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The catalog of gravitational-wave events is growing, and so are our hopes for constraining the underlying
astrophysics of stellar-mass black-hole mergers by inferring the distributions of, e.g., masses and spins. While
conventional analyses parametrize this population with simple phenomenological models, we propose an
emulation-based approach that can compare astrophysical simulations against gravitational-wave data. We
combine state-of-the-art deep-learning techniques with hierarchical Bayesian inference and exploit our
approach to constrain the properties of repeated black-hole mergers from the gravitational-wave events in the
most recent LIGO/Virgo catalog. Deep neural networks allow us to (i) construct a flexible single-channel
population model that accurately emulates simple parametrized numerical simulations of hierarchical
mergers, (ii) estimate selection effects, and (iii) recover the branching ratios of repeated-merger generations.
Among our results, we find the following: The distribution of host-environment escape speeds favors values
less than 100 kms™! but is relatively flat, with around 37% of first-generation mergers retained in their host
environments; first-generation black holes are born with a maximum mass that is compatible with current
estimates from pair-instability supernovae; there is multimodal substructure in both the mass and spin
distributions, which, in our model, can be explained by repeated mergers; and binaries with a higher-
generation component make up at least 14% of the underlying population. Though these results are inferred
through emulation of a simplified model, the deep-learning pipeline we present is readily applicable to

realistic astrophysical simulations.
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I. INTRODUCTION

The Advanced LIGO [1] and Virgo [2] gravitational-
wave (GW) detectors are revealing the previously unseen
landscape of compact binary coalescences. To date, nearly
100 GW signals from merging stellar-mass compact objects
have been observed, the majority being black holes (BHs)
[3-9]. Accurate estimation of the intrinsic properties of
individual sources, such as component masses and spins,
allows us to view the distribution of merging binary BHs as
a whole. Crucially, the binary parameters inferred at merger
are influenced by the formation history and astrophysical
environment in which the progenitor systems were born;
conversely, cumulative measurements of those source
properties allow constraints to be placed at the population
level, which can ultimately be compared to the predictions
from likely binary formation scenarios.
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Two examples include isolated stellar binary evolution
[10] and dynamical interactions in star clusters [11]. While
the former predicts a forbidden mass region for stellar
remnants [12,13] and spins that favor small misalignments
with the binary orbital angular momentum [14—16], binaries
formed in the latter channel may repeatedly interact and
merge with other members of the cluster and thus be pushed
to higher masses and isotropic spin orientations [17] (with
GW-driven inspiral preserving the spin isotropy [18,19]).

Given the catalog of GW detections, one can take two
approaches to assess the underlying astrophysical popula-
tion of binary BHs. In a simulation-based analysis, sources
are synthesized—accounting for as many detailed astro-
physical processes as are known or are computationally
feasible—to form distributions of detectable merging bina-
ries. By varying population-level input parameters control-
ling binary evolution (e.g., common envelope efficiency and
strength of supernova kicks), one can assess the degree
of consistency with the observed events (for reviews, see,
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e.g., Refs. [20-22]). However, such simulations are typi-
cally computationally intensive, and large uncertainties
remain on key parameters (see, e.g., Refs. [23,24]).

The second approach is to first construct a model of the
astrophysical distribution of source parameters—which is
conditionally dependent on given population-level param-
eters controlling its shape (the “hyperparameters,”’ e.g.,
mass cutoffs or spectral indices)—and use the observed
catalog to perform a hierarchical Bayesian inference that
accounts for observational biases (e.g., that heavier sources
are easier to detect). This statistical analysis is hierarchical
in the sense that one uses previous Bayesian measurements
of the binary BH source parameters to then measure said
hyperparameters [25,26]. The population model used could
be as in the previous approach such that the distribution is
known only at discrete values of the hyperparameters, but
this would allow only for single posterior evaluations for
relative comparisons (e.g., via Bayes factors) and leave
some of the hyperparameters unconstrained (see, e.g.,
Refs. [27,28] for examples of this approach).

On the other hand, a population model that can be
continuously evaluated across the population-level param-
eter space can be used to make Bayesian measurements of
the hyperparameters. This requirement typically necessi-
tates simple, quick-to-evaluate parametric forms with stat-
istical independence between source parameters (see,
e.g., the models used in Refs. [29-31]) to enable efficient
hyperposterior sampling. The disadvantage of this approach
is that it is inherently phenomenological with a discretionary
selection of the employed functional forms. Recent work
has sought to improve parametric population models by
addressing potential correlations between mass and spin
parameters [31-33] and assessing the suitability of spin
parametrizations [34-36] since accurate inference requires
appropriate models [37]. Along other lines, the flexibility of
population analyses can be improved with semiparametric
and nonparametric modeling techniques [38—42].

Previous studies have focused on combining the
simulation-based and parametric approaches: A simulation
emulator constructed with sufficient accuracy to rapidly
synthesize predictive distributions over the hyperparameter
space can be adopted in place of parametrized phenom-
enological models in the Bayesian inference pipeline. Such
models leverage the advantages of efficient hyperposterior
sampling and direct astrophysics-to-GW data comparison
provided by each approach.

A first step in this direction within the context of GW
population inference was taken by some of the authors in
Ref. [43]. Compressed principal components of binned
simulation data were emulated over low- (typically one- or
two-) dimensional source- and population-level parameter
spaces using Gaussian process regression (GPR). However,
this emulation approach was shown to be unsuitable for
extension to more complex higher-dimensional modeling
scenarios due to poor predictive accuracy and infeasible

computational requirements [44,45]. These issues were
tackled in Ref. [46] by employing deep-learning techniques
to construct simulation-informed population models; in
particular, the conditional density estimator takes the form
of a flow-based generative neural network known as a
normalizing flow [47]. In general, neural networks are
powerful tools that offer greater flexibility when employed
as functional emulators. In this case, normalizing flows
prompted population studies considering the scenarios of
primordial BHs [48] and mixture models between isolated
and dynamical evolution [49].

In this work, we develop complementary deep-learning
techniques that build on the advancements of Refs. [43,46]
by pushing the emulated parameter space dimensionality
and introducing new neural network applications. We
employ fully connected deep neural networks (DNNs; also
referred to as multilayer perceptrons) to act as the condi-
tional density estimator of a population model and to
capture the effect of GW detection biases on the population
of observed binary BH events (see also Refs. [50-52]
for machine-learning approaches to estimating selection
effects).

Motivated by evidence for large masses in the observed
GW catalog, we apply these deep-learning techniques to
binary BH populations containing hierarchical mergers, in
which component BHs may be the remnants of (multiple)
previous mergers [17]. These so-called “higher-generation”
BHs may explain the outlier properties of events such as
GW190412 [53-57], GW190521 [58-65] (though see also
Refs. [66,67], which find that these events may in fact be
consistent with the population), and GW190814 [68-71].
The presence of hierarchical mergers in binary BH pop-
ulations is crucially dependent on the escape speeds of
dynamical host environments (e.g., young star clusters,
globular clusters, and nuclear star clusters [63]) and the
magnitudes of gravitational recoils received due to the
anisotropic emission of GWs [72-74].

Our DNN population model learns from simple simu-
lations of clusterlike environments [75], which account
for the retention and ejection of merger remnants due to
GW kicks. We model the joint distribution of four source
parameters—two masses and two effective spins, which
present identifiable features due to the influence of higher-
generation BHs [76,77]—and six population-level (hyper)
parameters. These hyperparameters control the population
properties of first-generation BHs born in stellar collapse,
the binary pairing process, and host escape speeds. We also
train a DNN to predict the fractional contributions of the
population-dependent first-, mixed-, second-, and higher-
generation binary BHs.

We illustrate our procedure schematically in Fig. 1,
in which each element represents a single modeling
process, arrows direct the one-way flow of information
between them, and rows group distinct stages of our
pipeline. The first row represents simulations, controlled
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Schematic diagram of our population modeling and inference procedure. Arrows indicate information that is passed from one

element to another, and elements that occur at the same stage of the pipeline are grouped into rows. The first row represents simulations
of binary BH mergers, while the second lists postprocessing applied to the simulated data. We leverage deep learning, shown in the third
row, by constructing DNNSs to act as functional emulators for key ingredients of GW population inference, indicated within the fourth
row. In the final row, the deep-learned selection function and population model are combined with data from GW catalogs to feed into a
hierarchical Bayesian inference, which, along with a third DNN to predict branching fractions between subpopulations, is used to make
conclusions about the underlying distribution of merging stellar-mass binary BHs.

by population-level parameters, of binary BH mergers
characterized by a complete set of source-level parameters
that are condensed into those we model. In the second row,
we list the postprocessing performed on the simulated data.
For each simulation, we construct the joint probability
density of modeled source-level parameters conditioned
on the population-level parameters, the expected fractional
number of detectable sources, and the relative contributions
from each hierarchical merger generation to the total
population. We transform these discrete sets of evaluations
into continuous functions using deep learning, as seen in the
third row. These DNN functional emulators, listed in the
fourth row, are employed in conjunction with data from
the GW events detected to date to perform a hierarchical
Bayesian inference and ultimately constrain the population
of merging stellar-mass binary BHs, as illustrated in the

final row. Each ingredient and the relevant symbols are
defined throughout the paper.

In Sec. II, we describe our simple approach to generating
sets of simulated hierarchical merger distributions. We lay
out the statistical tools of population inference (Sec. I A),
as well as our aforementioned use of DNNs to estimate
population models (Sec. III B), selection biases (Sec. III C),
and population-dependent branching fractions (Sec. III D).
Our deep-learning-enhanced statistical pipeline is validated
with mock GW catalogs in Sec. I'V. In Sec. V, we report the
results of our inference on the latest catalog of GW events,
discussing the astrophysical implications and comparing to
recent related works. We finish with a summary of future
extensions to our work in Sec. VI and concluding remarks in
Sec. VII. The GW events that are included in our analysis
and their source parameters are enumerated in the Appendix.
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The inference pipeline established here highlights advance-
ments at the intersection of GW astronomy with statistical
analysis and deep learning, and readily accommodates
more realistic astrophysical simulations such as binary
population synthesis.

II. HIERARCHICAL MERGER POPULATIONS

We model the retention and ejection of merger remnants
in a “cluster,” which here simply refers to a collection of
BHs in an environment with constant escape speed v.,.. We
use the setup described in Ref. [75] (see Refs. [54,77] for
additional applications). Our model depends on six pop-
ulation parameters, 4 := {@, 8,7, 8, Mmax, ¥max }- These are
reported in Table I and described below. In particular, the
quantities y, My, and yn.x parametrize the population of
first-generation (1g) BHs, while the quantities a, f, and §
parametrize the pairing and merger process.

This setup is an excellent test bed for our deep-learning
explorations because these simulations are not computa-
tionally intensive (thus allowing us to explore different
DNN architectures) while at the same time providing a
binary BH population that ultimately is not parametric (thus
making our approach essential).

A. Simulation design

We generate N, = 1000 sets of population parameters 4
using Latin hypercube sampling to efficiently cover the
higher-dimensional space [43,78]. With this design, the
hyperparameter space (that is, the space of population-level
parameters) is split into N, equally probable subintervals in

TABLE I. Parameters in our model of hierarchical binary BH
merger populations, the symbols we use to identify them, and their
bounds. The population parameters A = {a, 8,7, 8, Myax> Xmax |
determine the shape of the distribution of first-generation BHs and
the properties of the host cluster that can lead to repeated mergers.
The bounds on the power-law indices are broad such that the range
of training simulations can incorporate more restrictive prior
bounds. The source parameters 6 = {M., q, xcr. ¥p} are mea-
sured by LIGO/Virgo when detecting individual GW events. The
bounds on chirp mass encompass the extrema of the GW catalog
posteriors and are only used when evaluating the population-level
likelihood, as described in Sec. III A.

Parameter Symbol Range
Population, 4 Primary pairing slope a [-10,10]
Secondary pairing slope p [-10,10]
Ig mass slope Y [-10, 10]
Escape-speed slope 8 [-10,10]
Maximum 1g mass Mpax [30 Mg, 100 M)
Maximum 1g spin X max [0, 1]
Source, 6 Source-frame chirp mass M,  [5 Mg, 105 Mg)]
Mass ratio q [0, 1]
Effective aligned spin Keft [-1,1]
Effective precessing spin [0, 2]

each dimension. From the N¢ possible choices, a total of N,
unique coordinates are drawn such that, for each of the six
dimensions, only one of the N; subintervals is selected.
In general, there are multiple possible realizations of this
random draw; we choose to maximize the minimum
distance between points, whose values are chosen as the
centers of the intervals. Our simulation design is generated
with PYDOE'.

B. First-generation black holes

Each cluster is seeded with Ngy = 5000 BHs (this
number is chosen to ensure convergence of the resulting
merger distributions; see Ref. [75]). Their masses m, are
drawn from a simple, truncated, power-law distribution:

y
mi, if 5 Mg <myg < mpy,

(1)

migly, m x
P lgh/ o) {O otherwise,

with slope y € [-10,10], maximum cutoff m,, €
[30, 100] M, and a fixed lower boundary of 5 M (thus
only describing black holes and not neutron stars). Pair-
instability [79] and pulsation pair-instability supernovae
(PISN) [80] prevent the formation of stellar-mass BHs
between about 50 and 120 M, [12,13,81]. This prediction
is supported by current GW observations, which point to a
decrease of the merger rate at those masses [31]. The
precise details of the pair-instability mass gap are uncertain
and depend on poorly constrained stellar-physics proc-
esses such as the nuclear reaction rates [12,13,82], rotation
[13,83], accretion [84—-88], winds [89,90], envelope reten-
tion [91-93], and dredge-up episodes [94]. We thus allow
for a broad range of values of m,,,, and aim to infer it from
the GW data.

The BH spin directions are drawn from an isotropic
distribution, as expected in dynamical environments.
The dimensionless spin magnitudes are uniformly within
[0, ¥max], Where the maximum natal spin is y . € (0, 1).
The largest spin formed from stellar collapse is uncertain and
difficult to model; see Refs. [95,96]. The spin model we use
for first-generation BHs is therefore not necessarily physi-
cally well-motivated, but it is used for illustrative purposes.

C. Repeated mergers

At each hyperparameter coordinate, we simulate N =
500 clusters with escape speeds v,y drawn according to

0 kms™! < vg <500 kms™!

,05
P(veeld) o { @)

0 otherwise,
where 6 € [—10, 10]. Large positive (negative) values of &

give escape-speed distributions skewed towards the maxi-
mum (minimum) value of v... For context, the escape

lpythonhostf:d.org/pyDOE.
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speed of a typical globular cluster is 10-100 kms~!, while
those of nuclear star clusters are up to an order of
magnitude larger [97-99]; we take an upper limit of
500 kms~! to accommodate these larger escape speeds.
Cases with large, negative § essentially describe isolated
stellar evolution, where repeated mergers do not take place
(though we always assume isotropically distributed spins,
not partial alignment as expected in isolated binary evo-
lution [14-16]). On the other hand, 6 = 0 corresponds to a
flat v, distribution, favoring all environments equally.

The key ingredient in our populations is the presence of
so-called ‘“higher-generation” BHs that have undergone
multiple mergers due to remnant retention in the host
cluster. We form circular binary systems by selectively
pairing cluster members according to

b it m, <
p(mla) cmf, p(my|f.m)) { " e =
0  otherwise,

where m; > m, are the component BH masses. As for the
other power-law indices, we again take a,f € [-10, 10];
this broad range is taken in each case so that the simulated
populations encompass the prior bounds used later in our
statistical inference of Sec. III A. One by one, BH pairs are
drawn from the collection according to Eq. (3), and the
properties of their merger remnants are estimated (assuming
a uniform sampling of the orbital phase) with the imple-
mentation of Ref. [100], which collects various numerical
relativity fitting formulas [72,73,101-106]. Upon merging,
the remnant BHs receive a gravitational recoil [107,108]. If
the magnitude vy;y of this kick velocity exceeds the escape
speed of the host cluster, i.e., vy > Vo, the remnant BH is
removed and does not merge again. Otherwise, it remains
inside the cluster and can undergo subsequent mergers. The
estimated remnant mass and spin magnitude are retained,
while the spin directions are resampled isotropically. This
pairing, merger, and ejection procedure is iterated until a
single BH remains.

For each merger, we record the source parameters
0 = {Mcv q’)(effs)(p}- In particular, M. = (mlm2)3/5/
(my + my)'/3 is the chirp mass, ¢ = my/m; <1 is the
mass ratio, y. € [—1, 1] is the effective aligned spin [109],
and y, € [0,2] is a suitable parameter encoding the dom-
inant effect of orbital-plane precession; for the latter, we use
the augmented definition of Ref. [110], which consistently
averages over the precessional motion including effects from
both component spins. While this definition of y,, is still a
frequency-dependent quantity over the inspiral timescale,
recent work has shown that the influence of the GW
reference frequency at the population level is currently
subdominant compared to measurement errors [36]. In the
simulated populations, we measure y, at the reference
frequency of 20 Hz.

Additionally, we record whether each merger is that of
two first-generation BHs (1g + 1g) that produces a second-
generation (2g) remnant, a first- and second-generation BH
(1g + 2g), or two second-generation BHs (2g + 2g), or
whether it contains a component BH of higher generation
(> 2g). From these, we compute the fraction of mergers

in each generation: fioi1e figi2er S2e42e» and

f>2g =1 _f1g+1g _f1g+2g _f2g+2g~

D. Cosmic placement

The distribution of sources is assumed to be isotropic
over the sky, inclination, and polarization angle. We do not
infer the redshift distribution of BH binaries but consider it
fixed, i.e., independent of the hyperparameters A. Each
merger is placed at a redshift z according to a distribution
that is uniform in comoving volume V. and source-frame
time, 1.€.,

1 dv,
X — .
14z dz

p(2) (4)
An immediate generalization of this work would include
taking into account the longer assembly times of higher-
generation binaries (e.g., Ref. [111]) via their redshift
distribution. This can be implemented with an additional
hyperparameter and will be tackled in future work.

Ostensibly, z € (0, 00), but in practice, there is a detector-
dependent horizon, z,,,x, beyond which binary BH mergers
are not observable. To find a conservative z,,,,, we consider
a series of binaries with aligned maximal spins, equal
masses, and optimal orientation with respect to a single
detector (overhead and face on). These are the loudest
sources for a given total mass and redshift. We compute
signal-to-noise ratios (SNRs) as described in Sec. III C and
find that the entire mass range becomes subthreshold above
an upper bound z;.. = 2.3, which we thus take as the
maximum of the redshift distribution (in agreement with
Appendix E of Ref. [30]).

E. Resulting populations

The above prescription allows us to transform a simple
phenomenological description of first-generation BH pop-
ulations into a complex numerical distribution containing
hierarchical mergers. The combined set of hyperparameters
A=Aa,B,y,8 My, ¥max | are very interdependent, and
changes in their values cause large variations in the
distributions of source parameters € = {M., q. Yefr. Xp}-

The total set of simulated events is {{9;}?;&“}{21
Ny, (') is the number of mergers occurring in the simulation
with hyperparameter coordinate A’. The total number of
mergers occurring at a given hyperparameter coordinate
depends on the distribution of escape speeds, determined by
0. For the numerical setup adopted here, it ranges from

min; Ny, (A) = NyNgy/2 = 1.25 x 10 (when each remnant

where
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- i.e., a cluster catastrophe), and the upper range is populated
by simulations with larger numbers of repeated mergers.
This is demonstrated in Fig. 2, where we plot the branching
- fractions of different merger generations as a function of
the total number of mergers. Four representative cases
among the set of N; = 1000 simulations we performed
- are illustrated in Fig. 3 and labeled based on the qualitative
properties of the resulting source distributions: broad
masses, narrow mass ratio, broad mass ratio, and repeated
- mergers.

If clusters are preferentially formed with larger escape
L speeds, many remnants are retained and proceed to take
- part in hierarchical mergers, leading to multiple modes in
the mass distributions. This is the case for the red curves
L (repeated mergers) in Fig. 3, where 6 = 5.1. Since the
- sharp initial mass function (IMF) (y = 5.5) forms first-
generation BHs with masses that are all very close to the
maximum m,, = 70 My, hierarchical mergers appear
as distinct peaks in the mass distributions. The first
generation of mergers has m; = my = my,,, giving

Branching fraction, f;(\)

1{2 lf4 1T6 1{8
Relative number of mergers, Ny, (\)/ miny N, ()

FIG. 2. Fraction of mergers in our simulations from each binary M.~50 M.. C tional 1
generation as a function of the total number of mergers. The c™ o- TOSS-generational MErgers aiso occur.

simulations are separated into bins equally spaced in the total For example, there is a 1g+2g peak; the peak does
number of mergers and the bin-averaged branching fraction ~ notoccurat g = 0.5 because a fraction 1 — ¢ ~ 5% of mass
of each binary generation—I1g + 1g (blue), 1g + 2g (orange), is lost via GWs [112] such that second-generation BHs
2g + 2g (green), and higher generations (red)—is plotted. Atthe ~ have mass of approximately 2em,,,, implying ¢g=
lower (upper) end, simulations are dominated by mergers 1 /(2€)z0,53 and M, ~ 80 M. Similarly, for a 1g + 3g

between first- (higher-) generation BHs. merger, one has g~ 1/[e(2e+1)]~0.36, which explains
o ) the third peak observed in the red curves of Fig. 3.
BH is ejected, so only first-generation mergers occur) to When more first-generation BHs are born with large

max; Ny, (4) :.N alV BH — 1~2.5x .106 (th}n BHs are  gpins, set by yp.c fewer second-generation mergers occur
repeatedly paired with the same single retained remnant,  due to the larger imparted recoils [74]. On the other hand,

T T S ‘ : :
| 4] [ Broad masses
) 20 r Narrow mass
) ratio
0.101 [ 151 P37 r Br(_)ad mass
1 ratio
] Repeated
104 27 [ mergers
0.051 F L
5710 e AR L 14 L
0.00 -4 : 0 'Plh\*—"ﬂ‘ == 0 LN : ,

20 40 60 8 100 0.0 0.2 04 06 08 1.0 -08 —=04 0.0 04 08 0.0 0.5 1.0 1.5 2.0
M. /Mg q Xeff Xp

FIG. 3. Example marginal distributions of chirp mass M, mass ratio ¢, effective aligned spin y.s, and our precession parameter y,, for
different population parameters A = {a, 3, 7, 8, Mpax, ¥max |- We select four of our simulations to illustrate different features of the resulting
binary BH distributions. In blue, we show broad masses, A = {—1.7, 1.7, =0.5, —=3.4,96 M, 0.57}; this set of hyperparameters results in a
large range of binary BH masses due to a high maximum first-generation mass, broad mass function, and broad binary pairing probabilities.
In orange, we show narrow mass ratios, 1 = {—8.8,8.3,6.8,—4.1,40 M, 0.43}; binaries are preferentially selected with equal
component masses due to pairing probabilities that favor the lightest primary BHs and heaviest secondary BHs. In green, we show broad
mass ratios, 4 = {9.2,-9.8,-0.5,-4.0,74 M, 0.50}; the pairing slopes produce binaries with the heaviest primaries and lightest
secondaries, resulting in an extended range of mass ratios peaking at lower values. In red, we show repeated mergers, 4 = {4.1,3.1,5.5,
5.1,70 M, 0.37}; clusters are preferentially generated with large escape speeds, boosting the presence of repeated mergers, which appear
as multiple narrow peaks in the mass distributions. The lower maximum natal spin causes a narrow peak around y.; = 0; the occurrence of
repeated mergers extends the tails of the y. distribution and creates a secondary peak in the y,, distribution.
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if natal spins are small and repeated mergers do occur, the
distribution of effective spins features a sharp peak at
Yot = 0 from first-generation mergers as well as extended
tails from high-generation mergers, as is the case for the
red curve in the third column of Fig. 3. The y.; distri-
butions are always symmetric about zero due to the
assumption of spin isotropy. For the 1g + 2g populations,
the 2g BH spin is approximately 0.7 [17] and, because in
this case y. = 0.37, is typically higher than the spin of
the 1g BH. In this limit, one has y, ~ \/0.7> — 4y2; ~ 0.7
[76], thus explaining the secondary peak in the y,
distribution.

Whether higher-generation BHs pair with other BHs of
equal generation or form cross-generational binaries (e.g.,
1g + 2g) depends on the pairing slopes @ and S. If a, p,
y = 0, then the first-generation mass distribution is broad,
and binary components are selected with uniform proba-
bilities leading to an extended range of mass ratios, as seen
in the blue “broad masses” curves of Fig. 3. If a, >0
(a, p < 0), the heaviest (lightest) BHs are preferentially
selected for both binary components, leading to a heavier
(lighter) first generation of approximately equal-mass
binaries. If « <0 and >0 (a> 0 and f <« 0), then
the lightest (heaviest) primaries and heaviest (lightest)
secondaries are paired, leading to mass-ratio distributions
that are sharply peaked at unity (broad and peaked at lower
values), as seen in the orange “narrow mass ratio” (green
“broad mass ratio”) curve of Fig. 3. In the case of narrow
mass ratios, given the maximum first-generation mass
My 40 Mg and since g = 1, the chirp mass peak is
located at M. =35 M,

III. DEEP-LEARNING-ENHANCED
POPULATION INFERENCE

Although challenging to treat, a set of highly degen-
erate hyperparameters makes our simplified population
model indicative of realistic applications where GW
events are modeled using, e.g., stellar population-
synthesis codes. As shown below, deep learning is the
ideal tool for such a complex scenario. First, we review
the key ingredients that enter hierarchical Bayesian
inference to recover the hyperparameters of a population
model given GW data from a catalog of mergers
(Sec. IIT A). We then present our method to model the
population prior (Sec. IIIB) and selection effects
(Sec. III C) using deep learning. We use similar tech-
niques to model the branching fractions between different
merger generations (Sec. III D).

A. Hierarchical Bayesian inference

Given observational data d = {d,, } *» of Ny, indepen-
dent GW events and a population model ppop, our goal is to
infer the parameters A governing the shape of the underlying
distribution of binary BH source parameters 9. The

distribution of predicted sources is given by dN/d89 =
Nppop(8]2), where [ poop(9]4)dd = 1 is normalized over
the entire domain of source parameters. Here, we have
separated the parameters that determine the shape A and
overall scale N of the population. Note also that 9 D € is a
superset of the source parameters 6 = {M.. q. yefr. ¥p} We
wish to model and additionally contains, e.g., redshift, sky
location, inclination, etc. In our case, the extra parameters
do not depend on the population-level parameters, such
that ppop(8]4) = Ppop(0]4) Ppop(6), where 6 = 9\@, and
the normalization over § implies that [ pp,.,(0]4)d6 =

fppop(é)dé =1.

1. Selection effects

We wish to infer the observable population of merging
BHs from the small subset that we have observed. This
requires modeling detector selection effects. The expected
number of detectable sources for a given population
model is

Net (4 //d&d Pgei (9, 1)dddt, (5)

where Py (8, t) is the probability that a binary BH
with source parameters 9 is detectable at an observation
time ¢ (this is a probability and not a probability density,
as distinguished by the use of capital P). We describe
the calculation of Py, in Sec. IIIC1. The detection
efficiency—i.e., the fraction of detectable events given
the population model—is given by

6(1) — Ndet

// Poon (91 Pact(8.1)8d, (6)

where we have assumed equally likely arrival times of GW
signals at the detectors over the observing period of duration
T. The integral over time indicates that we must account
for the detector duty cycle and change in sensitivity over
observing epochs. We approximate the sensitivity as con-
stant within each observation period: the combined first and
second run (O1 + O2) and the third run (O3). The corre-
sponding two-detector observing periods are 7o 0p &
166 days [3,113] and T3 =~ 275 days [4,6], respectively.
With this approximation, the time integral reduces to the
weighted average [26]

D=3 [ palOPsct. a0, (D

where r € {O1 + 02,03} indicates the observing run
and corresponding instrument sensitivity, and T =
To1102 + Tos 1s the total observing time.
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2. Population likelihood

Including selection effects, the likelihood of the GW data

{dn} * given the parameters A of our population model is
(see, e. g Refs. [25,26])

obs

L(d|2, N) = e~Neal®)

£(d,)9,)d9,. (8)

The single-event likelihoods £(d,|d,) may be rewritten
using Bayes’s theorem as L£(d,|9,) x p(39,|d,)/=(3,),
where p(9,|d,) is the posterior on the source parameters
for the nth event as inferred by parameter estimation, and
7(8,) is the prior used in that analysis (which may differ
event to event). Using Bayes’s theorem again, the posterior
distribution of population parameters is given by

p(/1|d) - ﬂ(l) ﬁ O-<1/1) / ppop<'9r;!({;p)('9n|dn) d19n’ (9)

where we have marginalized over the rate parameter N with
a scale-independent prior z(N) o 1/N [114] and 7 (1) is the
prior over the remaining shape parameters. The priors on
the parameters m,,, and y.« are uniform over the ranges
listed in Table I. The priors of the power-law indices a, f, 7,
and § are uniform over [—8, 8]; these prior bounds lie within
the training data range, and we checked that resulting
posteriors are robust to more stringent constraints.

3. Factorization of the observed volume

While the integrals in Egs. (7) and (9) are formally
defined over the entire domain of source parameters, in
practice, they can be safely performed within the observ-
able volume Vi, := {9:7 < 7. = 2.3}, beyond which the
detection probability is zero, as discussed in Sec. II D. Even
if ppop models the binary BH population outside of Vy, as it
appears in both the numerator and through o(4) in the
denominator of Eq. (9), one can safely assume that
th Ppop(8]4)d8 = 1.

Since it will be useful in Sec. III B, we define the
observed volume V, :={9:p(8|d,) >0 V n} CV, as
the subset of the observable volume beyond which
all single-event posteriors p(9,|d,) vanish. For the
events considered in this work (see Sec. II[ A4
and the Appendix), we find that V, corresponds to
M. € [5,105] M, while for g, y.s, and y,, we maintain
their natural bounded domains ([0, 1], [-1, 1], and [0, 2],
respectively). It will also be useful to define the pop-
ulation prior of our modeled parameters # normalized
over the observed volume,

Ppop(014)

fv Ppop(0]4)d0” (10)

Ppop(014) =

Since py,p, is normalized over Vy,, we can write this extra
normalization factor as

/V Prn(0100 = T2 < 1. (11)

P

where Ny, (4) is the number of mergers occurring within
the horizon volume V), and N,(1) is the number of
mergers occurring within the subset V, C Vy, given
population parameters A. For convenience, we refactor
this term into the detection efficiency by defining the
selection function

Ny (4)

o'(A) = N, ()

o(2). (12)

By separating the source parameters and noting that our
population prior and the parameter estimation prior over the
unmodeled parameters are equal, i.e., p,,(0)/7(0) =1
the hyperposterior in Eq. (9) may be written as

obi ! 0
ppop(en M>p<9nv n|dn) V
p(4]d) | | = de,do,. (13
| O(JT / ; )ﬂ(9n|9n) n“Yn ( )

Since the parameter estimation prior is placed on detector-
frame masses, we must convert the prior on detector-
frame chirp mass M to the source frame. In particular,
we have 7(0|z) = m(M&, q, yer. xp|2) |OME /OM.|. Since
the Jacobian is |0M%'/oM | =1+ z and the prior on
detector-frame masses is independent of the prior on
redshift for the parameter estimation results we use below,
we have 7(6z) = 7(ME, q, xerr, 1) (1 + 2).

4. Event samples

Given discrete samples {{9,,};", ~ p(9,]d,) }* from
the individual event posteriors, where S, is the number of
samples in the posterior for the nth event, and since these
samples lie, by definition, within the posterior volume V/,
Eq. (13) can be evaluated with the Monte Carlo summation

Nops S, 1
- ppop (en,kM)
p(Ald) . (14
) ecxts ga/ A)S, ; (0 1|20 1) (14)

For each event, we draw prior samples for {M‘clet, q,
Xeft-Xp} and compute 7(M, g,y ,) using Gaussian
kernel density estimates (KDEs) as implemented in SCIPY
[115], modified to enforce reflective boundary conditions
[116]. Each KDE is then evaluated on the single-event
posterior samples. Equation (14) is sampled using DYNESTY
[117] and BILBY [118].
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We select the confident binary BH detections made
during the first (O1), second (02), and third (O3) observ-
ing runs, employing a threshold minimum false alarm rate
(FAR) of less than 1 yr~! across all search analyses. This
results in a catalog of N, = 69 binary BH events. For the
events in O1 and O2, we use samples” from the reanalysis
of Ref. [119] because the precession parameter y,, depends
on the azimuthal spin angles whose posteriors were not
released in GWTC-1 [3]. For the events in O3, we take
the posterior samples combining analyses with waveforms
including both precession and higher-order modes as
provided by the GWTC-2® [4], GWTC-2.1* [5]
(PrecessingSpinIMRHM), and GWTC-3’ [6] (CO1:
Mixed) data releases. We list all of the events that enter
our analysis in the Appendix.

B. Population model

The results of our simulations are lists of binary BH
mergers, characterized by source parameters 8 = {M, q,
Xeif-Xp}» at each of the N; = 1000 population parameter
coordinates, A = {a, 5,7, 5, Muyax> ¥max - Our approach to
modeling the resulting population distribution pp,,(6]4)
employs a combination of probability density estimation
and regression algorithms.

1. Density estimation

At each of the hyperparameter locations {/1"}?]:“1, we
evaluate the conditional population density pp,,(6|A") with
a Gaussian KDE. To efficiently evaluate pj,, with suffi-
cient resolution in the four-dimensional space of source
parameters, we use a version of the convolution-based
implementation in KDEPY [120], which we modify to
enforce the parameter limits (Table I) with reflective
boundary conditions [116]. With this method, density
estimations of multivariate data with millions of samples
evaluated on millions of points take seconds on a standard,
off-the-shelf machine, compared to hours with standard
KDE routines (the evaluation points must, however, lie on
a linearly spaced Cartesian grid that bounds the data
extrema). Each dimension is individually scaled with
bandwidths determined by the Improved Sheather Jones
(ISJ) plug-in selection rule [121,122]. The ISJ algorithm
does not make the assumption of normality on the under-
lying distribution and, as such, is more robust when
determining optimal bandwidths for non-Gaussian multi-
modal distributions. We evaluate each of the N; KDEs on a
linearly spaced Cartesian grid, including the parameter
bounds, with 21 points in each axis.

Zdec i g0.0rg/LIGO-P2000193/public.
3gw—openscience.org/GWTC—Z.
4gw—openscience.0rg/GWTC—2. 1.

3 gw-openscience.org/GWTC-3.

2. Regression with a deep neural network

Elucidating the scale of the regression problem, there
are 21* ~2 x 10° KDE evaluations estimating pj,(6]4)
over the combined ten-dimensional vectors of source and
population parameters (6,4) at each of the N, = 1000
hyperparameter locations. While the KDEs approximate
the N, functions {6 > pj,,(0]4") f.V:’*l, we must also inter-
polate over the population parameters to find an accurate
mapping (6, 4) = ppop(0]4).

To achieve this result, we make use of a fully connected
DNN implemented with Google’s TENSORFLOW deep-
learning library [123]. The network performs a regression
of the KDE values of pj,, over the space of (6,4)
coordinates. As a preprocessing step, we normalize all
coordinates (6, 1) to a unit hypercube using the limits given
in Table I, while the values of py,, are similarly scaled
between zero and their maximum. The input layer has
dim(0) + dim(4) = 10 neurons, while the output layer has
one neuron with enforced non-negativity corresponding to
the predicted value of the probability density. Between the
input and output layers, the network architecture consists of
five hidden layers, each with 128 neurons. We summarize
the network architecture in Table II. The number of
parameters in a given layer is given by the number of
weights (equal to the product of the number of neurons with
that of the preceding layer) plus the number of biases (equal
to the number of neurons).

We use randomized leaky rectified linear units
(RReLUs) [124] in each layer. This modifies the standard
rectified linear unit (ReLU) activation function, given by
ReLU(x) := max(0, x), in two ways. First, leaky ReLU
activation functions are maps x — max(0, x) + min(0, ax),
where a € [l,u] is a parameter fixed to a small number;
i.e., the positive region is linear with unit slope, while
the negative region is linear with slope a. Second, the

TABLE II.  Architecture of the DNN that emulates the simu-
lated populations by predicting the conditional density py,(0]4)
of the source parameters € given population-level parameters A.
Each row represents a single layer of the network and lists the
number of neurons in the layer, the activation function of those
neurons (RReLU for the hidden layers and absolute value for the
final output), and the corresponding number of free parameters.

Layer Neurons Activation Parameters
Input 10 e 0
Dense 1 128 RReLU 1408
Dense 2 128 RReLLU 16,512
Dense 3 128 RReLLU 16,512
Dense 4 128 RReLU 16,512
Dense 5 128 RReLU 16,512
Output 1 Absolute value 129
Total 67,585
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randomized leaky variant RReLU samples a uniformly in
[/, u] during training and fixes a = (I + u)/2 when making
predictions (we keep the default values of [ = 1/8 and
u = 1/3 [124]). Empirically, we find that, among other
ReLU variants and nonlinear activations, RReLU gives the
best predictive performance while reducing overfitting to
the training data.

We split the N; = 1000 simulations into a training data
set of 900 runs and a validation set of 100 runs. The
validation sample is unseen by the training process except
to assess the network performance. The training data input
to the network, which is randomly shuffled at each
iteration, thus consists of approximately 1.75 x 10® values
of the ten-dimensional vector (6, 1) and the corresponding
KDE estimates of pj,(6|4). The network is trained using
the Adam optimizer [125], the mean absolute error (MAE)
loss function, a learning rate of 107#, and batch size equal
to 0.01% of the total number of training data points.
Training is performed for 10* epochs on an NVIDIA
A100 Tensor Core GPU, taking about four days. With
this setup, the number of training epochs is sufficient to
ensure convergence of the MAE; the average gradient of
the (smoothed) validation MAE over the penultimate 100
epochs is less than 0.1% that of the first 100.

When making predictions with the trained NN, the values
are first rescaled from the unit interval to the probability
density parameter space. While the predictions are approx-
imately normalized, the network does not enforce unit
normalization. Therefore, we estimate normalization factors
J Ppop(014)d0 by numerically integrating the predicted
distributions.

In Fig. 4, we summarize the training procedure and
predictive performance of our NN population model.
The convergence of the MAE loss function for the training
and validation samples is plotted in the top panel. The NN
fits slightly better to the training data—the validation
MAE being, on average, about 1.2 times larger—but there
is no significant overfitting. In the bottom panel of Fig. 4,
we quantify this statement by comparing the predictive
accuracy of the trained population model using the
Hellinger distance [126], a metric dy over the space of
probability densities that measures the “distance” between
two distributions. For two probability densities p and g,
it is given by

dulp.af = [ Vo) - ValPax. (19

Here, dy; has the desirable properties of being symmetric
and bounded in [0, 1], with dy(p, ¢) = 0 only when p = g
and dy(p, g) = 1 when p and ¢ have disjoint supports (see
Appendix C of Ref. [127] for a physics-oriented summary
of the properties of the Hellinger distance). For each of our
simulations, we compute the distance between the KDE

1 ! ! ! 1 ! ! ! 1 ! ! ! 1 !
1075_E [ Training 3
ﬁ ] 1 Validation [
E g 7
107° 5 3
——— — — — ‘
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\.\\II\I\\\II\\\\I\I\\\I\\\\I\\\\I\
| :_:: : : Training oo
151 M : : dy = 0.067005 +
1 1f [n I I
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i | I I dy = 0.0670:63
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FIG. 4. Top panel: loss functions versus epoch for the training
(blue) and validation (orange) data of the population density NN
Ppop(0]4). Smoothed versions are overplotted in bold. Bottom
panel: distribution across all simulations of the Hellinger dis-
tances dy between the true KDE evaluations of py,,(0|4) and
those predicted by the NN. The medians and 90% intervals of dy
are plotted as vertical dashed lines and listed explicitly.

evaluation and the NN prediction for the probability
density. While the mild overfitting presents itself as a
small number of outliers at larger values of dy in the
validation distribution, both the training and validation
subsets have median values of approximately 0.06 and are
consistent with each other.

In Fig. 5, we illustrate example predictions from our deep-
learned population model. For a given set of population-level
parameters A, the NN predicts the value of the joint four-
dimensional probability density over the source parameters
0 = {M..q. e xp - For three validation simulations, we
plot the predicted values of py,, (6]4) (solid lines) along with
the true KDE evaluations for comparison (circle markers),
numerically marginalizing to one-dimensional distributions
for the purpose of visualization.

The first example (red) has good predictive accuracy,
with dy = 0.10. Here, we use the same distribution
labeled “repeated mergers” in Fig. 3, with parameters
a=4.1, p=3.1,y=15.5, 0=>5.1, my, =70 My, and
Imax = 0.37. Here, the larger escape velocities and sharp
mass function and pairing probabilities lead to distinct
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FIG. 5. True KDE evaluations (circle markers) of the population density pj,,(0|1) compared against the NN population model
predictions (solid lines) for three validation simulations. The full four-dimensional distributions are marginalized to each one-
dimensional event-level parameter (left to right: chirp mass M, mass ratio ¢, effective aligned spin y.¢, and effective precessing spin y,,)
for the purpose of visualization. In blue, we show the validation simulation that has the worst predictive accuracy, with a Hellinger
distance of dy = 0.30 and population-level parameters a = 6.3, f = =73, y = 1.8, § = 8.7, my,x =46 My, and y,x = 0.01. In
green, we show the validation simulation with the smallest Hellinger distance dy; = 0.02 and a = —1.9, f =5.2, y = 0.5, 6 = -9.4,
Mpax = 67 Mg, ¥max = 0.35. In red, we show a validation simulation (as in Fig. 3) with dyy = 0.10 and whose distribution contains

distinct features due to repeated mergers.

peaks due to higher-generational mergers. Even though
the Hellinger distance of this simulation is greater than the
median value, the one-dimensional marginal predictions
present excellent matches to the true validation data,
accurately capturing all sharp features.

The second case (max dy, in blue) is a very conservative
bound on the performance of our NN, taking the validation
simulation with the largest value of the Hellinger distance
dy = 0.30 (i.e., that with the worst predictive accuracy).
The population parameters are @« = 6.3, f = —=7.3,y = 1.8,
0 =287, My =46 Mg, and y ., = 0.01. While the dis-
tributions of the spin parameters y.; and y,, are still fairly
well captured, the predictions in the mass distributions
suffer from larger errors, though the main features have
been learned. The small value of the maximum natal spin
IYmax = 0.01 leads to sharply peak effective spins
Xeft> Xp 0, while the pairing process generates smaller
mass ratios. We stress that this is the worst case among the
entire validation set and a rather extreme outlier (cf. Fig. 4).
Figure 5 presents the marginalized distributions, while the
model predicts the full four-dimensional density, meaning
errors over the full source parameter are propagated to the
one-dimensional marginals.

The third case (mindy, in green) represents the best
predictive accuracy of our population model, with
dy = 0.02. In this validation simulation, the hyperpara-
meters are a=-1.9, =52, y=0.5, 6§=-94,
Mpa = 67 Mg, and yp. = 0.35, which produces equal
masses and a unimodal distribution in the joint four-
dimensional space of source parameters. Unsurprisingly,
distributions with a simple feature set like this are easier to
learn by our DNN population model.

C. Selection function

1. Detection probability

We assume sources are distributed uniformly in sky
location, inclination, and polarization angle. We estimate
Py with the widely used single-detector semianalytic
approximation of Refs. [128,129], as implemented in the
Python package GWDET [130], which relies on computing
the SNR of optimally oriented sources with the same
intrinsic parameters. This is estimated using PYCBC [131],
the IMRPHENOMPV2 waveform approximant [132—134],
and noise curves representative of the LIGO detector
performance during 0102° and O3’ [135]. While the
analytic marginalization of Refs. [128,129] is, strictly
speaking, only valid if one neglects spin precession and
higher-order GW modes, the impact of these additional
effects is subdominant [50]. Their inclusion requires
further modeling, which has also been recently tackled
using machine-learning techniques [50,51]; we plan to
include these refinements in future versions of our
population inference pipeline. We employ a SNR thresh-
old of 8 [136] and thus set Py, = 0 for all subthreshold
binaries.

At each location in the population parameter space

{2 ?21, we compute Py, for all the binaries in the
simulation. They have parameters {19;}7:“(1” ~ Ppop(9]27),
allowing us to approximate the refactored detection effi-
ciency of Eq. (12) as

6Early high from dcc.ligo.org/LIGO-P1200087-v47/public.
"LIGO Livingston from dcc.ligo.org/LIGO-T2000012/public.
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Ni(2)

r

where the term in brackets is the Monte Carlo approxima-
tion of the integral in Eq. (7).

2. Regression with a deep neural network

To evaluate the (refactored) detection efficiency at
arbitrary values of the population parameters, the function
o' (1) must be emulated using the discrete evaluations at 4.
Here, we also use a DNN with TENSORFLOW [123]. The
network architecture consists of an input layer with
dim(4) = 6 neurons and a linear output layer with one,
corresponding to the predicted value of Ino¢’(1). We add
three hidden layers with 128 neurons each and RReLU
activation. This network architecture is summarized in
Table III.

We split the hyperparameter coordinates into the same
90% training and 10% validation simulations as in
Sec. III B, though note that the training data here consist
only of the hyperparameters A rather than the joint vector
(6,4). As a preprocessing stage, we again normalize the

input values of {4’ ?2, to a unit hypercube and train on

the output values of {In¢’(A))}Y*,, which are normalized
to the unit interval according to the extrema across the
simulations. Predictions are rescaled back to the relevant
parameter space. We use Adam optimization [125] with
a learning rate of 107> to minimize the mean squared
error (MSE) loss function. At each epoch, the training
data are shuffled into batches containing 1% of the
training data. We train the network for 2000 epochs on a
single Intel Core 15-8365U CPU, which took approx-
imately 4 minutes. The training of this DNN is signifi-
cantly quicker than that of pj., since it has input
dimensionality dim(1) =6, corresponding to a much
smaller training sample size of 900 and a smaller
network architecture.

TABLE III.  Architecture of the DNN that predicts the loga-
rithmic selection function In ¢’ (1) as a function of the population-
level parameters 4. Each row represents a single layer and lists its
number of neurons, the activation function used, and the
corresponding number of free parameters. All hidden layers
employ RReLLU nonlinearities.

Layer Neurons Activation Parameters
Input 6 e 0
Dense 1 128 RReLU 896
Dense 2 128 RReLLU 16,512
Dense 3 128 RReLLU 16,512
Output 1 . 129
Total 34,049
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FIG. 6. Top panel: loss function over epochs for the training
(blue) and validation (orange) data of the DNN predicting the
refactored detection efficiency ¢’(1). Bottom panel: relative error
between the true and predicted values of In¢’. The medians and
90% intervals of the errors are plotted as vertical dashed lines.
They are also listed explicitly, as are the magnitudes of the
relative errors.

The performance of our DNN to predict In ¢’ is reported
in Figs. 6 and 7. In the top panel of Fig. 6, we display the
convergence of the loss function over the training epochs;
the average gradient of the (smoothed) validation MSE
over the final 100 epochs is less than or close to 0.5% that
over the first 100. While there is some overfitting to the
training data, we verify the effect is mild, as follows. In
the bottom panel, we display the relative error between the
true and DNN-predicted values of In¢’. Since the median
and 90% symmetric interval for the validation and training
errors are 0.1772% and 0.1733%, respectively, both are
consistent with being centered on and symmetric about
zero; i.e., the DNN introduces no systematic biases. The
magnitudes of the relative errors for the validation and
training sets are consistent with each other and typically
less than or close to 5%; the medians and 90% intervals are
0.8732% and 1.2731%, respectively.

In Fig. 7, we show the dependence of the DNN selection
function on each of the hyperparameters for the same three
example simulations as in Fig. 5. The true values of In ¢/ (1)
are shown with circle markers. The predictions of the DNN
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model DNN. The true value for each simulation is displayed as a circle marker, while predictions made by the DNN are solid lines. In
each panel, we vary a single hyperparameter, while the others are fixed to values in the three simulations.

are given by the solid lines, where in each panel we vary
a single hyperparameter while keeping the others fixed to
the values corresponding to each simulation. For all
simulations, ¢’ is an increasing function of both y—the
power-law index of 1g BHs—and m,,,—the maximum Ig
mass; larger y implies a greater number of BHs born
with masses closer to the maximum m,,,,, while heavier
sources emit louder signals and are thus easier to detect
(though there is also a compromise with the frequency-
dependent—and  therefore, mass-dependent—detector
sensitivity). The simulation containing repeated mergers
(red) consistently features higher values—implying a
larger fraction of detectable mergers in the underlying
population—due to the larger average binary mass.

The mismatch for the least accurate hyperparameter
coordinate of the population model (max d;, blue) is visible
in the offset between truths and predictions. Here, the
selection function also depends on @ and 3, which determine
the primary and secondary pairing probabilities. For this
simulation, the first-generation mass slope, y = 1.8, is quite
broad. A wider range of masses implies that a wider range
of mass ratios are possible when selecting the BHs in the
binary pairing procedure. Higher (lower) values of a (f)
lead to higher (lower) primary (secondary) masses and more
extreme mass ratios, thus decreasing the detectability.
Though repeated mergers occur due to high 6 = 8.7, they
are preferentially of mixed generations, and therefore, larger
0 also leads to lower detectability.

For the validation simulation with the highest population
model accuracy (mindy, green), first-generation masses
are broad since y = 0.5 and larger since m,,, = 67 Mg
(compared to my,,, =46 M for the max dy case). Masses
are paired equally since a = —1.9 selects the lightest
primaries and f = 5.2 selects the heaviest secondaries.
The greater prevalence of higher-mass sources with unity
mass ratios results in a selection function that is higher
(corresponding to increased detectability in the binary BH
population) and flatter (with respect to all hyperparameters
except y and my,,, as discussed).

D. Merger-generation fractions

As a final demonstration of deep-learning techniques
within GW population inference, we train a DNN to infer
the branching fractions f, of the merger generations
ge{lg+1g,lg+2g,2g+2g,>2g}, as defined in
Sec. IIC. It is important to note that, unlike the case
of branching ratios in mixture population models (e.g.,
Refs. [49,111,137-139]), these fractions are not hyper-
parameters themselves but are functions of the model
hyperparameters A. In particular, f,(1)= [ ppop(0]4)
7,(0,2)d0, where 7,(0,1) is a selector function that
labels the merger generation, such that }_ f (1) = 1.
Our application to the fraction of systems in each
hierarchical generation is an example of the more generic
problem of constraining formation subchannels that enter
a single population.

We use the same training process and network architec-
ture as in Sec. III C 2, with one modification. Since the four
branching fractions form a discrete distribution with unit
sum, the output layer here has four neurons and employs
the activation function softmax(x); = exp(x;)/_; exp(x;),
where x; are the components of the input vector x. The
architecture of this DNN is summarized in Table IV.

In Fig. 8, we plot the converged MSE loss curves. Once
more, we assess the accuracy of the DNN predictions
against the true generation fractions on the training and
validation data sets using the Hellinger distance, which, for
discrete probability densities p and ¢, is given by

dy(p.qP = 1= 3 VBl (17

The performances on training and validation subsets are
consistent with each other, representing a lack of overfitting.
Both have median Hellinger distances of dy ~ 0.01 with
dy < 0.1 for most simulations. The enforced unit summa-
tion implies the branching fraction emulator in fact has
only three independent outputs despite predicting four

103013-13



MOULD, GEROSA, and TAYLOR

PHYS. REV. D 106, 103013 (2022)

TABLE IV. Structure of the DNN that models the branching
fractions fg11g, f1g42e> S2e42¢» a0d [y, between the binary
merger generations, where, e.g., 1g (2g) denotes a first- (second-)
generation component BH. The rows illustrate each layer of the
network and report the number of neurons in each, their activation
functions (RReLU for the hidden layers and softmax for the
output layer), and the number of free parameters.

Layer Neurons Activation Parameters
Input 6 e 0
Dense 1 128 RReLU 896
Dense 2 128 RReLU 16,512
Dense 3 128 RReLU 16,512
Output 4 Softmax 516
Total 34,436

contributions, and in many of our simulations, one or more
of the generation labels has zero contribution (e.g., no
higher-generation mergers when all remnants are ejected
from the host cluster). Both of these considerations produce
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FIG. 8. Top panel: loss functions over training epochs for the

training (blue) and validation (orange) data of the DNN predict-
ing the branching fractions fg1e, f1g12¢> f2g12¢ @and f52,. The
actual loss curves are plotted with shading, and smoothed
versions are overplotted in bold. Bottom panel: Hellinger dis-
tances between the discrete distributions of the true and DNN-
predicted merger-generation branching fractions. The medians
and 90% confidence intervals are plotted as vertical dashed lines
and listed explicitly.

a tendency for small values of the Hellinger distance, which
explains the skew towards dy < 0.01.

In Fig. 9, we display the dependence of the DNN to
predict the branching fractions f,(4) on the hyperpara-
meters A for the same validation simulations reported in
Figs. 5 and 7. As in Fig. 7, the true values computed from
the simulated data are given by circle markers, while
predictions made by the DNN are plotted as solid lines
where a single hyperparameter is varied while keeping the
others fixed. We only display the variation with the power-
law indices {a.f.y.6} as we found each f,(4) to be
independent of the maximum first-generation mass m1,,,
and spin y.. in these cases. Each branching fraction
depends most strongly on the distribution of escape
speeds—as determined by the power-law index 6—and
the primary binary component pairing probability index «a,
whereas the indices of the first-generation mass distribu-
tion y and the secondary component pairing f are less
impactful.

O Validation — Prediction
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FIG. 9. Example evaluations of the DNN predicting the binary
merger-generation branching fractions f,(4), g€ {lg+ lg,
lg+ 2g,2g + 2g, > 2g} (from top to bottom rows), as a function
of the hyperparameters A. The results for hyperparameters taken
from three illustrative simulations as in Fig. 5—repeated mergers
(red), and least and most accurate population predictions (max dy
in blue and min dy in green, respectively)—are presented. The
true values of the generation fractions are plotted as circle
markers, whereas DNN predictions are given by solid lines. In
each column, a single population-level parameter is varied while
keeping the others fixed to those from the simulations.
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When 6 < 0, the host clusters all have small escape
speeds, and therefore, the branching fractions of sources
with a remnant BH are close to zero, i.e., fio41, 7 1, as
seen in the rightmost column of Fig. 9. With a fixed
negative o, as in the case of the green simulation, the
branching fractions become independent of the other
hyperparameters as no repeated mergers take place. On
the other hand, when & becomes positive, escape speeds are
typically larger and repeated mergers can occur, so the
contribution to the population from first-generation-only
binaries decreases, i.e., figy1, < 1.

Which binary generation then begins to dominate the
population depends on the BH pairing process. When
heavier (lighter) primary components form binaries due to
a fixed a > 0 (a < 0), as is the case for the red and blue
(green) simulations, > 2g higher-generation (equal sec-
ond-generation 2g + 2g), binaries preferentially populate
the merger distributions. For small positive §, the con-
tribution from binaries of mixed first and second gen-
erations increases, but it is reduced at larger ¢ in favor of
higher-generation mergers. For fixed positive § (red and
blue simulations), larger primary pairing indices a select,
with increasingly strong preference, the heaviest remnant
BHs in the population to form new binaries, thus increas-
ing the fraction of greater-than-second-generation bina-
ries, i.e., [y, ~ 1, while reducing the prevalence of other
generations, as seen in the leftmost column of Fig. 9. The
branching fractions are flat for a < 0 if, as for the blue
simulation, y < 0 because all first-generation BHs are
typically lighter; therefore, reducing low-mass primary
selection bias (i.e., making « less negative) has little effect.
In contrast, when y > 0 as in the red simulation, first-
generation BHs are heavier, and increasing a while
keeping p fixed will select heavier primaries relative to
the secondaries, therefore favoring 1g + 2g binaries.

IV. VALIDATION WITH MOCK CATALOGS

To test the inference pipeline in the absence of detection
biases and single-event measurement uncertainties (equiv-
alent to the limit of large SNRs) and without systematics
due to the DNN population, we generate mock GW
catalogs by drawing binary BH mergers from our DNN
population model py,,. Since for the technical reasons
discussed in Sec. III A this distribution is bounded in chirp
mass, these draws are inherently taken from that range
(listed in Table I). This also means that the selection
function constructed in Sec. III C cannot be used in this
mock inference; ¢’(4) is defined over the entire range of
source parameters, not just the observed range, and also
accounts for the required missing factor between pp,(6]4)
and pp,,(0]4). Including selection effects would require
training a different model for the detection efficiency, and
thus our tests would include ingredients that do not enter
the actual inference of Sec. V. Another technical difficulty

is that we model two effective spins, y.¢ and y,, while the
detection probability Py, in principle, depends on all six
spin degrees of freedom. Creating a mock catalog of
observable GW events, i.e., taking samples from the
detection-weighted population P (0) ppop(0|4), would
require assuming an effective lower-dimensional depend-
ence or resampling full spin vectors consistent with the
sampled values of y. and y, (cf. Ref. [44] for a more in-
depth exploration of these issues). However, correctly
including spin information in selection biases has a
measurable effect at the population level [36].

For testing purposes, we consider the high SNR limit, in
which all events are detectable and their source parameters
are measured exactly. This corresponds to a selection
function 6 = 1 and a single-event likelihood £(d,|0) =
5(60—0,) for the nth GW event in the catalog. From
Eq. (8), the population-level likelihood is thus given by
L(d|2) o [T Ppop(04]4) (Where the statistical details are
otherwise equivalent to Sec. IIT A). We draw N, = 50,
100, 200, 500 events to create increasingly large catalogs
(and in going from, e.g., 50 to 100 events, the first 50 are
added when increasing the catalog size) with source
parameters 6, (n =1,..., Ny, using rejection sampling
of ppop. We repeat the analysis 5 times with new catalogs
to assess the impact of population Poisson fluctuations on
the inference. To enable a conservative mock catalog test,
we fix the true hyperparameters to those of the validation
simulation with the lowest predictive accuracy for the
DNN population model (maxdy in Figs. 5, 7, and 9):
a=03, f=-73, y=18, 6§ =87, my, =46 M,
and y . = 0.01.

We present the results of our mock inference runs in
Fig. 10. The one- and two-dimensional marginal posterior
distributions of the hyperparameters are plotted, where the
two-dimensional panels display the 90% contours. The solid
black lines denote the true values listed above. In the left
panel, we fix the number of observations in the catalog to
Nops = 100 and perform five independent repetitions of
the analysis with five different mock catalogs, given by the
different colored curves. Each run is consistent with both
the injected hyperparameter values and each other at the
90% level, though there are significant fluctuations between
realizations. Recall that the single-event likelihoods neglect
measurement errors; relaxing this assumption and including
nonzero widths in those posteriors would decrease the
overall accuracy of the hyperparameter measurements and
thus blend the results from independent realizations to
distributions with greater consistency. Increasing the number
of observations in the catalog improves the hyperparameter
measurement error and reduces the statistical fluctuations
between realizations; we take N,, = 100 here to approxi-
mate the current size of real catalogs [6].

The impact of the growing size of the catalog is
illustrated in the right panel of Fig. 10. Here, we choose
one particular realization and analyze the catalog as
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FIG. 10. One- and two-dimensional marginalized posteriors of the population-level parameters A = {a, 3,7, 5, Mmay» Ymax }» COITE-
sponding to the max dy simulation of Fig. 5, as measured from inference runs without measurement errors and selection biases
(corresponding to the high SNR limit), and systematics from the DNN population model by drawing mock GW catalogs directly from py,.
For the joint two-dimensional panels, each contour encloses the 90% credible region for a single analysis. Injected values are marked with
black lines. Left panel: number of observations in the catalog fixed to N, = 100 and five independent realizations of the inference with
distinct events performed, each represented with a different colored curve (Reps. 1-5). Poisson fluctuations emerge as variations in the
Bayesian measurements of the population-level parameters. Right panel: hyperposteriors for mock catalogs drawn for Rep. 1 on the left
presented for an increasing number of observed events, Ny, = 50, 100, 200, 500 (light to dark shading). Larger catalogs break
degeneracies between parameters, and the resulting posteriors converge upon the true hyperparameters with tighter constraints.

increasing numbers of events are added incrementally
(light- to dark-blue curves). We recover the expected result:
The posterior constraints become tighter as N, increases
from 50 to 500 while remaining consistent with the true
hyperparameter values at the 90% level. Larger catalog
sizes also break degeneracies between parameter pairs,
e.g., the f-y correlations, and remove posterior support in
regions far from the truth, e.g., in the column for a.

If the events from the mock catalogs are instead drawn
from the simulated populations used as validation samples
when training the py,,,, one may expect a systematic bias in
the recovered hyperposteriors as the number of observa-
tions increases due to mismodeling in the trained NN.
Indeed, when repeating the above analysis but injecting
from simulated validation data while recovering with the
NN, we find hyperposteriors that can exclude the injected
values at 90% confidence for the lowest accuracy (max dp)
simulation considered above when N, > 100. However,
this point is a considerable outlier in terms of accuracy (see
Fig. 4). For most regions in the hyperparameter space, the
mismodeling between injection and recovery remains
consistent at 90% confidence. In particular, we verify that
this is true for the validation simulation whose hyper-
parameters are closest to the recovered medians in Sec. V,
suggesting our inference on the GWTC-3 catalog below is

robust within the measurement uncertainties. While the
tests performed here are admittedly limited in scope, they
allow us to assess the renormalization and sampling
capabilities in the pipeline.

V. POPULATION FROM GWTC-3

In the following, we infer the population properties
of the binary BHs in GWTC-3 given our deep-learned
population model of hierarchical mergers. In Fig. 11, we
present the result of our population inference—the pos-
terior distribution of the hyperparameters 1. Along the
diagonal is the one-dimensional marginalization of each
hyperparameter, while the other panels display the 50%
and 90% confidence intervals of each two-dimensional
distribution.

A. Host escape speeds

We begin with the properties of host environments. We
consider clusterlike hosts—simply collections of individ-
ual BHs that may be paired to form binaries—which are
solely characterized by their escape speeds v... Recall
that the simulated clusters are distributed according to a
truncated power law p(ve|8) o¢ v, with 0 kms™ < v
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FIG. 11.

One- and two-dimensional marginal distributions of the population-level parameters A = {a, 5,7, 8, Mpax, Ymax} i0 OUT

model of hierarchical mergers as measured using the real GW data from the confident (FAR < 1 yr~!) binary BH events through
GWTC-3. In each two-dimensional distribution, the contours enclose the 50% (dark shading) and 90% (light shading) confidence
regions. The one-dimensional median and symmetric 90% intervals are reported above each diagonal and are plotted as vertical

dashed lines in the corresponding panels.

< 500 kms~!. The value of each cluster’s escape speed
controls whether repeated mergers take place since
sources receiving larger gravitational kicks are ejected.
Though a power-law distribution is a simplified model, it
is indicative of a preference (or lack thereof) towards
either edge of the domain.

The marginal distribution of the escape-speed index ¢ is
displayed in the fourth diagonal entry in Fig. 11. Negative
(positive) values of § indicate an escape-speed distribution
favoring lower (higher) values, while 6 = 0 corresponds to

a uniform distribution in v.,.. We report a median and
symmetric 90% interval of § = —0.47(3, corresponding to
an escape-speed distribution biased toward smaller
values though consistent with uniformity within the
90% credible bounds.

In Fig. 12, we display the distribution of escape
speeds reconstructed from the hyperposterior p(8|d).
Marginalizing the escape-speed model p(v..|6) over the
uncertainty in the hyperparameter 6 returns the posterior
population distribution (PPD)
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FIG. 12. PPDs of cluster escape velocities v, (blue), and of
gravitational recoils vy, for binaries consisting of two first-
generation BHs (orange). The orange distributions are normal-
ized over a range extending beyond the upper v, limit, as
indicated by the arrow. The colored shaded bands contextualize
the velocity scale by denoting the typical escape speeds of
globular clusters (green) and nuclear star clusters (purple).

PPD(v4..) = / pvacld)p@ld)ds.  (18)

whereas the posterior uncertainty is displayed interior to the
5% and 95% quantiles of p(ves|6), with 6 ~ p(5|d). For
context, order-of-magnitude estimates of the escape speeds
of globular clusters (GCs; <100 kms~') and nuclear star
clusters (NSCs; <500 kms~!) are shown as horizontal
colored bands [97-99]. Additionally, we display the PPD
of gravitational kicks, vy, received by the 1g + 1g sources
implied by our population model and hyperparameter
constraints. Recall that, since the first-generation and binary
pairing distributions have parametric forms (see Sec. II), the
1g + 1g distribution does also (i.e., power-law mass dis-
tributions, uniform dimensionless spin magnitudes, iso-
tropic spin directions; we present the measurements of
the population-level parameters governing this distribution
in the following sections). Though GW kicks peak at about
200 kms~!, the distribution of escape speeds features
support across the defined range up to v, =500kms™!.
For these 1g+ lg sources, we find that P(vy <
500 kms™') = 0.85700¢ and P(vjie < Vesc) = 0.375015,
implying that host environments can retain the kicked
remnants of a portion of first-generation mergers and
support a population of hierarchical BHs.

B. Mass distribution

First-generation BHs—those born in stellar collapse—
are drawn according to p(myg|y, Mpyyy) m’l’g, with
5 Mg < myy < mp,, providing a mass limit corresponding
to the lower (upper) edge of the purported upper (lower)
mass gap. We recover y = —1 .4f8:j, implying lighter BHs
closer in mass to 5 M (chosen here to conservatively
rule out NS and ambiguous source classifications) prefer-
entially populate the underling population. Negative 1g
mass power-law exponents are expected, and they reflect
the stellar IMF [140].

If first-generation BHs are drawn from this single power-
law prescription, we find a first-generation upper mass limit
of My = 38738 M. The presence of events in the GW
catalog with component masses greater than 50 M, already
points to the possibility of hierarchical mergers. Theoretical
and simulated estimates of a mass gap location due to PISN
typically predict m,, ~50 My, but they range within
40 Mg S mypa S7T0Mg (or even higher [141]) due to
varying assumptions on key uncertain parameters [12,13].
For comparison, taking the POWER LAW+PEAK GWTC-3
analysis of Ref. [31]—which features a Gaussian peak with
mean u,, to model mass buildup, potentially due to PISN—
we find consistency within 90% credible bounds between
the inferred p,, = 34&8 M o and my,,,. Note, however, that
while m,, is a sharp cut specifically characterizing the
first-generation BH mass limit, the model of Ref. [31]
parametrizes all BHs in a single distribution and y,, is only
the mean of a broadened feature, such that m,,,, and u,, are
not directly equivalent. In our case, BH with masses larger
than m,,,, are accommodated with hierarchical mergers.

Here, we point out a key distinction of our modeling
procedure: We assume all first-generation component BHs
are drawn from a shared distribution (above), and then
binary formation is separately modeled with component
pairing probabilities p(m;|a) « m{ and p(m,|f, m;) x mg
(my < my). This choice differs from, e.g., POWER LAW
+PEAK [31], which models each component mass distri-
bution with multiple features superimposed on a
power-law distribution. One may be tempted to think that,
e.g., the primary mass distribution is equivalent to
p(my|@) p(my |y, Mmpe) &« m§™" (and similarly for secon-
dary masses), however, this applies only to Ig-+1g
binaries. Our DNN population model additionally captures
the interdependence between binary pairing and remnant
retention. In short, the power-law indices parametrizing the
distributions in this work are not directly comparable to
such models. We infer a = —1.2707 and = —2.21%
such that both component pairing probabilities are bottom
heavy with positive power-law indices ruled out at the
90% confidence level.

Having reported the inferred population-level parameters
governing the binary BH distributions, we now turn to the
implied source-parameter PPDs given by
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distributions of primary and secondary masses, m; and m,, respectively (left panel), as determined by our DNN population model and
Bayesian analysis of the binary BH merger events in GWTC-3. The solid blue lines represent the PPDs, while the dashed lines enclose
the 90% symmetric confidence intervals (shaded). In the left panel, the vertical gray band encloses the 90% confidence interval for the

maximum mass of first-generation BHs, m,,,,.

PPD(6) = / Phoo(012) p (A1), (19)

such that the astrophysical distribution of each source
parameter is given by the one-dimensional marginalizations
of PPD(0). In Fig. 13, we present the inferred source
distributions of the modeled mass parameters—chirp mass
M, and mass ratio g—and the implied distributions of
primary and secondary masses, m; = M.(1+ q)'/°/¢*/>
and m, = gm, respectively. Each PPD is plotted as a bold
solid line, while the symmetric 90% confidence region of
each marginal pp,,(0|4) with 1~ p(A|d) is represented by
shaded bands. The chirp mass distribution peaks at the
minimum value 5 M allowed by our model before an
approximately exponential decline, with M, <40 M.
Equal-mass binaries are preferred in the underlying pop-
ulation, the mass-ratio distribution having a peak at ¢ = 1
but with a broader linear decline down to g 2 0.1.

Substructure is apparent in the distributions of compo-
nent source masses, corroborating the findings of
Refs. [31,142]. Tighter constraints at M. =~ 13 M and g ~
0.6 result in a cusp in the primary (secondary) mass
distribution around m; =20 M, (m, ~ 12 M) between
two features: the peak of the distribution at m; =~ 12 M
(m, ~8 My) and a buildup-following decline at the
first-generation mass limit m,,, ~40 M. This suggests
two contributions to the mass distribution in the range
20Mg <my S40My: (1) first-generation BHs with
masses above the peak of the distribution, and
(2) higher-generation BHs with masses still smaller than
Myax DUt whose parents originally had masses in the peak
10-20 M region. While high-mass outliers above m,,
might be considered as clear indicators of repeated mergers,
the bottom-heavy nature of the stellar IMF implies that
hierarchical mergers may be prominent also for sources
with masses below 7.

The first-generation and combined component mass
distributions are compared in Fig. 14. In purple, we show
the reconstructed distribution of first-generation masses,

PPD(mlg) = /p(mlgb/’ mmax)p(yv mmax|d)d}/dmmaxv
(20)

and in blue, we show the joint distribution of all primary
and secondary masses. The gray shaded band represents
the 90% constraint on the mass limit of first-generation
BHs, m,,,,. Note the logarithmic scale, and that the PPD is
a set of expectation values (i.e., means) and, as such, can
lie outside the region bounded by given quantiles. Though
declining above the first-generation cutoff, the mass
distribution features an extended spectrum above mi,
which cannot result from 1g + 1g mergers. We find that
99% of all BHs have masses less than 5978 M. The
spectrum ultimately abates at m; > 80 Mgy—roughly
2m ., implying a lack of greater-than-2g mergers with
parent components from the upper end of the 1g mass
spectrum—and features multiple small-scale modes in the
intervening region. These observations again point to
hierarchical mergers in the underlying population.

C. Spin distribution

Moving to binary BH spins, recall that the first gen-
eration of BHs are modeled with isotropic spins whose
dimensionless magnitudes are distributed uniformly up to a
maximum y,.. € (0, 1), representing the maximum natal
spin a BH may be born with in stellar collapse. We infer a
value y. = 0.3970¢%. With limited constraining power in
the spin observables, the precise constraints reported here
are likely to be very model dependent. We opt for a uniform
distribution of 1g spin magnitudes because of the large
uncertainties surrounding the spin of compact objects
following core collapse (e.g., Refs. [16,95,96,143,144]);
this is an area where more accurate observations and more
constraining predictions are very much needed. The overall
distribution of spins is determined jointly by the first-
generation distribution, the binary pairing procedure (as
inferred above), the general-relativistic mapping of binary
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FIG. 14. PPDs (in logarithmic scale) of the first-generation BH
masses m, (purple) and the combined distribution of all
components masses m;, m, (blue). The solid lines denote the
means, while the dashed lines bound the shaded 90% symmetric
confidence regions. The vertical gray band encloses the 90%
constraint on the maximum first-generation BH mass, #m1,,,.

to remnant properties, and the ejection or retention of
merger remnants in host environments. While we account
for the dimensionless spin magnitudes of higher-generation
binaries in our population modeling, the spin directions are
resampled isotropically.

A more solid finding we report is that the spins of
1g + 1g binary BHs are limited below the typical dimen-
sionless spin of merger remnants, approximately 0.7 [17].
Hierarchical BHs with much lower spins are extremely rare
[77], yet another indication that some higher-generation
binary BHs are required to fit the data with our model
(cf. Sec. VD). We measure spins using two effective
parameters: The effective aligned spin y.; measures the
binary spin component parallel to the orbital plane [109],

and the effective precessing spin y,, measures the in-plane,
two-spin projection [110]. For sources with negligible,
misaligned, or (equal-mass) oppositely aligned spins, we
have y.; =~ 0, while large positive (negative) values indicate
high aligned (antialigned) spins. Similarly, y, ~ O for spins
that are small, aligned with the orbital angular momentum,
or oppositely aligned in the orbital plane. Nonzero values of
Xp indicate the presence of spin precession, with y, > 1
being a region exclusively occupied by binaries with
precessing spin contributions from both BH components.

Figure 15 displays the PPDs of these two modeled
effective spin parameters. In the left panel, we show the
distribution of effective aligned spins y.;. Here, the
assumption of isotropic spins leads to an overly tight
constraint. This mismodeling enforces a distribution that
is symmetric about and centered on y. = 0, in contrast
with more generic spin models that infer asymmetric
distributions skewed to positive y.; [31] (and thus favoring
alignment) or those that rule out negative y. [34,35].
However, we find that, typically, |y.s| < 0.4, in agreement
with the results of Ref. [31] (GAUSSIAN SPIN model);
in particular, we report |y < 0.46700¢ for 99% of the
population.

On the other hand, the right panel of Fig. 15 shows the
distribution of precessing spins measured with y,,, where,
unlike Ref. [31], we observe substructure; note that,
although they use the earlier y,, definition of Ref. [145],
for the majority of events, the two measurements are
indistinguishable [110,146]. We note that, like for y.,
the uncertainty is likely also underestimated here due to
our modeling assumptions. The distribution features two
prominent modes. The primary one appears at y ~ 0.2. A
peak at y, > 0 is determined by the model, given isotropic
spin directions (as is the case for all merger generations in

—— PPD Y e i
3 T 90% CI 3 . i
“ Mock x, R I ’
| 90% CI i
2] L ' Mock x; I
1 4 - -
0 55222 s 0 ﬂ\
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FIG. 15. PPDs of the effective aligned (y.s, left panel) and precessing (y,,, right panel) spins derived from our DNN population

inference of binary BHs in GWTC-3. The means of the distributions are plotted with solid blue lines, and the symmetric
90% confidence intervals are given by the shaded bands bounded by dashed lines. The inset for the y,, panel shows the same
distribution with logarithmic scaling to highlight smaller-scale features. The dashed purple lines bound the 90% confidence region
of the distributions that are measured when replacing the true parameter estimation results for y,, with mock samples from the prior

for each event in the catalog.
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our model) and uniform nonzero spin magnitudes (as for
the first-generation binaries). A single-peaked distribution
essentially corresponds to the implied y, prior used in
parameter estimation analyses [110]. If this feature is
astrophysical in origin rather than due to our model choices,
however, it may imply that sources with at least moderately
misaligned spins—and thus undergoing spin precession—
make up a sizable portion of the population. The shape and
location of this mode are in broad agreement with the results
of Ref. [31]; see their Fig. 16.

However, in contrast to their finding that y, measure-
ments can be explained by either a narrow distribution with
peak y,~ 0.2 or a broad distribution centered on y, =0
(which results in multimodality when marginalized over the
posterior uncertainty), we find that individual distributions
drawn according to the hyperposterior always decrease at
Xp =0, peak at y, ~ 0.2, and feature a secondary mode
typically around y, ~0.6. While our population model
naturally accommodates such multimodal structure, the
GAUSSIAN SPIN model employed in Ref. [31] only allows
for a single peak and is thus unable to jointly capture the
narrow y, ~ 0.2 peak in addition to the extended distribu-
tion above y, 2 0.5, instead favoring one or the other.

] —— PPD My < Muna | |
3_: 90% CI m1>mmax:_
27 -
1 -
0 e ————
TR TR SN N N TN SN N T [N TN T TN T [N TN SN N T AN SN O TN T (N N N N1
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FIG. 16.  PPD of the effective precessing spin y;, as a function of
the primary mass m, (top panel) and mass ratio g (bottom panel).
The mean distributions are given by the solid lines, and the
symmetric 90% confidence intervals are given by the shaded
bands. In the top panel, we split the y, posterior for primary
masses below (blue) and above (orange) the maximum first-
generation mass mp,,. In the bottom panel, we split the y,
posterior for mass ratios 0 < ¢ < 1/3 (blue), 1/3 < ¢ <2/3
(orange), and 2/3 < g < 1 (green).

Indeed, a single Gaussian distribution cannot fit the
distribution of y,, within the 90% credible bounds.

The inset in the y, panel of Fig. 15 shows the same
distribution with logarithmic scaling to highlight smaller-
scale features. The distribution falls off above the feature at
Xp = 0.6 before a tertiary buildup at y,, ~ 1 and a final minor
mode at y =~ 1.25, with a large decline in between and
eventual declivity beyond. We find minor evidence for a
population of sources occupying the exclusive two-spin

region y, > 1; the 99% quantile lies at y,, = 0.95 fg:log while

P(y,>1)= 0.8102%. There is no support in the popula-
tion for y, 2 1.5.

Turning to the origins of these spin features, the
precessing spin posterior we measure differs from a
population prior with uniform spin magnitudes and direc-
tions due to the inferred constraint y,,,, < 1, leading to a
shift towards lower values and, more importantly, the
feature at Xp ~ 0.6, which is not explainable with such
a model.

To test whether the posterior constraints are really due
to measurements of precession or correlations with other
parameters—primarily the best-measured spin y.; and the
mass ratio g—we repeat the hierarchical inference but
replace the y, posterior for each event in Eq. (13) with
samples from the parameter estimation prior. The measured
90% confidence intervals for the effective spin posteriors
are shown by the dashed purple lines in Fig. 15. The
constraints are qualitatively the same, with only small
differences in the 90% credible regions. The purple y,
distribution favors slightly larger values in the region
Xp < 0.6, suggesting the real precession measurements
from GW data offer some information beyond the param-
eter estimation prior, but the differences are minor. The
most informative constraints originate from the aforemen-
tioned better-measured parameters.

In our single-channel model, a BH with mass above m,,,,,
is necessarily a merger remnant. Since merger remnants
have large spins, this model requires heavy BHs to have
large spins if there are masses above m,,, in the catalog
and natal spins are small, as inferred above. Our DNN
model naturally allows for correlations between parame-
ters, unlike simple phenomenological priors, so we can
assess which masses contribute to the y, ~ 0.6 feature.
In the top panel of Fig. 16, we split the inferred y,
population posterior into contributions from primary
masses m; < My, which can be both first- or higher-
generation BHs, and definitely higher-generation sources
with m; > m,,,. Though the latter, heavier population
of sources necessarily has a preference for larger spins,
the contribution to the y,, distribution from sources with
my < My, still contains the feature at y, =~ 0.6, implying
that this inference is not solely driven by the requirement
for heavy BHs to have large spins. This is a consequence of
the previous conclusion that hierarchical mergers in our
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FIG. 17. Distributions of the branching fractions (left to right: f, 1, f1g12¢> f20+2¢» f>2,) fOr merger generations in the astrophysical
distribution of merging stellar-mass binary BHs, as measured with our deep-learning approach to population inference on the GWTC-3
catalog. The median and symmetric 90% confidence region for each generation fraction is reported above—and plotted as vertical

dashed lines within—the corresponding panel.

model also populate the region m; < mp,, due to the
bottom-heavy mass function.

In the bottom panel of Fig. 16, we similarly observe the
population distribution of y,, as a function of the mass ratio
q. Larger precessing spins are suppressed for more unequal
masses ¢ < 1/3 with the peak lowered to y,, =~ 0.15, while
for mass ratios ¢ > 2/3 closer to unity, it increases to the
slightly larger value y, =~ 0.25. Spins around y, ~ 0.6 are
present for these mass ratios, but the distinct feature is most
prominent for 1/3 < g < 2/3. This region of the parameter
space is prominently occupied by mixed-generation merg-
ers, e.g., 1g + 2g. We verify that this secondary structure is
consistent with repeated mergers in our model as follows.
Starting with the 1g + 1g PPD and binary pairing mea-
surements to compute the distribution of 2g remnant
masses and dimensionless spin magnitudes (computed with
Ref. [100] as in Sec. I C), the distributions of y, for
binaries formed either with a 1g BH and a remnant BH (i.e.,
1g + 2g) or two remnant BHs (i.e., 2g + 2g) both feature
peaks at y,, ~ 0.6. This is because, for 1g + 2g sources, the
dominant contribution to y, is from the primary, which is
more likely to be 2g, while for 2g + 2g sources, the primary
and secondary are more likely to contribute equally such
that their average is similar to the 1g 4 2g case.

D. Merger generations

Given our DNN population model, the observations of the
previous sections suggest the presence of hierarchical merg-
ers in the underlying population of merging stellar-mass
binary BHs. Taking samples 1 ~ p(A|d) from the posterior
distribution of population parameters in Eq. (14), the
corresponding draws from the posterior of merger-generation
fractions can be derived as f (1) ~ p(f,|d), where f, is
given by the DNN described in Sec. III D.

Figure 17 presents the posterior distributions of the
fractional contribution to the population from each binary
merger generation; the medians and 90% symmetric inter-
vals are quoted and indicated as vertical dashed lines. In the
underlying distribution, 75f77 % of sources contain only
first-generation BHs (1g + 1g), which implies around 25%
contain a component that is the remnant of a previous
merger, with 90% (99%) one-sided support for 1 — f1,,1, 2
0.19 (0.14). Mixed-generation binaries with both a first- and
second-generation component make up the second-largest
portion of the population, with f, 5, = 0.161“8:8;‘ , while
binaries containing two second-generation BHs or any
component of even higher generation contribute equally
at about the 5% level (fag2e = 0.04500! and f.,, =
0.0579:9%, respectively).

Previous studies of older GW catalogs found weak
evidence for the presence of hierarchical mergers
[147,148]. However, further detections through GWTC-2
brought the addition of events whose properties, including
higher masses and mass ratios, hinted at higher-generation
origins. Reference [61] presented a population analysis
based on a phenomenological model of globular clusters,
implying the presence of at least one second-generation BH
in the GWTC-2 events with greater than 96% probability,
rising to greater than 99.99% when considering their highest
Bayes factor model corresponding to an escape speed
Vese ~ 300 kms~!. In this case, they found median relative
merger rates of 0.15 and 0.01 when comparing 1g + 2g
and 2g + 2g binaries to the 1g+ 1g case, respectively,
with 99% upper limits of 0.29 and 0.04. Equivalently, in
our GWTC-3 analysis, we find broadly consistent
relative branching fractions f4120/f1g41e = 0217058
and  fre100/flgt1e = 0.06‘_L8:8§ (reporting medians and
symmetric 90% confidence intervals). Given the disparity
of the underlying model assumptions between the two
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analyses and the addition of new detections in GWTC-3, our
results jointly point to the fact that, if admitted in the fitted
population, a modest number of binary BHs with hierar-
chical origin appears necessary to best explain the data.

VI. SUMMARY AND FUTURE PROSPECTS

Our findings were made possible by advances in the
treatment of the GW data, in particular, exploiting deep-
learning techniques. These aspects are summarized in
Secs. VI A and VI B, respectively.

A. Astrophysics summary

We fit current LIGO/Virgo data assuming a population of
sources that generalizes current phenomenological func-
tional forms while consistently allowing for the occurrence
of hierarchical mergers. Therefore, the crucial feature of
our model is the separation of first- and higher-generation
merger populations, the latter of which is not phenomeno-
logical. This feature allows us to place constraints directly
on the properties of those BHs born as stellar remnants in
addition to the population as a whole. We summarize our
key results as follows (quoting medians and 90% credible
regions):

(i) The distribution of escape speeds of environments
hosting binary BH mergers is relatively flat, though
lower values are preferred; modeled as a power law
in the range 0 < v, < 500 kms™', the index is
6= —0.44_”84'3‘ . Such environments may retain merger
remnants since 3733% of 1g + 1g remnants receive
GW recoils vy < Vege-

(ii) When parametrized as a truncated power law (whose
minimum is fixed to 5 M), the distribution of first-
generation masses has index y = —1.470: and thus
favors lighter BHs. First-generation BHs have an
upper mass limit m,,, = 38735 M.

(iii) Negative power-law slopes are recovered for the
binary-pairing probability distributions, indicating
both components are selected with a preference for
lighter BHs, though this preference is stronger for
secondaries; the primary (secondary) pairing index is
a=—12707 (= —2.2"!%). This finding is incon-
sistent with uniform binary pairing (¢ = f = 0) at
the 90% level.

(iv) This results in a primary (secondary) mass distribu-
tion that peaks around m; = 12 My (m, % 8 M),
with a buildup and then decline before the first-
generation upper mass limit. Mass ratios peak at
unity but extend to ¢z 0.1. While 99% of the
population has masses less than 59fg_'§ M, there
is an extended spectrum beyond the first-generation
mass distribution due to repeated mergers.

(v) Assuming a distribution of first-generation BH spins
that is isotropic in direction and uniform in magni-
tude, we find that the maximum spin formed in

stellar collapse 1S Y = 0.391“8:8?. The distribution
of effective aligned spins features support within
[reit] < 0.467004. The effective precessing spins are
multimodal, with a maximum at y,~0.2 and a
secondary peak due to repeated mergers at y, = 0.6,
but they fall off in the two-spin region with less than
or about 1% of the distribution at y, > 1 and
vanishing support for y, 2 1.5.

(vi) Approximately 25% of binaries in the underlying
population contain a higher-generation BH, with
99% one-sided support for a fraction greater than or
about 14%.

While we are able to highlight some key insights into the
astrophysics of stellar-mass black-hole mergers, we stress
that our DNN population model is based on simulations
that are simplified by, e.g., employing various power-law
parametrizations. This work serves as a test case to
demonstrate the efficacy of the modeling procedure by
bridging the gap between phenomenological and accurate
simulated models.

The complexity of our simulated populations can be
increased in various ways. First, we model the spin
distributions of first-generation binary BHs as uniform
and isotropic, and while we account for the spin magnitude
of merger remnants, we continue the assumption of iso-
tropicity in higher-generation mergers. Employing more
sophisticated spin magnitude models and adding an addi-
tional hyperparameter to control the degree of first-
generation spin alignment, we can better capture the
behavior of a wider class of host environments, e.g., isolated
evolution [15] or the disks of active galactic nuclei [149].
More generally, allowing for contributions from a mixture
of distinct formation channels would lead to a more realistic
fit. In particular, y. has been shown to favor positive
values, which may indicate a significant contribution from
isolated binary formation to the merger rate [31], but we
only consider a single-channel dynamical formation model.
By underestimating the location of the y.g distribution, the
fraction of hierarchical mergers may be overestimated
[150]. The added complexity of multichannel modeling is
beyond the scope of this first study, and we aim to address it
in future work. Capturing more realistic distributions of
higher-generation spins requires both retaining information
on postmerger spin directions and characterizing any
changes in relative orientation during binary formation.

Second, we model redshifts with a fixed distribution
corresponding to a rate of events that is uniform in
comoving volume and source-frame time. A simple exten-
sion would be to include a parametrized redshift model
[114], though this would also increase the dimensionality of
the hyperparameter space. We consider the mergers in our
simulated populations as an ensemble and do not account
for dynamical assembly of hierarchical mergers, i.e., for the
fact that a remnant BH can only form a new binary at later
times than its parent system [111]. In practice, one should
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include the effect of time delays between formation and
merger and thus more realistically model the merger rate;
we leave such explorations to future work.

B. Deep-learning summary

Compared to previous work [43,44], the approach
presented here replaces the approximation of simulated
binary BH distributions via histograms with Gaussian
KDEs, and the emulation of these distributions across
both the source- and population-level parameter spaces via
GPR with DNNs. While GPR has been shown to be an
ineffective approach in higher dimensions [45], alternative
deep-learning techniques such as normalizing flows [47]
have proven successful [46,48,49].

Rather than training on probability density evaluations
(the required number of which scales exponentially with
the dimensionality) as in this work, normalizing flows are
trained directly on samples from the true distribution (thus
scaling linearly with dimensionality), making the latter
more effective in high-dimensional spaces. Further, our
methodology requires truncating the population model in
the unbounded chirp mass parameter in order to generate
training data and employ numerical normalization, intro-
ducing a refactoring term in the population-level likelihood.
This issue may be solved with domain compactification
by, e.g., modeling the inverse of the mass scale instead.
Normalizing flows also have the advantage of being
generative models (i.e., from which new predictive samples
can be drawn) that additionally provide density estimation
with correctly enforced normalization. However, typically
either just the forward (density prediction) or inverse
(sample generation) model is efficient to evaluate [47,151].
On the other hand, neither deep-learning approach provides
any estimation of modeling uncertainty, whereas GPR
does; this is an area where Bayesian deep learning may
prove fruitful (see, e.g., Ref. [152] for a hands-on
approach).

That said, our DNN framework has some advantages.
The separation of density estimation and emulation adds a
level of flexibility not otherwise available. For example,
outputs of current state-of-the-art stellar-physics codes
provide evolutionary tracks that act as proxies for a given
contribution to the merger rate, in practice, outputting a set
of weighted binary BHs. This can be trivially implemented
in our formalism without any modification to the under-
lying computational framework by including sample
weights when fitting the KDEs. The KDE-first approach
also allows for sufficient smoothing of the training dis-
tributions prior to the learning stage. This distinction is
important for simulations with modeling choices that lead
to nonphysical numerical discretization of outputs or low
sampling densities; e.g., despite employing normalizing
flows, Ref. [49] required kernel density resampling to boost
the set of simulated BH mergers.

More importantly, in a follow-up study, we will also
explore the potential for emulating labeled subpopulations
within a given model. Taking the case at hand, one may
wish to individually model the distributions of each merger
generation rather than the combined distribution as a
whole. Each of these are themselves not probability
densities due to potential degeneracies in the hyperpara-
meter space and must be modeled correspondingly; e.g., for
low escape speeds, the entire population will be contained
within the first-generation label while the others will have
empty supports. Since each distribution is formed by the
same generative process, a single model with multidimen-
sional output should be used to predict the partitioned
populations; this requirement can be readily satisfied in our
DNN framework with the inclusion of additional output
neurons whose activation functions, combined with the
overall numerical normalization, constrain predictions to
the required unit summation.

VII. CONCLUSIONS

In this work, we have made use of multiple DNNs to
tackle several aspects of the inference of GW catalogs. We
focused on stellar-mass binary BH mergers, which are target
sources of current ground-based GW observatories. In
particular, we considered populations of binary BHs con-
taining repeated mergers—systems in which individual
BHs may be born not only from stellar collapse (i.e., as
first-generation BHs) but as the remnants of (potentially
multiple) previous binary mergers (higher-generation BHs).

Starting from simple phenomenological parametrizations
of clusterlike progenitor host environments, the mass and
spin distributions of first-generation BHs, and binary pair-
ing, we constructed a suite of simulated mergers, using
NR fitting formulas to estimate the properties—mass,
spin magnitude, and kick—of remnants, self-consistently
accounting for their ejection from (or retention in) the host
clusters due to gravitational recoil. The resulting hierarchi-
cal merger populations are complex and cannot be repre-
sented with closed-form expressions, as is precisely the case
for more realistic progenitor modeling (e.g., population
synthesis simulations). This a textbook case where machine-
learning methods can show their full potential.

We trained a high-dimensional DNN to act as an emulator
for our population model, interpolating across parameters at
both a four-dimensional source level and six-dimensional
population level. By approximating the detection probabil-
ities and recording the merger generations of individual
sources in the simulated populations, we also constructed
DNNs to predict, respectively, the fraction of detectable
events and the generational branching ratios across the
population-level parameter space. These applications of
deep learning are then combined with (rate-marginalized)
hierarchical Bayesian inference of the events in GWTC-3,
performed here with nested sampling, to make measure-
ments of the population-level parameters and reconstruct
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the astrophysical distribution of merging stellar-mass
binary BHs.

This work serves as a showcase of the developments made
possible by combining advanced techniques from the fields
of deep learning and statistical analysis, applied within the
context of GW astrophysics. Our deep-learning population
pipeline, which we applied to the case study of simple
simulations of hierarchical stellar-mass BH mergers, is thus
ready to be used in conjunction with more sophisticated
simulated populations. Combined with the state of the art
in population synthesis, we will be able to constrain the
properties of progenitor formation environments by directly
comparing GW data with higher-dimensional models of
binary evolution.
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APPENDIX: EVENT SELECTION

In Table V, we report all of the GW events that enter our
population analysis. We include only the binary BH
mergers with FAR < 1 yr~! in at least one of the detection
pipelines. The 69 events are equivalent to the 76 listed
in Table I of Ref. [31], excluding those that potentially
contain a neutron star (GW170817, GW190425_081805,
GW190426_152155, GW190814, GW190917_114630,
GW200105_162426, and GW200115_042309).

TABLE V. Binary BH mergers that enter our analysis. Each event passes the cut FAR < 1 yr~! in at least one of the searches. We
exclude any events that potentially contain a neutron star. For each event, we list the catalog in which it was first reported and the
minimum FAR. We list the medians and 90% symmetric intervals for the chirp mass M, mass ratio g, effective aligned spin y, and
effective precessing spin y,. The reference frequency used to measure y,, is 20 Hz for all events except GW190521_030229, which is
measured at 11 Hz.

Event Catalog min FAR (yr~!) M. /M, q Keft Xp

GW150914 GWTC-1 <1x107 28.387129 0.867015 —0.0410 0.341939
GW151012 GWTC-1 7.92 x 1073 15.275]% 0.7119:2% 0.01190% 0.34106
GW151226 GWTC-1 <1x107° 8.901035 0.661039 0.1710:2 0.44102
GW170104 GWTC-1 <1x107° 216272 0.7019:2 -0.05101¢ 0.39103
GW170608 GWTC-1 <1x107 7.95%01% 0.75293% 0.0470,3 0.325959
GW170729 GWTC-1 1.80 x 107! 35.231933 0.66"030 0.321932 0.44104¢
GW170809 GWTC-1 <1x107 24931743 0.7319%3 0.05191! 0.37195;
GW170814 GWTC-1 <1x107 24.17H% 0.86923 0.071513 0.501930
GW170818 GWTC-1 <1x107 26.672 0.787021 -0.10505/ 0.517057
GW170823 GWTC-1 <1x107° 29.2913% 0.77939 0.05153? 0.461030
GW190408_181802 GWTC-2 <1x107° 18.3211%] 0.75193 -0.03%93 0.38%030
GW190412 GWTC-2 <1x107° 13.267049 0.281042 0.25+008 0.32+08
GW190413_052954 GWTC-2 8.17 x 107! 24.707 83 0.68038 —0.01%93% 0.427040
GW190413_134308 GWTC-2 1.81 x 107! 33.001833 0.6979%] —0.031035 0.5610:5
GW190421_213856 GWTC-2 2.83 x 1073 31181350 0.7903} ~0.051037 0.471555
GW190503_185404 GWTC-2 <1x107 30.091432 0.667 055 -0.03103¢ 0.4070%
GW190512_180714 GWTC-2 <1x107° 14.601}27 0.531077 0.031917 0.221403
GW190513_205428 GWTC-2 <1x107° 21.57+738 0.521 943 0.1110% 0.31703%

(Table continued)
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TABLE V. (Continued)

Event Catalog min FAR (yr~!) M. /M q Keft Xp

GW190517_055101 GWTC-2 347 x 1074 26.58133 0.68103¢ 0.521830 0.51%83)
GW190519_153544 GWTC-2 <1x107 4443103 0.61707% 0311039 0461035
GW190521 GWTC-2 <1x107 69.11%)73! 0.75103% 0.03%935 0.712933
GW190521_074359 GWTC-2 1.00 x 1072 32,0153 0.775020 0.097019 0.39703%
GW190527_092055 GWTC-2 228 x 107! 24307732 0.641033 0.11593] 0.45503)
GW190602_175927 GWTC-2 <1x107 48.9745% 0.705033 0.07*07; 042703
GW190620_030421 GWTC-2 1.12x 1072 38.221%,0 0.62:033 0.32403; 0.44103
GW190630_185205 GWTC-2 <1x107° 24987308 0.681037 0.09103 0.32107%
GW190701_203306 GWTC-2 571107 40.25131 0.7750% —0.07293; 0.41793
GW190706_222641 GWTC-2 <1x107° 42.8115G7° 0.587035 0.2810% 0.401055
GW190707_093326 GWTC-2 <1x107 8.47:0%3 0.73:0% —0.03*07% 0.267057
GW190708_232457 GWTC-2 3.09 x 107 13.1550% 0.757057 0.02:49¢7 0.301057
GW190719_215514 GWTC-2 6.31 x 107! 23475563 0.58103% 0.32103¢ 0.431930
GW190720_000836 GWTC-2 <1x107° 879193 0.631034 0.1810} 0.30103
GW190725_174728 GWTC-2.1 4.58 x 107! 744702 0.57103] —0.04103 0381055
GW190727_060333 GWTC-2 <1x107 28.61734; 0.79104} 0.112932 0.487937
GW190728_064510 GWTC-2 <1x107 8.621033 0.69"03 0.121942 0.29795¢
GW190731_140936 GWTC-2 3.35x 107! 29.5512% 0.72193 0.05933 0.41593!
GW190803_022701 GWTC-2 7.32x 1072 27.26135% 0.74103 —0.0310%7 045103
GW190805_211137 GWTC-2.1 6.28 x 10~ 33.689%3 0.687037 0.35703¢ 0.55%030
GW190828_063405 GWTC-2 <1x107 24.95538 0.827073 0.1970 0.431047
GW190828_065509 GWTC-2 <1x107° 13.3623 0.431078 0.080¢ 0.29103%
GW190910_112807 GWTC-2 2.87 x 107 34.25135 0.827073 0.0211% 0.4079%7
GW190915_235702 GWTC-2 <1x107 25.0513% 0.79%035 0.027053 0.575041
GW190924_021846 GWTC-2 <1x107 576103 0.601033 0.0219 ¢ 0.227933
GW190925_232845 GWTC-2.1 7.20 x 1073 15.7873¢ 0.74793% 0.11509 0.407035
GW190929_012149 GWTC-2 1.55 x 107! 34.09103 0.3510¢ 0.01%557 0.38%053
GW190930_133541 GWTC-2 1.23 x 1072 8.514048 0.6613% 0.14591 0.341034
GW191103_012549 GWTC-3 4.58 x 107" 834108 0.6703, 0217046 0.41705¢
GW191105_143521 GWTC-3 1.18 x 1072 7.81104! 0.72103 —0.021015 0.30195;
GW191109_010717 GWTC-3 1.80 x 10~ 47081333 0.721933 -0.301039 0.6010%7
GW191127_050227 GWTC-3 249 x 107! 29.73%5° 0.47103¢ 0.17503% 0.52504}
GW191129_134029 GWTC-3 <1x107 7.30105% 0.647039 0.06709 0.275030
GW191204_171526 GWTC-3 <1x107 8.56103% 0.69%03¢ 0.167008 0.401030
GW191215_223052 GWTC-3 <1x107° 18.341720 0.731037 —0.0410,] 0.5270%
GW191216_213338 GWTC-3 <1x107 8.33%075 0.62705 0.117552 0.247072
GW191222_033537 GWTC-3 <1x107 33.82170¢ 0.80103% —0.04103 041105
GW191230_180458 GWTC-3 5.02x1072 36.371%43 0.761033 —0.06703] 0.53%03
GW200112_155838 GWTC-3 <1x107 2734135 0.80103¢ 0.061013 0.39%03
GW200128_022011 GWTC-3 429 x 1073 32.04173 0.80703/ 0.12793¢ 0.6010 %
GW200129_065458 GWTC-3 <1x107 27.16:3% 0.851 047 0.115914 0.50%057

(Table continued)
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TABLE V. (Continued)

Event Catalog min FAR (yr~!) M. /M q Keft Xp

GW200202_154313 GWTC-3 <1x107 7.4950% 0.72503 0.04 006 0.29705
GW200208_130117 GWTC-3 311 %107 277123453 0.73%034 —0.07297 0.387056
GW200209_085452 GWTC-3 4.64 x 1072 26.7713%3 0.791045 -0.12493; 0.521030
GW200216_220804 GWTC-3 3.50 x 107! 3293108 0.61%073 0.10153% 0.461032
GW200219_094415 GWTC-3 9.94 x 107 27.72133% 0.77:83 —0.08293%3 0.47203%
GW200224_222234 GWTC-3 <1x107 31.09348 0.82105¢ 0.10504 0.491938
GW200225_060421 GWTC-3 <1x107 142144 0.739% —0.111058 0.550%
GW200302_015811 GWTC-3 112 x 107! 23.36155, 0.53%030 0.011932 0.38103
GW200311_115853 GWTC-3 <1x107 26.581735 0.8110,9 -0.02538 0.441043
GW200316_215756 GWTC-3 <1x107 875108 0.59793% 0.13%91% 0.31%95%
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