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Abstract

Context Dispersal typically consists of three com-
ponents—departure, transience and settlement—each
of which can be influenced by the landscape. A fun-
damental aspect of dispersal is the dispersal kernel,
which describes how the likelihood of settlement var-
ies as a function of the distance from the departure
location. Dispersal concepts are often closely con-
nected to the interpretation of landscape connectiv-
ity, yet models of landscape connectivity often do not
generate dispersal kernels nor explicitly capture the
three components of dispersal.
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Objectives We apply Markov chain theory for the
generation of random-walk dispersal kernels that are
based on the three components of dispersal to better
link dispersal processes to landscape connectivity.
Methods We extend the spatial absorbing Markov
chain (SAMC) framework, which is aimed at address-
ing a broad range of problems in landscape con-
nectivity, to explicitly model dispersal kernels that
acknowledge each component of the dispersal process
and how the landscape can alter each of these com-
ponents. We provide an example with the Florida
black bear (Ursus americanus floridanus), a species
of conservation and management concern, where we
contrast expected connectivity between key subpopu-
lations when models do and do not consider random-
walk dispersal kernels.

Results Our extensions show how the SAMC
can generate different types of random-walk ker-
nels that include information on how the landscape
alters departure, transience and settlement processes.
Importantly, this framework can also readily incorpo-
rate mortality into predictions and be applied to make
time-explicit predictions across landscapes. Con-
nectivity for the Florida black bear is predicted to be
much lower when acknowledging dispersal kernels
and suggests that the settlement process may be more
influential to connectivity predictions than landscape
resistance.

Conclusion These results provide a foundation for
applying the SAMC to dispersal kernels. Not only
do these extensions provide a formal linkage of
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connectivity to concepts in dispersal biology, but also
help to bring together concepts from common con-
nectivity models (e.g., circuit theory and least-cost
resistant kernels) to facilitate predicting connectivity
across landscapes.

Keywords Dispersal kernel - Functional
connectivity - Landscape connectivity - Markov
chain - Movement

Introduction

Dispersal underpins several theoretical frameworks
in ecology and evolution (Slatkin 1993; Hanski 1999)
and lies at the heart of the rapidly growing sub-dis-
cipline of movement ecology (Nathan et al. 2008).
Understanding dispersal is central to conservation
and management plans, which often emphasize con-
necting habitat remnants to facilitate the movement
of species through landscapes increasingly altered by
human activities (Heller and Zavaleta 2009; Albert
et al. 2017). As a consequence, dispersal concepts are
often closely linked to interpreting landscape connec-
tivity (Vasudev et al. 2015; Diniz et al. 2020).
Landscape connectivity arises from movement
across landscapes (Taylor et al. 1993), and dispersal
is a key movement with broad implications due to
its impacts on the fitness of organisms (Bonte et al.
2012; Baguette et al. 2013). We define dispersal as the
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movement from one location to another wherein this
movement can result in reproduction and thus gene
flow (Clobert et al. 2012). This definition accommo-
dates both natal and breeding dispersal (Greenwood
and Harvey 1982) and that ‘effective dispersal’ may
or may not occur (Pfluger and Balkenhol 2014; Vas-
udev and Fletcher 2016; Robertson et al. 2018). Dis-
persal is often decomposed into three components or
stages: departure (emigration), transience (transfer),
and settlement (immigration) (Fig. 1a; Clobert et al.
2012). It is generally quantified in terms of changes
in sites or locations, such that summaries of these
changes (e.g., dispersal distances) have been essential
in interpreting the causes of dispersal and its conse-
quences for populations and communities (Bowler
and Benton 2005).

Dispersal kernels are fundamental descriptors
in dispersal biology and movement ecology. A dis-
persal kernel is a probability density function (or
probability mass function when distance units are
discrete / binned) describing the probability that an
individual disperses to any position relative to the
start location (e.g., natal site) (Nathan et al. 2012).
Dispersal kernels show nearly universal patterns of
distance decay: expectations of dispersal decline with
distance from the departure location, the extent to
which can be modified based on variation in habitat
availability and other factors, such as mortality risk
(Fig. 1b—d; Koenig et al. 1996; Van Houtan et al.
2007; Bocedi et al. 2014). Despite this ubiquitous
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Fig.1 The random-walk dispersal kernel as envisioned with
the spatial absorbing Markov chain (SAMC). a The departure,
transience, and settlement stages of dispersal and associated
parameters of the SAMC. In this context, dispersal is described
with the SAMC as: W7 (I - Q)™'R, (see Egs. 3, 4 of main text).
b An example dispersal kernel generated from the SAMC,
which approximates the negative exponential kernel when set-
tlement probabilities are constant per time step. ¢ Mortality

@ Springer

Distance Distance

can alter expectations for dispersal kernels (dashed line rep-
resents expectation with no mortality). d Variation in habitat
availability can also alter expectations for dispersal kernels.
Shown is a scenario with low habitat availability near depar-
ture location (e.g., departure occurring from an isolated patch)
but high availability at farther distances (dashed line represents
expectation in contiguous habitat)
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pattern, incorporating dispersal kernels directly into
models for mapping landscape connectivity remains
limited or ad hoc. One exception is the development
of least-cost resistant kernels, which have been used
to address this limitation (Compton et al. 2007). This
approach combines concepts of least-cost paths with
home-range estimation using kernel estimators (Wor-
ton 1989) to capture the problem of distance decay
in expectations of movement based on cumulative
least costs (Compton et al. 2007). This approach has
proven useful (e.g., Cushman and Landguth 2012;
Cushman et al. 2018), yet more broadly least-cost
modeling has been criticized based on some of its
underlying assumptions, such as individual knowl-
edge of optimal routes to a distant destination (Saw-
yer et al. 2011). Furthermore, this approach does
not explicitly incorporate each of the three dispersal
stages into the model formulation.

A recently introduced framework advanced ran-
dom-walk theory with absorbing Markov chains,
termed the spatial absorbing Markov chain (SAMC),
to better capture different processes influencing move-
ment and connectivity (Fletcher et al. 2019). The
SAMC is an analytical framework like least-cost anal-
ysis (Etherington 2016), randomized shortest paths
(Saerens et al. 2009) and circuit theory (McRae et al.
2008), all of which assume that variation in landscape
features influence the movement process. Overall, the
SAMC is most similar to circuit theory: Fletcher et al.
(2022) show how circuit theory is a special, simpli-
fied case of the SAMC. Yet the SAMC moves beyond
circuit theory and other analytical frameworks by pro-
viding short- and long-term predictions and a means
to account for time-specific movement, directional
movement, species distribution and mortality.

Here we extend the SAMC framework to the prob-
lem of dispersal kernels, illustrating how this frame-
work can be used to create random-walk dispersal ker-
nels for landscape connectivity assessments that readily
capture all three components of the dispersal process.
We then illustrate how random-walk dispersal ker-
nels can incorporate time-explicit predictions, differ-
ent types of movement summaries and can decompose
dispersal success from that of failure. We illustrate the
use of this model by contrasting predicted connectivity
between key subpopulations of the Florida black bear
(Ursus americanus floridanus), a species of conserva-
tion and management concern, when ignoring dispersal
kernels versus acknowledging them. Finally, we discuss

the relationship of random-walk dispersal kernels to
least-cost resistant kernels. Not only do these exten-
sions provide a formal linkage of landscape connectiv-
ity to dispersal biology, but they also help to link com-
mon connectivity models in a unified way to facilitate
predicting connectivity across landscapes.

Methods
The spatial absorbing Markov chain

The SAMC models connectivity based on extensions
of discrete-time absorbing Markov chain theory. This
framework assumes that landscapes are discrete rep-
resentations of the environment, represented as ras-
ter maps or in a network context where populations
or patches are nodes (or vertices) on a spatial graph
(Acevedo et al. 2015; Sefair et al. 2017; Fletcher et al.
2019).

We introduce this model in the context of disper-
sal and illustrate how its parameters relate to dispersal
kernels. For each time step during which an organ-
ism disperses across a complex landscape, it can
either survive and stay at the same location (i.e., site
fidelity), survive and move to a nearby site, or termi-
nate movement (e.g., from settlement or death). The
SAMC framework honors this idea by considering
‘transient’ states that capture fidelity and movement,
and an ‘absorbing’ state that captures the termination
of movement, which could reflect a variety of issues,
such as natural mortality (Fletcher et al. 2019), coa-
lescence in population genetics (Fletcher et al. 2022)
or human-wildlife conflict (Vasudev et al. 2023).
Here we focus on the scenario where the absorbing
state reflects settlement, the third component of the
dispersal process (Fig. 1a).

The SAMC framework captures transient and
absorption states through the construction of a prob-
ability matrix, P (throughout we use bold capital
letters to denote matrices, bold lower-case letters to
denote vectors, and non-bold letters to denote sca-
lars). For a landscape divided into C cells or patches,
P can be written as:

QR
(01> (D

where Q is a sparse, C X C transition matrix reflect-
ing transitions between transient states, R is a C X r
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matrix containing transition probabilities from the
transient states to r absorbing states, and O is a1 X C
vector of zeros. Q is sparse because we assume that
transitions between transient states can only occur
locally between consecutive time steps, based on a
4- or 8-neighbor rule (this assumption can be relaxed
but increases computational burden). The elements
p;; of P describe the probability of transitioning from
state i to j in one time step. A variety of connectivity-
related metrics can be quantified using P. Here we
extend this framework to interpret dispersal kernels.

Extending the SAMC to dispersal kernels

This model can be extended to include multiple absorb-
ing states, which can be helpful for capturing dispersal
kernels. Here we show how two different absorbing
states can be considered: one reflecting mortality and a
second reflecting absorption due to settlement by a dis-
perser. Our new P matrix can be described as:

Q Rm RS
01 0 2
0 0 1

where R,, and R, are C x C diagonal matrices with
diagonal elements equal to absorption probabilities
reflecting mortality and settlement, respectively, and
off-diagonal elements equal to zero. For each row,
Zipii = 1. Consequently, this extension allows the
decomposition of different types of absorption on dis-
persal across landscapes.

With this matrix, we can map the long-term (asymp-
totic) probability of settlement at location j if starting in
location i as the (i, j)th element of By,

B, = FR, 3)

where F = (I — Q)! (aka the ‘fundamental matrix’),
and I is an identity matrix. Dispersal kernels then
naturally emerge from mapping B as a function of
distance from a departure location, which can be cal-
culated as:

Wi, )
where W is a vector of length C, equal to 1 for the
starting (or departing) location i and O otherwise,
and T is the transpose of this vector. The mapping
of the ith row of B, represents the dispersal kernel if
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individuals start at location i. When R,, =0, Eq. 4
generates a probability mass function (probabilities
that sum to 1) that encapsulates all stages of the dis-
persal process. This model will generate dispersal
kernels that approximate an exponential distribution
when R is constant (See Supporting Information S1,
Fig. S1 for more details), consistent with the idea
that exponential kernels arise from random move-
ment when there is a constant probability of settling
per unit of time (Paradis et al. 2002; Bullock et al.
2017). Exponential kernels are a common formula-
tion for dispersal in metapopulation ecology (Han-
ski 1999), yet other types of kernels (e.g., fat-tailed)
could also be approximated by altering R, as a func-
tion of the departure location (e.g., smaller values of
R, near source locations will result in more fat-tailed
distributions).

The above model is an asymptotic expectation for
dispersal. This framework can also be applied in such
a way that it is time-explicit to accommodate tempo-
ral or dynamic connectivity (Zeigler and Fagan 2014;
Zeller et al. 2020). We can map the probability of set-
tlement at location j within ¢ or fewer time steps if
starting in location i as the (i, j)th element of B,

B, =1-Q ' (I-Q)R, (5)

A time-explicit dispersal kernel can then be quan-
tified as W' B,

Taken together, this random-walk formulation of
dispersal kernels for landscape connectivity provides
a flexible means for accommodating distance decay
in movement that is common in plants and animals
and it directly captures all three components of the
dispersal process (i.e., departure, transience and set-
tlement). In this way, departure (W) reflects the dis-
tribution of initial locations, which will typically be
considered a model input based on a variety of data
(e.g., species distribution or occupancy models, loca-
tions of populations in protected area, etc.). Transi-
ence (Q) reflects how the landscape alters movement
behavior or trajectories via resistance, which can also
be parameterized using a variety of techniques (e.g.,
Zeller et al. 2012). Finally, settlement (R,) describes
the likelihood of settling in at each location in the
landscape per unit time. See Supporting Information
on details regarding guidance on parameterizing R..
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Applications of random-walk kernels

The random-walk kernel can be applied in at least
four general ways, each of which can be based on
long-term expectations or time-explicit expecta-
tions. We provide a simple example of these alter-
natives in Figs. 2 and 3, where we generate habitat
and landscape resistance using a neutral landscape
model and apply it to the problem of dispersal
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|
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Non-habitat

m Departure

kernels. See the Supporting Information for details
on the construction of this model and its application
to dispersal kernels.

Random-walk dispersal kernels
When Q =1, R, is constant in suitable habitat

across the landscape, and R, =0, the model will
reflect a simple random-walk dispersal process,
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Fig. 2 The flexibility of random-walk movement kernels for
landscape connectivity assessments. Habitat, resistance, mor-
tality and the departure location for dispersal are potential
model inputs for random-walk dispersal kernels. With this
information, the spatial absorbing Markov chain can gener-
ate several types of random-walk dispersal kernels that vary
in how the landscape may affect settlement. a Simple disper-
sal kernels in contiguous space are un-affected by landscape

Fig. 3 Time-explicit
random-walk kernels.
Shown is the example of

a random-walk resistant
kernel in Fig. 2c, but as
time progresses. Probability
scale binned on a log scale
for visualization

resistance. b Habitat-constrained dispersal kernels are those
where settlement can only occur in habitat. ¢ Resistant kernels
are those where the landscape alters movement trajectories via
resistance. d Mortality kernels are those where the landscape
alters kernels based on dispersal failure via mortality. Finally, e
resistant and mortality kernels arise when the landscape affects
both movement via resistance and mortality

Settlement
probability
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low

time
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wherein settlement declines with distance, but land-
scape resistance does not alter movement pathways
(Fig. 2a). This approach reveals the expectations for
dispersal in the absence of landscape permeability
effects altering outcomes and can be constrained by
assuming settlement only occurs within habitat (‘hab-
itat-constrained dispersal kernels’; Fig. 2b).

Random-walk resistant kernels

When Q is not constant, R is constant in suitable
habitat across the landscape and R,, = 0, the model
will reflect a random-walk dispersal process, wherein
movement directionality is affected by landscape
resistance Q (Fig. 2c). This model assumes that mor-
tality does not occur and instead focuses on spatial
variation in the settlement process due to landscape
resistance.

Random-walk mortality kernels

When Q = 1, R; is constant in suitable habitat across
the landscape and R,, # 0, this model will reflect a
random-walk dispersal process, wherein movement
directionality is affected solely from the landscape
altering survival during movement (Fig. 2d). In this
context, 1 — Y WTB, is the overall expectation for dis-
persal failure across the entire landscape, such that
‘I’TBS does not sum to 1 (it is no longer a probabil-
ity mass function). This formulation generates a dis-
persal survival function of relevance to metapopula-
tion ecology (Schnell et al. 2013; Brodie et al. 2016).
In addition to mapping settlement, mortality can be
mapped as W'B,,, where B,, = Fﬁm, thereby provid-
ing expectations for where mortality occurs across the
landscape.

Random-walk resistant and mortality kernels

When Q is not constant, R, is constant in suitable
habitat across the landscape, and R,, # 0, this model
will reflect a random-walk dispersal process, wherein
movement directionality is affected by landscape
resistance Q and the landscape also affects disper-
sal success by altering survival during movement
(Fig. 2e).

These different types of kernels can be compared
to better understand how landscape effects on move-
ment and mortality alter predicted settlement across
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the landscape. Furthermore, although the focus above
is on creating maps of the dispersal kernel (i.e., spa-
tial variation in settlement), we note that the SAMC
provides a means to quantify and map a variety of
connectivity-related metrics (Fletcher et al. 2019,
2022). For example, with the above dispersal con-
straints, other metrics could be mapped that reflect
different aspects of the movement and dispersal pro-
cess, such as the time spent in locations, the probabil-
ity of reaching locations, or the time needed to reach
settlement locations (see Fletcher et al. 2019, 2022
for more details).

Model calibration and tuning

Fitting the random-walk kernel requires setting
absorption values R for pixels in a landscape at loca-
tions of potential settlement. Absorption values are
probabilities bound to the 0-1 interval. In this con-
text, larger values of R, will lead to shorter expected
dispersal distances. R, can be calibrated based on
the mean expected dispersal distances of the species
being considered (Marx et al. 2020). In the Support-
ing Information, we provide guidance on using the
samc package in R (Marx et al. 2020) for modeling
random-walk kernels (Supporting Information S2),
and information on calibrating and tuning potential
starting values for R, based on the grain of a land-
scape and mean expected dispersal distances (Sup-
porting Information S3). This guidance illustrates
that there is a fundamental relationship between mean
expected dispersal distances and absorption values in
the SAMC for random-walk dispersal kernels, which
is linear on a log-log scale (Fig. S3). See Fletcher
et al. (2019, 2022), Vasudev et al. (2023) and Marx
et al. (2020) for discussions on calibrating R,,.

An illustration with black bears

We provide an example with connectivity mapping
for the Florida black bear. Florida black bears are
of conservation and management concern and con-
nectivity has been of considerable interest (Maehr
et al. 2003; Larkin et al. 2004; Dixon et al. 2006;
Fletcher et al. 2013). In particular, one subpopula-
tion located within the Greater Chassahowitzka Eco-
system (GCE) at the Weekiwachee Preserve is small
and relatively isolated from other subpopulations,
such that there has been concern about its viability
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given its isolation. Previously, connectivity models
were applied to determine potential corridors that
may connect the GCE subpopulation to six other sub-
populations within a ‘dispersal zone’ of 140 km from
this location (Big Bend, Goethe State Forest, Ocala
National Forest, Withlaoccohee River Basin, Green
Swamp and lower Hillsborough River basin; see
Fig. 4), which was based on the maximum known dis-
persal distance by black bears in Florida (Larkin et al.
2004). Within this zone, least-cost paths were identi-
fied that connect these subpopulations. This approach
was useful for conservation planning and acknowl-
edged the maximum potential distance for dispersal.
However, the temporal nature of movement imposes
natural constraints on dispersal distance, which can-
not be naturally incorporated into least-cost paths
modelling of connectivity. Here we revisit this prob-
lem by modeling random-walk dispersal kernels to
more fully capture the dispersal process.

We illustrating mapping a single dispersal kernel
and subsequently extend this to interpreting synop-
tic connectivity for the entire landscape by mode-
ling both dispersal kernels for all six subpopulations
in the dispersal zone for Weekiwachee Preserve as
well as a metric of net movement rates that is analo-
gous to current density mapping using circuit theory
(Fletcher et al. 2022; Vasudev et al. 2023). For the
single dispersal kernel, we illustrate mapping a sim-
ple (Fig. 2a), habitat-constrained (Fig. 2b), and resist-
ant kernel (Fig. 2c). We do not focus on incorporating
mortality here.

The first step of applying random-walk kernels is
the creation of a resistance map or related information
to parameterize Q. There are currently a wide variety
of ways in which resistance and can be determined
for connectivity models and ideally such estimates
should typically come from information on dispersal
paths (Zeller et al. 2016, 2012). Evaluating resistance
estimation here is beyond the scope of our application
but we note that many of the issues of applying resist-
ance to circuit theory and least-cost analysis are simi-
lar to the SAMC. To compare with prior results, we
used the resistance classification described in Larkin
et al. (2004), updated to the most recent and reliable
land-cover map for Florida (the Florida Cooperative
Land Cover Map, v.3.5), reclassified to a resolution
of 200 m (2.2 M pixels). This resistance classification
was based on collating results from several studies
on black bear biology. Larkin et al. (2004) classified

landscape resistance as: 1, core habitat (e.g., upland
coniferous forest); 10, marginal bear habitat (e.g.,
shrub and brushland), 50, high human disturbance
(e.g., low density residential areas), 100 as surmount-
able barriers (e.g., roads), and NA as insurmount-
able (Table S2). We re-classified insurmountable as
a resistance value of 1000, as calculations from the
SAMC require that areas with 0 absorption (e.g., zero
settlement probability) are not isolated from other
areas in the landscape.

The second step of applying random-walk ker-
nels is to create an absorption map, which captures
the probability of settlement at each location on a
landscape. For simple dispersal kernels (Fig. 2a),
this map is would be a constant value across the map
extent that reflects a settlement probability per time
step, the value of which can be calibrated to gener-
ate an expected dispersal distance based on the
grain size (resolution) of the map. In the Support-
ing Information Section S3, we show that the log of
expected (mean) number of pixels dispersed Ep is
accurately predicted by the log of absorption values
T (R? = 0.997), such that with the mean dispersal dis-
tance of a species (in units of pixels), we can identify
an approximate absorption value as:

7, = exp(—1.247 - 1788 x log(d, )) ©6)

We use Eq. 6 as a starting point for the absorp-
tion map to reflect settlement probabilities R;. Note
landscape boundaries and irregular landscape extents
may alter realized dispersal distances modeled by
the SAMC. In addition, if settlement only occurs in
habitat that is patchy across the landscape (habitat-
constrained kernels; Fig. 2b), the realized dispersal
distances from the SAMC will vary. Consequently,
Eq. 6 should be used as a starting point for modeling.
We profiled across values at 10% increments above
or below this starting value (depending on the initial
estimate of dispersal distance from Eq. 6) for each
scenario considered, selecting the absorption value
that most closely matched known mean dispersal dis-
tances in black bears (11.8 km; Maehr 1996).

The third step of applying random-walk kernels
is to consider departure locations, which can be
described as individual points or as a raster map. We
illustrate how this can be done for a situation where
the departure location is an entire protected area
rather than a single point location. To do so, we set
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W to reflect the outer boundary of the departure pro-
tected area by setting the pixels along this boundary
to sum to 1 and the interior of the protected area to
NA. This reflects the idea that an individual could
randomly start from any location along the boundary
of the study area and disperses out of the protected
area (dispersal within the protected area is not consid-
ered); such parameterization will lead to a probability
mass function that describes the dispersal kernel for
the polygon.

With the resistance, absorption, and departure
location maps, we calculated random-walk kernels
using the mortality () function in the samc
package (Marx et al. 2020). To illustrate single dis-
persal kernels, we map simple, habitat-constrained,
and resistant kernels (Fig. 2a—c) based on disper-
sal from the Withlacoochee State Forest, a centrally
located protected area in the study area. For habitat-
constrained and resistant kernels, we only allowed
settlement to occur in suitable habitats. We then
illustrate how random-walk resistant kernels can be
similarly applied to all subpopulations to map dis-
persal expectations across the region. Finally, we
contrast mapping net visitation rates, or expected net
movement probabilities through locations (e.g., pix-
els) (Fletcher et al. 2022), across the region with and
without expectations from dispersal kernels. In a sim-
ple scenario where absorption can only occur at a des-
tination location, net visitation rates are identical to
mapping current density from circuit theory (Fletcher
et al. 2022). However, with absorption parameterized
to reflect dispersal kernels, net visitation rates will
now account for expectations of movement declining
with distances from departure locations, essentially
analogous to ‘kernel-informed’ current density. To do
so, we calculated net visitation rates between all pairs
of subpopulations, using the centroid of each area
(Fig. 4a) as the departure and destination locations.

Results

Single dispersal kernels

We first tuned absorption values for each kernel to
approximately match known mean dispersal distances
of Florida black bears (11.8 km) based on bears

departing from Withlaoccohee River Basin, a cen-
trally located subpopulation (Fig. 4a). The starting
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value for absorption taken from Eq. 6 (r, = 0.0002)
generated an expected dispersal distance of 9.7 km
for the simple kernel, 17.3 km for the habitat-con-
strained kernel, and 4.7 km for the resistant kernel. In
this case, patchy habitat for settlement (Fig. 1d) led
to expectations of dispersers moving farther distances
when resistance was assumed constant, yet incorpo-
rating resistance led to much shorter predicted disper-
sal distances due to potential landscape barriers. As
reported dispersal distances implicitly incorporate
variation in habitat and resistance, we then profiled
across values to identify appropriate absorption val-
ues for each scenario that generate ~ 11.8 km expected
dispersal distances in this landscape (Fig. S5).

Based on these tuned models, expected dispersal
across the landscape varied (Fig. 4b—d), with much
of the spatial variability being driven by habitat avail-
ability for settlement rather than resistance. When
comparing the resulting expected kernels as a func-
tion of distance, resistant kernels led to higher expec-
tations for settlement close to the departure location,
and both habitat-constrained and resistant kernels led
to more irregular predictions for settlement as a func-
tion of distance (Fig. 5).

Landscape connectivity

Using the resistant kernel parameters estimated
above, we mapped settlement probabilities for dis-
persal from all subpopulations surrounding Weeki-
wachee Preserve to determine expectations for poten-
tial settlement into Weekiwachee Preserve when
incorporating dispersal kernels. Overall, predicted
settlement probabilities into Weekiwachee Preserve
were low (Fig. 6a). Pairwise analysis based on the
centroids of each subpopulation suggested that the
highest settlement probability came from Withla-
coochee State Forest and secondarily Green Swamp
Forest, and the lowest from Ocala National Forest.
Contrasting net visitation rates (analogous to current
density) that did not incorporate dispersal kernels
(Fig. 6b) to a model that incorporated dispersal ker-
nels (Fig. 6¢) highlighted that expected movement in
the vicinity of Weekiwachee Preserve is predicted to
be much lower when accounting for dispersal kernels.



Landsc Ecol

Fig. 4 Random-walk dispersal kernels and the Florida black
bear. a Resistance map for a region in central Florida where
six subpopulations of black bears occur. Inset shows the loca-
tion in Florida, which encompasses a 140 km dispersal zone
from the Weekiwachee Preserve (star). Subpopulations consid-
ered include: 1=Suwannee River National Wildlife Refuge;
2=Goethe State Forest; 3=0cala National Forest; 4=With-

settlement

settlement

2e-05

1e-05

0e+00

settlement
- 2e-05

1e-05

lacoochee River Basin; 5=Green Swamp; 6 =Lower Hillsbor-
ough River Basin. b A simple random-walk dispersal kernel,
¢ a habitat-constrained random-walk kernel and d a random-
walk resistant kernel. We illustrate each kernel based on a cen-
tralized subpopulation at Withlaoccohee River Basin. Insets
show a 25 km radius centered on Withlaoccohee River Basin
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Fig. 5 Settlement probabilities as a function of distance based
on random-walk dispersal kernels for the Florida black bear.
Expected probabilities as a function of distance are based on
Fig. 4b—d. Each kernel is based on a centralized subpopulation
at Withlaoccohee River Basin

Discussion

We provide a framework for incorporating dispersal
kernels into landscape connectivity modeling. This
framework explicitly acknowledges each component
of the dispersal process—departure, transience and

Current
0.06

Settlement

8e-05
g 6705 0.04
4e-05

2e-05

0e+00

Fig. 6 From random-walk dispersal kernels to landscape con-
nectivity for the Florida black bear. a Random-walk resistant
kernels for each subpopulation in the landscape that have the
potential to immigrate into Weekewachee Preserve. b Net visi-
tation rates for flow from subpopulations into Weekewachee

@ Springer

settlement (Fig. 1)—and provides a flexible means to
incorporate several aspects of movement and disper-
sal processes. We illustrate the use of this approach to
interpret connectivity between protected areas for the
Florida black bear, finding that incorporating disper-
sal kernels greatly reduced expectations of connectiv-
ity across the region in comparison to prior analysis
using least-cost paths. The underlying movement
model of our framework is built from random-walk
theory with Markov chains and can capture several
aspects of dispersal biology, which may provide more
realistic predictions of dispersal than current algo-
rithms that use the isolation-by-resistance paradigm.

A niche for the random-walk kernel in connectivity
modeling

The random-walk kernel provided here shares some
similarities with the least-cost resistant kernels
(LCRK; Table 1) (Compton et al. 2007). The simi-
larities and differences can be understood by com-
paring the steps used in LCRK. The LCRK gener-
ally requires three steps. First, the cumulative least
cost from a departure (or starting) location to each
pixel within a specified maximum number of cost
units. Second, this cumulative cost is then rescaled

Net
visitation
0.0100

0.0075
0.0050

0.0025

Preserve in the absence of considering dispersal kernels. This
scenario is identical to current density mapping using circuit
theory. ¢ Net visitation rates for flow from subpopulations into
Weekewachee Preserve when accounting for dispersal kernels
(based on the resistant kernel shown in a)
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Table 1 Contrasting

. Characteristic/assumption
assumptions and

Resistant kernel Random-walk kernel

applications of random- Least-cost movement process Yes No
walk kernels to least-cost
. Random-walk movement process No Yes

resistant kernels
Landscape resistance considered Yes Yes
Distinguishes movement versus settlement No Yes
Probability mass function Possible Yes
Tuning parameters Maximum number of ~ Absorption

cost units

Scaling to synoptic connectivity Iterative Simultaneous
Decomposition of mortality No Yes
Time-explicit predictions possible No Yes
Multiple movement metrics No Yes

to reflect a measure of (relative) probability of use.
This rescaling can be simply the inverse of the
cumulative cost (Cushman and Landguth 2012), or
it can more formally be re-scaled based on kernel
functions (Compton et al. 2007). Third, this process
is then repeated for all potential starting locations
on the landscape to provide a synoptic perspective
on connectivity for the entire landscape.

In contrast to the LCRK, the random-walk kernel
uses absorption to directly quantify the probability
of settlement, rather than rescaling a measure of
cumulative cost. Cumulative cost may better reflect
expectations for use or movement to pixels rather
than the settlement process. We note that in the con-
text of the SAMC, related metrics referred to as the
‘spatially explicit dispersal’ and ‘visitation’ metrics
(Fletcher et al. 2019) would provide more similar
information on movement (rather than settlement)
and can be used once settlement probabilities are
calibrated (e.g., Fig. 6¢). The random-walk kernel
does not require rescaling and instead directly esti-
mates a probability mass function describing the
dispersal kernel. The random-walk kernel also does
not require an iterative process for connectivity
mapping across the entire landscape; instead, calcu-
lations for the entire landscape use the same kind of
information as for calculations from a single loca-
tion and can be done simultaneously (see Eq. 4).
These differences, along with the assumption of a
random-walk process and the ability to extend mod-
eling to account for mortality and be time-explicit
(Fig. 3), suggest that the random-walk kernel may
provide a useful alternative to the LCRK in several
situations, such as modeling plant dispersal, animal

dispersal when ‘least cost’ assumptions are not
warranted, modeling redistribution over specified
periods of time, or addressing mortality risks (e.g.,
Hughes et al. 2023; Veals et al. 2023).
Random-walk processes with the SAMC are
directly related to concepts from circuit theory and
they share similarities with continuous time and
continuous space random-walk models (Holmes
et al. 1994; Ovaskainen et al. 2008; Brennan et al.
2018). In fact, circuit theory is a special case of the
SAMC: if the SAMC is parameterized such that the
only absorption state is the destination location,
the SAMC will provide identical results to circuit
theory calculations of commute time and current
density (Fletcher et al. 2022). Here, random-walk
dispersal kernels illustrate one way in which the
SAMC can extend circuit-theoretic concepts by
providing a means to generate dispersal kernels
through the decomposition of absorption states as
well as time-explicit analyses. Consequently, users
familiar with circuit theory and interested in apply-
ing circuit-theoretic concepts while acknowledging
dispersal processes can apply the SAMC to deliver
insights. While both the SAMC and circuit theory
are based on biased local random walks, because
the SAMC can incorporate directionality it is also
possible to extend the SAMC to also accommo-
date correlated random walks (Codling et al. 2008;
Fletcher et al. 2019), which are commonly observed
in animal dispersal (Kareiva and Shigesada 1983).
We built the SAMC using a discrete time and dis-
crete space formulation, which can be more trac-
table than continuous models and can be readily
applied to raster maps. However, continuous space
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and time models can be beneficial in some situa-
tions, particularly when there is interest to vary the
grain of models (Brennan et al. 2018).

Connectivity for the Florida black bear

Our application to connectivity for the Florida black
bear illustrates how directly incorporating disper-
sal kernels into connectivity assessments can alter
conclusions about connectivity across landscapes.
A previous assessment incorporated dispersal con-
straints by simply working within a ‘dispersal zone’
based on the maximum known dispersal distance for
this species (Larkin et al. 2004). This type of mask-
ing of relevant landscape extents or only considering
protected areas within a maximum dispersal distance
is common in landscape connectivity mapping. While
such approaches are a useful first step to acknowledge
dispersal limitations, our results suggest that that
they may over-estimate expectations for connectivity
across landscapes (see also Fletcher et al. 2011).

Our modeling also provides a means of determin-
ing the likelihood of settlement into key areas from
other protected areas. We found that while expected
dispersal into Weekiwachee Preserve was low, it
was much more likely to occur from Withlacoochee
State Forest than from other areas: given that disper-
sal occurs, there is a 66% chance dispersal will occur
from Withlacoochee State Forest, a 20% chance from
Green Swamp and a less than 1% chance it will occur
from Ocala National Forest. Information like this can
help prioritize where dispersal may be most likely to
occur and subsequently how linkages between these
areas can be prioritized to facilitate connectivity. We
note that we did not include information on popula-
tion size in each of these subpopulations, but includ-
ing such information when available into predictions
is straightforward with the SAMC (Vasudev et al.
2023).

Extensions

We focused on situations where settlement prob-
abilities were constant across potential habitat in the
landscape. However, these probabilities could also
be based on variation in habitat quality, such that
they capture the potential for habitat selection to
alter where individuals immigrate and settle across
the landscape. Settlement probabilities could be
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parameterized based on habitat suitability models or
related information (Guisan et al. 2017). Resistance
optimization techniques (e.g., Peterman 2018; Peter-
man and Pope 2021) could be extended to optimize
resistance surfaces with the SAMC, both for inter-
preting land-cover resistance and also for settlement
probabilities. We also note that the SAMC can incor-
porate information on fidelity (Fletcher et al. 2022),
which may alter the speed and distance of expected
dispersal. Finally, by altering settlement probabili-
ties as a function of distance from departure location,
random-walk kernels could potentially better capture
other dispersal kernel shapes, such as ‘fat-tailed’
kernels that are common in some taxa (Fandos et al.
2023).

Conclusion

The spatial absorbing Markov chain framework pro-
vides an explicit scaffolding for the analysis of dis-
persal kernels for connectivity modeling. This frame-
work extends circuit-theoretic concepts, which have
seen widespread use to interpret connectivity across
landscapes in ecology, evolution, and conserva-
tion (Fletcher et al. 2016; Dickson et al. 2019). Our
results and associated code (See Supporting Informa-
tion) provide guidance for applying spatial absorb-
ing Markov chains to the problem of dispersal across
landscapes. Future landscape connectivity studies
considering the use of least-cost resistant kernels can
potentially relax some assumptions of that approach
using the SAMC and can extend applications to
address dispersal mortality and time-explicit predic-
tions for interpreting connectivity across complex
landscapes.
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