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Abstract 
Context  Dispersal typically consists of three com-
ponents—departure, transience and settlement—each 
of which can be influenced by the landscape. A fun-
damental aspect of dispersal is the dispersal kernel, 
which describes how the likelihood of settlement var-
ies as a function of the distance from the departure 
location. Dispersal concepts are often closely con-
nected to the interpretation of landscape connectiv-
ity, yet models of landscape connectivity often do not 
generate dispersal kernels nor explicitly capture the 
three components of dispersal.

Objectives  We apply Markov chain theory for the 
generation of random-walk dispersal kernels that are 
based on the three components of dispersal to better 
link dispersal processes to landscape connectivity.
Methods  We extend the spatial absorbing Markov 
chain (SAMC) framework, which is aimed at address-
ing a broad range of problems in landscape con-
nectivity, to explicitly model dispersal kernels that 
acknowledge each component of the dispersal process 
and how the landscape can alter each of these com-
ponents. We provide an example with the Florida 
black bear (Ursus americanus floridanus), a species 
of conservation and management concern, where we 
contrast expected connectivity between key subpopu-
lations when models do and do not consider random-
walk dispersal kernels.
Results  Our extensions show how the SAMC 
can generate different types of random-walk ker-
nels that include information on how the landscape 
alters departure, transience and settlement processes. 
Importantly, this framework can also readily incorpo-
rate mortality into predictions and be applied to make 
time-explicit predictions across landscapes. Con-
nectivity for the Florida black bear is predicted to be 
much lower when acknowledging dispersal kernels 
and suggests that the settlement process may be more 
influential to connectivity predictions than landscape 
resistance.
Conclusion  These results provide a foundation for 
applying the SAMC to dispersal kernels. Not only 
do these extensions provide a formal linkage of 
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connectivity to concepts in dispersal biology, but also 
help to bring together concepts from common con-
nectivity models (e.g., circuit theory and least-cost 
resistant kernels) to facilitate predicting connectivity 
across landscapes.

Keywords  Dispersal kernel · Functional 
connectivity · Landscape connectivity · Markov 
chain · Movement

Introduction

Dispersal underpins several theoretical frameworks 
in ecology and evolution (Slatkin 1993; Hanski 1999) 
and lies at the heart of the rapidly growing sub-dis-
cipline of movement ecology (Nathan et  al. 2008). 
Understanding dispersal is central to conservation 
and management plans, which often emphasize con-
necting habitat remnants to facilitate the movement 
of species through landscapes increasingly altered by 
human activities (Heller and Zavaleta 2009; Albert 
et al. 2017). As a consequence, dispersal concepts are 
often closely linked to interpreting landscape connec-
tivity (Vasudev et al. 2015; Diniz et al. 2020).

Landscape connectivity arises from movement 
across landscapes (Taylor et  al. 1993), and dispersal 
is a key movement with broad implications due to 
its impacts on the fitness of organisms (Bonte et  al. 
2012; Baguette et al. 2013). We define dispersal as the 

movement from one location to another wherein this 
movement can result in reproduction and thus gene 
flow (Clobert et al. 2012). This definition accommo-
dates both natal and breeding dispersal (Greenwood 
and Harvey 1982) and that ‘effective dispersal’ may 
or may not occur (Pfluger and Balkenhol 2014; Vas-
udev and Fletcher 2016; Robertson et al. 2018). Dis-
persal is often decomposed into three components or 
stages: departure (emigration), transience (transfer), 
and settlement (immigration) (Fig. 1a; Clobert et  al. 
2012). It is generally quantified in terms of changes 
in sites or locations, such that summaries of these 
changes (e.g., dispersal distances) have been essential 
in interpreting the causes of dispersal and its conse-
quences for populations and communities (Bowler 
and Benton 2005).

Dispersal kernels are fundamental descriptors 
in dispersal biology and movement ecology. A dis-
persal kernel is a probability density function (or 
probability mass function when distance units are 
discrete /  binned)  describing the probability that an 
individual disperses to any position relative to the 
start location (e.g., natal site) (Nathan et  al. 2012). 
Dispersal kernels show nearly universal patterns of 
distance decay: expectations of dispersal decline with 
distance from the departure location, the extent to 
which can be modified based on variation in habitat 
availability and other factors, such as mortality risk 
(Fig.  1b–d; Koenig et  al. 1996; Van Houtan et  al. 
2007; Bocedi et  al. 2014). Despite this ubiquitous 

Fig. 1   The random-walk dispersal kernel as envisioned with 
the spatial absorbing Markov chain (SAMC). a The departure, 
transience, and settlement stages of dispersal and associated 
parameters of the SAMC. In this context, dispersal is described 
with the SAMC as: �T

(� −�)
−1�̃

s
 (see Eqs. 3, 4 of main text). 

b An example dispersal kernel generated from the SAMC, 
which approximates the negative exponential kernel when set-
tlement probabilities are constant per time step. c Mortality 

can alter expectations for dispersal kernels (dashed line rep-
resents expectation with no mortality). d Variation in habitat 
availability can also alter expectations for dispersal kernels. 
Shown is a scenario with low habitat availability near depar-
ture location (e.g., departure occurring from an isolated patch) 
but high availability at farther distances (dashed line represents 
expectation in contiguous habitat)
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pattern, incorporating dispersal kernels directly into 
models for mapping landscape connectivity remains 
limited or ad hoc. One exception is the development 
of least-cost resistant kernels, which have been used 
to address this limitation (Compton et al. 2007). This 
approach combines concepts of least-cost paths with 
home-range estimation using kernel estimators (Wor-
ton 1989) to capture the problem of distance decay 
in expectations of movement based on cumulative 
least costs (Compton et al. 2007). This approach has 
proven useful (e.g., Cushman and Landguth 2012; 
Cushman et  al. 2018), yet more broadly least-cost 
modeling has been criticized based on some of its 
underlying assumptions, such as individual knowl-
edge of optimal routes to a distant destination (Saw-
yer et  al. 2011). Furthermore, this approach does 
not explicitly incorporate each of the three dispersal 
stages into the model formulation.

A recently introduced framework advanced ran-
dom-walk theory with absorbing Markov chains, 
termed the spatial absorbing Markov chain (SAMC), 
to better capture different processes influencing move-
ment and connectivity (Fletcher et  al. 2019). The 
SAMC is an analytical framework like least-cost anal-
ysis (Etherington 2016), randomized shortest paths 
(Saerens et al. 2009) and circuit theory (McRae et al. 
2008), all of which assume that variation in landscape 
features influence the movement process. Overall, the 
SAMC is most similar to circuit theory: Fletcher et al. 
(2022) show how circuit theory is a special, simpli-
fied case of the SAMC. Yet the SAMC moves beyond 
circuit theory and other analytical frameworks by pro-
viding short- and long-term predictions and a means 
to account for time-specific movement, directional 
movement, species distribution and mortality.

Here we extend the SAMC framework to the prob-
lem of dispersal kernels, illustrating how this frame-
work can be used to create random-walk dispersal ker-
nels for landscape connectivity assessments that readily 
capture all three components of the dispersal process. 
We then illustrate how random-walk dispersal ker-
nels can incorporate time-explicit predictions, differ-
ent types of movement summaries and can decompose 
dispersal success from that of failure. We illustrate the 
use of this model by contrasting predicted connectivity 
between key subpopulations of the Florida black bear 
(Ursus americanus floridanus), a species of conserva-
tion and management concern, when ignoring dispersal 
kernels versus acknowledging them. Finally, we discuss 

the relationship of random-walk dispersal kernels to 
least-cost resistant kernels. Not only do these exten-
sions provide a formal linkage of landscape connectiv-
ity to dispersal biology, but they also help to link com-
mon connectivity models in a unified way to facilitate 
predicting connectivity across landscapes.

Methods

The spatial absorbing Markov chain

The SAMC models connectivity based on extensions 
of discrete-time absorbing Markov chain theory. This 
framework assumes that landscapes are discrete rep-
resentations of the environment, represented as ras-
ter maps or in a network context where populations 
or patches are nodes (or vertices) on a spatial graph 
(Acevedo et al. 2015; Sefair et al. 2017; Fletcher et al. 
2019).

We introduce this model in the context of disper-
sal and illustrate how its parameters relate to dispersal 
kernels. For each time step during which an organ-
ism disperses across a complex landscape, it can 
either survive and stay at the same location (i.e., site 
fidelity), survive and move to a nearby site, or termi-
nate movement (e.g., from settlement or death). The 
SAMC framework honors this idea by considering 
’transient’ states that capture fidelity and movement, 
and an ‘absorbing’ state that captures the termination 
of movement, which could reflect a variety of issues, 
such as natural mortality (Fletcher et al. 2019), coa-
lescence in population genetics (Fletcher et al. 2022) 
or human-wildlife conflict (Vasudev et  al. 2023). 
Here we focus on the scenario where the absorbing 
state reflects settlement, the third component of the 
dispersal process (Fig. 1a).

The SAMC framework captures transient and 
absorption states through the construction of a prob-
ability matrix, � (throughout we use bold capital 
letters to denote matrices, bold lower-case letters to 
denote vectors, and non-bold letters to denote sca-
lars). For a landscape divided into C cells or patches, 
� can be written as:

where � is a sparse, C × C transition matrix reflect-
ing transitions between transient states, � is a C × r 

(1)
(
� �

0 1

)
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matrix containing transition probabilities from the 
transient states to r absorbing states, and 0 is a 1 × C 
vector of zeros. � is sparse because we assume that 
transitions between transient states can only occur 
locally between consecutive time steps, based on a 
4- or 8-neighbor rule (this assumption can be relaxed 
but increases computational burden). The elements 
pij of � describe the probability of transitioning from 
state i to j in one time step. A variety of connectivity-
related metrics can be quantified using � . Here we 
extend this framework to interpret dispersal kernels.

Extending the SAMC to dispersal kernels

This model can be extended to include multiple absorb-
ing states, which can be helpful for capturing dispersal 
kernels. Here we show how two different absorbing 
states can be considered: one reflecting mortality and a 
second reflecting absorption due to settlement by a dis-
perser. Our new � matrix can be described as:

where �m and �s are C × C diagonal matrices with 
diagonal elements equal to absorption probabilities 
reflecting mortality and settlement, respectively, and 
off-diagonal elements equal to zero. For each row, ∑

jpij = 1 . Consequently, this extension allows the 
decomposition of different types of absorption on dis-
persal across landscapes.

With this matrix, we can map the long-term (asymp-
totic) probability of settlement at location j if starting in 
location i as the (i, j) th element of �

s
,

where � = (� −�)
−1 (aka the ‘fundamental matrix’), 

and � is an identity matrix. Dispersal kernels then 
naturally emerge from mapping �

s
 as a function of 

distance from a departure location, which can be cal-
culated as:

where � is a vector of length C , equal to 1 for the 
starting (or departing)  location i and 0 otherwise, 
and T is the transpose of this vector. The mapping 
of the i th row of �

s
 represents the dispersal kernel if 

(2)
⎛⎜⎜⎝

� �
m
�

s

0 1 0

0 0 1

⎞⎟⎟⎠

(3)�
s
= ��s

(4)�T�
s

individuals start at location i . When �m = 0 , Eq.  4 
generates a probability mass function (probabilities 
that sum to 1) that encapsulates all stages of the dis-
persal process. This model will generate dispersal 
kernels that approximate an exponential distribution 
when �s is constant (See Supporting Information S1, 
Fig. S1 for more details), consistent with the idea 
that exponential kernels arise from random move-
ment when there is a constant probability of settling 
per unit of time (Paradis et  al. 2002; Bullock et  al. 
2017). Exponential kernels are a common formula-
tion for dispersal in metapopulation ecology (Han-
ski 1999), yet other types of kernels (e.g., fat-tailed) 
could also be approximated by altering �s as a func-
tion of the departure location (e.g., smaller values of 
�s near source locations will result in more fat-tailed 
distributions).

The above model is an asymptotic expectation for 
dispersal. This framework can also be applied in such 
a way that it is time-explicit to accommodate tempo-
ral or dynamic connectivity (Zeigler and Fagan 2014; 
Zeller et al. 2020). We can map the probability of set-
tlement at location j within t or fewer time steps if 
starting in location i as the (i, j) th element of �

s,t
,

A time-explicit dispersal kernel can then be quan-
tified as �T�s,t.

Taken together, this random-walk formulation of 
dispersal kernels for landscape connectivity provides 
a flexible means for accommodating distance decay 
in movement that is common in plants and animals 
and it directly captures all three components of the 
dispersal process (i.e., departure, transience and set-
tlement). In this way, departure ( �) reflects the dis-
tribution of initial locations, which will typically be 
considered a model input based on a variety of data 
(e.g., species distribution or occupancy models, loca-
tions of populations in protected area, etc.). Transi-
ence ( � ) reflects how the landscape alters movement 
behavior or trajectories via resistance, which can also 
be parameterized using a variety of techniques (e.g., 
Zeller et al. 2012). Finally, settlement (�s) describes 
the likelihood of settling in at each location in the 
landscape per unit time. See Supporting Information 
on details regarding guidance on parameterizing �s.

(5)�s,t = (� −�)
−1
(
� −�t

)
�s
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Applications of random‑walk kernels

The random-walk kernel can be applied in at least 
four general ways, each of which can be based on 
long-term expectations or time-explicit expecta-
tions. We provide a simple example of these alter-
natives in Figs. 2 and 3, where we generate habitat 
and landscape resistance using a neutral landscape 
model and apply it to the problem of dispersal 

kernels. See the Supporting Information for details 
on the construction of this model and its application 
to dispersal kernels.

Random‑walk dispersal kernels

When � = 1, �s is constant in suitable habitat 
across the landscape, and �m = 0 , the model will 
reflect a simple random-walk dispersal process, 

Fig. 2   The flexibility of random-walk movement kernels for 
landscape connectivity assessments. Habitat, resistance, mor-
tality and the departure location for dispersal are potential 
model inputs for random-walk dispersal kernels. With this 
information, the spatial absorbing Markov chain can gener-
ate several types of random-walk dispersal kernels that vary 
in how the landscape may affect settlement. a Simple disper-
sal kernels in contiguous space are un-affected by landscape 

resistance. b Habitat-constrained dispersal kernels are those 
where settlement can only occur in habitat. c Resistant kernels 
are those where the landscape alters movement trajectories via 
resistance. d Mortality kernels are those where the landscape 
alters kernels based on dispersal failure via mortality. Finally, e 
resistant and mortality kernels arise when the landscape affects 
both movement via resistance and mortality

Fig. 3   Time-explicit 
random-walk kernels. 
Shown is the example of 
a random-walk resistant 
kernel in Fig. 2c, but as 
time progresses. Probability 
scale binned on a log scale 
for visualization
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wherein settlement declines with distance, but land-
scape resistance does not alter movement pathways 
(Fig. 2a). This approach reveals the expectations for 
dispersal in the absence of landscape permeability 
effects altering outcomes and can be constrained by 
assuming settlement only occurs within habitat (‘hab-
itat-constrained dispersal kernels’; Fig. 2b).

Random‑walk resistant kernels

When � is not constant, �s is constant in suitable 
habitat across the landscape and �m = 0 , the model 
will reflect a random-walk dispersal process, wherein 
movement directionality is affected by landscape 
resistance � (Fig. 2c). This model assumes that mor-
tality does not occur and instead focuses on spatial 
variation in the settlement process due to landscape 
resistance.

Random‑walk mortality kernels

When � = 1 , �s is constant in suitable habitat across 
the landscape and �m ≠ 0 , this model will reflect a 
random-walk dispersal process, wherein movement 
directionality is affected solely from the landscape 
altering survival during movement (Fig.  2d). In this 
context, 1 −

∑
�T�

s
 is the overall expectation for dis-

persal failure across the entire landscape, such that 
�T�

s
 does not sum to 1 (it is no longer a probabil-

ity mass function). This formulation generates a dis-
persal survival function of relevance to metapopula-
tion ecology (Schnell et al. 2013; Brodie et al. 2016). 
In addition to mapping settlement, mortality can be 
mapped as �T�

m
 , where �

m
= ��̃

m
 , thereby provid-

ing expectations for where mortality occurs across the 
landscape.

Random‑walk resistant and mortality kernels

When � is not constant, �s is constant in suitable 
habitat across the landscape, and �m ≠ 0 , this model 
will reflect a random-walk dispersal process, wherein 
movement directionality is affected by landscape 
resistance � and the landscape also affects disper-
sal success by altering survival during movement 
(Fig. 2e).

These different types of kernels can be compared 
to better understand how landscape effects on move-
ment and mortality alter predicted settlement across 

the landscape. Furthermore, although the focus above 
is on creating maps of the dispersal kernel (i.e., spa-
tial variation in settlement), we note that the SAMC 
provides a means to quantify and map a variety of 
connectivity-related metrics (Fletcher et  al. 2019, 
2022). For example, with the above dispersal con-
straints, other metrics could be mapped that reflect 
different aspects of the movement and dispersal pro-
cess, such as the time spent in locations, the probabil-
ity of reaching locations, or the time needed to reach 
settlement locations (see Fletcher et  al. 2019, 2022 
for more details).

Model calibration and tuning

Fitting the random-walk kernel requires setting 
absorption values �s for pixels in a landscape at loca-
tions of potential settlement. Absorption values are 
probabilities bound to the 0–1 interval. In this con-
text, larger values of �s will lead to shorter expected 
dispersal distances. �s can be calibrated based on 
the mean expected dispersal distances of the species 
being considered (Marx et al. 2020). In the Support-
ing Information, we provide guidance on using the 
samc package in R (Marx et al. 2020) for modeling 
random-walk kernels (Supporting Information S2), 
and information on calibrating and tuning potential 
starting values for �s based on the grain of a land-
scape and mean expected dispersal distances (Sup-
porting Information S3). This guidance illustrates 
that there is a fundamental relationship between mean 
expected dispersal distances and absorption values in 
the SAMC for random-walk dispersal kernels, which 
is linear on a log–log scale (Fig. S3). See Fletcher 
et  al. (2019, 2022), Vasudev et  al. (2023) and Marx 
et al. (2020) for discussions on calibrating �m.

An illustration with black bears

We provide an example with connectivity mapping 
for the Florida black bear. Florida black bears are 
of conservation and management concern and con-
nectivity has been of considerable interest (Maehr 
et  al. 2003; Larkin et  al. 2004; Dixon et  al. 2006; 
Fletcher et  al. 2013). In particular, one subpopula-
tion located within the Greater Chassahowitzka Eco-
system (GCE) at the Weekiwachee Preserve is small 
and relatively isolated from other subpopulations, 
such that there has been concern about its viability 
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given its isolation. Previously, connectivity models 
were applied to determine potential corridors that 
may connect the GCE subpopulation to six other sub-
populations within a ‘dispersal zone’ of 140 km from 
this location (Big Bend, Goethe State Forest, Ocala 
National Forest, Withlaoccohee River Basin, Green 
Swamp and lower Hillsborough River basin; see  
Fig. 4), which was based on the maximum known dis-
persal distance by black bears in Florida (Larkin et al. 
2004). Within this zone, least-cost paths were identi-
fied that connect these subpopulations. This approach 
was useful for conservation planning and acknowl-
edged the maximum potential distance for dispersal. 
However, the temporal nature of movement imposes 
natural constraints on dispersal distance, which can-
not be naturally incorporated into least-cost paths 
modelling of connectivity. Here we revisit this prob-
lem by modeling random-walk dispersal kernels to 
more fully capture the dispersal process.

We illustrating mapping a single dispersal kernel 
and subsequently extend this to interpreting synop-
tic connectivity for the entire landscape by mode-
ling both dispersal kernels for all six subpopulations 
in the dispersal zone for Weekiwachee Preserve as 
well as a metric of net movement rates that is analo-
gous to current density mapping using circuit theory 
(Fletcher et  al. 2022; Vasudev et  al. 2023). For the 
single dispersal kernel, we illustrate mapping a sim-
ple (Fig. 2a), habitat-constrained (Fig. 2b), and resist-
ant kernel (Fig. 2c). We do not focus on incorporating 
mortality here.

The first step of applying random-walk kernels is 
the creation of a resistance map or related information 
to parameterize � . There are currently a wide variety 
of ways in which resistance and can be determined 
for connectivity models and ideally such estimates 
should typically come from information on dispersal 
paths (Zeller et al. 2016, 2012). Evaluating resistance 
estimation here is beyond the scope of our application 
but we note that many of the issues of applying resist-
ance to circuit theory and least-cost analysis are simi-
lar to the SAMC. To compare with prior results, we 
used the resistance classification described in Larkin 
et al. (2004), updated to the most recent and reliable 
land-cover map for Florida (the Florida Cooperative 
Land Cover Map, v.3.5), reclassified to a resolution 
of 200 m (2.2 M pixels). This resistance classification 
was based on collating results from several studies 
on black bear biology. Larkin et al. (2004) classified 

landscape resistance as: 1, core habitat (e.g., upland 
coniferous forest); 10, marginal bear habitat (e.g., 
shrub and brushland), 50, high human disturbance 
(e.g., low density residential areas), 100 as surmount-
able barriers (e.g., roads), and NA as insurmount-
able (Table  S2). We re-classified insurmountable as 
a resistance value of 1000, as calculations from the 
SAMC require that areas with 0 absorption (e.g., zero 
settlement probability) are not isolated from other 
areas in the landscape.

The second step of applying random-walk ker-
nels is to create an absorption map, which captures 
the probability of settlement at each location on a 
landscape. For simple dispersal kernels (Fig.  2a), 
this map is would be a constant value across the map 
extent that reflects a settlement probability per time 
step, the value of which can be calibrated to gener-
ate an expected dispersal distance based on the 
grain size (resolution) of the map. In the Support-
ing Information Section S3, we show that the log of 
expected (mean) number of pixels dispersed dp is 
accurately predicted by the log of absorption values 
rs ( R2 = 0.997) , such that with the mean dispersal dis-
tance of a species (in units of pixels), we can identify 
an approximate absorption value as:

We use Eq.  6 as a starting point for the absorp-
tion map to reflect settlement probabilities �s . Note 
landscape boundaries and irregular landscape extents 
may alter realized dispersal distances modeled by 
the SAMC. In addition, if settlement only occurs in 
habitat that is patchy across the landscape (habitat-
constrained kernels; Fig.  2b), the realized dispersal 
distances from the SAMC will vary. Consequently, 
Eq. 6 should be used as a starting point for modeling. 
We profiled across values at 10% increments above 
or below this starting value (depending on the initial 
estimate of dispersal distance from Eq.  6) for each 
scenario considered, selecting the absorption value 
that most closely matched known mean dispersal dis-
tances in black bears (11.8 km; Maehr 1996).

The third step of applying random-walk kernels 
is to consider departure locations, which can be 
described as individual points or as a raster map. We 
illustrate how this can be done for a situation where 
the departure location is an entire protected area 
rather than a single point location. To do so, we set 

(6)rs = exp(−1.247 − 1.788 × log

(
dp

)
)
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� to reflect the outer boundary of the departure pro-
tected area by setting the pixels along this boundary 
to sum to 1 and the interior of the protected area to 
NA. This reflects the idea that an individual could 
randomly start from any location along the boundary 
of the study area and disperses out of the protected 
area (dispersal within the protected area is not consid-
ered); such parameterization will lead to a probability 
mass function that describes the dispersal kernel for 
the polygon.

With the resistance, absorption, and departure 
location maps, we calculated random-walk kernels 
using the mortality() function in the samc 
package (Marx et  al. 2020). To illustrate single dis-
persal kernels, we map simple, habitat-constrained, 
and resistant kernels (Fig.  2a–c) based on disper-
sal from the Withlacoochee State Forest, a centrally 
located protected area in the study area. For habitat-
constrained and resistant kernels, we only allowed 
settlement to occur in suitable habitats. We then 
illustrate how random-walk resistant kernels can be 
similarly applied to all subpopulations to map dis-
persal expectations across the region. Finally, we 
contrast mapping net visitation rates, or expected net 
movement probabilities through locations (e.g., pix-
els) (Fletcher et al. 2022), across the region with and 
without expectations from dispersal kernels. In a sim-
ple scenario where absorption can only occur at a des-
tination location, net visitation rates are identical to 
mapping current density from circuit theory (Fletcher 
et al. 2022). However, with absorption parameterized 
to reflect dispersal kernels, net visitation rates will 
now account for expectations of movement declining 
with distances from departure locations, essentially 
analogous to ‘kernel-informed’ current density. To do 
so, we calculated net visitation rates between all pairs 
of subpopulations, using the centroid of each area 
(Fig. 4a) as the departure and destination locations. 

Results

Single dispersal kernels

We first tuned absorption values for each kernel to 
approximately match known mean dispersal distances 
of Florida black bears (11.8  km) based on bears 
departing from Withlaoccohee River Basin, a cen-
trally located subpopulation (Fig.  4a). The starting 

value for absorption taken from Eq.  6 ( rs = 0.0002) 
generated an expected dispersal distance of 9.7  km 
for the simple kernel, 17.3  km for the habitat-con-
strained kernel, and 4.7 km for the resistant kernel. In 
this case, patchy habitat for settlement (Fig.  1d) led 
to expectations of dispersers moving farther distances 
when resistance was assumed constant, yet incorpo-
rating resistance led to much shorter predicted disper-
sal distances due to potential landscape barriers. As 
reported dispersal distances implicitly incorporate 
variation in habitat and resistance, we then profiled 
across values to identify appropriate absorption val-
ues for each scenario that generate ~ 11.8 km expected 
dispersal distances in this landscape (Fig. S5).

Based on these tuned models, expected dispersal 
across the landscape varied (Fig.  4b–d), with much 
of the spatial variability being driven by habitat avail-
ability for settlement rather than resistance. When 
comparing the resulting expected kernels as a func-
tion of distance, resistant kernels led to higher expec-
tations for settlement close to the departure location, 
and both habitat-constrained and resistant kernels led 
to more irregular predictions for settlement as a func-
tion of distance (Fig. 5).

Landscape connectivity

Using the resistant kernel parameters estimated 
above, we mapped settlement probabilities for dis-
persal from all subpopulations surrounding Weeki-
wachee Preserve to determine expectations for poten-
tial settlement into Weekiwachee Preserve when 
incorporating dispersal kernels. Overall, predicted 
settlement probabilities into Weekiwachee Preserve 
were low (Fig.  6a). Pairwise analysis based on the 
centroids of each subpopulation suggested that the 
highest settlement probability came from Withla-
coochee State Forest and secondarily Green Swamp 
Forest, and the lowest from Ocala National Forest. 
Contrasting net visitation rates (analogous to current 
density) that did not incorporate dispersal kernels 
(Fig. 6b) to a model that incorporated dispersal ker-
nels (Fig. 6c) highlighted that expected movement in 
the vicinity of Weekiwachee Preserve is predicted to 
be much lower when accounting for dispersal kernels.
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Fig. 4   Random-walk dispersal kernels and the Florida black 
bear. a Resistance map for a region in central Florida where 
six subpopulations of black bears occur. Inset shows the loca-
tion in Florida, which encompasses a 140  km dispersal zone 
from the Weekiwachee Preserve (star). Subpopulations consid-
ered include: 1 = Suwannee River National Wildlife Refuge; 
2 = Goethe State Forest; 3 = Ocala National Forest; 4 = With-

lacoochee River Basin; 5 = Green Swamp; 6 = Lower Hillsbor-
ough River Basin. b A simple random-walk dispersal kernel, 
c a habitat-constrained random-walk kernel and d a random-
walk resistant kernel. We illustrate each kernel based on a cen-
tralized subpopulation at Withlaoccohee River Basin. Insets 
show a 25 km radius centered on Withlaoccohee River Basin
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Discussion

We provide a framework for incorporating dispersal 
kernels into landscape connectivity modeling. This 
framework explicitly acknowledges each component 
of the dispersal process—departure, transience and 

settlement (Fig. 1)—and provides a flexible means to 
incorporate several aspects of movement and disper-
sal processes. We illustrate the use of this approach to 
interpret connectivity between protected areas for the 
Florida black bear, finding that incorporating disper-
sal kernels greatly reduced expectations of connectiv-
ity across the region in comparison to prior analysis 
using least-cost paths. The underlying movement 
model of our framework is built from random-walk 
theory with Markov chains and can capture several 
aspects of dispersal biology, which may provide more 
realistic predictions of dispersal than current algo-
rithms that use the isolation-by-resistance paradigm.

A niche for the random‑walk kernel in connectivity 
modeling

The random-walk kernel provided here shares some 
similarities with the least-cost resistant kernels 
(LCRK; Table 1) (Compton et al. 2007). The simi-
larities and differences can be understood by com-
paring the steps used in LCRK. The LCRK gener-
ally requires three steps. First, the cumulative least 
cost from a departure (or starting) location to each 
pixel within a specified maximum number of cost 
units. Second, this cumulative cost is then rescaled 

Fig. 5   Settlement probabilities as a function of distance based 
on random-walk dispersal kernels for the Florida black bear. 
Expected probabilities as a function of distance are  based on 
Fig. 4b–d. Each kernel is based on a centralized subpopulation 
at Withlaoccohee River Basin

Fig. 6   From random-walk dispersal kernels to landscape con-
nectivity for the Florida black bear. a Random-walk resistant 
kernels for each subpopulation in the landscape that have the 
potential to immigrate into Weekewachee Preserve. b Net visi-
tation rates for flow from subpopulations into Weekewachee 

Preserve in the absence of considering dispersal kernels. This 
scenario is identical to current density mapping using circuit 
theory. c Net visitation rates for flow from subpopulations into 
Weekewachee Preserve when accounting for dispersal kernels 
(based on the resistant kernel shown in a)
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to reflect a measure of (relative) probability of use. 
This rescaling can be simply the inverse of the 
cumulative cost (Cushman and Landguth 2012), or 
it can more formally be re-scaled based on kernel 
functions (Compton et al. 2007). Third, this process 
is then repeated for all potential starting locations 
on the landscape to provide a synoptic perspective 
on connectivity for the entire landscape.

In contrast to the LCRK, the random-walk kernel 
uses absorption to directly quantify the probability 
of settlement, rather than rescaling a measure of 
cumulative cost. Cumulative cost may better reflect 
expectations for use or movement to pixels rather 
than the settlement process. We note that in the con-
text of the SAMC, related metrics referred to as the 
‘spatially explicit dispersal’ and ‘visitation’ metrics 
(Fletcher et  al. 2019) would provide more similar 
information on movement (rather than settlement) 
and can be used once settlement probabilities are 
calibrated (e.g., Fig.  6c). The random-walk kernel 
does not require rescaling and instead directly esti-
mates a probability mass function describing the 
dispersal kernel. The random-walk kernel also does 
not require an iterative process for connectivity 
mapping across the entire landscape; instead, calcu-
lations for the entire landscape use the same kind of 
information as for calculations from a single loca-
tion and can be done simultaneously (see Eq.  4). 
These differences, along with the assumption of a 
random-walk process and the ability to extend mod-
eling to account for mortality and be time-explicit 
(Fig.  3), suggest that the random-walk kernel may 
provide a useful alternative to the LCRK in several 
situations, such as modeling plant dispersal, animal 

dispersal when ‘least cost’ assumptions are not 
warranted, modeling redistribution over specified 
periods of time, or addressing mortality risks (e.g., 
Hughes et al. 2023; Veals et al. 2023).

Random-walk processes with the SAMC are 
directly related to concepts from circuit theory and 
they share similarities with continuous time and 
continuous space random-walk models (Holmes 
et  al. 1994; Ovaskainen et  al. 2008; Brennan et  al. 
2018). In fact, circuit theory is a special case of the 
SAMC: if the SAMC is parameterized such that the 
only absorption state is the destination location, 
the SAMC will provide identical results to circuit 
theory calculations of commute time and current 
density (Fletcher et  al. 2022). Here, random-walk 
dispersal kernels illustrate one way in which the 
SAMC can extend circuit-theoretic concepts by 
providing a means to generate dispersal kernels 
through the decomposition of absorption states as 
well as time-explicit analyses. Consequently, users 
familiar with circuit theory and interested in apply-
ing circuit-theoretic concepts while acknowledging 
dispersal processes can apply the SAMC to deliver 
insights. While both the SAMC and circuit theory 
are based on biased local random walks, because 
the SAMC can incorporate directionality it is also 
possible to extend the SAMC to also accommo-
date correlated random walks (Codling et al. 2008; 
Fletcher et al. 2019), which are commonly observed 
in animal dispersal (Kareiva and Shigesada 1983). 
We built the SAMC using a discrete time and dis-
crete space formulation, which can be more trac-
table than continuous models and can be readily 
applied to raster maps. However, continuous space 

Table 1   Contrasting 
assumptions and 
applications of random-
walk kernels to least-cost 
resistant kernels

Characteristic/assumption Resistant kernel Random-walk kernel

Least-cost movement process Yes No
Random-walk movement process No Yes
Landscape resistance considered Yes Yes
Distinguishes movement versus settlement No Yes
Probability mass function Possible Yes
Tuning parameters Maximum number of 

cost units
Absorption

Scaling to synoptic connectivity Iterative Simultaneous
Decomposition of mortality No Yes
Time-explicit predictions possible No Yes
Multiple movement metrics No Yes
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and time models can be beneficial in some situa-
tions, particularly when there is interest to vary the 
grain of models (Brennan et al. 2018).

Connectivity for the Florida black bear

Our application to connectivity for the Florida black 
bear illustrates how directly incorporating disper-
sal kernels into connectivity assessments can alter 
conclusions about connectivity across landscapes. 
A previous assessment incorporated dispersal con-
straints by simply working within a ‘dispersal zone’ 
based on the maximum known dispersal distance for 
this species (Larkin et al. 2004). This type of mask-
ing of relevant landscape extents or only considering 
protected areas within a maximum dispersal distance 
is common in landscape connectivity mapping. While 
such approaches are a useful first step to acknowledge 
dispersal limitations, our results suggest that that 
they may over-estimate expectations for connectivity 
across landscapes (see also Fletcher et al. 2011).

Our modeling also provides a means of determin-
ing the likelihood of settlement into key areas from 
other protected areas. We found that while expected 
dispersal into Weekiwachee Preserve was low, it 
was much more likely to occur from Withlacoochee 
State Forest than from other areas: given that disper-
sal occurs, there is a 66% chance dispersal will occur 
from Withlacoochee State Forest, a 20% chance from 
Green Swamp and a less than 1% chance it will occur 
from Ocala National Forest. Information like this can 
help prioritize where dispersal may be most likely to 
occur and subsequently how linkages between these 
areas can be prioritized to facilitate connectivity. We 
note that we did not include information on popula-
tion size in each of these subpopulations, but includ-
ing such information when available into predictions 
is straightforward with the SAMC (Vasudev et  al. 
2023).

Extensions

We focused on situations where settlement prob-
abilities were constant across potential habitat in the 
landscape. However, these probabilities could also 
be based on variation in habitat quality, such that 
they capture the potential for habitat selection to 
alter where individuals immigrate and settle across 
the landscape. Settlement probabilities could be 

parameterized based on habitat suitability models or 
related information (Guisan et  al. 2017). Resistance 
optimization techniques (e.g., Peterman 2018; Peter-
man and Pope 2021) could be extended to optimize 
resistance surfaces with the SAMC, both for inter-
preting land-cover resistance and also for settlement 
probabilities. We also note that the SAMC can incor-
porate information on fidelity (Fletcher et  al. 2022), 
which may alter the speed and distance of expected 
dispersal. Finally, by altering settlement probabili-
ties as a function of distance from departure location, 
random-walk kernels could potentially better capture 
other dispersal kernel shapes, such as ‘fat-tailed’ 
kernels that are common in some taxa (Fandos et al. 
2023).

Conclusion

The spatial absorbing Markov chain framework pro-
vides an explicit scaffolding for the analysis of dis-
persal kernels for connectivity modeling. This frame-
work extends circuit-theoretic concepts, which have 
seen widespread use to interpret connectivity across 
landscapes in ecology, evolution, and conserva-
tion (Fletcher et  al. 2016; Dickson et  al. 2019). Our 
results and associated code (See Supporting Informa-
tion) provide guidance for applying spatial absorb-
ing Markov chains to the problem of dispersal across 
landscapes. Future landscape connectivity studies 
considering the use of least-cost resistant kernels can 
potentially relax some assumptions of that approach 
using the SAMC and can extend applications to 
address dispersal mortality and time-explicit predic-
tions for interpreting connectivity across complex 
landscapes.
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