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We study analytic continuations of holographic renormalization group (RG) flows beyond their infrared

(IR) fixed points. Such “trans-IR” flows are a natural framework for describing physics inside of black

holes. First, we construct a monotonic holographic a-function which counts degrees of freedom along a

trans-IR flow. Using this function, we argue that the degrees of freedom “thin out” and vanish when flowing

to a trans-IR endpoint, represented by a Kasner singularity. We then recast well-studied quantum

information probes in the language of trans-IR flows, finding that entanglement and complexity from

volume generally fail to fully probe the trans-IR while 2-point correlations and complexity from action

generally do so in a complementary manner.
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I. INTRODUCTION

A “trans-IR” flow is constructed by analytically contin-

uing a renormalization group (RG) flow beyond its IR fixed

point to complex energy scales. In holographic setups

where an RG flow is simply gravity, there is a natural

interpretation of following the trans-IR flow of a UV

thermal state—accessing a black hole’s interior by flowing

towards the singularity [1]. That analytic continuation is

needed to sensibly relate boundary field-theoretic data to

bulk geometry probing the interior is well-known in the

AdS=CFT correspondence [2–6]. In this spirit, we propose

that the language of trans-IR flows is a natural framework

for discussing physics inside of black holes.

From bulk metric functions, we first construct a

“thermal” analog to more conventional holographic

a-functions [7,8], calling it aT . While aT is stationary

at both the boundary (the UV) and the horizon (the IR),

it is still monotonic even along the trans-IR flow, thus

satisfying an extension of the holographic a-theorem
[9,10] to imaginary energy scales. When looking to “free

Kasner flows” [1,11], we find aT → 0 at the singularity

(the trans-IR endpoint). In other words, all degrees of

freedom are lost at the singularity. We then discuss

quantum information in the context of trans-IR flows

corresponding to static black holes. Entanglement

[12,13] and complexity from volume [14–16] only probe

the trans-IR partially, but 2-point correlations [3,17] and

complexity from action [18,19] probe it fully.

Let us briefly review holographic RG flow [20]. The bulk

“radial” extra dimension ρ of AdS is treated as an energy

scale parametrizing an RG flow from a UV conformal field

theory (CFT) on the boundary to an IR field theory deep in

the bulk. The bulk gravitational dynamics are also the

dynamics of this flow [21–26]. We trigger RG flows by

adding dynamical bulk fields which are dual to relevant

operators on the boundary [27]. For example, take the

deformation

IO ¼
Z

ddxϕ0O: ð1Þ

FIG. 1. A two-sided asymptotically anti–de Sitter (AdS) black

hole, with the exterior in gray and the interior in red. The lines are

constant radial slices, with the horizon being the dashed lines.

The black arrow represents a conventional UV → IR holographic

RG flow while the red arrow indicates a trans-IR flow para-

metrized by a timelike radial coordinate.
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O is a relevant scalar operator and ϕ0 is a source. In the bulk,

we have a gravityþ scalar theory. For Einstein gravity, these

flows have been studied extensively [28–31].

This approach naturally yields field-theoretic trans-IR

states. There are gravitational solutions for which ρ changes

signature from spacelike to timelike—black holes (Fig. 1).

Thus, timelike “scaling” from the horizon to the singularity

is recognized as a trans-IR flow. Such flows have been

studied for scalar deformations [1]; the black hole interiors

behave as Kasner universes [32–34].

So, we may understand black hole interiors as trans-IR

flows. However, what does it mean to follow a trans-IR

flow in the language of field theory? We address this broad

question by focusing on three specific questions:

(Q1) Do trans-IR flows obey a monotonicity condi-

tion? (Sec. II)

(Q2) What happens to the degrees of freedom near the

endpoint of a trans-IR flow? (Sec. III)

(Q3) How does quantum information of the UV state

encode the trans-IR flow? (Sec. IV)

Using holography, we answer each of these in order.

Ancillary discussion regarding time in the interior

(Appendix A), extremal surfaces (Appendix B), and

quantum information probes of the trans-IR regime

(Appendixes C and D) is left to the appendixes.

II. THE MONOTONIC aT-FUNCTION

A. Defining the function

We first construct the thermal generalization of the

a-function of [8–10] in Einstein gravity with negative

cosmological constant. Take a domain-wall ansatz,

ds2 ¼ e2AðρÞ½−fðρÞ2dt2 þ dx⃗2� þ dρ2; ð2Þ

with t ∈ R, x⃗ ∈ R
d−1, ρ ≥ 0. AðρÞ and fðρÞ are generally

arbitrary functions. ρ is the energy scale, with the con-

formal boundary ρ→ ∞ representing the UV.

Setting fðρÞ ¼ 1 yields a domain wall with flat slicing

[8]. We then get vacuum AdSdþ1 with radius l when

AðρÞ ¼ ρ=l.
1
It is immediate that A0ðρÞ ¼ 1=l, so we may

introduce ρ dependence to the a central charge.
2

a ¼ πd=2

Γðd
2
Þ

�

l

lP

�

d−1

ð3Þ

⇒ aðρÞ ¼ πd=2

Γðd
2
Þld−1P

�

1

A0ðρÞ

�

d−1

: ð4Þ

For nontrivial holographic RG flows with AðρÞ ∼ ρ=l
only near the fixed points, not only does (4) become non-

constant but it can also become monotonic (da=dρ ≥ 0).

Monotonicity is achieved if the matter sourcing the RG

flow satisfies the null-energy condition (NEC) [8–10]—for

any null vector kα and the bulk stress tensor Tμν,

kμkνTμν ≥ 0: ð5Þ

However, we are concerned with black holes, so we take

fðρÞ > 0with a horizon at ρ ¼ 0, i.e., fðρÞ ¼ f1ρþOðρ3Þ.
We get the AdS-Schwarzschild solution

3
when [35]

eAðρÞ ¼ 2

d
cosh

�

dρ

2l

�

2=d

; fðρÞ ¼ tanh

�

dρ

2l

�

: ð6Þ

This time, we use that l ¼ fðρÞ=A0ðρÞ towrite the extension
of (4) allowing finite temperatures as

aTðρÞ ¼
πd=2

Γðd
2
Þld−1P

�

fðρÞ
A0ðρÞ

�

d−1

: ð7Þ

aT for AdS-Schwarzschild matches a for empty AdSdþ1—a

consequence of both geometries being dual to states of the

same UV CFT. This is true even in the interior accessed by

analytic continuation of (6) to

ρ ¼ iκ; t ¼ tI − sgnðtIÞ
iγ

2T
; ð8Þ

where κ > 0, tI ∈ R, γ is a half integer,
4
and

T ¼ eAð0Þf1
2π

ð9Þ

is the black hole temperature.

Equation (8) describes the trans-IR, so we answer (Q1)

by exploring aT in this coordinate domain.

B. Proof of monotonicity

The usual procedure to confirm monotonicity of aT is to

analyze its derivative along the flow,

daT

dρ
¼ ðd − 1Þπd=2

Γðd
2
Þld−1P

fðρÞd−2
A0ðρÞd

× ½f0ðρÞA0ðρÞ − fðρÞA00ðρÞ�: ð10Þ
1
In most of the paper, we will just set l ¼ 1. However, we

retain factors of l in this subsection as they are necessary to
construct the function of interest.

2
Early AdS=CFT literature [7,8] identified this as the coefficient

of the even-d trace anomaly, but [9,10] later noted thata appears for
any d in entanglement entropy.

3
Note that the temperature of this black hole is set to 1=ð2πlÞ.
4
We elaborate on γ in Appendix A, but for now it suffices to

note that it depends on how we choose to analytically continue
coordinate time into the interior, and that past work [1,3,35]
typically has taken jγj ¼ 1=2.
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The general Einstein equations Gμν þ Λgμν ¼ l
d−1
P Tμν

[now setting l ¼ 1, so Λ ¼ −dðd − 1Þ=2] imply that

Tρ
ρ − Tt

t ¼
ðd − 1Þ
l
d−1
P fðρÞ ½f

0ðρÞA0ðρÞ − fðρÞA00ðρÞ� ð11Þ

⇒
daT

dρ
¼ πd=2

Γðd
2
ÞfðρÞ

�

fðρÞ
A0ðρÞ

�

d

ðTρ
ρ − Tt

tÞ: ð12Þ

Using the null vector k⃗ ¼ ½e−AðρÞ=fðρÞ�∂t þ ∂ρ, we can

write the NEC (5) as

Tρ
ρ − Tt

t ≥ 0: ð13Þ

Equation (13) holds everywhere and, in conjunction with

the positivity of A0ðρÞ near the boundary, implies that aT
decreases along the flow towards the horizon.

5
However,

proving monotonicity everywhere requires separate treat-

ment of the interior. In fact, even checking that the horizon

is the IR fixed point is problematic in these coordinates

because finiteness of daT=dρ is not obvious.

For these reasons, we find it easier to prove monotonicity

in another set of coordinates where the exterior and interior

are connected along a real radial coordinate. We transform

ρ → r [with r ∈ ð0;∞Þ] by setting

e2AðρÞ ¼ 1

r2
; fðρÞ2 ¼ FðrÞe−χðrÞ; dr

dρ
¼ −r

ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

:

ð14Þ

Here, χðrÞ is an analytic function of r with χð0Þ ¼ 0,

while FðrÞ must have a simple root r ¼ rh—the horizon

radius in the r slicing.
6
Furthermore r < rh is the exterior

(FðrÞ > 0), while r > rh is the interior (FðrÞ < 0). The

resulting metric is the Schwarzschild-like one of [1,11]

ds2 ¼ 1

r2

�

−FðrÞe−χðrÞdt2 þ dr2

FðrÞ þ dx⃗2
�

; ð15Þ

which has temperature,

T ¼ jF0ðrhÞje−χðrhÞ=2
4π

: ð16Þ

We may also use (14) to rewrite (7) as

aTðrÞ ¼
πd=2

Γðd
2
Þld−1P

e−ðd−1ÞχðrÞ=2: ð17Þ

Then, by differentiating and applying the Einstein equa-

tions in the Schwarzschild-like coordinates, we get

daT

dr
¼ −

πd=2

Γðd
2
Þ
e−ðd−1ÞχðrÞ=2

rFðrÞ2 ½FðrÞðTr
r − Tt

tÞ�: ð18Þ

Now, we use k⃗ ¼ eχðrÞ=2∂t þ FðrÞ∂r to write the NEC as

FðrÞðTr
r − Tt

tÞ ≥ 0; ð19Þ

which implies that daT=dr ≤ 0 everywhere.

Note that we are not done proving monotonicity. Strictly

speaking, we care about whether aT monotonically

decreases with respect to the energy scale ρ, even when

we analytically continue to the trans-IR flow:

UV → IR ðr ≤ rhÞ∶
daT

dρ
≥ 0; ð20Þ

Trans-IR ðr ≥ rhÞ∶
daT

dκ
≤ 0: ð21Þ

(20) is immediate upon using the chain rule; in the exterior,

dr=dρ ≤ 0. In fact, dr=dρ ¼ 0 at the horizon, and as

daT=dr at the horizon is explicitly finite (being a combi-

nation of χ and χ0), we have daT=dρjr¼rh
¼ 0. This

corroborates the horizon being the IR fixed point.

As for (21), from (8) and (14),

r > rh⇒
1

i

dr

dκ
¼ −ir

ffiffiffiffiffiffiffiffiffiffiffiffi

jFðrÞj
p

⇒
dr

dκ
> 0: ð22Þ

We thus conclude that aT indeed monotonically decreases

both from the UV to the IR and along the trans-IR flow

towards the singularity, answering (Q1).

III. LOSING EVERYTHING AT THE

SINGULARITY

Holographically, the endpoint of a trans-IR flow from a

UV thermal state is identified as the spacelike singularity of

the corresponding black hole interior. Thus, we can answer

(Q2) by analyzing how the near-singularity geometry is

affected by backreaction. Describing backreaction is more

easily done after specifying the matter sector, so we focus

on the minimal case of [1,11]—Einstein gravity with a free

massive scalar. In the resulting flows, we will find that

aT → 0 at the singularity, around which the local geometry

is that of a Kasner universe [32–34]. We thus call these

geometries “free Kasner flows.”

It is reasonable to ask how to generalize from free Kasner

flows. One way is to construct Kasner flows sourced by

more complicated matter sectors [36–40], via numerical

methods, and plot aT—a concrete but ad hoc approach.

Another is to assume a Belinskii-Khalatnikov-Lifshitz

(BKL) singularity [41–43]—reviewed by [44]—as the

trans-IR endpoint and analyze the near-singularity

5
This reasoning is analogous to the monotonicity argument for

the a-function that [9,10] construct in Gauss-Bonnet gravity.
6
This reparametrization rescales the black hole temperature. It

now depends on rh.
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geometry. These approaches allow for exotic behavior,

such as infinite sequences of distinct Kasner “epochs”

describing mixmaster dynamics [45–47].

A. Free Kasner flows

The free-scalar-field matter sector of our theory is

described by the action

IS ¼ −
1

4ld−1P

Z

ddþ1x
ffiffiffiffiffiffi

−g
p ð∇αϕ∇αϕþm2ϕ2Þ: ð23Þ

The bulk equations of motion are the usual Klein-Gordon

equation and the Einstein equations sourced by free scalar

matter. For this theory, we will numerically determine the

metric functions and compute aT explicitly. This is done in

the Schwarzschild-like coordinates.

1. Numerical construction

Consider a radial ansatz for the field ϕ ¼ ϕðrÞ with

m2 < 0. This is dual to a constant relevant boundary scalar

operator O which triggers an RG flow from the UV CFT

through the deformation (1). Its conformal dimension Δ

satisfies [27]

m2 ¼ ΔðΔ − dÞ: ð24Þ

For this ansatz, the Klein-Gordon equation and the Einstein

equations reduce to

ϕ00 þ
�

F0

F
−
d − 1

r
−
χ0

2

�

ϕ0 þ Δðd − ΔÞ
r2F

ϕ ¼ 0; ð25Þ

χ0 −
2F0

F
−
Δðd − ΔÞϕ2

ðd − 1ÞrF −
2d

rF
þ 2d

r
¼ 0; ð26Þ

χ0 −
r

d − 1
ðϕ0Þ2 ¼ 0; ð27Þ

where the primes denote derivatives with respect to r.
To solve (25)–(27) numerically, we expand fF; χ;ϕg

around the horizon r ¼ rh, then perform a two-sided

shooting method towards both the boundary r ¼ 0 and

the singularity r ¼ ∞. The mathematical details are in [11].

The near-singularity geometry is a Kasner universe,

ds2∼−dτ2þτ2ptdt2þτ2pxdx⃗2; ϕ∼−
ffiffiffi

2
p

pϕ logτ; ð28Þ

where τ ∈ R is a reparametrization of r, and fpt; px; pϕg
are Kasner exponents satisfying

pt þ ðd − 1Þpx ¼ 1; p2
ϕ þ p2

t þ ðd − 1Þp2
x ¼ 1: ð29Þ

We remark that some of the literature [44,46,47] refers to this

as “Kasner-like” or “generalized Kasner” geometry, because

of the pϕ. We will simply call it “Kasner” for convenience.

The backreacted geometries are labeled by a dimension-

less quantity called the “deformation parameter.” Explicitly

this is ϕ0=T
d−Δ, where T is the black hole temperature (16)

and ϕ0 is the source of the scalar field read from the near-

boundary (r → 0) expansion

ϕðrÞ ∼ ϕ0r
d−Δ þ hOi

2Δ − d
rΔ; r → 0: ð30Þ

Getting ϕ0 from ϕðrÞ depends on the choice of

quantization—whether we take Δ > d=2 or Δ < d=2 for

a given m [48].
7
Here we use “standard” quantization,

Δ >
d

2
⇒ ϕ0 ¼ lim

r→0
rΔ−dϕðrÞ: ð31Þ

Upon choosing d and Δ, one can plug the solutions of

(25)–(27) into (17) for various deformation parameters.

FIG. 2. The monotonic aT-function (in units of 2πl−2P ) for a

selection of free Kasner flows with d ¼ 3, Δ ¼ 2 and as a

function of the dimensionless ratio r=rh. Each curve corresponds
to a value of ϕ0=T. The dashed line is the horizon, with the trans-
IR regime to its right.

FIG. 3. The derivatives of aT (again in units of 2πl
−2
P ) along the

free Kasner flows in Fig. 2, computed as piecewise functions of r.
E is a stand-in for ρ in the exterior r < rh and for κ in the interior
r > rh. aT is stationary at the horizon r ¼ rh because this is the

IR fixed point.

7
At Δ ¼ d=2 exactly, the near-boundary expansion (30)

becomes functionally different and there are two ways to
quantize [49].
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We do so in Fig. 2 for d ¼ 3, Δ ¼ 2. We also show how aT
evolves along the entire flow in Fig. 3.

2. Probing the singularity

From our numerics, aT decreases monotonically along

both the UV → IR and trans-IR segments of the free Kasner

flow, validating the general monotonicity argument. The

rate’s dependence on ϕ0=T appears nontrivial, but how

much we can study this detailed analytic behavior is limited

because our solutions are numerical.
8

Nonetheless, we can still address (Q2) in free Kasner

flows analytically because we at least know the behavior of

the metric functions near the singularity. We first combine

the usual near-singularity logarithmic divergence of the

scalar field (for some q ∈ R) [50,51],

ϕðrÞ ∼ ðd − 1Þq log r; r → ∞; ð32Þ

with the equations of motion (25)–(27). Then [1,11],

χðrÞ ∼ ðd − 1Þq2 log rþ χ1; r → ∞; ð33Þ

where χ1 is another number. By plugging this into (17), we

have that for free Kasner flows,

aTðrÞ ∼ Cdr
−ðd−1Þ2q2=2; r → ∞; ð34Þ

where Cd > 0 is a constant. This expression goes to 0 at the

singularity for any q > 0,
9
signaling a total loss of degrees

of freedom. Because of monotonicity, the degrees of

freedom “thin out” as we approach the singularity.

We can also compute the near-singularity behavior of

daT=dκ by noting for some positive number f1,

FðrÞ ∼ −f1r
dþðd−1Þq2=2; r → ∞: ð35Þ

Thus, we have that

daT
dκ

¼ r
ffiffiffiffiffiffiffiffiffiffiffiffi

jFðrÞj
p daT

dr
∼ −C̃dr

σ; r → ∞; ð36Þ

where C̃d > 0 is another constant and σ is

σ ¼ 2d − q2ðd − 1Þð2d − 3Þ
4

: ð37Þ

This expression is more meaningful if it is written in terms

of the Kasner exponent pt, which is directly related to q in

the literature [1,11]. For any d,

q2 ¼ 2½dð1þ ptÞ − 2�
ðd − 1Þð1 − ptÞ

⇒ σ ¼ ðd − 1Þ½dð1þ ptÞ − 3�
pt − 1

: ð38Þ

A priori, there are three parametric regimes: σ < 0, σ ¼ 0,

and σ > 0. σ has both a root at pt ¼ −1þ 3=d≡ p�
t and a

discontinuity at pt ¼ 1 at which

lim
pt→1−

σ ¼ −∞; lim
pt→1þ

σ ¼ þ∞: ð39Þ

Additionally, dσ=dpt < 0 for any d ≥ 2. Thus,

8

<

:

σ < 0

σ ¼ 0

σ > 0

9

=

;

⇔

8

<

:

p�
t < pt < 1

pt ¼ p�
t

pt < p�
t or pt > 1

9

=

;

: ð40Þ

There are two ways to make use of (40). One is to

numerically compute the range of pt for particular free

Kasner flows so as to constrain σ. [1] does the first step for

free flows with d ¼ 3, Δ ¼ 2, and their numerics indicate

that σ > 0 (implying that daT=dκ → −∞). Thus, a numeri-

cal analysis can be used to examine the evolution of aT on a
case-by-case basis.

The second approach is to take the negative blow-up of

daT=dκ near the singularity as a given, thus insisting that

σ > 0 for all free Kasner flows. This is more of a stretch,

but if this holds then one would obtain analytic bounds on

the near-singularity Kasner exponent pt.

We reiterate that our analysis takes place in the near-

singularity region, which is why pt has so much control

over the evolution of aT . This is powerful enough to

address (Q2) since it concerns only the endpoint of the

trans-IR, but one may ask about the rest of the trans-IR

flow. Does aT feature any interesting dynamics aside from

its monotonicity? We would expect such physics to be

highly dependent upon the fields in the interior but

infinitely far from the singularity.

B. Considerations for generalization

The above discussion is focused on free Kasner flows,

so we are motivated to extract whatever lessons we can for

more general types of flows featuring both more intricate

behavior along the trans-IR and more general singularity

structure. We now make some broad statements regarding

such generalizations, leaving further examination to future

work. Based on these statements, we conjecture that aT
vanishing at the singularity is a general feature of holo-

graphic trans-IR flows.

1. General Kasner singularities

One may ask about Kasner flows sourced by more

complicated matter sectors, such as the self-interacting ϕ4-

scalar theory of [36] or ϕ coupled to Maxwellian and/or

8
Reference [1] found that, in d ¼ 3, Δ ¼ 2, the near-singu-

larity Kasner exponent pt has nontrivial dependence on ϕ0=T,
achieving a maximum in the range 24 < ϕ0=T < 25. It would be
interesting to determine if this is related to the behavior in Fig. 3.

9
q ¼ 0 corresponds to AdS-Schwarzschild, i.e., no RG flow.
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axionic fields [37–39]. One could even consider dimen-

sional reductions of supergravity theories [40] or modify

the gravitational theory to include higher-curvature terms

[52] (upon appropriate changes to aT (7) [9,10]). Either

scalar hair [53,54] or vector hair [55] generally prevents the

formation of inner horizons in black holes, so trans-IR

flows even in these theories will still end at a spacelike

singularity, just as in the free scalar theory. Assuming a

Kasner singularity, we may conjecture that aT still vanishes

at the trans-IR endpoint.

There is evidence for our conjecture. Take the minimal

holographic superconductor of [37] with a massive scalar

field charged under a Maxwell field. The hairy black holes

in this theory exhibit physics dependent upon the charge,

such as Josephson oscillations of the scalar field and

Kasner inversions—changes to the Kasner exponent due

to instability. In fact, their numerics suggest the possibility

of some flows
10

with infinitely many Kasner inversions;

these flows never “settle down” and instead exhibit chaotic

mixmaster behavior [45–47].

This rich geometrical structure suggests interesting

dynamics for aT along the trans-IR flow. However, even

in this case, aT decays with large r (34). The power in this

asymptotic expression for aT is always negative, so we

would still expect aT → 0 in the strict limit r → ∞.

Assuming oscillations and inversions affect aT , we expect
them to emerge in the derivative daT=dκ, which need not

even be monotonic. One could numerically examine σ in

order to better understand the evolution of aT .

2. BKL singularities

The BKL program [41–43] characterizes the near-

singularity geometry allowed by the Einstein equations.

Instead of obtaining numerical solutions for a particular

matter sector, one can asymptotically analyze the equations

of motion for classes of theories. We lose subtlety in aT
away from the singularity in exchange for more near-

singularity analytic power. To consider holographic RG

flows, one would need matter fields dual to relevant

deformations on the boundary and a negative cosmological

constant (realizable as a constant potential term [47]).

The expected near-singularity geometry is either a

Kasner universe or an infinite sequence of Kasner epochs

undergoing mixmaster behavior, depending on the types of

fields and the number of spacetime dimensions D≡ dþ 1

[46,47]. For example, free Kasner flows have the former,

and the flows of [37] with infinite Kasner inversions have

the latter. If aT → 0 at spacelike singularities in both of

these examples, it is natural to conjecture that aT → 0 at

either kind of BKL singularity, too. One way forward may

be to utilize the description of near-singularity dynamics as

billiards in hyperbolic space [46].

IV. PROBES OF TRANS-IR FROM QUANTUM

INFORMATION

While holographic RG flow is one perspective of the

relationship between the bulk and the boundary, we may

also take the view that bulk geometry encodes information-

theoretic quantities about the boundary quantum states. By

combining these two perspectives, such quantities can be

thought of as probes of the trans-IR regime. Concretely, we

may ask which quantities reach the singularity and thus

probe the full trans-IR.

We examine several quantities for which holographic

prescriptions have been well studied. For each one, we are

concerned with the maximal radius rm that is reached by the

dual bulk object—a measure of how far that particular

information-theoretic quantity probes into the trans-IR.

First, we argue that both entanglement entropy from the

Ryu-Takayanagi (RT) and Hubeny-Rangamani-Takayanagi

(HRT) prescriptions [12,13] and complexity from

Complexity ¼ Volume (CV) [14–16] typically probe only

some of the trans-IR; rm is bounded from above. Then, we

find that both the 2-point correlator from geodesic approxi-

mation [3,17] and complexity from Complexity ¼ Action

(CA) [18,19] see the full trans-IR, with rm running over the

full interior.

For static black holes, we generally have a “critical” time

tc > 0 controlling which of the latter two quantities—the

2-point correlator or CA—at a particular boundary time tb
is a “good” probe of the trans-IR. This critical time has

appeared before in work examining each probe individually

[3,56], but through the lens of holographic RG flow tc is a

scale that characterizes the trans-IR flow. Concretely,

noting that the maximal radius of either probe is a function

of boundary time, a probe is good for the range of tb for

which rm has continuous support. Given some critical time,

we find that the 2-point correlator is the early-time

(jtbj < tc) probe of the trans-IR while CA is the late-time

(jtbj > tc) probe. This “complementarity” between corre-

lations and CA follows from a geodesic analysis of

Schwarzschild-like black holes (15).

However, there are some caveats. First, the failure of

entropy and CV to probe the full trans-IRmostly hold except

for very specific, finely tuned situations. Specifically, there

are particular choices of the number of spatial dimensions d

in which entanglement (d ¼ 2) or CV (d ¼ 1) may probe the

full trans-IR. Additionally, there are also certain geometries

(i.e., d ¼ 2 AdS-Schwarzschild black holes) for which

correlations and CA are not complementary; both are instead

“good” for all tb. In fact, lack of complementarity becomes

more common in charged or rotating black holes, as we

discuss later.

Nonetheless, we reiterate that our focus is on flows

represented by static black holes, in which case such

exceptions require some sort of fine-tuning and so should

not be drawn upon as general examples.

10
These occur at discrete values of the temperature (relative to

the holographic superconductor’s critical temperature).
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A. Entanglement and CV are not enough

We first make the case that both entanglement entropy

and CV usually fail to fully probe the trans-IR. That is not

to say that neither probes at least some of the trans-IR, nor

are we asserting that they never probe the full trans-IR.

Indeed, there are finely tuned situations for which the latter

happens,
11
but entanglement entropy and CV fail to do so in

general. In the interest of brevity, we leave most of the

technical details to Appendix B.

Fundamentally, this failure is because of the existence of

“barriers” preventing the pertinent boundary-anchored

extremal spacelike surfaces from continuously (with respect

to the tb ¼ 0 slice) reaching the singularity (Fig. 4). Such

barriers have been seen explicitly in both AdS-

Schwarzschild [35] and free Kasner flows [1,11] (reviewed

in Appendix B 1) for particular surfaces but are supposed to

be rather general features of asymptotically locally AdS

spacetimes [57,58]. For these extremal spacelike surfaces, rm
is bounded from above by a finite radius rc, so there is an

upper limit for how far into the trans-IR they can probe.

We start with entanglement entropy, which is known to

be a monotonic function in both holographic [9,10] and

nonholographic [59,60] RG flow. Recall the RT presecrip-

tion [12] and its covariant extension [13]: for a boundary

CFT subregion R, its entanglement entropy SðRÞ is

calculated to leading order in 1=GN by minimizing the

area functional on codimension-2 extremal surfaces Σ

homologous to R,

SðRÞ ¼ min ext
Σ∼R

A½Σ�
4GN

: ð41Þ

We consider R at a particular boundary time tb and denote

the corresponding minimal-area surface as Σ0. If R is a

Cauchy slice of one of the disjoint boundaries, then Σ0 is

just the black hole horizon. Furthermore, by entanglement

wedge nesting [61,62], if R is a subregion of this Cauchy

slice then Σ0 is entirely in the black hole exterior.

To get a Σ0 which probes the interior, R must include

intervals on both sides. Fixing a constant xR ∈ R, the

symmetrical case for which we take R to be

t ¼ tb; x1 ∈ ½xR;∞Þ; ð42Þ

yields a Hartman-Maldacena (HM) surface [35]. These are

the surfaces obtained in Appendix B for k ¼ 1. However,

these still fail to probe the full trans-IR regime unless d ¼ 2

(in which case HM surfaces are geodesics).

We now discuss CV [14–16], in which the boundary-

time-dependent complexity of the UV state CVðtbÞ is

identified as the volume of a maximal, codimension-1

bulk slice VðtbÞ,

CVðtbÞ ¼
8π

l
d−1
P

VðtbÞ: ð43Þ

Such volumes are straightforward to write as integrals of

metric functions when considering spherically symmetric

metrics such as (15) [56,63]. Indeed, the volume is

explicitly written in (B4) by setting k ¼ 0.

Just like HM surfaces, this bulk slice will fail to probe the

full trans-IR (apart from if d ¼ 1, when these slices are

simply geodesics). In general, just like the HM surfaces, rm
will be bounded and the slices will get stuck infinitely far

from the singularity.

B. Complementarity of correlations and CA

While entanglement and CVare not enough to probe the

full trans-IR flow, there are two quantities describing

quantum information of the boundary state which do.

These are the (secondary sheet of the [3]) 2-point correlator

and CA.

Assume flows corresponding to static black holes. In this

case, we will see that the 2-point correlator and CA

generally probe the trans-IR in a complementary manner

dictated by a flow-dependent critical time,

tc ¼ P

Z

∞

0

eχðrÞ=2

FðrÞ dr; ð44Þ

so long as tc > 0.

To see why this happens, without loss of generality,

consider tb ≥ 0. In the early-time (0 ≤ tb < tc) part of the
UV state, the 2-point correlator probes the full trans-IR.

Any symmetric spacelike geodesic dual to this correlator at

a particular boundary time will have a maximal radius rm
between the horizon and the singularity. However, as

tb → tc from below, rm → ∞ and the geodesic becomes

“nearly” null—approaching the appearance of two sym-

metric null rays fired from opposite connected components

of the boundary.

FIG. 4. Extremal spacelike surfaces of dimension ≥ 2 which

symmetrically connect the disjoint boundaries of a two-sided,

asymptotically AdS black hole at various boundary times tb. The
maximal radius rm as a function of tb takes on values in the

interval ½rh; rcÞ, approaching rc as jtbj → ∞.

11
Entanglement entropy works in d ¼ 2, while CV works in

d ¼ 1. This is specifically because they are encoded by geodesics.
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Precisely at that moment, such null geodesics constitute

the past-directed null sheet bounding the Wheeler–DeWitt

(WDW) patch at tb ¼ tc, with their intersection being a

“joint” located at the singularity. This particular joint

moves towards the horizon as tb → ∞; taking its position

as the maximal radius rm for CA, rm → rh for the WDW

patches encoding late-time (tb > tc) complexity of the UV

state. The point is that the UV state sees the full trans-IR

flow through different probes for complementary intervals

of tb:

jtbj < tc ⇔ 2-point correlator; ð45Þ

jtbj > tc ⇔ Complexity ¼ Action: ð46Þ

See Fig. 5 for a visual representation of this phenomenon.

However, note that this complementarity is not the only

possibility, since tc need not be positive a priori.
12
Even in

the static case, there are specific finely tuned black holes for

which tc ¼ 0 where complementarity is not a feature—we

instead have a “simultaneity” of the probes because the

symmetric spacelike geodesics never become null. More

generally, black holes with angular momentum or charge

may not feature complementarity for larger regions of

parameter space consisting of black holes with tc < 0. We

briefly discuss these cases in Sec. IV B 3. Nonetheless,

there we argue that tc > 0 is a general condition for the

static case, and our numerics for free Kasner flows

(Appendix C) serve as evidence.

1. Early times: 2-point correlator

In AdS=CFT, correlation functions of the boundary are

encoded by bulk paths connecting the insertion points [17].

Specifically, for a scalar operator Õ with conformal

dimension Δ̃, the 2-point correlator is a path integral,

hÕðζ1ÞÕðζ2Þi ¼
Z

ζ1→ζ2

DPe−Δ̃L½P�; ð47Þ

where P is a bulk path from ζ1 to ζ2 while L½P� is the

renormalized
13
length of P. In the “heavy” limit Δ̃ → ∞, Õ

is irrelevant and (47) becomes a sum over saddles of the

length functional, i.e., a sum over geodesics,

hÕðζ1ÞÕðζ2Þi ∼
X

geodesics

e−Δ̃Lðζ1;ζ2Þ; Δ̃ →∞: ð48Þ

We are concerned with the 2-point correlator between

symmetric insertions on disjoint boundaries of asymptoti-

cally AdS black holes. Thus, the pertinent bulk objects are

symmetric spacelike geodesics.
14
They are described by the

expressions in Appendix B with k ¼ d − 1, so they each

have a characteristic energy E corresponding to some

boundary time tb and maximal radius rm.
To see how the correlator evolves in time, we consider

how the geodesics evolve with respect to tb (or, equiv-

alently, E). Starting at tb ¼ 0, regardless of the geometrical

details, the geodesic resides entirely on the t ¼ 0 bulk

Cauchy slice and has energy E ¼ 0. A priori there are two

possibilities:

(i) We can take the limit jEj →∞. (B6) implies that

rm → ∞ (by regularity of the metric functions)

while (B8) implies that tb goes to the aforemen-

tioned critical time,

jtbj → P

Z

∞

0

eχðrÞ=2

FðrÞ dr ¼ tc > 0: ð49Þ

(ii) jEj is bounded from above. Nonetheless we may still

take rm → ∞. In the integrand of (B8), we cannot

suppress the pole as rm → ∞ because we cannot first

take jEj → ∞. Thus, jtbj → ∞.

These two cases are illustrated in Fig. 6. Figure 6(a) is the

first case in which taking jEj →∞ produces the nearly null

geodesics. Figure 6(b) is the second case where we simply

have spacelike geodesics for all tb.
There is a simple way to test which case we have—by

assuming the first case and explicitly computing the

integral in (49). We will always get tc > 0 for the first

case. However, if the integral yields tc ¼ 0, our assumption

FIG. 5. The complementarity of the 2-point correlator (a) and

holographic complexity from CA (b) for tb ≥ 0. From the figure,

it is evident that the null limit of the symmetric spacelike

geodesics coincides precisely with the past-directed null sheet

bounding the WDW patch at tb ¼ tc.

12
Complementarity will turn out to be related to the shape of

the black hole, which can be diagnosed by a formula for the
critical time tc. Specifically, complementarity is a feature of black
holes with tc > 0, which when drawn with vertical boundaries
have future singularities bending “down” [64].

13
We may renormalize by either using a cutoff surface or

performing background subtraction. We do not specify a re-
normalization scheme here.

14
Reference [3] notes that such geodesics actually encode a

branch of the analytic continuation of the boundary theory’s
correlator. We will address this point later, but for now we allow
ourselves an abuse of terminology in referring to this branch as
“the correlator.”
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must be wrong since we would get that tb ¼ 0 for both

E ¼ 0 and jEj ¼ ∞. Thus, jEj must be bounded and we are

left with the second case. We call the first case “general”

and the second case “finely tuned,” since the geometry must

be chosen such that tc ¼ 0 for the latter.

For example, consider the planar AdS-Schwarzschild

black holes discussed by [3] and for which we compute tc
in Appendix C as (C2). The critical time is 0 if and only if

d ¼ 2. Additionally, plugging the appropriate metric func-

tions (χðrÞ ¼ 0, FðrÞ ¼ 1 − ðr=rhÞd) into (B6) yields

E2 ¼ rd−2m

rdh
−

1

r2m
: ð50Þ

So jEj monotonically goes from 0 to 1=rh as rm → ∞ if

d ¼ 2, whereas d > 2 implies that jEj monotonically goes

from 0 to ∞ as rm →∞. Setting d ¼ 2 is the fine-tuning

needed to get Fig. 6(b).

So far, we have that tc > 0 and the corresponding nearly

null geodesics shown in Fig. 6(a) feature in general black

holes. Furthermore, rmðtbÞ in these geometries starts at rh
(for jtbj ¼ 0) and goes to ∞ (as jtbj → tc). So, the 2-point
correlator encoded by these geodesics only probes the

trans-IR flow for jtbj < tc. Reference [3] argues that this

correlator has a “light-cone” singularity,
15

hÕLðtbÞÕRðtbÞi ∼

8

<

:

1

jtb−tcj2Δ̃
if tb → tc;

1

jtbþtcj2Δ̃
if tb → −tc:

ð51Þ

ÕL=RðtbÞ is the value of the operator Õ on the left/right

boundary at tb. However, this light-cone singularity is not

expected from general properties of the boundary theory.

The resolution of [3] is that the expected boundary-state

correlator is realized as a “complexified” geodesic (as in

E ∈ C), and that the light-cone singularity merely occurs on

a secondary sheet of the analytic continuation of that

correlator. Thus, our precise statement is that it is the

secondary sheet of the 2-point correlator which probes the

trans-IR regime for jtbj < tc.

2. Late times: Complexity =Action

We now consider CA [18,19], in which we associate

the boundary-time-dependent complexity of the UV state

CAðtbÞ with the action evaluated on the corresponding

WDW patch WðtbÞ. This WDW patch is properly defined

as the union of all bulk spatial slices anchored to the tb slice
of the boundary, so it is found by shooting both past-

directed and future-directed null rays into the bulk (Fig. 7).

Concretely, we write

CAðtbÞ ¼
I½WðtbÞ�

πℏ
; ð52Þ

where I½WðtbÞ� is the bulk action on WðtbÞ.
CA is a rather unwieldy prescription compared to CV.

On top of integrating the bulk action on the codimension-0

interior of the WDW patch, we must also account for the

codimension-1 boundary terms and, notably for our pur-

poses, the codimension-2 joint terms, with careful attention

towards the null parts of the geometry [65]. Thus, I½WðtbÞ�
truly consists of three types of contributions,

16

I½WðtbÞ� ¼ IW þ IB þ IJ ; ð53Þ

which are, respectively, the bulk WDW, boundary, and

joint terms.

FIG. 7. A cartoon depiction of the Wheeler–DeWitt patch

WðtbÞ (the green solid wedge) obtained by shooting null rays

from a constant-tb boundary slice into the bulk.

FIG. 6. The symmetric spacelike geodesics in asymptotically

AdS static black holes which are homotopic to the geodesics

anchored at tb ¼ 0. Generally, the geodesics take the form shown

in (a), becoming nearly null and thus producing a light-cone

singularity. In specific finely tuned cases however, the geodesics

may appear as in (b) in which case there is no light-cone

singularity. For the purposes of our discussion, we will focus

more on the general cases.

15
Reference [3] focuses on AdS-Schwarzschild, but this

singularity is also seen in Kasner flows by [1]. See also [4].

16
This is the formal prescription, but generally the action

diverges. This can be sidestepped by introducing regulator
surfaces, but this also introduces additional boundary and joint
terms.
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For two-sidedblackholes,we can thinkof theWDWpatch

corresponding to a particular tb as being formed by shooting

symmetric null rays from both asymptotic regions. However,

the null rays can reach the singularity without intersecting

one another.We use the null rays discussed inAppendixA to

note that there exists a branch-independent
17

critical time

tc > 0,

tc ¼ P

Z

∞

0

eχðrÞ=2

FðrÞ dr; ð54Þ

for which there is a “null-to-null” joint (whose position is

taken as the maximal radius rm) if and only if jtbj ≥ tc.
Specifically, for tb ≤ −tc, the joint formed by future-directed

null rays goes from the bifurcation point (rm ¼ rh) at

tb ¼ −∞ to the future singularity (rm ¼ ∞) as tb → −tc.
If jtbj < tc, there is no joint. Then, as tb → tc, a joint formed

by past-directed null rays emerges at the past singularity

(rm ¼ ∞), subsequently moving towards the bifurcation

point again as tb → ∞.

So long as tc > 0—the general case from before—the

presence of a joint occurs in a complementary range of

boundary time to the interval for which we have the

symmetric spacelike geodesics of Sec. IV B 1. In the finely

tuned geometries for which tc ¼ 0, we have one joint for all

tb except for at the instantaneous moment tb ¼ 0 at which

there are two. Thus, there is essentially no phase transition

of the WDW patch for this case.

We can relate the location of the joint to boundary time.

Using the expressions for coordinate time along the null ray

in (A2), we write (assuming jtbj > tc)

jtbj ¼ P

Z

rm

0

eχðrÞ=2

FðrÞ dr: ð55Þ

This can be differentiated to yield

drm

dtb
¼

8

>

>

<

>

>

:

e−χðrmÞ=2FðrmÞ if tb > tc;

0 if jtbj < tc;

−e−χðrmÞ=2FðrmÞ if tb < −tc:

ð56Þ

The emergence and evolution of the joint control the time

dependence of complexity; dCA=dtb ≠ 0 if and only if

jtbj > tc. This is seen through the explicit evaluation

of (53) (with appropriate regulator cutoffs) in terms

of metric functions. The calculations are performed in

AdS-Schwarzschild by [56] but should generalize to the

Schwarzschild-like ansatz (15) due to both spherical

symmetry and time-reversal symmetry being maintained.

The calculation is performed by breaking the WDW patch

and its boundary into sections:

(i) IW (Bulk): Consider (I) the future interior piece, (II)

the exterior piece, and (III) the past interior piece.

(II) is always time independent, while (I) and (III)

are each time dependent [56]. These time depend-

encies cancel exactly when the WDW patch reaches

both the future and past singularities, which happens

if jtbj < tc but not if jtbj > tc.
(ii) IB (Boundary): An appropriate affine parametriza-

tion of the normal vectors for the null sheets will

make their contributions to the action vanish, so the

only boundary terms are those of the regulator

surfaces. For jtbj < tc, we have surfaces near the

UV boundary, the future singularity, and the past

singularity. Only the latter two contribute time

dependence to complexity; their respective time

dependencies cancel exactly. When jtbj > tc, one
of the near-singularity surfaces is lost and we are left

with the time dependence of the remaining surface.

(iii) IJ (Joint): In the regulated calculation, there are

joints located both near the UV boundary and at the

singularity. The former are time independent while

the latter vanish [66]. The only nontrivial time

dependence comes from the joint which probes

the trans-IR when jtbj > tc.
We leave the concrete calculation of complexity and its

growth rate dCA=dtB to future work,
18
but as a preliminary

step we compute the action of the joint in Appendix D and

see that it is modified by terms dependent on aT at the joint.
Still, our statement that CA is time dependent only when

probing the trans-IR through its joint relies purely on

general symmetry considerations.

3. Black holes without complementarity

The discussion thus far has been about static black

holes. However, we can ask about other types of black

holes, such as those with angular momentum or charge

[56,64,67,68]. Specifically, we will focus on such cases

with hair going to the boundary, so that the geometries

may be interpreted as RG flows. References [53–55]

indicate that such cases involve black holes without inner

horizons, so we assume that the black holes of interest

have only one horizon.

Generically, we can have three different types of black

hole “shapes.” Each is characterized by the sign of tc,
which may be calculated for spherically symmetric black

holes using the integral in (49)
19
:

tc > 0⇒ type D; ð57Þ

17
This refers to the γ discussed in Appendix A.

18
Since the first version of this manuscript was written, [64] has

performed this calculation.
19
The names come from how the future singularities “bend”

with respect to the conformal boundaries [64]. “Type D” refers to
a future singularity bending down, while “type U” means that the
singularity bends up. “Squarelike” comes from [3].
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tc ¼ 0⇒ squarelike; ð58Þ

tc < 0⇒ type U: ð59Þ

These conditions, respectively, correspond to whether two

null geodesics fired from opposite boundaries at the initial

slice intersect with the singularity, with one another at the

singularity, or with each other without reaching the

singularity.

We have been focusing on static black holes with tc ≥ 0,

i.e., those which are either type D or squarelike. However, it

is natural to wonder if type-U solutions (Fig. 8) are also

possible in that framework. Indeed, type-U solutions are

known to exist for charged black holes [64].

However, these type-U solutions in practice come from

particular deformations of the inner Cauchy horizon.
20

Thus, one could in principle get them for the charged

and rotating cases. But, since there is no Cauchy horizon at

all in the static case, we would expect to only have type-D

and squarelike black holes in that case. This is supported

by our numerical calculation of the critical time in

Appendix C, for which we only have tc > 0 for a class

of free Kasner flows. It would be interesting to further

probe this claim.

Observe that complementarity is no longer a feature of

the type-U black holes—there is always at least one joint

present, and so CA is a good probe of the trans-IR for all

boundary times tb. However, there is a continuous window
jtbj < jtcj in which there are two joints present, with a

discontinuous change in the number of joints coinciding

with the geodesics becoming nearly null. We leave further

exploration of this phenomenon in type-U black holes to

future work.

C. Loss of degrees of freedom

A natural question to ask is how quantum information

encodes the vanishing of degrees of freedom at the

singularity. How this happens is currently unclear.

Nonetheless, we provide some preliminary direction

towards addressing this question.

First, note that only some probes would actually see

aT → 0—the quantities which actually reach the near-sin-

gularity region. This would rule out things like entanglement

entropy or CV as encoding the vanishing. However, we

would expect other quantities like 2-point correlators or CA

to somehow be informed of this phenomenon.

While the details on the quantum information side are

vague, the argument on the gravitational side is on more

solid footing. Because aTðrÞ ∼ e−ðd−1ÞχðrÞ=2 (17), aT → 0 if

χðrÞ diverges in r at least logarithmically. Thus, the matter

must source a particularly destructive type of backreaction

in the near-singularity regime. Understanding the vanishing

through the lens of quantum information goes hand-in-hand

with understanding how quantum information encodes

near-singularity backreaction of the black hole geometry.

V. CONCLUSIONS

We have explored trans-IR flows as a framework with

which to conceptualize the physics of black hole interiors.

We have extended the usual holographic a-function to

include such analytic continuations of RG flows, proving

monotonicity for reasonable deformations (i.e., those dual

to matter satisfying the null-energy condition) and arguing

that the degrees of freedom thin out as we approach the

endpoint of the trans-IR—the black hole singularity. We

have also embedded the story of quantum information

within the trans-IR framework, based on the observation

that boundary probes of quantum information are informed

by bulk geometry behind the horizon. More specifically, the

boundary theory encodes the trans-IR part of the flow as

quantum information in various nontrivial ways.

We hope that viewing black hole interiors as trans-IR

flows motivates further discovery and exploration of other

probes of physics inside of black holes. While our aT-
function is one such quantity, one could also consider other

measures counting the degrees of freedom, such as the

chiral anomaly coefficient in d ¼ 2 [69] or path integral

complexity [70–72]. Conversely, one may explore how

other quantum information probes such as Rényi entropy,

entanglement negativity [73], and generalized “complex-

ities” [74] are informed by our aT-function or the trans-IR

regime in general. A parallel illuminating direction would

be to study how quantum information encodes the trans-IR

using only boundary-theory techniques and calculations,

thus moving away from holographic boundary CFTs.

Another quantity often associated with an RG flow is the

β-function of the running coupling. Upon specifying the

deformation, one may write β-functions holographically.

This was done for scalar deformations using the super-

potential formalism [30,31]. One could use β-functions to

characterize the dynamics of trans-IR flows.

FIG. 8. A schematic representation of a type-U black hole.

Unlike in type-D or squarelike black holes, null geodesics fired

from the boundaries at tb ¼ 0 intersect finitely deep inside of the

black hole interior.

20
We thank Roberto Auzzi for providing us with this point.
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A natural extension of our work is to consider more

types of flows, such as those sourced by combinations

of interacting scalars, higher-rank fields, and axions

[36–40,75]. One may also consider higher-curvature grav-

ity [52], but note that we would expect corrections to the

aT-function by analogy to the a-function of [9,10].

We have only taken a a few steps towards addressing our

overall question of what it means to subject a field theory to a

trans-IR flow. Nonetheless we envision that understanding

this question is equivalent to better understanding physics

inside of black holes.We also expect the trans-IR technology

to have more applications to the study of more general RG

flows involving nonholographic quantum field theories.
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APPENDIX A: CHARACTERIZING ANALYTIC

CONTINUATION OF TIME TO THE INTERIOR

Our goal in this appendix is to classify the ambiguity of

coordinate time in the interior of asymptotically AdS black

holes (15). This ambiguity depends upon how we choose to

analytically continue from exterior time. The interior can

thus be thought of as a particular branch of an infinite

number of replica geometries, each labeled by a half-

integer γ (8).

We proceed by tracking coordinate time along null rays

in (15). Much of our analysis resembles that of [3]. The null

rays of interest are confined to a constant-x⃗ slice and are

parametrized as t ¼ tðrÞ, where tð0Þ ¼ tb is the boundary

time. From (15), the trajectories are

dt

dr
¼ � eχðrÞ=2

FðrÞ : ðA1Þ

þ denotes the future-directed (“infalling”) direction while

− denotes the past-directed (“outgoing”) direction.

Integrating (A1) yields the future-directed and past-directed

trajectories, respectively written as tþðrÞ and t−ðrÞ,

t�ðrÞ ¼ tb �
Z

r

0

eχðr
0Þ=2

Fðr0Þ dr0: ðA2Þ

This is well defined up to the horizon r ¼ rh. To reach the

interior r > rh, the integral must include the horizon.

However, the integrand has a pole here with residue:

Res

�

eχðr
0Þ=2

Fðr0Þ ; rh

�

¼ eχðrhÞ=2

F0ðrhÞ
¼ −

1

4πT
; ðA3Þ

so as in [35], we modify the contour in the complexified r0

space (Fig. 9) to write

Z

r

0

eχðr
0Þ=2

Fðr0Þ dr0 ¼ P

Z

r

0

eχðr
0Þ=2

Fðr0Þ dr0 −
γi

2T
: ðA4Þ

The first term is the principal value while the second term is

obtained from the pole. Notably, the latter depends on “how

many times” the modified contour goes around the pole to

avoid it, captured by the “winding number” γ.

The residue theorem is typically used for integration over

closed contours, whereby winding numbers are positive

integers for counterclockwise closed contours and negative

integers for clockwise closed contours. However, we use

fractional winding numbers to characterize circular con-

tours which avoid a pole but do not form closed loops.

Specifically, a half-integer winding number means that the

contour fully wraps around the pole an integer number of

times, then travels an additional π radians. It is these

contours in the complexified r0 space which allow us to

reach the interior from the exterior.

So, we plug (A4) into (A2) to write the coordinate time

along a null ray starting at boundary time tb,

t�ðrÞ ¼

8

<

:

tb �
R

r
0
eχðr

0Þ=2

Fðr0Þ dr
0 if r < rh;

tb � P
R

r
0
eχðr

0Þ=2

Fðr0Þ dr
0 ∓ γi

2T
if r > rh:

ðA5Þ

Coordinate time is real in the exterior, but in the interior

time picks up a purely imaginary piece from the pole at the

horizon. While we extract this imaginary term from an

analysis of null rays, it is also seen in analyses of extremal

spacelike surfaces reaching the interior [1,35].

FIG. 9. Integration contours used to obtain the interior time

coordinate of the null rays (A1). The formal, “bad” integral is

taken over the green contour ½0; r�, but this hits the pole at the

red ×. Thus, we integrate over a modified contour (in yellow)

with half-integer winding number γ and take ε → 0 to separate

out the pole, leaving us with the principal part plus an imaginary,

residue-dependent, γ-dependent term (A4).
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Note that γ is purely dependent upon how we choose to

deform the contour and is thus an inherent ambiguity in

time behind the horizon. There are countably infinitely

many sheets which we may take to be “the” interior. Any

choice of γ is perfectly valid in bulk analyses; earlier work

[1,3,35] just chooses a particular branch jγj ¼ 1=2. At least
some physics on the boundary should not care about this

choice, but additional symmetry is required when comput-

ing such physical quantities. For example the critical time

tc (Sec. IV B) is a γ-independent quantity found by forcing

left-moving and right-moving null rays to meet at

ReðtÞ ¼ 0. One may wonder how the infinitude of choice

in γ may correspond to infinite families of observables in

the boundary theory [76].

We make one more point about the two-sidedness of

coordinate time. What we have considered above and

throughout this paper is not actually the most generic

way to embed two-sided black holes in complex coordinate

space. We may instead assume that time is real only in one

exterior region. Then, in order to extend time to the other

exterior, we must dodge two poles, giving us the freedom of

two half-integer winding numbers instead of one. Thus, we

may take the other exterior region to still have complex

time [3]. However, assuming symmetric boundary times tb
on both sides of the black hole forces us to keep time real in

both exterior regions, which constrains us to just one γ for

the entire interior.

APPENDIX B: REVIEW OF EXTREMAL

SYMMETRIC SPACELIKE SURFACES

In this appendix, we briefly review extremal symmetric

spacelike surfaces of codimension (kþ 1) in (dþ 1)-

dimensional Schwarzschild-like black holes (15). For

k < d − 1, these surfaces are the sort depicted in Fig. 4

and relevant to the discussion in Sec. IVA.
21
Specifically,

both the bulk volume slices used in CV (k ¼ 0) and HM

surfaces (k ¼ 1) are of this type. For k ¼ d − 1, these

surfaces are simply the geodesics depicted in Fig. 6 and

discussed in Sec. IV B. Reference [1] also reviews (kþ 1)-

codimensional surfaces in (15) with a specific focus on

k ¼ 1 and k ¼ d − 1 in d ¼ 3.

We parametrize coordinate time on the surface as

t ¼ tðrÞ, with boundary time set to tð0Þ ¼ tb on both sides

of the black hole. Furthermore, we assume k of the

components of x⃗ are constant along the surface. From (15),

the induced metric for k < d − 1 is then

ds2k ¼
1

r2

��

1

FðrÞ −
FðrÞt0ðrÞ2

eχðrÞ

�

dr2 þ
X

d−1

i¼kþ1

ðdxiÞ2
�

; ðB1Þ

where ðxkþ1;…; xd−1Þ are the remaining transverse direc-

tions. For k ¼ d − 1, as all components of x⃗ are fixed,

ds2d−1 ¼
1

r2

�

1

FðrÞ −
FðrÞt0ðrÞ2

eχðrÞ

�

dr2: ðB2Þ

Thus, the coefficient of the volume form for the surface

(for both cases) is

Lk ¼
1

rd−k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

FðrÞ −
FðrÞt0ðrÞ2

eχðrÞ

s

: ðB3Þ

As this surface is anchored to both boundaries, it must

achieve some maximal radius rm ≥ rh. By using this and

the symmetry, we write the total volume functional as
22

Vk½tðrÞ� ¼ 2vd−k−1

Z

rm

0

dr

rd−k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

FðrÞ −
FðrÞt0ðrÞ2

eχðrÞ

s

; ðB4Þ

where vd−k−1 is the volume of the remaining transverse

space (vd−k−1 ¼
R
Q

d−1
i¼kþ1 dx

i for k < d − 1 and v0 ¼ 1).

Our goal now is to extremize (B4). Because of time-

translation symmetry, there is a constant “energy” E which

is the partial derivative of the integrand with respect to t0ðrÞ,
so we have

23

t0ðrÞ ¼ sgnðEÞeχðrÞ=2

FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ FðrÞe−χðrÞ=ðrd−kEÞ2
q : ðB5Þ

For this extremal surface, while there are three parameters

at face value—tb, rm, and E—there are two constraints

on them, so there is only one free parameter. The first

constraint comes from rm being the “turnaround” point of

the surface,
24

1

t0ðrmÞ
¼ 0⇒ E2 ¼ jFðrmÞje−χðrmÞ

r
2ðd−kÞ
m

: ðB6Þ

As for the second, we integrate (B5) over r ∈ ½0; rm� to
write the formal integral

tðrmÞ− tb¼
Z

rm

0

sgnðEÞeχðrÞ=2

FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þFðrÞe−χðrÞ=ðrd−kEÞ2
q dr: ðB7Þ

This integral is divergent; its integrand has a simple pole at

r ¼ rh. As discussed in detail in Appendix A, we slightly

deform the contour r ∈ ½0; rm� into complexified r space to

21
This statement comes with the caveat that there are enough

dimensions in the first place for these surfaces to be at least two
dimensional, i.e., that they are not geodesics.

22
This is UV divergent because we are integrating from r ¼ 0.

We only need to regulate if (B4) needs to be explicitly computed.
23
We have absorbed the sign ambiguity into E.

24
Recall that as rm ≥ rh, −FðrmÞ ¼ jFðrmÞj.
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avoid this pole, picking up an ambiguous imaginary term in

the process (8). Fortunately, the symmetry of these par-

ticular surfaces implies Re½tðrmÞ� ¼ 0, so this ambiguity

does not matter and we are left with the principal value,

tb ¼ −P

Z

rm

0

sgnðEÞeχðrÞ=2

FðrÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ FðrÞe−χðrÞ=ðrd−kEÞ2
q dr: ðB8Þ

Equations (B6) and (B8) are also in [1]. The main point

is that fixing any one of tb, rm, and E will fix the rest.

Notably,

tb ¼ 0 ⇔ E ¼ 0 ⇔ rm ¼ rh: ðB9Þ

Now, plugging (B5) into (B4), we get that the volume

“density” Vk ¼ Vk=vd−k−1 of the surface of energy E is

VkðEÞ¼
2

jEj

Z

rm

0

dr

r2ðd−kÞ
e−χðrÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þFðrÞe−χðrÞ=ðrd−kEÞ2
q : ðB10Þ

1. Surface barriers in Kasner flows

Our claim that entanglement entropy and CV generally

fail to probe the full trans-IR regime (Sec. IVA) rest on

the appropriate k < d − 1 surfaces being blocked by an

extremal surface barrier. While [58] claims that such

barriers are generic features of asymptotically locally

AdS black holes, demonstrating existence is more straight-

forward upon specifying the geometry [1,35]. We find it

instructive to see how such barriers are found in Kasner

flows, following [1].

We start with the function

gðrÞ ¼ FðrÞe−χðrÞ
r2ðd−kÞ

: ðB11Þ

Clearly gðrhÞ ¼ 0. Furthermore, as r →∞, we plug in the

asymptotic behavior of the metric functions (33) and (35)

to write

gðrÞ ∼ −f1e
−χ1rq

0
; r → ∞; ðB12Þ

where we have defined

q0 ¼ 2k − d −
1

2
ðd − 1Þq2: ðB13Þ

As gðrÞ follows a power rule, it is straightforward to deduce
its limit as r →∞.

lim
r→∞

gðrÞ ¼

8

<

:

−∞ if q0 > 0;

−f1e
−χ1 if q0 ¼ 0;

0 if q0 < 0:

ðB14Þ

However, so long as k < d − 1 (i.e., so long as the surface

is not just a geodesic),

q0 < k − 1 −
1

2
ðd − 1Þq2; ðB15Þ

from which we deduce that

k ¼ 0; 1⇒ q0 < 0: ðB16Þ

Thus, in general for the surfaces relevant to entanglement

entropy and CV, gðrÞ is 0 both at the horizon and at the

singularity. Furthermore, it is clearly negative in the

interior, so there must be a finite rc ∈ ðrh;∞Þ such that

gðrcÞ ¼ min
r∈ðrh;∞Þ

gðrÞ: ðB17Þ

From (B6), we have a “critical” energy Ec for which

gðrcÞ ¼ −E2
c, so

1þ gðrcÞ
E2
c

¼ 1þ FðrcÞe−χðrcÞ
ðrd−kc EcÞ2

¼ 0: ðB18Þ

Now consider the boundary time tb in (B8) as we take

rm → rc and E → Ec. The denominator of the integrand

goes to 0, so the integral itself diverges. In other words, as

we take tb → ∞, the corresponding k ¼ 0, 1 surfaces will

get “stuck” at rm ¼ rc < ∞.

In this analysis, one may ask about larger k > 1 which

still satisfy k < d − 1. Applying the arguments above

becomes muddier because we may get q0 > 0 for perfectly

valid geometries, in spite of the generic statements of [58].

For example, consider a Schwarzschild singularity, which

we recover from Kasner by setting q2 ¼ 0. Then,

q0 ¼ 2k − d: ðB19Þ

This is positive precisely when k > d=2, and there are

integer choices of k and d which fit into this range, such as

k ¼ 3 and d ¼ 5 which would yield q0 ¼ 1. Thus, we

cannot assert the existence of a finite rc at which gðrÞ is

minimized.

The argument above fails to detect an extremal surface

barrier for particular lower-dimensional surfaces in certain

geometries. Nonetheless, this does not matter for entangle-

ment entropy (k ¼ 1) and CV (k ¼ 0), so the main claim of

Sec. IVA is undamaged.

2. Late-time length and aT

For geodesic lengths k ¼ d − 1, the maximal radius rm
reaches all the way to the singularity as tb approaches the

critical time tc discussed in Sec. IV. In the main text, we

focus on rm as a basic measure of how far the symmetric

2-point correlator dual to a geodesic probes into the trans-

IR. Here we go further with this discussion, explaining

how near-critical-tb (that is, tb ∼ tc) geodesic lengths L are
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informed by the aT function (17) and deeper geometrical

data describing the trans-IR flow.

The formal length (B10) with k ¼ d − 1) at near-critical

times is found from a large-jEj expansion,

L ∼
2

jEj

Z

rm

0

e−χðrÞ=2

r2
dr; tb → tc: ðB20Þ

Up to a factor of r2, the integrand is simply a power of the

aT-function (17)—omitting the constant prefactors,

L ∼
1

jEj

Z

rm

0

aTðrÞ1=ðd−1Þ
r2

dr: ðB21Þ

There is a geometrical interpretation of the integrand in

terms of constant-t and constant-r slices. Their respective

unit normal 1-forms may be written down as follows:

α̃t ¼
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p

r
e−χðrÞ=2dt; α̃r ¼

1

r
ffiffiffiffiffiffiffiffiffiffi

FðrÞ
p dr: ðB22Þ

We then take the wedge product, producing a 2-form,

α̃t ∧ α̃r ¼
e−χðrÞ=2

r2
dt ∧ dr: ðB23Þ

This is precisely the volume form of the ðt; rÞ plane. Thus,
L in the regime tb → tc is, up to an overall prefactor, the

volume “density” with respect to t of the ðt; rÞ plane (i.e.,
the volume divided by the size of t space

R

R
dt).

APPENDIX C: THE CRITICAL TIME IN FREE

KASNER FLOWS

The discussion of Sec. IV B regarding the complemen-

tarity of the 2-point correlator and CA is rather general.

Here, we focus on free Kasner flows, whose dynamics are

controlled by (25)–(27). Taking d ¼ 3 and Δ ¼ 2 for

concreteness, we plot the critical time tc as a function of

the deformation parameter ϕ0=T.
Following the procedure of shooting null rays from

opposite boundaries at the same boundary time tb, we have
that the critical time tc is

tc ¼ P

Z

∞

0

eχðrÞ=2

FðrÞ dr: ðC1Þ

Generically, as tc is an integral of metric functions, it

cannot be calculated in closed form for arbitrary geom-

etries. However, we can still do so for planar AdS-

Schwarzschild black holes, in which χðrÞ ¼ 0 and

FðrÞ ¼ 1 − ðr=rhÞd. Careful consideration is needed to

evaluate the principal value, but we find that

tc ¼ P

Z

∞

0

dr

1 − ðr=rhÞd
⇒

tc

rh
¼ π

d
cot

�

π

d

�

: ðC2Þ

This coincides with the value in [56] upon appropriate

synchronization of conventions; their conventions produce

an extra factor of 2.

Using the numerical Kasner solutions to (25)–(27), we

may still solve for tc as a function of the deformation

parameter ϕ0=T (Fig. 10).

As expected, tc starts at the AdS-Schwarzschild value

when ϕ0=T ¼ 0, but tc also exhibits nontrivial behavior—

rising to a maximum before falling past the AdS-

Schwarzschild value again. This rising and falling is similar

to the behavior in the near-singularity Kasner exponent pt

[1,11], but our numerics indicate that tc monotonically

decreases forever.

It is unclear if tc → 0 or asymptotes to a finite value as

ϕ0=T → ∞, but either way the highly deformed free

Kasner flows in this regime have much more “squarelike”

[3] Penrose diagrams than AdS-Schwarzschild. This is in

spite of the evidence that the endpoint of the trans-IR

ϕ0=T → ∞ flow is the Schwarzschild singularity, i.e., that

the Kasner exponents approach their Schwarzschild values

for large deformations [1].

APPENDIX D: ACTION AT THE JOINT

Wecompute the contributionof the joint term to the overall

complexity—a first step towards obtaining the explicit time

dependence.
25
We focus on tb > tc (i.e., the null joint in the

past interior); the same result holds for tb < −tc by sym-

metry. From [56,65], the joint term is

10 20 30 40

0.52

0.54

0.56

0.58

0.60

FIG. 10. The critical time tc (in units of rh) characterizing the

complementarity of the 2-point correlator and CA, plotted as a

function of the deformation parameter ϕ0=T for free Kasner flows

with d ¼ 3, Δ ¼ 2. The value at ϕ0=T ¼ 0 coincides with that of

AdS-Schwarzschild, tc=rh ¼ π=ð3
ffiffiffi

3
p

Þ. tc=rh has a maximum

value of 0.61 at ϕ0=T ≈ 6.6. As it decreases, tc=rh again attains

the AdS-Schwarzschild value at ϕ0=T ≈ 11.5.

25
Reference [64] has taken the remainder of these steps since

earlier versions of this manuscript were written.
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IJ ¼ 1

8πGN

I

ādS; ā ¼ log

�

−
1

2
k⃗R · k⃗L

�

: ðD1Þ

k⃗R and k⃗L are the outward-directed normal vectors, respec-

tively, for the right past-directed null sheet and the left past-

directed null sheet boundingWðtbÞ. Analogously to [56] we
write their dual 1-forms as

k̃R ¼ −N

�

dtþ eχðrÞ=2

FðrÞ dr

�

; ðD2Þ

k̃L ¼ N

�

dt −
eχðrÞ=2

FðrÞ dr

�

: ðD3Þ

Here, N > 0 is a normalization coefficient which remains

ambiguous in the problem. Thus, in the interior,

ā ¼ − log

�jFðrÞj
N 2r2

�

þ χðrÞ: ðD4Þ

Integrating ā on the joint yields a factor of Vd−1=r
d−1
m where

Vd−1 is the volume of the transverse x⃗ space, so

IJ ¼ −
Vd−1

8πGNr
d−1
m

�

log

�jFðrmÞj
N 2r2m

�

− χðrmÞ
�

: ðD5Þ

This agrees with [56], except there is an additional term

corresponding to χ appearing due to backreaction. This is

essentially the aT dependence, since

χðrmÞ ¼
2

d − 1
log

�

πd=2

Γðd
2
Þld−1P

�

−
2

d − 1
logaTðrmÞ: ðD6Þ

Thus, the time dependence of the joint term depends on aT
and its derivative. Specifically,

dχðrmÞ
dtb

¼ −
2

d − 1

drm

dtb

�

1

aT

daT

drm

�

; ðD7Þ

where drm=dtb is written in (56).
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