@

IEEE Open Journal of the
Computer Society

Received 2 May 2023; accepted 30 May 2023. Date of publication 5 June 2023;
date of current version 16 June 2023. The review of this article was arranged by Associate Editor Milos Stojmenovic.

Digital Object Identifier 10.1109/0JCS.2023.3282948

Disjunctive Threshold Networks for Tabular
Data Classification

WENIA WANG “, LITAO QIAO, AND BILL LIN©
ECE Department, University of California, San Diego, La Jolla, CA 92093-0407 USA

CORRESPONDING AUTHOR: WELJIA WANG (e-mail: wweijia@ eng.ucsd.edu).

ABSTRACT While neural networks have been achieving increasingly significant excitement in solving clas-
sification tasks such as natural language processing, their lack of interpretability becomes a great challenge
for neural networks to be deployed in certain high-stakes human-centered applications. To address this issue,
we propose a new approach for generating interpretable predictions by inferring a simple three-layer neural
network with threshold activations, so that it can benefit from effective neural network training algorithms
and at the same time, produce human-understandable explanations for the results. In particular, the hidden
layer neurons in the proposed model are trained with floating point weights and binary output activations.
The output neuron is also trainable as a threshold logic function that implements a disjunctive operation,
forming the logical-OR of the first-level threshold logic functions. This neural network can be trained using
state-of-the-art training methods to achieve high prediction accuracy. An important feature of the proposed
architecture is that only a simple greedy algorithm is required to provide an explanation with the prediction
that is human-understandable. In comparison with other explainable decision models, our proposed approach
achieves more accurate predictions on a broad set of tabular data classification datasets.

INDEX TERMS Interpretable artificial intelligence, decision rule learning, tabular data classification, neural

networks.

. INTRODUCTION

Machine learning is finding its way to impact every sector
of our society, including healthcare, transportation, finance,
retail, and criminal justice. In high-stakes human-centered ap-
plications like medical-diagnosis and criminal justice, where
decisions can have serious consequences on human lives, the
critical importance of interpretability to explain predictions or
decisions is well-recognized in the machine learning commu-

nity [1].

A. RELATED WORK

One popular approach to interpretable models is the use of de-
cision rule sets [2], [3], [4], [5], [6], which are inherently inter-
pretable because the rules are expressed in simple if-then sen-
tences that correspond to logical combinations of input condi-
tions that must be satisfied for a classification. While decision
rule sets are natural classifiers, for which the performance
is generally measured by the overall classification accuracy,
coverage and rule precision are also commonly considered
important metrics of decision rules. In particular, [6] proposes

to impose an additional constraint on precision to improve the
performance of the rule sets. Besides decision rule sets, deci-
sion lists [7], [8] and decision trees [9] are also interpretable
rule-based models. Not only do these decision models pro-
vide predictions, but the corresponding matching rules also
serve as human-understandable explanations. Gradient boost-
ing decision trees [10], [11] and random forests [12] have also
been successfully used in learning problems involving tabular
data. Although these methods provide superior predictive per-
formance in comparison with design rule learning, they are
generally considered to be lacking in interpretability, which
may limit their adoption in certain application domains.
Neural networks have also been recently proposed for tabu-
lar data classification [13], [14], [15], [16]. The work in [13]
proposes a new neural network module for tabular datasets,
which achieves effective performance in tabular classification
and regression problems by explicitly grouping the correlative
input features and generating higher-level features for se-
mantics abstraction. However, this approach concentrates on
predictive performance, it is still a black-box model that is not

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023

185

WANG ET AL.: DISJUNCTIVE THRESHOLD NETWORKS FOR TABULAR DATA CLASSIFICATION

explainable to humans. The work in [15], [16] introduces ad-
ditional inductive bias to over-parameterized neural networks
by designing specific neural network structures to emulate
the axis-aligned splits of decision trees that have made the
ensembles of trees so successful for tabular datasets. Although
both works leverage feature selection techniques as part of
their structure design, which can be extracted to interpret
the feature attributions to the prediction or classification, this
level of interpretability is very limited compared to rule-based
sentences that can be easily understood by humans.

In contrast, the recent work in [14] proposes a specific neu-
ral network architecture to encode an underlying disjunctive
normal form representation that can be mapped to a decision
rule set. To achieve this one-to-one correspondence, the hid-
den layer neurons in the proposed model are restricted in a
manner so that they directly map to conjunctions (logical-
ANDs) of input features. These conjunctions correspond to
interpretable decision rules. The output neuron implements a
disjunctive (logical-OR) operation that aggregates the inter-
pretable decision rules in the hidden layer into a decision rule
set. The proposed solution has the same advantage as the class
of decision rule learning and tree approaches [2], [3], [4], [5],
[9] in that it can also provide meaningful explanations, but it is
able to do so with superior predictive performance. However,
the approach in [14] imposes restrictions on the hidden layer
neurons in a way that limits the search space.

There is also a body of work [17], [18], [19], [20], [21], [22]
on compiling models into tractable forms. The tractable form
can then be analyzed to produce explanations. In contrast, our
approach derives human understandable explanations directly
from our proposed model using a fast and simple algorithm.

B. OUR CONTRIBUTION

We propose to address the tabular data classification problem
with a new neural network model called DT-Net (Disjunc-
tive Threshold Network). The hidden layer neurons in the
proposed model are trained with floating point weights and
binary output activations. These neurons can be interpreted as
threshold logic functions, which provides considerably greater
flexibility than the DR-net [14] approach that restricts hidden
layer neurons to implement conjunction (AND) operations. In
particular, [14] incorporates stochastic gradient descent [23]
with the straight-through estimator [24] and state-of-the-art
regularization techniques proposed in [25], [26] to achieve
high predictive performance and interpretability. Unlike tra-
ditional black-box approaches like gradient boosting trees,
random forests, and conventional neural networks, DT-Net
can also provide rule-like explanations that are comprehensi-
ble to humans. However, unlike prior work on decision rule
learning [4], [5], [14], our approach does not require the
explicit construction of a decision rule set. This means that
our disjunctive network of threshold functions can implicitly
encode a potentially complicated set of rules to achieve high
predictive performance, but yet the derived explanations can
nonetheless be simple.

186

The remainder of the article is organized as follows: Sec-
tion II describes our proposed DT-Net architecture. Section III
describes how explanations can be efficiently derived from a
DT-Net inference. Section IV describes how sparsity-inducing
regularization can help to simplify explanations. Our pro-
posed approach is extensively evaluated in Section V. Finally,
concluding remarks are given in Section VL.

Il. DISJUNCTIVE THRESHOLD NETWORK

We introduce in this section the Disjunctive Threshold Neu-
ral Network architecture, or DT-Net for short. It is aimed
at tabular classification problems in which the ability to ex-
plain decisions is essential, in addition to making accurate
predictions. DT-Net is a simple three-layer neural network ar-
chitecture comprising n input units, k£ hidden layer units, and a
single output unit. A toy example of the proposed architecture
is shown in Fig. 1, which we use to explain the main points of
our work.

Input layer: Each of the n units at the input layer passes
its corresponding assigned binarized value to each neuron in
the hidden layer. Generally, tabular datasets can have input
attributes that are binary, categorical, or numerical. To han-
dle categorical and numerical attributes, well established and
studied pre-processing procedures in the machine learning
literature can be used to encode them into binarized input
vectors. In particular, standard one-hot encoding can be used
to transform categorical attributes into binary vectors, and
standard quantile discretization can be used to encode numer-
ical values into binary vectors'.

Hidden layer of threshold functions: Each of the k units
in the hidden layer is a threshold function that is trainable
with arbitrary (positive or negative) full-precision weights and
biases. This is implemented using a binary step activation
function. The blue dashed lines in Fig. 1 indicate that the
corresponding features have zero weights, which means the
corresponding threshold function is not dependent on them.
As discussed in the next section, each threshold function
implicitly encodes an underlying Boolean logic function of
inputs that will yield to a positive result.

Output disjunction layer: The output layer is designed to
implement a disjunction of the k hidden layer threshold func-
tions, which consists of a single neuron with all weights and
the bias fixed at 1 and —e, respectively, where € is a small
constant between 0 and 1 (we use € = 0.5 in our experi-
ments). This output threshold unit implements a logical-OR
operation since by default, it makes a negative prediction if
none of the threshold functions in the hidden layer is acti-
vated, whereas any activated threshold function is sufficient to
cause the output unit to make a positive prediction. Since each
threshold function essentially encodes an underlying Boolean
logic function, the whole network also implicitly implements
a Boolean logic function by taking the disjunction of these

1Widelj,r studied interpretable rule-learning methods [4], [5]. [14] on tabu-
lar classification problems also commonly assume the datasets to be binarized
through pre-processing.

VOLUME 4, 2023

IEEE Open Journal of the
Computer Society

@

binarized
feature —
vector

high heart
disease
risk

blood pressure > 125

FIGURE 1. An example of the DT-Net architecture. Each hidden layer unit implements a threshold logic function, and the output unit implements a
disjunction of these threshold functions. Explanations can be readily derived from the network to explain positive predictions.

threshold functions. We note that these two layers together
compose a logic function in disjunctive normal form, which is
capable of encoding any possible Boolean logic function. In
other words, our proposed model is applicable to any binary
classification problem.

Straight-through estimator: As previously mentioned, the
outputs of the threshold functions are fed into a step activation
function, which has an impulse derivative function that pre-
vents the gradients from propagating through. In this work, we
adopt the straight-through estimator with the gradient clipping
technique to address this issue, which is detailed as follows:

o 0, ifzi <Oor(z; > 1,8, <0) o)
8u = 8. otherwise
0L _ L . :
where gz, = = and g, = 32 are respectively the gradients of

classification loss with respect to Z; and z;.

Similar to the ReLU activation function, the step function
only produces non-negative outputs. Therefore, we follow
ReLU and clip the gradient w.r.t. negative outputs. Moreover,
since the step function has an upper bound of 1 for its output,
further increasing an activation that is already greater than 1
does not make any improvement, which empirically can even
lead to an explosion of the weights. Therefore, we propose to
clip such gradient that tries to further increase an activation
greater than 1.

Example: Consider the heart disease risk prediction ex-
ample again, as depicted in Fig. 1. Each input instance
corresponds to an individual and the features of this person,
i.e., smoker, overweight, older than 50, cholesterol, and high
blood pressure, are encoded as xi, xa, . .., X5, respectively. In
this toy example, threshold function (hidden neuron) fi can

VOLUME 4, 2023

be activated by the individual being either a smoker or over-
weight, and threshold function f; evaluates to true if at least
two out of the three features with non-zero weights (older than
50, high cholesterol, and high blood pressure) are 1, due to the
fact that for any combination of at least two of these features,
the summation of their weights is sufficiently greater than
1.9. Given the individual represented as (x1, x2, x3, X4, X5) =
[10110], both neurons f; and f> produce a 1 for this instance.
Therefore, the entire network produces a positive prediction
(the individual has a high heart disease risk).

There can be several explanations as to why the individual
is predicted to have a high heart disease risk. One explanation
is that the individual is a smoker, which sufficiently explains
the high heart disease risk prediction. This explanation is
also the simplest explanation in that there is no other
explanation that is more concise. A more complex explanation
is that the person is older than 50 with high cholesterol. This
explanation is the simplest when only considering f, but
it is not the simplest explanation overall as identifying
the individual as a smoker is a more concise explanation.
However, it is a minimal explanation in that no other condition
can be removed from the explanation so that the explanation
remains sufficient: i.e., older than 50 by itself is insufficient
to explain a high heart disease risk prediction. As detailed
later in the article, given a positive prediction, we can easily
derive the simplest explanation with respect to an activated
threshold function. Unlike existing interpretable rule-learning
methods [4], [5], [14] that explicitly generate sets of decision
rules as classifiers, our approach does not require the
generation of any specific decision rule set from the trained
disjunctive threshold network model. Instead, predictions
are made through standard neural network operations so that

187

WANG ET AL.: DISJUNCTIVE THRESHOLD NETWORKS FOR TABULAR DATA CLASSIFICATION

potentially complicated rules can still be implicitly encoded
to achieve better generalizations, where simple explanations
for each positive prediction can nonetheless be readily
generated afterwards. In addition, due to the natural use of
stochastic gradient descent (SGD), any state-of-the-art SGD
training techniques can be applied to improve classification
performance. In particular, we will discuss later in the
article a well-developed sparsity-inducing method that we
incorporate to simplify the network, which further leads
to concise explanations. In the next section, we describe
how human-readable explanations can be readily derived for
positive predictions produced by the proposed network.

1IL. EXPLAINING DT-NET PREDICTIONS

An important feature of our DT-Net approach is that human
understandable explanations can be easily derived from DT-
Net predictions. We first prove several important properties
about threshold functions that we will use to derive explana-
tions from them. We then describe how explanations can be
derived in the single threshold function case, followed by a
discussion regarding how explanations can be derived from
the overall DT-Net. All proofs to theoretical results in this
section can be found in the supplementary material.

A. THRESHOLD FUNCTIONS AND PRIMES

A feed-forward neural network typically comprises layers
of neurons. Further, a neuron with binary inputs and full-
precision weights performs the following computation:

fx)=¢(W'x+b), @

where w € R” is a weight vector (wy, wa, ..., w,), X € R"
is an input vector (X, Xp,...,X,), b € R is a bias term, and
@(-) is a non-linear activation function. Common activation
functions include ReLU activation, the sigmoid function, and
the step function.

When the n inputs are binary features, and the step func-
tion is used for activation, the neuron f(x) corresponds to a
threshold functionz, where

Z(x)=w/ x+b, 3)
1 ifz(x)=0
Hxl= [0 otherwise. @

A threshold function f implements an underlying Boolean
logic function f : {0, 1}" — {0, 1}. As such, terminologies
and properties from Boolean algebra apply. An instance a €
{0, 1}* is a specific assignment to the input features. With
respect to the threshold function f, a positive instance is
one such that f(a) = 1, and a negative instance is one such
that f(a) = 0. A literal £; is a feature (positive literal) or
its negation (negative literal), denoted as £; = x; and £; = X,

2A threshold function is also commonly written in the form wix =6,
which is equivalent to wix—o = 0, where 8 is referred to as the threshold.
This is equivalent to Equations 3 and 4, with & = —b. We will use the form
expressed in Equations 3 and 4, as this is the common expression form for
describing neurons.

188

respectively. A ferm m is a consistent conjunction of literals,
e.g., X1 A X2 A X3, or simply x|f2x33. The length of , denoted
as |m|, is the number of literals that it includes. We say that
a term m; covers or contains another term s, written as
7j => mj, if and only if ; includes all the literals in 7; (e.g.,
XX covers x1Xpx3).

An implicant of a Boolean function f is a term that safis-
fies f, written as w => f, meaning all instances covered by
are positive instances. A prime implicant (or simply a prime)
is an implicant that is not covered by any other implicant. A
prime is essential if it covers an instance that is not covered
by any other prime. A set of primes {my, ..., 7y} is a prime
cover for f if Vil m; is equivalent to f, and it is a prime
and irredundant cover if no prime m; can be removed from
{my, ..., my} such that the set remains a prime cover.

Several concepts are introduced next to prove several
important properties about deriving prime implicants from
threshold functions.

Definition 1 (Slack): The slack of an instance o with re-
spect to a threshold function f corresponds to z(«) in (3).
Therefore,

1 if the slack is non-negative
0 otherwise.

fla)= (&)
The slack of a term m is defined as the minimum slack among
the instances that 7 covers:

st.aa => m. (6)

Note z(;r) can be directly computed by setting every feature
x; that does not appear in the term m to its worst-case value,
which minimizes z(7): i.e., if w; > 0, set x; = 0; otherwise,
setx; = 1.

Definition 2 (Maximum Slack): We define the maximum
slack of a threshold function f to be the largest slack among
all possible assignments. In other words,

2(7) = minz(@),

Zmax = max z(x), VYa €{0,1}".
o

)

This maximum slack can be directly computed by setting a
feature x; to its best-case value to maximize z(«) if it appears
in f with a non-zero weight: i.e., set x; = 1 if w; > 0 and
x; = 0 otherwise.

Definition 3 (Base Term): For a threshold function f, we
define the base term mpq5 to be a term that includes the literal
x; if w; > 0 and the literal %; if w; < 0 (no literal for x; is
included if w; = 0).

Proposition 1: The base term always achieves the maxi-
mum slack. In other words, Z(7pgse) = Zmax-

Next, we illustrate the above definitions with two examples,
as depicted in Fig. 2. Consider the first example depicted in
Fig. 2(b) The base term is [111] as it achieves the maximum
slack of 2.1 + 141 — 2 = 2.1. The base term is shown in a
black circle, while the remaining positive instances are shown

3As a shorthand, [101] is used to denote the term x;X>x3. Here is another
shorthand example: [10—] is used to denote the term x; %2, where “—" means
the corresponding feature is excluded from the term.

VOLUME 4, 2023

IEEE Open Journal of the
Computer Society

@

X3

[X3
X1

(a) 2.1z + @0 +x3—22> 0.

0-—

0
g

o

f&——=

o |

000 <20

(b) —w1 —a2—23+12>0,

FIGURE 2. Threshold function examples with the corresponding base
terms (e.g., 111) and primes (e.g., 1 — =).

in white circles. There are two primes in this example (shown
in red). One prime [—11] can be derived by expanding the
base term [111] in the x; direction (by removing the literal x1),
whereas the other prime [1 — —] can be derived by expanding
the base term [111] in both the x; and x3 directions. In both
primes, the slack of each is non-negative, but removing one
more literal would cause the corresponding slack to become
negative.

Intuitively, all primes can be generated from the base term
Tpase With the maximum slack. If there exists a non-zero w;
such that |w;| < Zmax, then the corresponding literal for x; can
be removed from my,, to produce an intermediate implicant
7. This process can be repeated by removing each additional
literal as long as there is a corresponding non-zero w; such that
|w;| < z(7), the remaining slack, until a prime is produced.

In the second example depicted in Fig. 2(b), the base term
is [000] as it achieves the maximum slack of 0 — 0 -0+ 1 =
1. There are three primes in this example, corresponding to
expanding in each of the three directions, to produce [—00],
[0 — 0], and [00—].

Theorem 2: All primes of a threshold function cover the
base term.

Proof: We prove this by contradiction. Assume a prime
n does not cover the base term. Then, there must exist a
literal ¢; € {x;, X;} that is in & but not in m,... Consider the
following two cases. First, if £; is present in 7, then £;
corresponds to the worst-case value and removing it from
will increase the slack. Second, if mp4s. does not include £; or
£;, then it implies w; = 0 and removing £; from w does not
change the slack. In both cases, since is a prime, we have
Z(m) = 0, and hence z(w \ {¢;}) = 0, which is contradictory
to the definition of primes. a

Theorem 3: All primes of a threshold function are essential.

Proof: We prove this by contradiction. Assume a prime iy
is not essential, which means there exists an instance covered
by m that is also covered by another prime. Consider an
instance o covered by m; that disagrees with every literal £;
that is in mp,,. but not in 7. Suppose « is covered by another
prime 2, implying that for every such £;, m; either includes £;
or excludes both £; and Z;. According to Theorem 2, we have
Thase => 1 ANd Tpase = 2. Since £; is covered by mpgse, We

VOLUME 4, 2023

must have my excludes every such £; and £;, which implies
all literals removed from mpae to produce m; are also re-
moved to produce ;. As a result, w1 = m7. This means either
m = my or my is not a prime, which are contradictory in both
cases. [|

Corollary 4: The prime cover of a threshold function is
unique and irredundant.

Proof: 1t follows from the proof of Theorem 3. |

B. EXPLAINING A SINGLE THRESHOLD FUNCTION

We first consider the problem of deriving an explanation for
the single threshold function case. A threshold function f is
equivalent to a Boolean classifier, where f(a) = 1 means the
decision is positive, and f(a) = 0 means the decision is neg-
ative. For a positive prediction, an explanation can be thought
of as some subset of its literals. Referring to the example
depicted in Fig. 1, an explanation why an individual is at high
heart disease risk may be that the individual is older than 50
and has high cholesterol. Another explanation may be that the
individual is a smoker. We formalize below what explanations
are and how they can be readily derived in the case of a single
threshold function.

Definition 4 (Explanation): An explanation for a positive
decision on an instance « is an implicant that contains the
instance.

Definition 5 (Minimal Explanation): A minimal explana-
tion is a prime that contains the instance.

Definition 6 (Simplest Explanation): A simplest explana-
tion a shortest length minimal explanation.

Note that minimal and simplest explanations are not unique.
As shown in [17], for a threshold function f and a positive in-
stance «, finding minimal explanations corresponds to finding
prime implicants* of f that contain «. The prime associated
with a minimal explanation corresponds to a minimal subset
of features that are sufficient for the positive prediction. This
can be achieved by first converting the threshold function f
into a logic representation, followed by using known prime
generation algorithms to generate all minimal explanations,
where the simplest explanation (shortest prime containing o)
can be found, but this approach is worst-case exponential in
time and space. Fortunately, the simplest explanation can be
directly derived from the threshold function f, as discussed
below.

Definition 7 (Base Explanation): Given a threshold func-
tion f as a classifier and a positive instance «, we define
the base explanation, written as Tpese_exp, 10 be the super-
cube of the base term mp. and the instance «, written as
super(Tpgse,).

The supercube of two terms, super(mw;, 7;), is a new term
derived by removing literals from 7; that do not appear in ;.

“In [17], minimal explanations are referred to as Pl-explanations, where PI
refers to prime implicants. The work in [17] was developed for Naive Bayes
Classifiers, but the same Pl-explanation concept also applies to threshold
functions. In [20], Pl-explanations are referred to as abductive explanations.

189

WANG ET AL.: DISJUNCTIVE THRESHOLD NETWORKS FOR TABULAR DATA CLASSIFICATION

2

X3 110

[X3
X

FIGURE 3. An example of base and minimal explanations,
with f defined as 2.1x; + x2 + x5 —2 > 0and « =[110].

I

The operation is symmetric in that the new term can also be
derived by removing literals from 7; that do not appear in ;.

Theorem 5: The set of minimal explanations of a posi-
tive instance for a threshold function includes only essential
primes.

Proof: 1t follows from the proof of Theorem 3. il

Theorem 6: All minimal explanations of a positive instance
for a threshold function cover the base explanation.

Proof: We prove this by contradiction. Assume a mini-
mal explanation m has a literal £; that the base explanation
Thase—exp does not have. Then there are two possibilities. The
first is that 7wpase_exp has the literal £; instead of £;. Based on
the definition of the base explanation, the instance o must also
have ;. Since £; and £; cannot both appear in 7, = does not
have Z; and thus does not contain instance «. This contradicts
the definition of an explanation. The second possibility is that
Thase—exp does not have £; or £;. Since 7 is an explanation of
a, 7 contains & and thus « also has the literal £;. Then, we
know that the base term of the threshold function must have
£;, so that Thase—exp» a8 @ supercube of mp,,, and «, does not
have ¢; or £;. According to the definition of the base term, the
corresponding weight w; of the threshold function is negative.
At this point, it is obvious that a new term = \ {£;} is still
a valid explanation because removing ¢; from m does not
change the slack of w, which is contradictory to the premise
that 7 is a minimal explanation. I

Consider the example depicted in Fig. 3. In this example,
Tpase = [111] and & = [110] (shown as a gray circle), then the
base explanation is [11—] (shown in blue). The generation of
explanations can be performed in a similar way as prime gen-
eration. According to Theorem 6, all minimal explanations,
which are primes containing the instance «, can be generated
Jrom the base explanation mpgse_exp With the available slack
Z(pase—exp)- Consider again the example depicted in Fig. 3.
The base explanation [11—] can be expanded into a minimal
explanation by expanding in the x; direction (by removing
the literal x7) to obtain the prime and minimal explanation
[1 — —]. There are no other minimal explanations, making
[1 — —] also the simplest explanation. In particular, if there
exists a non-zero w; such that |w;| < Z(7pgse—exp), then the
corresponding literal for x; can be removed from mpgse—exp
to produce an intermediate implicant. This process can be
repeated as long as there is a corresponding non-zero w; such

190

Algorithm 1: Smallest-absolute-weights-first removal

Input: Threshold function f, base explanation mpgse_exp
Output: Simplest explanation

1: L < {£; € mpase—exp} sorted by |w;| in ascending order
2: T < Mpase—exp

3:for ¢; € Ldo

4: if z(mr \ {¢;}) = 0 then
S: <« 7\ {4}

6: else

i break

8: endif

9: end for

0:

1 return

that |w;| is less than or equal to the remaining slack, until a
minimal explanation is produced.

Based on this intuition, we propose the smallest-absolute-
weights-first removal algorithm, which is summarized in
Algorithm 1. This is a very fast and simple greedy algorithm
that can guarantee the simplest explanation.

Theorem 7: Algorithm 1 finds a simplest explanation for a
positive instance of a threshold function.

Proof: We prove this by contradiction. Assume m is the
explanation generated by Algorithm 1 and mp is a shorter
explanation. According to Algorithm 1, 7y is a minimal ex-
planation (prime) since further removing any literal from
would cause its slack to become negative. Consider two sets
of literals {£; | £; e mp, £; ¢ my} and {€; | £ € my, £ & my}.
Since m is shorter than 71, we have |{£; | £; € m2, €; € M} <
{€; | £; € m1, £; ¢ ma}|. For my, keep replacing such £; with
£; until there does not exist such ¢; and denote by w3 the
produced term. Since m; is generated by Algorithm 1, we
always have w; > w; for w; and w; corresponding to any
combinations of £; and £;, respectively. Therefore, we must
have z(m3) > 0 and w3 is an implicant. Further, we have
] = 13, which is contradictory to the premise that 7 is a
prime. m

C. EXPLAINING THE DISJUNCTIVE THRESHOLD NETWORK
We next consider the problem of deriving an explanation for
the entire disjunctive threshold network. Since all threshold
functions are combined using a logical OR operator, an expla-
nation of a positive instance for one of the activated threshold
functions is also an explanation for the whole network. There-
fore, we can simply enumerate Algorithm 1 on each of the
activated threshold functions and return the shortest explana-
tion among them as an explanation for the overall network.
This enumeration algorithm is also very fast and simple, as
depicted in Algorithm 2.

We note that the explanation generation algorithms are neat
and efficient. In particular, the time complexity of Algorithm 1
is O(nlogn), which comes from the sorting algorithm, where
n is the number of literals, and the total time complexity of
Algorithm 2 is O(nk log n), where k is the number of threshold

VOLUME 4, 2023

IEEE Open Journal of the

@ Computer Society

Algorithm 2: Deriving explanations from DT-Net

Input: Set of threshold functions F' = {fi, f2, ...
positive instance o

Output: DT-Net explanation 7

1: § < {}

2:for f; e F do

3: if fi(e) = 1 then

4: Thase—exp <— g€t base explanation of f;

5: 7 < Algorithm 1(f;, Tpase—exp)
6:

i

s Jihs

S <« SU{n}
end if
8: end for

9: 7 <« argmin|x|
mes
10: return 7

functions in the hidden layer. In practice, it takes less than
10 ms of CPU time to generate succinct explanations in all
test cases.

IV. SIMPLIFYING EXPLANATIONS THROUGH
SPARSITY-INDUCING REGULARIZATION
DT-Net can be accurately trained using well-developed
stochastic gradient descent training algorithms. We use a bi-
nary cross-entropy loss function at the output, and we use a
straight-through estimator with gradient clipping [24] in the
hidden layer to backpropagate gradient updates through the
binary step activations. It should be clear from the previous
section that zero weights in a threshold function mean that the
corresponding inputs will not have any effect on the logic of
the threshold function, which means those input features can
be removed from any explanation derived from that threshold
function. Therefore, promoting the sparsity of hidden layer
threshold functions indirectly simplifies explanations. Further,
as shown in [27], neurons with zero input connections (mean-
ing all its weights are zero) can be safely removed since these
dead neurons will have no effect on the output classification.
Besides a training strategy that maximizes the number of zero
weights, encouraging weights with small absolute magnitudes
is also beneficial in deriving simpler explanations. This is
because more input features can be removed from an explana-
tion if the corresponding weights have small absolute values
relative to the available slack.

We can encourage sparsity by including a regularization
term into the overall loss function of the form

L = Lpce + ALr(W), (8)

where Lpcg is the binary cross-entropy loss, Lg(-) is the
regularization loss over the weight matrices W in the net-
work, and A is the regularization coefficient. Fortunately, we
can encourage both zero weights and weights with small
values in absolute magnitude by means of sparsity-inducing
regularization. In particular, we use the reweighted L; regu-
larization [28] approach that penalizes smaller absolute value
weights so that they are driven towards zero faster, resulting

VOLUME 4, 2023

in more weights near zero. We also incorporate a pruning
method [27] to eliminate weights with absolute magnitudes
below a certain threshold. Weights near this threshold that
remain tend to be small so that they are more likely to be
eliminated in our algorithms to derive explanations. As shown
in [28], a log-sum penalty term,

LRW) =log(IW i1 +), (&)

can be used to achieve reweighted L; minimization, where
€ > 0 is a small value (e.g., € = 0.1) added to ensure nu-
merical stability. As shown in the evaluation section, this
sparsity-inducing regularization approach not only simplifies
the explanations, but it also leads to the removal of many dead
neurons.

V. EVALUATION

Benchmarks: The numerical experiments were evaluated on
8 publicly available binarized classification datasets, most
of which have more than 10,000 instances and comprise
categorical and numerical attributes for each instance be-
fore binarization. We used three datasets from the UCI
Machine Learning Repository [29], namely adult (Adult Cen-
sus), magic (MAGIC Gamma Telescope), and chess (Chess:
King-Rook vs. King). Two of the selected datasets are from
Kaggle: churn (Telco Customer Churn) and airline (Airline
Passenger Satisfaction). The other three datasets are: house
(House_16H) [30], retention (TED Dataset) [31], and re-
cidivism (Predicting Recidivism) [32]. These datasets were
shuffled (with a fixed seed to ensure the consistency for all
approaches) and split into 5 sets of training and test datasets
using 5-fold cross-validation. All experimental results are de-
rived by running the classifiers on 5 test sets and averaging the
results.

DT-Net Configurations: For DT-Net, we used the Adam
optimizer with a fixed learning rate of 10~2 and no weight
decay across all experiments. There are 100 neurons in the
hidden layer to ensure there is an efficient search space for all
datasets, and the network is trained for 1,000 epochs to guar-
antee complete convergence. For simplicity, the batch size is
fixed at 2,000 and the weights are uniformly initialized within
the range between 0 and 1. Other parameters were selected
according to the nested 5-fold cross-validation, which will be
discussed in the following subsections.

A. CLASSIFICATION PERFORMANCE

Baselines and Pre-processing: In this evaluation, we compare
our approach with four rule learners, including Decision Rule
Net (DR-Net) [14], the Column-Generation-Based algorithm
(CG) [5], RIPPER [2], and Bayesian Rule Sets (BRS) [4].
We also compare our approach with decision trees (CART),
random forests (RF), and gradient boosting trees (XGB). RIP-
PER is a greedy rule mining approach based on sequential
covering. DR-Net, BRS and CG are recent rule-set-generation
classifiers that optimize both for accuracy and interpretability,
and CART [9] is a decision tree learning algorithm. We use
random forest (RF) [12] and XGBoost (XGB) [10] to provide

191

WANG ET AL.: DISJUNCTIVE THRESHOLD NETWORKS FOR TABULAR DATA CLASSIFICATION

TABLE 1. Average Test Accuracy and Complexity (In Parentheses) Based on the 5-Fold Cross-Validation

dataset DT-Net DR-Net CG RIPPER BRS CART | RF XGB
adult 83.64 (11.83) 8255 (11.46) 82.60 (6.54) 8225 (5.16) 78.78 (3.00) 8244 (13.11) | 84.03 84.41
magic 8534 (470) 8391 (2.73) 8333 (2.82) 82.86 (4.55) 81.37 (3.00) 83.18 (11.98) | 8671 87.16
house 87.61 (10.43) 86.07 (3.56) 83.80 (2.90) 8143 (5.74) 83.26 (3.00) 85.10 (12.22) | 8849 88.92
recidivism 6539 (631) 64.09 (2.06) 64.57 (2.98) 64.84 (422) 61.98 (3.00) 62.85 (9.86) | 6677 64.33
chess 89.30 (7.28) 84.47 (7.70) 81.93 (6.97) 8546 (9.80) 74.66 (3.00) 85.36 (16.02) | 92.63 94.98
retention 9347 (3.64) 87.78 (323) 90.77 (3.68) 88.92 (3.73) 89.37 (3.00) 90.11 (11.86) | 93.43 94.29
churn 7951 (892) 78.85 (6.80) 7921 (271) 7827 (4.81) 76.74 (3.00) 79.00 (9.82) | 8035 77.45
airline 94.41 (471) 9332 (3.45) 90.10 (3.50) 93.08 (4.28) 90.71 (2.90) 90.21 (12.64) | 9479 95.94

baselines for typical performances that black-box models can
achieve on the datasets evaluated. For all datasets, we adopted
the pre-processing approach discussed in [14] to binarize nu-
merical and categorical features. BRS and CG do not directly
consider the negation of features. Therefore, we followed the
procedures described in their articles to append the negations
of binarized features so that they can be considered in their
rule sets.

Complexity Measurement: For our model and other inter-
pretable models, the classification performance was evaluated
using both accuracy and interpretability. The accuracy was
evaluated on the test set and the interpretability was mea-
sured by the average explanation complexity. We note that
while rule learners generally consider the complexity of gen-
erated rules, our model carries out the prediction without
pre-learning any rules, but derives the explanation afterwards.
Therefore, we proposed a new complexity metric, namely
explanation complexity, as the average length of explanations
for all positive instances in the test dataset. For DT-Net, the
explanations were produced according to the algorithm dis-
cussed in Section III-C and therefore the complexity is the
length of the explanation. For rule learners, the complexity
was computed based on the simplest rule that covers the test
instance. For CART, the explanation was derived by tracing
down the decision path from the root node, and the complexity
is measured by the number of nodes in the decision path.

Parameter Tuning: We evaluated the predictive perfor-
mance of DT-Net by comparing both test accuracy and com-
plexity with other state-of-the-art machine learning models.
For parameter selection in all models, we used a 5-fold nested
cross-validation to improve training accuracy. Specifically, the
best accuracy is achieved by tuning the regularization coef-
ficient A for DT-Net, minimum number of samples per leaf
for CART and RF, and the regularization term for XGBoost.
We tuned the same parameters mentioned in [14] for DR-Net,
CG, RIPPER and BRS. We take the average performance over
the 5 training-testing pairings as the final reported results. We
summarize the accuracies of all models and the complexities
of the interpretable models in Table 1, where the best accura-
cies among interpretable models are highlighted in bold.

As can be observed in Table 1, DT-Net achieves the best
accuracy among all interpretable models on all datasets, in-
dicating that DT-Net has a significant advantage over other

192

TABLE 2. Statistics of DT-Net After Pruning. # pruned: The Number of
Neurons Pruned in the Hidden Layer

dataset # pruned Sparsity # activated
adult 96.2 81.21% 1.49 (0.68)
magic 87.8 8281% 2.84 (1.63)
house 90.2 70.95% 3.63 (1.78)
recidivism 95.0 76.00% 1.12 (0.36)
chess 62.2 58.50% 2.75 (1.82)
retention 67.8 80.27% 3.91 (2.77)
churn 96.8 70.90% 1.34 (0.51)
airline 87.2 87.92% 4.48 (2.03)

Sparsity: The Percentage of the Zero Weights in Each Neuron. #
activated: The Number of Activated Neurons for Each Test
Instance. The Average Over 5 Partitions is Reported for Every
Dataset (Standard Deviation in Parentheses).

interpretable models on generalization capability. At the same
time, DT-Net achieves an accuracy very close to the unin-
terpretable models on most datasets (except for the chess
dataset) and it even outperforms them in some cases (see
churn and airline datasets). Moreover, since DT-Net is a neural
network, the performance of DT-Net can possibly be further
improved with finer parameter tuning and more advanced
training techniques. Regarding complexity, it can be seen that
though DT-Net does not produce the simplest explanations,
it still shows admissible interpretability in that its complexity
is within the same magnitude of other approaches. In partic-
ular, we note that DT-Net always outperforms the traditional
decision tree on all datasets and thus in real-world applica-
tions, DT-Net can generally substitute decision trees with both
higher accuracy and lower complexity.

B. EFFECTS OF SPARSITY-INDUCING REGULARIZATION

In our experiments, the networks are composed of a large
number of threshold functions, e.g. 100 neurons in the hidden
layer, to ensure enough capacity. Simplifying the neural net-
work using the regularization and pruning methods mentioned
earlier helps reduce both the complexity and the computation
time of the explanations. We show in Table 2 that our neural
network achieves very high sparsity, which partially explains
why our explanation generation procedure has relatively low
computational cost.As can be observed from Table 2, most

VOLUME 4, 2023

IEEE Open Journal of the

@ Computer Society

threshold functions are disabled after pruning, which verifies
the effectiveness of our regularization method in excluding the
redundant capacity. Further, the remaining neurons generally
achieve an average sparsity over 50%. This means that more
than half of the literals are directly removed before applying
our algorithms, which explains how we remove most literals
and generate explanations with reasonable complexity in our
experiments. In addition, individual positive instances in gen-
eral are only produced by about 2 or 3 neurons for all datasets.
The fact that each instance only activates a few neurons ex-
plains why our explanation generation algorithm generally
produces explanations that are minimal for the network.

VL. CONCLUSION

We proposed in this work a neural network architecture called
DT-Net for tabular data classification that provides both high
accuracy performance and interpretability. An important fea-
ture of the proposed solution is that only a simple greedy
algorithm is required to provide an explanation with the
prediction that is human-understandable. We further employ
a sparsity-inducing regularization approach to sparsify the
threshold functions so that the derived explanations are sim-
ple. In comparison with other explainable decision models,
our evaluation shows that our proposed approach can achieve
superior predictive performance on a broad set of tabular data
classification datasets.

REFERENCES

[1] C.Rudin, “Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead.” Nature Mach.
Intell., vol. 1, no. 5, pp. 206-215, 2019.

[2] W. W. Cohen, “Fast effective rule induction,” in Proc. 12th Int. Conf.
Mach. Learn., 1995, pp. 115-123.

[3] H.Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets:
A joint framework for description and prediction,” in Proc. 22nd ACM
SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1675-1684,
doi: 10.1145/2939672.2939874.

[4] T. Wang, C. Rudin, F. Doshi-Velez, Y. Liu, E. Klampfl, and P. Mac-
Neille, “A Bayesian framework for learning rule sets for interpretable
classification,” J. Mach. Learn. Res., vol. 18, no. 70, pp. 1-37, 2017.
[Online]. Available: http://jmlr.org/papers/v18/16-003.html

[5] S. Dash, O. Giinliik, and D. Wei, “Boolean decision rules via column
generation,” in Proc. Adv. Neural Inf. Process. Syst., 2018, vol. 31.

[6] M. Li et al., “An adaptive framework for confidence-constraint
rule set learning algorithm in large dataset” in Proc. 3Ist
ACM Int. Conf. Inf. Knowl. Manage., 2022, pp.3252-3261,
doi: 10.1145/3511808.3557088.

[71 R. L. Rivest, “Learning decision lists,” Mach. Learn., vol. 2, no. 3,
pp. 229-246, 1987.

[8] B.Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable
classifiers using rules and Bayesian analysis: Building a better stroke
prediction model,” Ann. Appl. Statist., vol. 9, no. 3, pp. 1350-1371,
Sep. 2015, doi: 10.1214/2F15-a0as848.

[9] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification and
Regression Trees (wadsworth and brooks-cole statistics-probability se-
ries). Taylor & Francis, New York, NY, USA, 1984. [Online]. Available:
https://books.google.com/books?id=JwQx-WOmSyQC

[10] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2016, pp. 785-794.

[11] G. Ke et al., “LightGBM: A highly efficient gradient boosting deci-
sion tree,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 3149-3157.

VOLUME 4, 2023

[12] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5-32,
Oct. 2001, doi: 10.1023/A:1010933404324..

[13] J. Chen, K. Liao, Y. Wan, D. Z. Chen, and J. Wu, “DANets: Deep
abstract networks for tabular data classification and regression,” in Proc.
AAAI Conf. Artif. Intell., 2022, pp. 3930-3938. [Online]. Available:
https://ojs.aaai.org/index.php/AA Al/article/view/20309

[14] L. Qiao, W. Wang, and B. Lin, “Learning accurate and interpretable
decision rule sets from neural networks,” in Proc. AAAI Conf. Artif.
Intell., 2021, pp. 4303-4311.

[15] A. Abutbul, G. Elidan, L. Katzir, and R. El-Yaniv, “DNF-Net: A neural
architecture for tabular data,” 2020, arXiv: 2006.06465.

[16] S.O. Arik and T. Pfister, “TabNet: Attentive interpretable tabular learn-
ing.” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 6679-6687.

[17] A.Shih, A. Choi, and A. Darwiche, “A symbolic approach to explaining
Bayesian network classifiers,” in Proc. 27th Int. Joint Conf. Artif. Intell.,
2018, pp. 5103-5111.

[18] W. Shi, A. Shih, A. Darwiche, and A. Choi, “On tractable represen-
tations of binary neural networks,” in Proc. Int. Conf. Princ. Knowl.
Representation Reasoning, 2020, pp. 882—892.

[19] A.Choi, W. Shi, A. Shih, and A. Darwiche, “Compiling neural networks
into tractable Boolean circuits,” in Proc. AAAI Spring Symp. Verification
Neural Netw. (VNN), 2019.

[20] A. Ignatiev, N. Narodytska, and J. Marques-Silva, “Abduction-based
explanations for machine learning models.” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 1511-1519.

[21] Y. Izza and J. M. Silva, “On explaining random forests with SAT.” in
Proc. 30th Int. Joint Conf. Artif. Intell., 2021.

[22] G. Audemard, F. Koriche, and P. Marquis, “On tractable XAI
queries based on compiled representations,” in Proc. I7th Int.
Conf. Princ. Knowl. Representation Reasoning, 2020, pp. 838-849,
doi: 10.24963/kr.2020/86.

[23] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv: 1609.04747.

[24] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagat-
ing gradients through stochastic neurons for conditional computation,”
2013, arXiv:1308.3432.

[25] C. Louizos, M. Welling, and D. P. Kingma, “Learning sparse neural
networks through lp regularization,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.

[26] Y. Li and S. Ji, “lp-arm: Network sparsification via stochastic binary
optimization,” in Proc. Mach. Learn. Knowl. Discov. Databases: Eur.
Conf., 2020, pp. 432-448.

[27] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” in Proc. 28th Int. Conf.
Neural Inf. Process. Syst., 2015, pp. 1135-1143.

[28] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity
by reweighted /1 minimization,” J. Fourier Anal. Appl., vol. 14,
pp- 877-905, 2008.

[29] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [On-
line]. Available: http://archive.ics.uci.edu/ml

[30] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo, “OpenML: Net-
worked science in machine learning,” SIGKDD Explorations, vol. 15,
no. 2, pp. 49-60, 2013, doi: 10.1145/2641190.2641198..

[31] V. Aryaet al., “One explanation does not fit all: A toolkit and taxonomy
of AT explainability techniques,” in Proc. INFORMS Annu. Meeting,
2021.

[32] P. Schmidt and A. D. Witte, Predicting Recidivism in North Carolina
1978 and 1980. Ann Arbor, MI, USA: Inter-Univ. Consortium Political
Social Res., 1988.

WEUIA WANG received the B.S. degree in
electrical engineering from Zhejiang University,
Hangzhou, China, in 2016, and the M.S. degree in
electrical and computer engineering in 2018 from
the University of California, San Diego, La Jolla,
CA, USA, where he is currently working toward
the Ph.D. degree in electrical and computer engi-
neering. His research focuses on machine learn-
ing and deep learning, including the compression
and acceleration of deep convolutional neural net-
works, algorithms of meta-learning and federated
learning, and explainable artificial intelligence.

193

WANG ET AL.: DISJUNCTIVE THRESHOLD NETWORKS FOR TABULAR DATA CLASSIFICATION

LITAO QIAO received the B.S. and M.S. degrees
in computer and science and engineering in 2019
and 2020, respectively, from the University of Cal-
ifornia, San Diego, La Jolla, CA, USA, where he
is currently working toward the Ph.D. degree in
electrical and computer engineering. His research
interests include data science, explainable machine
learning, and deep learning.

BILL LIN received the B.S., M.S., and Ph.D.
degrees in electrical engineering and computer
sciences from the University of California, Berke-
ley, Berkeley, CA, USA, in 1985, 1988, and 1991,
respectively. He is currently a Professor in electri-
cal and computer engineering with the University
of California, San Diego, La Jolla, CA, where he
is actively involved with the Center for Wireless
Communications, Center for Networked Systems,
and Qualcomm Institute in industry-sponsored re-
search efforts. His research has led to more than
200 journal and conference publications, including a number of Best Paper
awards and nominations. He also holds five awarded patents. He was the
General Chair and on the executive and technical program committee of many
IEEE and ACM conferences. He was an Associate or Guest Editor for several
IEEE and ACM journals.

VOLUME 4, 2023

