancel exactly. When |t,| > 7., one
of the near-singularity surfaces is lost and we are left
with the time dependence of the remaining surface.

(iii) Z; (Joint): In the regulated calculation, there are
joints located both near the UV boundary and at the
singularity. The former are time independent while
the latter vanish [66]. The only nontrivial time
dependence comes from the joint which probes
the trans-IR when |[z,| > 7,.

We leave the concrete calculation of complexity and its
growth rate dC, /dtg to future work,'® but as a preliminary
step we compute the action of the joint in Appendix D and
see that it is modified by terms dependent on a7 at the joint.
Still, our statement that CA is time dependent only when
probing the trans-IR through its joint relies purely on
general symmetry considerations.

3. Black holes without complementarity

The discussion thus far has been about static black
holes. However, we can ask about other types of black
holes, such as those with angular momentum or charge
[56,64,67,68]. Specifically, we will focus on such cases
with hair going to the boundary, so that the geometries
may be interpreted as RG flows. References [53-55]
indicate that such cases involve black holes without inner
horizons, so we assume that the black holes of interest
have only one horizon.

Generically, we can have three different types of black
hole “shapes.” Each is characterized by the sign of .,
which may be calculated for spherically symmetric black
holes using the integral in (49)":

t. >0 = type D, (57)

18Since the first version of this manuscript was written, [64] has
performed this calculation.

The names come from how the future singularities “bend”
with respect to the conformal boundaries [64]. “Type D” refers to
a future singularity bending down, while “type U” means that the
singularity bends up. “Squarelike” comes from [3].
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FIG. 8. A schematic representation of a type-U black hole.
Unlike in type-D or squarelike black holes, null geodesics fired
from the boundaries at ¢, = 0 intersect finitely deep inside of the
black hole interior.

t. = 0 = squarelike, (58)
t. <0 = type U. (59)

These conditions, respectively, correspond to whether two
null geodesics fired from opposite boundaries at the initial
slice intersect with the singularity, with one another ar the
singularity, or with each other without reaching the
singularity.

We have been focusing on static black holes with 7. > 0,
i.e., those which are either type D or squarelike. However, it
is natural to wonder if type-U solutions (Fig. 8) are also
possible in that framework. Indeed, type-U solutions are
known to exist for charged black holes [64].

However, these type-U solutions in practice come from
particular deformations of the inner Cauchy horizon.”
Thus, one could in principle get them for the charged
and rotating cases. But, since there is no Cauchy horizon at
all in the static case, we would expect to only have type-D
and squarelike black holes in that case. This is supported
by our numerical calculation of the critical time in
Appendix C, for which we only have ¢. > 0 for a class
of free Kasner flows. It would be interesting to further
probe this claim.

Observe that complementarity is no longer a feature of
the type-U black holes—there is always at least one joint
present, and so CA is a good probe of the trans-IR for all
boundary times ¢,. However, there is a continuous window
|ty| < |t.| in which there are two joints present, with a
discontinuous change in the number of joints coinciding
with the geodesics becoming nearly null. We leave further
exploration of this phenomenon in type-U black holes to
future work.

C. Loss of degrees of freedom

A natural question to ask is how quantum information
encodes the vanishing of degrees of freedom at the

“We thank Roberto Auzzi for providing us with this point.

singularity. How this happens is currently unclear.
Nonetheless, we provide some preliminary direction
towards addressing this question.

First, note that only some probes would actually see
ar — 0—the quantities which actually reach the near-sin-
gularity region. This would rule out things like entanglement
entropy or CV as encoding the vanishing. However, we
would expect other quantities like 2-point correlators or CA
to somehow be informed of this phenomenon.

While the details on the quantum information side are
vague, the argument on the gravitational side is on more
solid footing. Because ay(r) ~ e~ (=42 (17), ay — 0 if
x(r) diverges in r at least logarithmically. Thus, the matter
must source a particularly destructive type of backreaction
in the near-singularity regime. Understanding the vanishing
through the lens of quantum information goes hand-in-hand
with understanding how quantum information encodes
near-singularity backreaction of the black hole geometry.

V. CONCLUSIONS

We have explored trans-IR flows as a framework with
which to conceptualize the physics of black hole interiors.
We have extended the usual holographic a-function to
include such analytic continuations of RG flows, proving
monotonicity for reasonable deformations (i.e., those dual
to matter satisfying the null-energy condition) and arguing
that the degrees of freedom thin out as we approach the
endpoint of the trans-IR—the black hole singularity. We
have also embedded the story of quantum information
within the trans-IR framework, based on the observation
that boundary probes of quantum information are informed
by bulk geometry behind the horizon. More specifically, the
boundary theory encodes the trans-IR part of the flow as
quantum information in various nontrivial ways.

We hope that viewing black hole interiors as trans-IR
flows motivates further discovery and exploration of other
probes of physics inside of black holes. While our a-
function is one such quantity, one could also consider other
measures counting the degrees of freedom, such as the
chiral anomaly coefficient in d = 2 [69] or path integral
complexity [70-72]. Conversely, one may explore how
other quantum information probes such as Rényi entropy,
entanglement negativity [73], and generalized “complex-
ities” [74] are informed by our ap-function or the trans-IR
regime in general. A parallel illuminating direction would
be to study how quantum information encodes the trans-IR
using only boundary-theory techniques and calculations,
thus moving away from holographic boundary CFTs.

Another quantity often associated with an RG flow is the
p-function of the running coupling. Upon specifying the
deformation, one may write f-functions holographically.
This was done for scalar deformations using the super-
potential formalism [30,31]. One could use f-functions to
characterize the dynamics of trans-IR flows.
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A natural extension of our work is to consider more
types of flows, such as those sourced by combinations
of interacting scalars, higher-rank fields, and axions
[36—40,75]. One may also consider higher-curvature grav-
ity [52], but note that we would expect corrections to the
ar-function by analogy to the a-function of [9,10].

We have only taken a a few steps towards addressing our
overall question of what it means to subject a field theory to a
trans-IR flow. Nonetheless we envision that understanding
this question is equivalent to better understanding physics
inside of black holes. We also expect the trans-IR technology
to have more applications to the study of more general RG
flows involving nonholographic quantum field theories.
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APPENDIX A: CHARACTERIZING ANALYTIC
CONTINUATION OF TIME TO THE INTERIOR

Our goal in this appendix is to classify the ambiguity of
coordinate time in the interior of asymptotically AdS black
holes (15). This ambiguity depends upon how we choose to
analytically continue from exterior time. The interior can
thus be thought of as a particular branch of an infinite
number of replica geometries, each labeled by a half-
integer y (8).

We proceed by tracking coordinate time along null rays
in (15). Much of our analysis resembles that of [3]. The null
rays of interest are confined to a constant-x slice and are
parametrized as t = #(r), where ¢t(0) = ¢, is the boundary
time. From (15), the trajectories are

ex(n)/2

F(r)

dr

— =4
dr

(A1)

+ denotes the future-directed (“infalling”) direction while
— denotes the past-directed (“outgoing”) direction.
Integrating (A1) yields the future-directed and past-directed
trajectories, respectively written as ¢, (r) and 7_(r),

re)((’,>/2
t(r) =1, i/ < ar.
0

F(rl) (Az)

Im lr’

L

FIG. 9. Integration contours used to obtain the interior time
coordinate of the null rays (Al). The formal, “bad” integral is
taken over the green contour [0, 7], but this hits the pole at the
red x. Thus, we integrate over a modified contour (in yellow)
with half-integer winding number y and take ¢ — O to separate
out the pole, leaving us with the principal part plus an imaginary,
residue-dependent, y-dependent term (A4).

> 3-3-—e—Re
r

Th

This is well defined up to the horizon r = r;,. To reach the
interior r > ry, the integral must include the horizon.
However, the integrand has a pole here with residue:

- ex(rn)/2 - 1
47T’

F'(ry) B

so as in [35], we modify the contour in the complexified

space (Fig. 9) to write
/r ()2 g P/re)((")ﬂ g ﬁ
0 F(I‘/) 0 F(l"/) 2T
The first term is the principal value while the second term is
obtained from the pole. Notably, the latter depends on “how
many times” the modified contour goes around the pole to
avoid it, captured by the “winding number” y.

The residue theorem is typically used for integration over
closed contours, whereby winding numbers are positive
integers for counterclockwise closed contours and negative
integers for clockwise closed contours. However, we use
fractional winding numbers to characterize circular con-
tours which avoid a pole but do not form closed loops.
Specifically, a half-integer winding number means that the
contour fully wraps around the pole an integer number of
times, then travels an additional z radians. It is these
contours in the complexified ' space which allow us to
reach the interior from the exterior.

So, we plug (A4) into (A2) to write the coordinate time
along a null ray starting at boundary time 1,

(A3)

x(1')/2
Res {e }

)

(A4)

e .
nx [y “’;(r,) dr’ if r<ry,

(AS)

te(r) =

P [S eﬁ(lj/; dr F % if r>ry,.

Coordinate time is real in the exterior, but in the interior
time picks up a purely imaginary piece from the pole at the
horizon. While we extract this imaginary term from an
analysis of null rays, it is also seen in analyses of extremal
spacelike surfaces reaching the interior [1,35].
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Note that y is purely dependent upon how we choose to
deform the contour and is thus an inherent ambiguity in
time behind the horizon. There are countably infinitely
many sheets which we may take to be “the” interior. Any
choice of y is perfectly valid in bulk analyses; earlier work
[1,3,35] just chooses a particular branch |y| = 1/2. At least
some physics on the boundary should not care about this
choice, but additional symmetry is required when comput-
ing such physical quantities. For example the critical time
t. (Sec. IV B) is a y-independent quantity found by forcing
left-moving and right-moving null rays to meet at
Re(7) = 0. One may wonder how the infinitude of choice
in y may correspond to infinite families of observables in
the boundary theory [76].

We make one more point about the two-sidedness of
coordinate time. What we have considered above and
throughout this paper is not actually the most generic
way to embed two-sided black holes in complex coordinate
space. We may instead assume that time is real only in one
exterior region. Then, in order to extend time to the other
exterior, we must dodge two poles, giving us the freedom of
two half-integer winding numbers instead of one. Thus, we
may take the other exterior region to still have complex
time [3]. However, assuming symmetric boundary times #,
on both sides of the black hole forces us to keep time real in
both exterior regions, which constrains us to just one y for
the entire interior.

APPENDIX B: REVIEW OF EXTREMAL
SYMMETRIC SPACELIKE SURFACES

In this appendix, we briefly review extremal symmetric
spacelike surfaces of codimension (k+ 1) in (d+ 1)-
dimensional Schwarzschild-like black holes (15). For
k < d—1, these surfaces are the sort depicted in Fig. 4
and relevant to the discussion in Sec. IVA.*! Specifically,
both the bulk volume slices used in CV (k = 0) and HM
surfaces (k = 1) are of this type. For k = d — 1, these
surfaces are simply the geodesics depicted in Fig. 6 and
discussed in Sec. IV B. Reference [1] also reviews (k + 1)-
codimensional surfaces in (15) with a specific focus on
k=1landk=d-1ind=3.

We parametrize coordinate time on the surface as
t = t(r), with boundary time set to #(0) = t, on both sides
of the black hole. Furthermore, we assume k of the
components of X are constant along the surface. From (15),
the induced metric for k < d — 1 is then

dﬁ:%KF(lr) F() >dr +Z (dx')

i=k+1
*'This statement comes with the caveat that there are enough
dimensions in the first place for these surfaces to be at least two
dimensional, i.e., that they are not geodesics.

], (B1)

k+1’ . d—l)

where (x X are the remaining transverse direc-
tions. For k = d — 1, as all components of X are fixed,

1 1 F(r)t’(r)2
de 1= ( (}") e)((r) )drz.

Thus, the coefficient of the volume form for the surface
(for both cases) is

(B2)

1 1 F(r)t(r)?
M\ F(r)y e

As this surface is anchored to both boundaries, it must
achieve some maximal radius r,, > r;,. By using this and
the symmetry, we write the total volume functional as™

Vi) = 200 [ \/ gila

where v,_;_; is the volume of the remaining transverse
space (v = [[[44, dx' for k <d—1 and vy = 1).
Our goal now is to extremize (B4). Because of time-
translation symmetry, there is a constant “energy”” £ which
is the partial derivative of the integrand with respect to #'(r),
so we have”

‘Ck:

(B3)

(B4)

sgn(&)er(n)/?

r(r) =
F(r) \/1 + F(r)e-

(BS)

(dkg)‘

For this extremal surface, while there are three parameters
at face value—r,, r,, and &—there are two constraints
on them, so there is only one free parameter. The first
constraint comes from r,, being the “turnaround” point of
the surface,24

|F(r,) e

— 2
=0= & =20

1
7l (BS)

As for the second, we integrate (B5) over r € [0,r,] to
write the formal integral

sgn(c‘,’)eﬂ’)/2

)=t = / (N 14+ F(r)e”

dr. (B7)

(dkg)

This integral is divergent; its integrand has a simple pole at
r = r;. As discussed in detail in Appendix A, we slightly
deform the contour r € [0, r,,] into complexified r space to

“This is UV divergent because we are integrating from r = 0.
We only need to regulate if (B4) needs to be explicitly computed.
2 We have absorbed the sign ambiguity into £.
*Recall that as r,, > ry, —F(r,,) = |F(r,)|.
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avoid this pole, picking up an ambiguous imaginary term in
the process (8). Fortunately, the symmetry of these par-
ticular surfaces implies Re[t(r,,)] = 0, so this ambiguity
does not matter and we are left with the principal value,

B P/r Sgn(g)el(r)/z
R
O F(r)y/1+ F(r)e) /()

dr.  (B8)

Equations (B6) and (B8) are also in [1]. The main point
is that fixing any one of 7, r,, and £ will fix the rest.
Notably,

tb=0<$6’:0¢>rm=rh. <B9)

Now, plugging (B5) into (B4), we get that the volume
“density” V; = V/v,4_;_; of the surface of energy £ is

2 fre dr e x(r)/2
Vilé) _E/O p2(d=h) —x(r) /( pd—k 2
1+ F(r)e ) /(r*E)

(B10)

1. Surface barriers in Kasner flows

Our claim that entanglement entropy and CV generally
fail to probe the full trans-IR regime (Sec. IV A) rest on
the appropriate k < d — 1 surfaces being blocked by an
extremal surface barrier. While [58] claims that such
barriers are generic features of asymptotically locally
AdS black holes, demonstrating existence is more straight-
forward upon specifying the geometry [1,35]. We find it
instructive to see how such barriers are found in Kasner
flows, following [1].

We start with the function

F(r)e")

V)= ———>7"-
g( ) F2<d—k>

(B11)

Clearly g(r;) = 0. Furthermore, as r — oo, we plug in the
asymptotic behavior of the metric functions (33) and (35)
to write

g(r) ~—fre rq’, r— o0, (B12)
where we have defined
1
q’:2k—d—§(d—1)q2. (B13)

As g(r) follows a power rule, it is straightforward to deduce
its limit as  — oo.

— if ¢ > 0,
limg(r) = ¢ —f1e® if ¢ =0, (B14)
0 if ¢ <0.

However, so long as k < d — 1 (i.e., so long as the surface
is not just a geodesic),

1
q’<k—1—§(d—1)q2, (B15)
from which we deduce that
k=0, 1=4 <. (B16)

Thus, in general for the surfaces relevant to entanglement
entropy and CV, ¢(r) is O both at the horizon and at the
singularity. Furthermore, it is clearly negative in the
interior, so there must be a finite r. € (r;,, o0) such that

min g(r). (B17)

r&(ry,)

g(rc) =
From (B6), we have a “critical” energy &, for which
g(re) = €2, so

F(rc)e_)((rv)
(e

g(re)
&2

1+ =1+ =0. (B18)
Now consider the boundary time ¢, in (B8) as we take
rn, = r. and & — £.. The denominator of the integrand
goes to 0, so the integral itself diverges. In other words, as
we take 1, — oo, the corresponding k = 0, 1 surfaces will
get “stuck” at r,, = r. < 0.

In this analysis, one may ask about larger £k > 1 which
still satisfy k < d— 1. Applying the arguments above
becomes muddier because we may get ¢’ > 0 for perfectly
valid geometries, in spite of the generic statements of [58].
For example, consider a Schwarzschild singularity, which
we recover from Kasner by setting g> = 0. Then,

q =2k—d. (B19)
This is positive precisely when k > d/2, and there are
integer choices of k and d which fit into this range, such as
k=3 and d =5 which would yield ¢’ = 1. Thus, we
cannot assert the existence of a finite r. at which g(r) is
minimized.

The argument above fails to detect an extremal surface
barrier for particular lower-dimensional surfaces in certain
geometries. Nonetheless, this does not matter for entangle-
ment entropy (k = 1) and CV (k = 0), so the main claim of
Sec. IVA is undamaged.

2. Late-time length and a,

For geodesic lengths k = d — 1, the maximal radius r,,
reaches all the way to the singularity as ¢, approaches the
critical time ¢, discussed in Sec. IV. In the main text, we
focus on r,, as a basic measure of how far the symmetric
2-point correlator dual to a geodesic probes into the trans-
IR. Here we go further with this discussion, explaining
how near-critical-t, (that is, #;, ~ ¢,.) geodesic lengths L are
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informed by the ay function (17) and deeper geometrical
data describing the trans-IR flow.

The formal length (B10) with k = d — 1) at near-critical
times is found from a large-|£| expansion,

2 I'm e_)((r>/2
L ~— dr,
|5|/o T

r

ty > 1.  (B20)

Up to a factor of 72, the integrand is simply a power of the
ap-function (17)—omitting the constant prefactors,

| aT(r)l/(d_l>
L~— ————dr. B21
El (521

There is a geometrical interpretation of the integrand in
terms of constant-f and constant-r slices. Their respective
unit normal 1-forms may be written down as follows:

F(r) e N2 gz, a, = ! dr.

We then take the wedge product, producing a 2-form,

(B22)

a; =

e_)((r>/2

a, N @, =———dt Adr. (B23)
r

This is precisely the volume form of the (7, r) plane. Thus,
L in the regime t, — ¢, is, up to an overall prefactor, the
volume “density” with respect to ¢ of the (¢, ) plane (i.e.,
the volume divided by the size of ¢ space [ dr).

APPENDIX C: THE CRITICAL TIME IN FREE
KASNER FLOWS

The discussion of Sec. IV B regarding the complemen-
tarity of the 2-point correlator and CA is rather general.
Here, we focus on free Kasner flows, whose dynamics are
controlled by (25)—(27). Taking d =3 and A =2 for
concreteness, we plot the critical time ¢, as a function of
the deformation parameter ¢/7T.

Following the procedure of shooting null rays from
opposite boundaries at the same boundary time ¢;,, we have
that the critical time ¢, is

me)((r)/Z
tc.:P/ dr.
o F(r)

(C1)

Generically, as 7. is an integral of metric functions, it
cannot be calculated in closed form for arbitrary geom-
etries. However, we can still do so for planar AdS-
Schwarzschild black holes, in which y(r) =0 and
F(r)=1—=(r/r,). Careful consideration is needed to
evaluate the principal value, but we find that

0.60 t

0.58

0.56

0.54 +

0.52

10 20 30

FIG. 10. The critical time ¢, (in units of r,) characterizing the
complementarity of the 2-point correlator and CA, plotted as a
function of the deformation parameter ¢ /T for free Kasner flows
with d = 3, A = 2. The value at ¢o/T = 0 coincides with that of
AdS-Schwarzschild, z./r, = z/(3v/3). t./r, has a maximum
value of 0.61 at ¢po/T ~ 6.6. As it decreases, t./r), again attains
the AdS-Schwarzschild value at ¢y/T =~ 11.5.

o dr t. =« T
=P — 7 s <_Zeot(Z). (2
¢ /) 1_(r/rh)d:rh a° <d> (2)

This coincides with the value in [56] upon appropriate
synchronization of conventions; their conventions produce
an extra factor of 2.

Using the numerical Kasner solutions to (25)—(27), we
may still solve for 7. as a function of the deformation
parameter ¢,/T (Fig. 10).

As expected, ¢, starts at the AdS-Schwarzschild value
when ¢o/T = 0, but 7, also exhibits nontrivial behavior—
rising to a maximum before falling past the AdS-
Schwarzschild value again. This rising and falling is similar
to the behavior in the near-singularity Kasner exponent p,
[1,11], but our numerics indicate that ¢, monotonically
decreases forever.

It is unclear if #. — 0 or asymptotes to a finite value as
¢o/T — oo, but either way the highly deformed free
Kasner flows in this regime have much more “squarelike”
[3] Penrose diagrams than AdS-Schwarzschild. This is in
spite of the evidence that the endpoint of the trans-IR
¢o/T — oo flow is the Schwarzschild singularity, i.e., that
the Kasner exponents approach their Schwarzschild values
for large deformations [1].

APPENDIX D: ACTION AT THE JOINT

We compute the contribution of the joint term to the overall
complexity—a first step towards obtaining the explicit time
dependence.25 We focus on ¢, > ¢, (i.e., the null joint in the
past interior); the same result holds for ¢, < —z. by sym-
metry. From [56,65], the joint term is

PReference [64] has taken the remainder of these steps since
earlier versions of this manuscript were written.
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1 _ _ 1- -
IJ—SHGN%adS, Cl:k)g <_§kRkL> (Dl)

I:R and l?L are the outward-directed normal vectors, respec-
tively, for the right past-directed null sheet and the left past-
directed null sheet bounding W(z,,). Analogously to [56] we
write their dual 1-forms as

. ex(n)/2
kR =N |dt+ md" s (DZ)
. (/2

kp =N dt— o) dr ). (D3)

Here, N > 0 is a normalization coefficient which remains
ambiguous in the problem. Thus, in the interior,

a= —1og(|/1\:/<2:)2|> +x(r).

(D4)

Integrating & on the joint yields a factor of V,_; /r%! where
V4_ is the volume of the transverse X space, so

This agrees with [56], except there is an additional term
corresponding to y appearing due to backreaction. This is
essentially the a; dependence, since

2 nd/? 2
x(rm) =i IIOg[F(%)fﬁ_l] Td- llogaT(rm). (Do)
Thus, the time dependence of the joint term depends on ap
and its derivative. Specifically,

dp(r,) 2 dr, (1 dag
dlb d—ldlb ale"m ’

(D7)

where dr,,/dt, is written in (56).
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