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Abstract—In recent years, there has been significant interest
in use of soft and continuum manipulators in diverse fields
including surgical and agricultural robotics. Consequently,
researchers have designed open-loop and feedback control
algorithms for such systems. Here, the knowledge of the ma-
nipulator shape is critical for effective control. The estimation
of the manipulator shape is challenging due to their highly
deformable and non-linear nature. Researchers have explored
inductive, magnetic and optical sensing techniques to deduce
the manipulator shape. However, they are intrusive and eco-
nomically expensive. Alternate non-contact sensing approaches
may involve use of vision or inertial measurement units (IMUs)
that are placed at known intervals along the manipulator. Here,
the camera provides position of the marker, while the slope
(rotation matrix or direction cosines) can be determined using
IMUs. In this paper, we mathematically model the manipulator
shape using multiple piecewise continuous quintic Pythogorean-
Hodograph (PH) curves. A PH-curve has continuous slope and
is a convenient parametric model for curves with constant
length. We investigate the use of multiple piecewise continuous-
curvature PH curves to estimate the shape of a soft continuum
manipulator. The curves model manipulator segments of con-
stant lengths while the slopes at the knots are assumed to be
known. For N curve segments with (4N + 8) unknowns, the
shape estimation is formulated as a constrained optimization
problem that minimizes the curve bending energy. The algo-
rithm imposes (4N + 3) nonlinear constraints corresponding to
continuity, slope and segment length. Unlike traditional cubic
splines, the optimization problem is nonlinear and sensitive to
initial guesses and has potential to provide incorrect estimates.
We investigate the robustness of the algorithm by adding varia-
tion to the direction cosines, and compare the output shapes. The
simulation results on a five-segment manipulator illustrate the
robustness of the algorithm. While the experimental results on
a soft tensegrity-spine manipulator validate the effectiveness of
the approach. Here estimation error of the end-effector position
normalized to the manipulator length are 6.53% and 6.2% for
the two experimental poses.

I. INTRODUCTION

In the recent years, soft material and continuum manip-
ulators have gained prominence given their compliant and
adaptable nature, and safety of operation near humans. Con-
sequently, they have found diverse applications in fields of
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medical, wearable and agricultural robotics [1]-[5]. The con-
trol of such systems is approached using multiple techniques
including model-based continuum curvature and cosserat-rod
[6], [7]. Tensegrity spine-inspired manipulators display soft
behavior of high deformability and flexibility with variable
stiffness [8]. However, their modeling and control has proven
to be challenging due to their nonlinear kinematic and
dynamic nature [9].

The closed loop control of such systems requires re-
construction of the manipulator shape profile. Researchers
have explored multiple active sensors that employ resistive,
inductive, magnetic and optical principles. Resistive sensors
using conducting composites are influenced by environmental
factors like temperature and humidity [10], [11]. Stretchable
sensors have been used for shape estimation of a surgical
robot [12]. Although the sensors are easy to manufacture,
care needs to be taken while attaching them to the electrodes,
hence, also making it difficult to replace. Similarly, Fiber
Bragg Grating sensors detecting reflected light need to be
carefully embedded inside the robot body and affect the
manipulator dynamics [13]-[17]. In short, these approaches
have the drawback of being intrusive and economically
expensive. Consequently, recent research has involved shape
reconstruction using non-contact vision-feedback [18].

Another perspective for reconstructing shape profile is the
use of curve interpolation techniques where the position
or slope at given intervals of the manipulator are known,
and the continuity of position, slope and curvature is main-
tained between these intervals. The use of cubic splines
is prevalent for interpolating surfaces where the parametric
curve between two points (referred to as ‘knots’) is a third
degree polynomial. This approach offers the advantage of
being linear and computationally cheap. However, when
being applied to soft manipulators, the algorithm needs to
incorporate an additional non-linear constraint corresponding
to constant lengths between consecutive knots. The lack of
an analytical solution to impose the length constraints makes
the approach computationally expensive. In this context, a
Printed Circuit Board ribbon with continuous arrangement
of embedded sensors has been investigated [19]. In contrast,
Pythagorean Hodograph (PH) curves have a special property
of having constant slope which has analytical advantages
when imposing length constraints [20], [21]. The use of PH
curves with quaternions on a Robotonix XT rigid manipulator
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Fig. 1. Piecewise continuous modeling of a soft manipulator where the
segment lengths /; and the direction cosines (slopes) d; are known at the
knots.

has been explored where the whole manipulator is assumed
as a single segment [22].

Contributions. The research mathematically models a soft
tensegrity manipulator, Fig. 1, as piecewise PH curves of
quinitic order. The sensors are located at constant lengths
along the manipulator and the slope at each knot is assumed
to be known. Mathematically, the curves are C°,C*, C?
continuous at the knots. The paper uses multiple segments
for a planar shape estimation problem using input of di-
rection cosines at knots and the length between consecutive
knots. The shape estimation with N segments, equivalently,
(4N+8) unknowns, is formulated as a nonlinear optimization
problem that minimizes the curves’ bending energy with
(4N + 3) non-linear constraints. This is experimentally ver-
ified on a soft tensegrity-spine manipulator where the slopes
are obtained using visual markers placed at known intervals
along the manipulator. The robustness of the algorithm to the
error in the slope (sensor noise) is investigated.

The remainder of the paper is organized as follows:
Sec. II introduces the PH Curves and discusses the estimation
algorithm along with the proof. Sec. III presents numerical
simulation setup, tensegrity based spine model and robustness
study of the estimation algorithm. It also discusses the
simulation and the experimental results.

II. PARAMETRIC MODEL OF CONTINUUM MANIPULATOR
USING PH-CURVES
A. Pythagorean Hodograph (PH) Curves
PH-curves are beneficial to obtain closed form solutions

when working with lengths of curves. The curve terminology
and properties are summarized as

1) Parametric representation of the curve is r(h) with the
normalized curvilinear coordinate h € [0, 1]

r(h) = [w(h), y(h), 2(h)]" (D

where, x,y,z are spatial coordinates. However, the
length of the curve L does not have a generic closed-
form solution

L= / e (ldh = / DT,

2) Hodograph is the first derivative of the curve that
satisfies the Pythogorean condition

7' (h) = [« (h),y' (h), ' (h)]"
st. ()2 +y'(h)?*+ 2 (h)? =0o(h)?

2/ (h)2dh

2

where o(h) is some function of h. The Pythogorean
constraints facilitates closed form solution for the curve

length.
1 1
= [ wwlan= [ e

3) Parametric hodographs that allow for satisfaction of the
Pythogorean condition are

@'(h) = [u?(h) +v*(h) = p*(h) — ¢*(h)]
y'(h) =2 [u(h)q(h) + v(h)p(h)]
Z'(h) = 2[v(h)q(h) — u(h)p(h)]
7' (B)] = lo(h)] = u®(h) +v*(h) + p*(h) + ¢*(h)

where wu(h),v(h),p(h),q(h) are polynomials of any
degree. Linear polynomials do not have any degree of
freedom and are not feasible. Hence, quadratic polyno-
mials with two degrees of freedom are considered which
result in a quintic PH-Curve.

4) The quadratic polynomials can be written in Bernstein

form
u(h) = uo(1 — h)*> + u12(1 — h)h + ush®
v(h) = vo(1 — h)? + v12(1 — h)h + vah?
p(h) = po(1 — h)* 4+ p12(1 — h)h + pah?
q(h) = qo(1 = h)* + :2(1 — h)h + g2h®

and the Biezier form with five control points, Pj

- En (o

We will use the Hopf representation of the PH-curves
using third degree complex polynomials «(h), 3(h)

w(h), B(h) = q(h) +ip(h)
=la(h)* = |B(h)?

y'(h) = 2Re(a(h)B(h)), 2’ (h) = 2Im(a(h)B(h))

2= la(m)]* +[B(h)?

)5 khk

&)

~ represent the complex conjugate of .

B. Manipulator shape estimation

Problem Definition. A soft manipulator has N sensors
located at known intervals that give information about the
slopes or direction cosines d; and the segment length [; as
illustrated in Fig. 1(b). The shape is defined using segments
of PH-curves 7;(h). It is desired to find the parametric rep-
resentation of these curve segments that preserve positional
CY, tangential C*! and curvature C? continuity, and are of
constant length [;.

Parametric representation ensuring continuity. Let the
Hopf form quadratic polynomials for a segment ¢,
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(a;(h), Bi(h)), be defined using complex coefficients
CL“b“’L :07 7(N+1)

ai(h) = @;;ai)(l — h)? +2a;(1 — h)h + W
Bi(h) = W(l — h)* +2b;(1 — h)h + (b+++1)

(6)

It can be easily observed that this presentation preserves
C*, C? continuity at the knots i = 1,--- , N.

ri(1) =ri1(0), (1) =74, (0)

Hence, for the shape defined using segments of PH-curves
r;(h) using the proposed parameterization, it is desired to
calculate 4(N + 2) = (4N + 8) unknowns corresponding to
the complex a;,b;,i =0,---,(N +1).

Slope and length constraints. Let the slope or direction
cosines at each knot be d; = (dx;, dy;, dz;). The relationship
between the unknowns is

1(ai + aip1]® — |bs + biy1]?)
Re (%(ai +ait1)(bi + Ei+1))

Im (%(ai + aiy1)(bi + Bi+1))

gi(a,b) = =ri(1)

Hence, the slope readings at the knots provides 3(N + 1)
nonlinear equations. Similarly, let the length of a segment ¢
be l;, then analytically

1
L) = [ irihlan = 135 [6(0aa ] + )+
54(|ai|® + [bil*) + 6(lait1|” + [bis1]?) + 13(ai—1di
+b;i_1b; + @i_1a; + bi_1b; + a;Qit1 + biBH—l + a;ait1 ®
+Eibi+1) + a;—1Q;4+1 + bi—15¢+1 + a;—1a:41 + Bi—lbi+1]
L;—10;=0, Vi=1,--- N

Here, the segment length constraints provide N equations.
Consequently, the total number of slope and length constraint
equations is (4N + 3). For the remaining five degrees of
freedom a global energy function is defined as

f(a,b) = Z (|ai—1 — 2a; + ai+1|2 + |bi—1 — 2b; + b¢+1|2)
=1
)

The shape estimation problem is formulated as a constrained
optimization problem that minimizes the energy function for
the (4N + 8) unknowns (a, b)

min f(a, b)
a,b (10)
s.t. gi—diZO,Lj—lj:O

This is a nonlinear optimization problem that will be solved
using numerical solvers like MATLAB®.
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C. Initialization for Numerical Optimization

The numerical optimization of (10) requires initialization

of the (4N +8) unknowns. Methodical initialization is critical
h2 as unknowns are related through the nonlinear constraints.
The three-fold approach involves

1) Approximating the constraints in terms of unknowns.

2)

3)

The relationship between consecutive a;, b; is assumed
to be
bi—1 = b; — db;
bitv1 = b; + bit1
Substituting (11) in (7), (8) and ignoring the higher order
terms corresponding to da;, db;, the constraint equations
can be approximated as
|ai|* — [bil?
2Re (al- ljl)
Solving approximate constraint equations. A set of
solutions satisfying (12) is

1 1
\ai|2 = §¢i(|dz‘| + dx;), |bi\2 = 5¢i(|di| — dx;)

ai—1 = a; — 0a;,
(11)

Ait1 = a; + 0a;41,

=d;, |a*+b*=L (12

- 1 . l;
(13)
where a;, b; are
1 .
4= §wz‘(|di| + da;) exp’ )
1 i(61)
bi = §¢z(‘dz| — d(Ez) exp
(14)

dz:
where 6; = arctan ( zl)
dy;
dZi

dy;
and ¢; is a free parameter.

Calculating the free parameters. We assume ¢; =
0 and the remaining are obtained by minimizing
(|Aa;|? + |Ab;[*) to minimize the errors of approx-
imation assumption. For ease of calculation, A¢; =
¢i — ¢i—1 and Ab; =0; — 0,4

|Aa;|* + |Ab|* = ti1|di1| + ¥ildi| — /i1
(\/(di,1 — dl’ifl)(dz — dl’z) COS(AQSZ')
15)

Analytically, the minima is found equating the derivative
of the above expression with respect to A¢; with zero.

—sin(A6;)

(di—1—dxi_1)(di—dx;)
(di—1+dzi—1)(di+dz;)

0s6; =

sin 91 =

tan(Ag) =
cos(Ab;) +

Solving for ¢; from the above expression will yield two
values due to the square root present in the denominator.
The value yielding the minimum when substituted into
(15) is taken.



D. Algorithmic Summary

We summarize the shape estimation process as:

( Input ) The slopes d; at the (INV 4 1) knots and the lengths
l; of N segments.

Initializing (4N + 8) unknowns

(Step 1) Find 6; using sin 6; , cosf; from (14)

(Step 2) Find the ¢; by assuming ¢; = 0 and calculating
Ag; using (16)

(Step 3) Initialize a; and b; where ¢ = 1, ..., n. At this point,
ag, an+1,bo and b, are not initialized. These are
initialized as

by = 2b1 — b
bn+1 = 2b,

apg = 2@1 — ag, (17)
- bnfl

Up41 = 20pn — Qn-1,

Optimize the constrained energy function

(Step 4) The nonlinear constrained energy cost function,
(10), is minimized using off the shelf solvers like
MATLAB®.

(Step 5) «; and B; polynomial functions are obtained using
(6).

(Step 6) The polynomials for each curve segment are in-
stantaneously obtained using

Nlesy? = 1.2

7i(h) =/0 2Re (i (h)Bi(h)) | dh  (18)
2Im (a;(h)B;(h)))

where 7;(1) = r;41(0), V¢ € [1, N — 1] to ensure

C° continuity.
III. SIMULATION AND EXPERIMENTS

We analyze the proposed algorithm for two planar sce-
narios (1) simulated curve with five segments and six knots,
and (2) experimental tensegrity spine-like soft manipulator
in static orientation with three segments and four knots
that are visually observed through a camera. Thereafter, we
investigate the robustness of the algorithm to error in the
slope angles.

A. Simulation

Simulation is performed in MATLAB®where the algo-
rithm uses fmincon function to perform the constrained
shape optimization. The computer has Intel®i7 2.90 GHz
processor with 8 cores CPU. However, only one core was
used in the entire study. A usual optimization process takes
utmost 0.029 seconds. All the constraints and cost func-
tion are programmed while the derivatives or normalized
derivatives (direction cosines), length of each segment for
all segments are required as input as discussed in Sec. II-D.

To simulate the accuracy of the algorithm, a quintic 2D
curve (ground truth’) is created in Autodesk®Fusion 360
and the slopes are extracted at the knots. Direction cosines
are then calculated from slopes tan ;.

d; = [cos Yi, Siny;, 0] T

The total length of the curve is 23 in with five equal segments
of 4.6 in. For true values of the slope, the algorithm is able
to successfully reconstruct the true curve, Fig. 2. All the sen-
sors exhibit different accuracy with noise. Consequently, we
examine the robustness of the shape estimate by introducing
variations in the slope angle, d-;

cos (7 + 073)
sin (y; +67vi) |
0

variation
100

d; = i (19)

The slope angle is varied between —5% and 5% of the
angle, and the curve is reconstructed, Fig. 2. The error in
the position of the ¢th knot, e;, is defined as the norm of
the difference between the true and the estimated position.
The simulation results show increase in e; with the distance
from the base of the manipulator. This can be explained
by propagation of the angular error over the manipulator
length. We also observe the error normalized to the d1stance
of the knot from the base (first knot), i.e., l . The

stability of this normalized position error, Fig. 2c, ghhghts
the robustness of the algorithm. During the simulation, it was
observed that strategic initializing of the complex coefficients
as discussed may not always yield faster results.

€; =

B. Experiments

We used a tensegrity-spine as a soft manipulator to validate
the shape estimation algorithm. Tensegrity systems com-
bine tension with compression elements to attain structural
integrity [23]. In our case, we construct the tensegrity-spine
using wood (compression element) and elastic nylon cables
(tension element). The tower uses two 2.5 in outer diameter
semicircles with an internal diameter of 1.25 in that will be
called sub-vertebrae. These sub-vertebrae have four holes that
are used to attach the cables to the rigid wood element. The
high deformability and shape change of the tensegrity-spine
is achieved by adjusting the control cables connected to each
vertebra. The tensegrity-spine has six degrees of freedom
where the shape is controlled using these four tendons located
along the outer diameter of the tower, Fig. 3. The manipulator
can be maneuvered into different shapes by controlling the
length of the cord on the vertebrae. In this paper, two planar
poses in static configuration are investigated. Each pose is
tracked using visual markers located at the knots. Hence, each
pose is constructed using three segments. Direction cosines
are extracted visually and the length between the markers
i.e., knots are calculated. These parameters are then fed to
the simulation to generate the shape. The segment length
and visually obtained direction cosines of the two poses are
tabulated in Tab. 1.

The change in the total spine length between the two
poses is attributed to the slippage of the central cable of
the prototype during reorientation.

C. Result/Discussion

We compare the two poses by observing the Euclidean
distance between the estimated and true visually observed
knots. The distance error is tabulated in Tab. II.
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Fig. 2. The simulation of the five segment planar quintic splines estimated
using the proposed shape estimation algorithm. (a) The estimated curve
shapes as the direction cosines are varied between 95% and 105% of the
simulated value. (b) The error between the simulated and the estimated
position of the knot. (c) The estimation error normalized to the position of
the knot along the manipulator.

The experimental results show the RMS(Root Mean
Square) error of 0.863in and 0.851in for the two tensegrity
manipulator poses. The Fig. 3 illustrates the estimated ma-
nipulator shape and the position of the knots. The estimation
error at the end-effector (knot 4) position is observed to be
maximum. The relative position errors (normalized with the
manipulator length) are 6.53% and 6.2% for the two poses.
The error in visual measurement of the slope is analyzed
by varying all the slopes by 5% of the respective angles (as
done for simulations). This also illustrates the robustness of
the nonlinear optimization approach to errors and variation
of the slope.

TABLE I
EXPERIMENTAL POSES DATA
Pose 1

Segment ‘ Length (in) H Knot ‘ Direction cosine
Iy 5.93 1 [0.0217,0.9998, 0|7
l2 5.59 2 [0.8421,0.5393,0]"
I3 5.86 3 [0.6711,0.7414,0]T

4 [0.0446,0.999,0]"

Pose 2

Segment ‘ Length (in) H Knot ‘ Direction cosine
Iy 6.19 1 [0.0809, 0.9967, 0]
l2 5.76 2 [0.9094, 0.4159, 0]
l3 6.09 3 [0.9853,0.1707,0]T
4 [0.8908, 0.4544, 0]

TABLE II
EXPERIMENTAL ERROR BETWEEN ESTIMATED AND TRUE KNOTS (¢n)

[ Koot [1] 2 | 3 [ 4 [RMS |
Pose 1 | 0 | 0.906 | 0.356 | 1.135 | 0.863
Pose 2 | 0 | 0.663 | 0.693 | 1.119 | 0.851

IV. CONCLUSION

The paper discusses shape estimation of a soft manipulator
modeled using piecewise continuous curvature PH curves.
This is formulated as a constrained nonlinear optimization
constrained with slope and length constraints. We simulate
and experimentally validate the multi-segment modeling of
soft manipulators on a tensegrity-spine manipulator. The sim-
ulation involves use of six segments while the experiments
use three segments with visual markers on the manipulator.
The algorithm illustrates robustness to simulated variations in
the slopes and end-effector relative distance error of 6.53%
and 6.2% for the two poses.

Future work will involve investigation of the PH-curve
model to estimate the 3-dimensional shape and the use of
IMUs for obtaining slopes.
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