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Shape Reconstruction of Soft Manipulators Using
Vision and IMU Feedback

Harish Bezawada, Cole Woods and Vishesh Vikas

Abstract—In recent times, soft manipulators have gardened
immense interest given their dexterous abilities. A critical aspect
for their feedback control involves the reconstruction of the
manipulator shape. The research, for the first time, presents
shape reconstruction of a soft manipulator through sensor fusion
of information available from Inertial Measurement Units (IMUs)
and visual tracking. The manipulator is modeled using multi-
segment continuous curvature Pythagorean Hodograph (PH)
curves. PH curves are a class of continuous curvature curves with
an analytical expression for the hodograph (slope). The shape
reconstruction is formulated as an optimization problem that
minimizes bending energy of the curve with a length constraint
and the information from IMUs and/or visual markers. The paper
experimentally investigates the robustness of shape reconstruction
for scenarios when position of all visual markers, or slope at all
the knots (placement of sensors) are known. Occlusion of ma-
nipulator segments is frequent, hence, this scenario is simulated
by fusing information of available slopes (IMUs) at all knots and
position (vision) at some knots. The experiments are performed
on a planar tensegrity manipulator with IMUs feedback and
visual tracking. The robustness study indicates reliability of these
models for real world applications. Additionally, the proposed
sensor fusion algorithm provides promising results where, for
most cases, the shape estimates benefit from additional position
information. Finally, the low dimensionality of the optimization
problem argues for extension of the approach for real-time
applications.

Index Terms—Soft Sensors and Actuators; Soft Robot Appli-
cations; Modeling, Control, and Learning for Soft Robots

I. INTRODUCTION

S IMILAR to an elephant trunk and octopus arms, soft
and continuum manipulators aim to provide dexterity to

manipulation - the ability to conform to different shapes [1],
[2]. Consequently, they find applications in variety of fields
including surgery [3], agriculture [4] and underwater robotics
[1]. The manipulator shape, often referred to as the backbone,
is modeled using multiple approaches including piecewise
constant curvature (PCC) [5], [6] and cosserat rod models
[7]. Thereafter, the reconstruction of the shape is critical for
their feedback control. The terms shape reconstruction and
estimation are often interchangeably used in literature.

The shape feedback is obtained using either contact-based
(embedded inside the manipulator), or non-contact (e.g.,
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IMUs, vision) sensors and is often geometrically dependent
on the robot model. Fiber Bragg Gratings sensor feedback
has been combined with PCC assumptions with and with-
out consideration of torsion [8]–[10]. Inertial Measurement
Units (IMUs) have been used for reconstructing a constant
curvature segment of a continuum manipulator [11]. However,
the constant curvature assumption is often violated during
interaction with the environment and during dynamic move-
ments. Ma et al. [12] proposed real time shape estimation
using electromagnetic sensing and with Bézier curves to model
the shape. Guo et al. [13] employed permanent magnets and
magnetic sensors, and used the relative bending angle to fit a
quadratic Bezier curve for planar cases. They found the termi-
nal position error to be in between 0.227mm and 9.339mm
for a 195mm manipulator. So et al. [14] used stretchable
sensor made of Multiwalled Carbon Nanotube inside silicone,
and considered the stretch and the curvature to estimate the
shape using the Frenet-Serret formula representation. They
used tip position as an error parameter and found max error
of 23mm for 200mm manipulator when the deformation
is more than 40% of the total length. However, all these
approaches are intrusive and are affected by external factors
including electromagnetic interference. Recently, Mbakop et
al. [15] used inverse dynamic model based on Pythagorean
Hodograph (PH) combined with Euler-Bernouli (EB) model
and visual feedback for Hermite interpolation problem. Here,
the soft robot arm manipulator arm is modeled as a single
segment. AlBeladi et al. explored vision-based reconstruction
using geometric strain parameterization [16].

One of the scenarios for feedback sensing includes plac-
ing sensors on the continuum manipulator at predetermined
locations along the backbone. Here, unlike PCC, we consider
modeling the manipulator as a piecewise (set of) continuous
curvature curves. These curves satisfy the geometric conti-
nuities of position, slope and curvature at the junction of
two curve segments. This approach is used extensively in
computer graphics using cubic splines, B-splines and Non-
uniform rational B-splines (NURBs) among other approaches
[17]. However, an analytical solution does not exist for eval-
uating the length of the curve. This becomes crucial if we
desire to impose a length constraint, e.g., sensors placed at
constant distances along the curve. Pythagorean Hodograph
(PH) curves are a special family of curves with an analytical
solution to the length, and are discussed in Sec. II.

Contribution. The research presents modeling of a con-
tinuum manipulator using multiple PH curves where sensors
are placed at the ends of each curve segment. The shape
reconstruction is formulated as an optimization problem that
minimizes bending energy of the curve with a length con-
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straint. The sensor information from visual markers and IMUs
is included as constraints. The research experimentally investi-
gates the robustness of shape reconstruction for scenarios when
position of all visual markers, or slope at all the segment knots
are known. Occlusion of manipulator segments is frequent,
hence, this scenario is simulated by fusing information of
available slopes (IMUs) at all knots and position (vision)
at some knots. The experiments are performed on a planar
tensegrity manipulator with IMUs feedback and visual track-
ing. To the best of our knowledge, this approach has not been
previously investigated in literature.

The rest of the paper is organized as: Sec. II introduces
PH representation of the curve with position and length as
constraints. The three scenarios are formulated as an optimiza-
tion problem with different sets of constraints. Next, Sec. III
presents the experiments on a planar tensegrity manipulator,
numerical results and robustness analysis of slope based and
position based shape estimation. It also discusses the sensor
fusion of IMU and vision data. Finally, the conclusion and the
future work are discussed in Sec. IV.

II. PARAMETRIC MODEL AND SHAPE RECONSTRUCTION

A. Pythagorean Hodograph (PH) Curves

As a requisite background for this paper, an informal
and brief introduction of required concepts for PH curves is
provided. The reader may refer to [18] for additional details.
Conceptually, in our context where sensors are placed at
predetermined constant positions, PH-curves are beneficial to
obtain analytical (closed form) solutions for lengths of curves.
The curve terminology and properties are summarized as

1) Parametric representation of the curve is r(s) with the
normalized curvilinear coordinate s ∈ [0, 1]

r(s) = [x(s), y(s), z(s)]
T (1)

However, the length of the curve L does not have a
generic closed-form solution

L =

∫ 1

0

|r′(s)|ds =
∫ 1

0

√
x′(s)2 + y′(s)2 + z′(s)2ds

2) Hodograph is the first derivative of the curve that satisfies
the Pythagorean condition, i.e.,

r′(s) = [x′(s), y′(s), z′(s)]
T

s.t. x′(s)2 + y′(s)2 + z′(s)2 = σ(s)2
(2)

The Pythagorean constraints facilitates an analytical
(closed form) solution for the curve length.

L =

∫ 1

0

|r′(s)|ds =
∫ 1

0

|σ(s)|ds (3)

3) Parametric hodographs that allow for satisfaction of the
Pythagorean condition are

x′(s) =
[
u2(s) + v2(s)− p2(s)− q2(s)

]
y′(s) = 2 [u(s)q(s) + v(s)p(s)]

z′(s) = 2 [v(s)q(s)− u(s)p(s)]

|r′(s)| = |σ(s)| = u2(s) + v2(s) + p2(s) + q2(s)

(4)

where u(s), v(s), p(s), q(s) are polynomials of any de-
gree. Here, linear polynomials do not have any degree of
freedom and are not feasible. Hence, quadratic polyno-
mials with two degrees of freedom are considered which
result in a quintic PH-curve.

4) We will use the Hopf representation1 of the PH-curves
using third degree complex polynomials α(s),β(s)

α(s) = u(s) + iv(s),β(s) = q(s) + ip(s)

s.t. x′(s) = |α(s)|2 − |β(s)|2

y′(s) = 2Re
(
α(s)β̄(s)

)
, z′(s) = 2Im

(
α(s)β̄(s)

)
σ(s)2 = |α(s)|2 + |β(s)|2

(5)

where ᾱ(s) and β̄(s) represent the complex conjugates.

B. Position Feedback for Shape Reconstruction

Problem definition. A soft manipulator has N sensors
located at known intervals that give information about the
position (absolute or relative) pi and the segment length li
as illustrated in Fig. 1. The shape is defined using segments
of PH-curves ri(s). It is desired to find the parametric repre-
sentation of these curve segments that preserve positional C0,
tangential C1 and curvature C2 continuity, and are of constant
length li.

Fig. 1. Piecewise continuous modeling of a soft manipulator where the
segment i between knots i and i+ 1 is of length li.

Parametric representation ensuring continuity. Let the Hopf
form quadratic polynomials for a segment i, (αi(s),βi(s)), be
defined using complex coefficients ai, bi, i = 0, · · · , (N +1)

αi(s) =
(ai−1 + ai)

2
(1− s)2 + 2ai(1− s)s+

(ai + ai+1)

2
s2

βi(s) =
(bi−1 + bi)

2
(1− s)2 + 2bi(1− s)s+

(bi + bi+1)

2
s2

(6)

It can be easily observed that this representation preserves
C1, C2 continuity at the knots i = 1, · · · , N , i.e.,

r′i(1) = r′i+1(0), r′′i (1) = r′′i+1(0)

Hence, for the shape defined using segments of parameterized
PH-curves ri(s), it is desired to calculate 4(N + 2) =
(4N+8) unknowns corresponding to the complex ai, bi, ∀i =
0, · · · , (N + 1).

1Alternatively, quarternion representation can also be followed.
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Position constraints. Let the positions, i.e., the knots be
pi = (xi, yi, zi). Each segment ri(s) for i = 1, ..., N is
required to satisfy ri(0) = pi−1 and ri(1) = pi. Hence,∫ 1

0

r′i(s)ds = pi − pi−1 = ∆pi

⇒ ∆pi =


∆xi

∆yi

∆zi

 =

∫ 1

0


|αi(s)|2 − |βi(s)|2

2Re
(
αi(s)β̄i(s)

)
2Im

(
αi(s)β̄i(s))

)
 ds

The above can be expressed in complex coefficients as

∆xi =
1

120

[
6
(
|ai−1|2 − bi−1|2

)
+ 54

(
|ai|2 − bi|2

)
+6

(
|ai+1|2 − bi+1|2

)
+ 13(ai−1āi − bi−1b̄i + āi−1ai

−b̄i−1bi + aiāi+1 − bib̄i+1 + āiai+1 − b̄ibi+1)

+ai−1āi+1 − bi−1b̄i+1 + āi−1ai+1 + b̄i−1bi+1

] (7)

(∆yi + i∆zi) =
1

60

[
6ai−1b̄i−1 + 54aib̄i + 6ai+1b̄i+1

+13
(
ai−1b̄i + ai+1b̄i + aib̄i−1 + aib̄i+1

)
+ai−1b̄i+1 + ai+1b̄i−1

] (8)

For a segment i, the nonlinear equations (7), (8) are summa-
rized as

gi (ai−1,ai,ai+1, bi−1, bi, bi+1)−∆pi = 0 (9)

where gi,∆pi ∈ R3×1. Collectively, for all the N segments,

g −∆p = 0 s.t. g = [gT1 , g
T
2 , · · · , gTN ]T ,

∆p =
[
∆pT1 , · · · ,∆pTN

]T ∈ R3N×1
(10)

Length constraints. Let the length of a segment i be li, then
analytically

Li =

∫ 1

0

|r′i(s)|ds =
1

120

[
6(|ai−1|2 + |bi−1|2)+

54(|ai|2 + |bi|2) + 6(|ai+1|2 + |bi+1|2) + 13(ai−1āi

+bi−1b̄i + āi−1ai + b̄i−1bi + aiāi+1 + bib̄i+1 + āiai+1

+b̄ibi+1) + ai−1āi+1 + bi−1b̄i+1 + āi−1ai+1 + b̄i−1bi+1

]
⇒ Li (ai−1,ai,ai+1, bi−1, bi, bi+1)− li = 0 (11)

For N segments, this can be assembled as N equations

L− l = 0 s.t. L = [L1, L2, · · · , LN ]
T

l = [l1, l2, · · · , lN ]
T ∈ RN×1

(12)

Equations (10), (12) make up to 4N nonlinear constraints
to solve for 4N + 8 unknowns. Hence, there are 8 degrees of
freedom. A cost function, global energy, is defined that sums
the bending energy of each segment

f(a, b) =

N∑
i=1

(
|ai−1 − 2ai + ai+1|2

+ |bi−1 − 2bi + bi+1|2
) (13)

Now, the shape reconstruction problem is formulated as a
constrained optimization problem that minimizes the energy
function for the (4N + 8) unknowns

min
a,b

f(a, b) s.t. (g −∆p) = 0, (L− l) = 0 (14)

Given the nonlinear nature of the problem, the initialization
of the coefficients is performed as discussed in Appendix A.
This is a nonlinear optimization problem that will be solved
using numerical solvers like MATLAB®.

C. Slope Feedback for Shape Reconstruction

Problem definition. The problem is defined in the same man-
ner as in the previous subsection. The curve is parameterized in
the same manner, the same length constraints are valid. In this
case, the derivative of the curve (direction cosines) are known
at the knots di = [dxi, dyi, dzi]

T ∀i = 1, 2, · · · , (N + 1)

d1 = r′1(0) =


1
4 (|a0 + a1|2 − |b0 + b1|2)

Re
(
1
2 (a0 + a1)(b̄0 + b̄1)

)
Im

(
1
2 (a0 + a1)(b̄0 + b̄1)

)


︸ ︷︷ ︸
h1(a0,a1,b0,b1)

di+1 = r′i(1) =


1
4 (|ai + ai+1|2 − |bi + bi+1|2)

Re
(
1
2 (ai + ai+1)(b̄i + b̄i+1)

)
Im

(
1
2 (ai + ai+1)(b̄i + b̄i+1)

)


︸ ︷︷ ︸
hi+1(ai,ai+1,bi,bi+1)

∀i ∈ [1, N ]

Hence, the slope constraints can be summarized as

h− d = 0 s.t. h = [hT1 ,h
T
2 , · · · ,hTN+1]

T ,

d =
[
dT1 ,d

T
2 , · · · ,dTN+1

]T ∈ R3(N+1)×1
(15)

In contrast to the last case, here, the number of constraints
is 3(N + 1) + N = (4N + 3). Hence, having five degrees
of freedom. Consequently, the shape reconstruction problem
is modified to minimize the energy function for the (4N +8)
unknowns with (4N + 3) nonlinear constraints

min
a,b

f(a, b) s.t. (h− d) = 0, (L− l) = 0 (16)

The initialization of coefficients a, b is similar to the previous
case and the modified approach is given in Appendix B.

D. Algorithmic Summary

We summarize the shape estimation process using position
or slope feedback as:

( Input ) The lengths li of N segments and
{position pi OR slopes di} at the (N + 1) knots

Initializing (4N + 8) unknowns

(Step 1) Find θi using sin θi , cos θi from (23) OR (26)
(Step 2) Find the ϕi by assuming ϕ1 = 0 and calculating

∆ϕi using (25) OR (27)
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(Step 3) Initialize ai and bi where i = 1, ..., N . Coefficients
a0,an+1, b0 and bn+1 are initialized as

a0 = 2a1 − a2, b0 = 2b1 − b2

an+1 = 2an − an−1, bn+1 = 2bn − bn−1

Optimize the constrained cost function

(Step 4) The nonlinear constrained energy cost function, (14)
OR (16), minimized using off the shelf solvers, e.g.,
MATLAB®

(Step 5) Calculate αi and βi using (6)
(Step 6) Each curve segment is obtained using

ri(s) =

∫ 1

0


|αi(s)|2 − |βi(s)|2

2Re
(
αi(s)β̄i(s)

)
2Im

(
αi(s)β̄i(s))

)
 ds

where ri(1) = ri+1(0), ∀i ∈ [1, N − 1] to ensure
C0 continuity.

E. Sensor Fusion: Slope and Position Feedback

When equipping manipulators with visual markers and
IMUs, the scenarios of occlusion of the marker or possibility
of failure of on-board sensor may arise. Here, we specifically
simulate the scenario of visual occlusion where information
from all IMUs are available while the visual marker positions
are missing. For the case of availability of positions and slopes
at all knots, the problem is modified to

min
a,b

f(a, b) s.t. (g −∆p) = 0, (L− l) = 0, (h− d) = 0

where the cost function with (7N + 3) nonlinear constraints
is minimized for (4N + 8) unknowns.

Next, we examine the case of visual occlusion when partial
position information is available. For brevity, we refer to
this as g̃ and ∆p̃. For example, if the positions of markers
corresponding to only segments 1 and 4 is known, then
g̃ = [gT1 , g

T
4 ]
T ,∆p̃ = [∆p̃T1 ,∆p̃T4 ]

T ∈ R6×1. Concisely,
when marker positions for M segments are known

g̃ −∆p̃ = 0, s.t. g̃, p̃ ∈ R3M×1

Hence, the sensor fusion problem with position information
available for M segments and slope for (N + 1) knots, is
summarized as

min
a,b

f(a, b) s.t.

(L− l) = 0, (h− d) = 0, (g̃ −∆p̃) = 0
(17)

where the number of nonlinear constraint equations are N +
(3N + 3) + 3M

III. EXPERIMENTS AND RESULTS

A. Experimental Testbed: Sensorized Tensegrity Manipulator

Tensegrity mechanisms synergistically combine compres-
sion (rigid) and tension (elastic cables) to achieve structural
integrity. We construct a tensegrity manipulator inspired by the
human spine that is soft and agile, Fig. 2(a). The manipulator

is fabricated by serially combining 10 vertebrae modules.
Each vertebra is constructed using wood (rigid element), and
elastic nylon cord (tensile element) that is held in place using
M5 nuts and M5x12mm socket head cap screw. The tendon
lengths (in green) can be varied to change the manipulator
shape. Similar design concepts have been explored in lit-
erature [19], [20]. The manipulator was divided into three
segments comprising of four knots with the length between
consecutive knots of 175mm and base-to-last knot length
of 525mm. Each knot has a 6mm × 3mm rectangle-shape
visual marker (tracked using web-camera) and a BNO055 9-
dof IMU (AHRS), Fig. 2(b). The BNO055 is a consumer-
grade motion sensor that has shown to have minimal drift
(< 1 deg) in static orientations over a period of 24 hours [21].
This makes them ideal candidates for the experiments in this
research. The IMUs are connected to an Arduino Nano and
the data is communicated to the computer via serial port. The
IMUs measure the orientation w.r.t. earth coordinate system
with y-axis aligned with the magnetic north and z-axis along
the gravity. The rotation matrix Rab ∈ SO(3) (transforms
vector in {b} to {a} coordinate system) is constructed using
quarternion or Euler angle output of the sensor [22]. For an
IMU, let E,C, t be the coordinate systems of earth, camera
(w.r.t. which measurements will be made), and of the sensor
at time t. For calibration, the manipulator is placed on the
horizontal table such that the sensor z-axis aligns with the
gravity vector and x-axis along the table length to obtain REC .
However, at this orientation, the manipulator is in an unstable
position, hence, was moved to a new stable orientation at time
t0 to obtain REt0 . At any time t, the sensor measures REt
and the rotation matrix between t0 and t represented in {C}
coordinate system is obtained by

RCt0t = RTECREtR
T
Et0REC (18)

Derivation: We use Lie groups and notations in [22] for deriv-
ing (18). The rotation matrix Rt0t = RTEt0REt = exp(ω̂t0θ)
represents the rotation of angle θ along axis ωt0 where
superscript t0 is the coordinate system of representation, and
ω̂ ∈ so(3). The desired rotation matrix RCt0t = exp(ω̂Cθ)
where ωC = RCt0ω

t0 . Hence, RCt0t = RCt0Rt0tR
T
Ct0

. ■
A combination of camera image, Autodesk® Fusion 360

and AutoCAD® is used to construct the ground truth (bench-
mark measurement) curve for comparison with experimental
data. First, the camera image with visual markers is imported
into Fusion 360. To construct the ground truth curve, quintic
(5th degree) splines are fit between consecutive knots (three
segments) to ensure that the resulting curve visually coincides
with the backbone of the tensegrity manipulator. Here, the
slope and positions at each knot are exported to MATLAB®.
Finally, this true curve is imported into AutoCAD® and each
segment is discretized into 100 intervals before exporting
the data into MATLAB®. Traditionally the estimates at each
knot are taken into consideration for experimental comparison
without considering the curve profile between them [14]–[16].
In contrast, this approach constructs the ground truth for the
whole parametric curve.

We consider four planar canonical poses with positive
and negative curvature, change in curvature from positive to
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(a)

(b)

Fig. 2. (a) A highly deformable, sensorized tensegrity manipulator (b) with
IMUs and visual markers placed at known intervals along the backbone.

Fig. 3. Different planar canonical poses considered in the experiment.

negative and vice-versa, as shown in Fig. 3. These poses were
obtained by varying the tendon lengths.

B. Error Metrics

For evaluating the accuracy of the shape reconstruction, we
consider two error metrics - the root mean square (RMS) error
between two curves r1(s), r2(s) and the error of the final knot
of the respective curves p1

N+1,p
2
N+1 with N segments.

erms
(
r1(s), r2(s)

)
=

√
1

l

∫ l

0

|r1(s)− r2(s)|2ds (19)

eend knot
(
p1
N+1,p

2
N+1

)
=

∣∣p1
N+1 − p2

N+1

∣∣2 (20)

Here, the curve RMS error is numerically calculated
by discretizing the parametric curves. For the case of
robustness analysis, the errors are compared between
estimated curve and the curves with noisy measurements,
i.e., eRrms

(
r∗(s), r∗,noisy(s)

)
, eRend knot

(
p∗
N+1,p

∗,noisy
N+1

)
.

However, the sensor fusion results (along with vision-
only and slope-only cases) are analyzed using the
error between the true and estimated curves, i.e,
eSFrms (r

true(s), r∗(s)) , eSFend knot
(
ptrueN+1,p

∗
N+1

)
.

C. Robustness Analysis

For the cases of position or slope feedback, the robustness
of the algorithm with respect to noise in the measurement of
positions and slopes is examined.

Position robustness. Corresponding to the size of the visual
markers, a ±3mm random noise was added to the true knot
positions to simulate the uncertainties encountered during
position measurement. Thereafter, 100 samples were generated
for each pose and the errors were evaluated. Fig. 4 visualizes
the results and Tab. I compares the maximum RMS and end
knot errors (max eRrms and max eRend knot respectively) of the
estimated curves with noisy measurements.

Slope robustness. Since the IMUs have an accuracy of
±2.5 degrees [23], 5 degree random noise is added into the
measured visual slopes. Each pose was reconstructed with
added noise for 100 samples. The results for all the poses
are as visualized in Fig. 5, and tabulated in Tab. II.

Fig. 4. Robustness of the reconstructed shape for uncertainty in position
feedback: Random noise of ±3mm was added to the position of each knot
and 100 samples are plotted (light red).

TABLE I
POSITION ROBUSTNESS

Pose max eRend knot
(mm, % length)

max eRrms
(mm, % length)

Pose 1 4.63 (0.88%) 1.66 (0.32%)

Pose 2 5.08 (0.97%) 1.42 (0.27%)

Pose 3 4.95 (0.94%) 2.23 (0.43%)

Pose 4 4.33 (0.82%) 1.82 (0.35%)

TABLE II
SLOPE ROBUSTNESS

Pose Max. eRend knot
(mm, % length)

Max. eRrms (mm,
% length)

Pose 1 15.78 (3.01%) 2.05 (0.39%)

Pose 2 18.50 (3.25%) 2.22 (0.42%)

Pose 3 14.98 (2.85%) 2.22 (0.42%)

Pose 4 18.18 (3.46%) 2.20 (0.42%)
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Fig. 5. Robustness of the reconstructed shape for uncertainty in slope
feedback - random noise of ±2.5 deg was added at each knot and 100 samples
are plotted.

This analysis indicates the stability and robustness of this
approach to sensor measurement noise - max eRend knot of
0.97% and 3.46%, and max eRrms of 0.43% and 0.42% for
position and slope measurements respectively. The analysis
also confirms the importance of visual feedback, i.e., more
accurate shape estimation using position feedback.

D. Sensor Fusion

At any instant in time, IMU measurements (slopes) are
always known, however due to visual occlusion, the position
data may not be available. This scenario is simulated by
considering multiple cases when position of the markers is
known or not. For imposing position constraints on a segment,
the end positions of the segments are required as observed in
(9). Conceptually, given any two positions and the length be-
tween those positions, shape reconstruction can be performed.
However, for this paper, we limit ourselves only to cases
when consecutive positions are known. We denote the position
knowledge in the following manner: Pijk implies {pi,pj ,pk}
are known. Consequently, out of the four knots for the problem
considered in this study, there will be similar results for certain
cases. One example of such a similar set is P12 ⇐⇒ P124.

The experimental results for the four test cases are vi-
sualized and tabulated in Fig. 6 and Tab. III respectively.
Here, the sensor fusion results are compared with those from
slope-only (IMU) and position-only (vision). The sensor fusion
results for different scenarios, when compared to position-
only and slope-only feedback, are very interesting. First, the
vision-only results are most accurate, and the sensor fusion
is expected to improve upon the shape reconstructed using
only the slope data at the knots. This is observed for Poses
3 and 4, however, not for all cases in Poses 1 and 2. This
behavior of the shape reconstruction for the case of sensor
fusion is hypothesized to be as a result of the nature of the

optimization function (13). This over-constrained cost function
only considers the geometric properties (bending energy) and
does not include any information about the material properties.
Consequently, there are instances when the estimates ‘over-fit’
the data, e.g., case P123 for Pose 2. Hence, a clear pattern
regarding knowledge of knot positions does not emerge, e.g.,
is the information about knot positions toward the end of the
manipulator more beneficial than at the base? Nonetheless, in
majority of the cases, the knowledge of the knot position does
contribute to improvement of the shape reconstruction. Apart
from incorporating manipulator-specific material properties,
different techniques for modifying the cost function may be
explored for regularization of the estimate, e.g., weights for the
data available for individual segments or inclusion of slack in
the constraints as a function of measurement noise.

Computationally, the optimization of the cost functions,
(14),(16),(17), on an average, takes 0.015 sec on an Intel i7
2.9GHz processor with 16GB RAM. Hence, the proposed
methodology is applicable for real-time, dynamic shape re-
construction.

The proposed approach involving use of multiple PH-curves
for modeling soft manipulator with IMU and vision feedback
is the state-of-the-art technique for shape reconstruction. Sin-
gle segment cubic splines have been explored as geometric
models, however, the shape reconstruction based on sensor-
feedback is lacking [24]. PH-curve based models have been
explored by [15] and [25] where the former considers length
constraints while the latter does not. In both cases, the 330mm
manipulator is modeled using single segment curve and only
vision-based feedback is considered for reconstruction. These
approaches have average errors of 8.6% and 4.9%, in contrast
to maximum error of 1.39% of the manipulator length for the
vision-based approach presented in this paper. Furthermore,
unlike existing techniques, the proposed approach can perform
reconstruction using IMUs, and a combination of IMUs and
vision feedback while allowing for occlusion scenarios.

IV. CONCLUSION

In this paper, soft manipulators are modeled using multi-
segment continuous curvature PH curves with position, slope
and curvature continuity. This special family of curves has
an analytical expression for its hodograph that facilitates the
imposition of a constant length constraint, which otherwise is
not possible. A soft tensegrity manipulator is sensorized with
IMUs and visual markers placed at constant distances along
its backbone. Manipulator shape reconstruction is formulated
as an optimization problem with nonlinear constraints of
length, position and slope. The robustness analysis explores the
stability of the algorithm to noisy sensor measurements, and
indicates reliability of these models for real world applications.
Motivated by the problem of occlusion of visual markers,
for the first time in literature, a sensor fusion model for
simultaneously incorporating vision and IMU measurements is
proposed. The sensor fusion results are promising and indicate
that additional visual information positively impacts shape
reconstruction. However, it also highlights cases of ‘over-
fitting’ when the estimate is less accurate. This is possibly
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Fig. 6. Shape reconstruction for the case of sensor fusion when all the slopes at the knots are known and while the positions are partially known.

TABLE III
SENSOR FUSION ERRORS - eSF

rms AND eSF
end knot (mm, % LENGTH)

Test case Sensor Fusion Slope Position
P12 P23 P34 P123 P234 only (IMU) only (vision)

Pose 1 RMS 12.13 (2.31%) 12.34 (2.35%) 13.30 (2.53%) 8.86 (1.69%) 20.68 (3.94%) 10.36 (1.97%) 7.32 (1.39%)

End knot 27.94 (5.32%) 23.21 (4.42%) 13.19 (2.51%) 21.57 (4.11%) 25.20 (4.80%) 17.54 (3.34%) 7.08 (1.35%)

Pose 2 RMS 12.03 (2.29%) 15.03 (2.86%) 9.36 (1.78%) 12.07 (2.30%) 16.06 (3.06%) 8.61 (1.64%) 3.96 (0.75%)

End knot 29.20 (5.56%) 33.72 (6.42%) 14.40 (2.74%) 38.51 (7.34%) 20.47 (3.90%) 22.29 (4.24%) 3.51 (0.67%)

Pose 3 RMS 8.53 (1.62%) 5.49 (1.05%) 6.96 (1.33%) 3.94 (0.75%) 5.69 (1.08%) 6.70 (1.28%) 4.15 (0.79%)

End knot 27.21 (5.18%) 11.35 (2.16%) 7.93 (1.51%) 12.40 (2.36%) 7.27 (1.39%) 16.72 (3.19%) 3.57 (0.68%)

Pose 4 RMS 10.97 (2.09%) 9.45 (1.80%) 9.46 (1.80%) 6.29 (1.20%) 7.35 (1.40%) 12.17 (2.32%) 1.12 (0.21%)

End knot 17.53 (3.34%) 16.22 (3.09%) 11.23 (2.14%) 12.35 (2.35%) 6.25 (1.19%) 20.03 (3.82%) 0.00 (0.00%)

due to lack of incorporation of material properties in the
optimization cost function. In summary, the approach can be
applied to a manipulator or a soft robot of any length to
reconstruct its shape. Here, the low dimensional nature of the
optimization problem will facilitate its application to real-time
scenarios.

The future work involves reconstruction of shape in spatial
(3D) and dynamic conditions. Additionally, the modification of
the cost function to include material properties and weighing
of different sensor measurements will be explored.
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APPENDIX A
INITIALIZATION OF COEFFICIENTS FOR POSITION

FEEDBACK

The numerical optimization of (14), (16) requires initializa-
tion of unknowns a, b. The three-fold approach involves

1) Approximating the constraints in terms of unknowns. The
relationship between consecutive ai, bi is assumed to be

ai−1 = ai − δai, bi−1 = bi − δbi

ai+1 = ai + δai+1, bi+1 = bi + δbi+1

(21)

Substituting (21) in (9), (11), and ignoring the higher
order terms corresponding to δai, δbi,[

|ai|2 − |bi|2
2Re(aib̄i)
2Im(aib̄i)

]
= ∆pi, |ai|2 + |bi|2 = li (22)

2) Solving approximate constraint equations. A set of solu-
tions satisfying (22) is

|ai|2 =
1

2
ψi(|∆pi| + ∆xi), |bi|2 =

1

2
ψi(|∆pi| − ∆xi)

aib̄i =
1

2
ψi(∆yi + i∆zi), s.t. ψi =

li

|∆pi|

where ai, bi are

ai =

√
1

2
ψi(|∆pi| + ∆xi) exp

i(θi+ϕi)

bi =

√
1

2
ψi(|∆pi| − ∆xi) exp

i(ϕi), s.t. θi = arctan

(
∆zi

∆yi

)
sin θi =

∆zi√
∆y2i + ∆z2i

, cos θi =
∆yi√

∆y2i + ∆z2i

(23)

and ϕi is a free parameter.
3) Calculating the free parameters. We assume ϕ1 =

0 and the remaining are obtained by minimizing(
|∆ai|2 + |∆bi|2

)
to minimize the errors of approxima-

tion assumption. For ease of calculation, ∆ϕi = ϕi−ϕi−1

and ∆θi = θi − θi−1

|∆ai|2 + |∆bi|2 = ψi−1|∆pi−1| + ψi|∆pi| −
√
ψi−1ψi(√

(∆pi−1 − ∆xi−1)(∆pi − ∆xi) cos(∆ϕi)

+
√

(∆pi−1 + ∆xi−1)(∆pi + ∆xi) cos(∆θi + ∆ϕi)

) (24)

Analytically, the minima is found equating the derivative
of the above expression with respect to ∆ϕi with zero.

tan(∆ϕ∗
i ) =

− sin(∆θi)

cos(∆θi) +
√

(∆pi−1−∆xi−1)(∆pi−∆xi)
(∆pi−1+∆xi−1)(∆pi+∆xi)

(25)

Solving for ϕi from the above expression will yield two
values due to the square root present in the denominator.
The value yielding the minimum when substituted into
(24) is taken.

APPENDIX B
INITIALIZATION OF COEFFICIENTS FOR SLOPE FEEDBACK

ai =

√
1

2
ψi(|di| + dxi) exp

i(θi+ϕi)

bi =

√
1

2
ψi(|di| − dxi) exp

i(ϕi)

where θi = arctan

(
dzi

dyi

)
, ψi =

li

|di|

sin θi =
dzi√

dy2i + dz2i

, cos θi =
dyi√

dy2i + dz2i

(26)

tan(∆ϕ∗
i ) =

− sin(∆θi)

cos(∆θi) +
√

(di−1−dxi−1)(di−dxi)
(di−1+dxi−1)(di+dxi)

(27)


