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Abstract
There is growing awareness of the need for mathematics and computing to quantitatively 
understand the complex dynamics and feedbacks in the life sciences. Although several institutions 
and research groups are conducting pioneering multidisciplinary research, communication and 
education across fields remain a bottleneck. The opportunity is ripe for using education 
research-supported mechanisms of cross-disciplinary training at the intersection of mathematics, 
computation, and biology. This case study uses the computational apprenticeship theoretical 
framework to describe the efforts of a computational biology lab to rapidly prototype, test, 
and refine a mentorship infrastructure for undergraduate research experiences. We describe the 
challenges, benefits, and lessons learned, as well as the utility of the computational apprenticeship 
framework in supporting computational/math students learning and contributing to biology, and 
biologists in learning computational methods. We also explore implications for undergraduate 
classroom instruction and cross-disciplinary scientific communication.
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1. INTRODUCTION
Over the last several decades, advances in experimental techniques have provided 
life scientists with increasing quantities of high dimensional, high-resolution datasets. 
Unfortunately, these technological developments have not yet been matched by similar 
clinical advances [58]. In fact, U.S. life expectancy has stagnated and development costs for 
new drugs continue to rise [57, 69].
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Over the last decade, a consensus has emerged among scientific thought leaders about 
the need for “convergence” or transdisciplinary integration of engineering and physical 
science approaches in the life sciences to generate meaningful biological insights from 
the growing abundance of biomedical data [46, 60]. In particular, computational modeling 
approaches, which include both mathematical modeling of complex cell and molecular 
systems and statistical modeling of large datasets, are a powerful vehicle for synthesizing 
disparate and sometimes conflicting data into an integrated biological understanding. 
Ideally, computational modeling approaches work recursively with experimental workflows; 
mathematical models quantitate and formalize the largely qualitative, observation-driven 
“mental models”, and the iterative comparison of model outputs to experimental data 
informs model refinement and also suggests new experimental directions [33, 49–51]. 
The use of mathematical models clarifies the biological conditions or parameters under 
which the “mental model” can explain the experimental and simulation data. Increasingly, 
statistical modeling approaches including machine learning and bioinformatics are used 
to complement mathematical modeling of cell and molecular biological systems [33]. 
Analysis of large clinical or experimental datasets can be used to inform parameterization 
of mathematical models, or to identify novel relationships between cell states and behaviors, 
which can generate new hypotheses for mathematical modeling. Additionally, machine 
learning methods can be used for richer and more informative analysis of mathematical 
model outputs.

Despite the consensus around the need for greater integration of computational and 
experimental modeling approaches, there remains relatively limited adoption of these 
methods in the life sciences community. Furthermore, the research groups that employ 
computational modeling approaches largely work in isolation using their own data 
sources, building their own models, and performing their own analyses [33]. Biologists in 
experimental research groups face substantial structural, technical, and educational barriers 
to learning to implement computational modeling approaches [38]. These challenges are 
compounded by resource limitations at emerging research institutions including minority 
serving institutions and primarily undergraduate institutions [40]. Expanding participation 
in computational modeling approaches requires adoption of innovative practices in cross-
disciplinary scientific communication and training [38].

Similarly, the traditional educational divisions between engineering, computational, physical 
science, and biological curricula have impeded communication between these silos and 
raised barriers both to the use of simulations by biologists and the effective understanding 
of biological needs and design of tools for biological applications by engineers [5, 43]. 
There has been an ongoing effort to incorporate quantitative or computational content into 
undergraduate biology courses [1, 4, 9, 14, 42, 53]. Similarly, there are several reports of 
reforms to provide greater life sciences disciplinary content to engineering students [18, 24, 
52]. Nevertheless, there is a need for theoretically sound, evidence-supported models for 
undergraduate classroom instruction and undergraduate research experiences to train new 
cohorts of biologists and engineers equipped to work at the intersection of computation and 
biology. Additionally, there is a need for collaboration with education researchers to develop 
and assess interdisciplinary efforts [41].
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In this paper, a computational apprenticeship framework is used to present a case study 
of our computational biology research group’s experience in iteratively developing an 
educational infrastructure for undergraduate research experiences. We describe a mutually 
beneficial conversation and collaboration with computational education researchers to 
develop, assess, and continuously improve undergraduate research involvement in a research 
active computational laboratory.

We adopt rapid prototyping approaches from engineering to iteratively design, test, and 
refine the mentorship infrastructure: after implementing a current mentorship version in 
the lab, we evaluate strengths and weaknesses, identify concrete refinements to address 
weaknesses while building upon strengths, update the mentorship structure (with a new 
version number), and continue testing in the subsequent research term. This case study will 
present each mentorship version as we stepped through this iterative design process.

1.1. Computational Apprenticeship
Computational Apprenticeship is a newly proposed theoretical framework and a type of 
cognitive apprenticeship for computational disciplines [12]. Biology and engineering, like 
most other academic disciplines, are often taught through traditional instructional methods 
heavily featuring didactic lectures. In these disciplinary contexts, there is typically a heavy 
emphasis on the technical aspects of computational topics. However, education research 
suggests that a narrow focus on technical competency typically provides students with 
routine expertise, but lacks the adaptive expertise needed to solve computational problems in 
real world settings [6, 12, 22]. For example, students attempting to develop computational 
models of cellular and molecular biological systems report challenges with higher-order 
computational thinking skills such as abstraction and problem decomposition, rather than 
coding or mathematics [38, 61, 64].

Improving computational education requires greater consideration for helping students 
develop their ability to solve disciplinary problems with computation, rather than merely 
master the technical aspects of worked examples. Cognitive Apprenticeship is grounded in 
constructivist learning theories and draws on traditional apprenticeship training structures 
in the skilled trades. This model argues that students learn best through guided-experience 
on cognitive and metacognitive skills and processes specific to their discipline [7]. Collins 
et al. outlined Content, Method, Sequencing, and Sociology as the four critical dimensions 
of learning environments [8]. The Computational Apprenticeship framework adapts this 
model to computational domains and provides a theoretical basis for creating curated 
learning experiences with graduated challenges in terms of difficulty and diversity. The 
framework also provides direction for the use of emerging technological practices such 
as code commenting and Jupyter notebooks to deliver pedagogical scaffolding and other 
elements of the sequencing and method dimensions of learning [12].

1.2. Research Group Context
Macklin’s MathCancer Lab is a computational mathematical biology research group that 
develops theory- and data-driven computational model systems that can help understand and 
engineer the behavior of multicellular systems, especially in cancer and tissue engineering. 
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Tackling these goals necessitates both multicellular systems biology and multicellular 
systems engineering perspectives [30, 33]. The development of next-generation cures 
requires a deeper understanding of the fundamental biology of multicellular systems [34]. 
Reductionist approaches – motivated in part by the earlier successes of germ theories for 
infectious diseases – attempt to cure diseases by identifying and repairing a single root 
cause (e.g., a single or small number of driver mutations, or an overactivated receptor 
pathway) in an isolated cell type [44, 54]. These approaches, however, neglect the complex 
interactions in the evolving multilevel networks of normal and diseased tissues [25]. 
Targeted interventions do not only affect just single cell types; biochemical and biophysical 
feedbacks – combined with intercellular heterogeneity and natural selection [34] and 
amplified by physical constraints [67] – can cause secondary effects such as therapeutic 
resistance (e.g., by selecting for resistant cancer clones), worsened drug delivery, and 
treatment toxicity [29, 34, 49]. Thus next-generation therapies must not just treat single cell 
types, but rather steer the multicellular systems towards balance. This necessitates systems 
thinking that combines biological domain expertise with computational and mathematical 
tools designed for complex cell and molecular biological systems [34, 49], along with 
scientific computing infrastructures for large-scale investigations [48, 49].

To drive these system approaches, the MathCancer Lab develops the technological core 
components and infrastructure of a computational model system that can be interrogated for 
multicellular systems biology and engineering from a multiscale mathematics perspective 
[34]. They developed an efficient open source framework to solve coupled reaction–
diffusion partial differential equations in biochemical tissue environments [16], and an 
agent-based framework (PhysiCell) for multiscale modeling that can include stochastic 
processes, systems of ordinary differential equations, and other mathematical “submodels” 
in thousands or millions of interacting discrete cell agents [17]. (See [45] for an overview of 
cell-based modeling methods in cancer.)

Together, these components form the backbone of a computational tissue model system 
for simulating and analyzing multicellular biological systems that combine discrete and 
continuum mathematics [34]. Typical applications include cancer immunology, synthetic 
multicellular systems, metabolic tumor-stroma crosstalk in heterogeneous cell populations, 
and infectious diseases. See some examples in Figure 1.

Partnerships with the open source community have combined these modeling frameworks 
with large-scale investigations on supercomputers [49], machine learning approaches that 
accelerate the investigations and aid model interpretation [48], and new mathematical model 
components (e.g., Boolean signaling networks [28]). Efforts towards data standardization 
[15, 33] and a recent focus on creating open educational training materials and shared source 
code repositories seek to grow these computational projects from a single-lab effort to a 
community-driven ecosystem for mathematical biology, multicellular systems biology, and 
computational bioengineering [32, 33].

To advance towards these goals, the lab has recently focused on integrating undergraduate 
research, undergraduate education, and scholarly communication, drawing upon evidence-
based practices from the computational apprenticeship framework. Undergraduate and 
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graduate students, scientific staff, faculty, visiting researchers, and a network of 
multidisciplinary collaborators work together to build computational resources, apply them 
to specific cancer and other biological problems, disseminate methods and results, and unite 
researchers for community-driven science. Here, we share our experiences in this iterative 
effort.

2. CASE STUDY: UNDERGRADUATE INVOLVEMENT IN A 
COMPUTATIONAL ONCOLOGY LABORATORY

The MathCancer Lab moved to Indiana University’s new Intelligent Systems Engineering 
Department, starting with one lab principal investigator (PI: Macklin), one scientific staff 
(Heiland), and one Ph.D. student. While the PI had previously taught dedicated classes 
on mathematical and computational biology and had involved undergraduate students 
in research, these efforts were performed separately. The move to a new program 
presented a rare opportunity to build and iteratively refine a new research program that 
involved undergraduate students from the very start. In the Fall semester, the lab began 
integrating undergraduate researchers into its growing research program, with several 
guiding principles:

• Students should be involved with the main research program. (Students should 
be directly involved in ongoing publication-driven research, rather than projects 
created solely for didactic purposes.)

• Student involvement should accelerate these existing projects or allow expanded 
exploration of the existing scientific aims.

• More experienced students should help mentor less experienced students to 
foster a sustainable team.

• Research results should feed back into education and outreach.

• Graduate students should gain team management experience while helping to 
mentor undergraduate students.

• The students’ class work and personal/home responsibilities must take priority 
over their research involvement.

• Students should be encouraged to seek other opportunities in the summer to 
broaden their skills and drive professional networking.

2.1. Evolving Undergraduate Research Model
Motivated by rapid prototyping methodologies, we iteratively developed, tested, and 
refined the mentorship structure (with guidance from computational apprenticeship theory) 
while integrating undergraduate students into ongoing (primarily grant-funded) research in 
mathematical oncology. At the end of each semester, we evaluated the current mentorship 
structure against the guiding principles, with particular attention to:

1. progress towards research milestones

2. progress towards peer-reviewed scientific posters
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3. development of scientific and communication skills

4. individual understanding of the projects and their contributions

5. unanticipated creativity and innovation

6. emergence of undergraduate student leadership

7. evolving team leadership skills by involved graduate students

8. undergraduate student retention.

The progress was assessed by a combination of graduate student, one research staff 
(Heiland), and PI (Macklin) observations, student interviews (lead by Madamanchi [39]), 
and end-of-semester lab discussions.

2.2. Version 1 (Fall 2017)
The first version of the mentorship structure included the PI (Macklin), one scientific 
research staff (Heiland), one Ph.D. student, and five undergraduate (freshman) students with 
a variety of backgrounds in engineering and neuroscience. See Table A1 in Appendix 1.

This mentoring structure focused on training the undergraduate and graduate students to 
use the lab’s main computational framework (PhysiCell [17]). Each week, the group met 
for a 1–2 hour live coding session that introduced the code-base and illustrated modeling 
techniques for sample tumor growth problems. The Ph.D. student and research staff attended 
the sessions and helped the undergraduate researchers to troubleshoot their code, similarly to 
the role of teaching assistants in lab sections for programming-heavy STEM courses.

Assessment: At the end of the semester, the PI, scientific staff, and graduate student met 
to discuss the successes and failures of the semester, based on their personal observations.

Research impact: These coding sessions exposed areas for improvement in Physi-Cell, 
particularly ways that model setup could be automated and made more user-friendly. These 
core method improvements were beneficial to all scientific projects in the lab.

Other metrics: One of the five students returned to continue research in the following 
semester.

What worked: The students progressed from little-to-no programing expertise, to being 
able to independently compile and run C++-based PhysiCell simulations on their own 
laptops. They learned how to make minor code modifications to existing models to change 
the model hypotheses, often driven by a basic understanding of ordinary differential 
equations. They also learned to create and present scientific posters.

Areas for improvement: We found that the live coding sessions did not make the fullest 
use of the students’ individual capabilities. The students needed more hands-on time to 
learn and contribute individually. The computational apprenticeship principle of “fading,” in 
which mentors gradually give less support, needed more time to implement.
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2.3. Version 2 (Spring 2018)
In response to the Version 1 observations, we changed to a small team structure. Each 
team consisted of one to three undergraduate students, the PI, and potentially a co-mentor 
(Ph.D. student or scientific staff). Each team met early in the week for approximately 1 hour 
to mentor, set goals, and work. The undergraduate students worked on their own towards 
the weekly goals for 1–2 hours between these weekly mentored meetings. The updated 
lab structure is in Table A1 in Appendix 1. Note that all the undergraduate students were 
freshmen. The semester’s projects included:

Project 1: Develop Jupyter notebook user interfaces for PhysiCell models (PI, 
research staff, 3 undergraduates).

Project 2: Develop a model of extracellular matrix (ECM) remodeling by migrating 
tumor cells (PI, Ph.D. student, 2 undergrads).

Project 3: Develop a model of colon cancer metastases (PI, 1 undergraduate).

Assessment: At the end of the semester, the entire lab met to discuss the semester’s 
progress and assess our current research organization. Afterwards, the PI, scientific staff, and 
Ph.D. student met to discuss the final lab meeting’s observations, together with their own 
personal observations. Madamanchi began collaborating in Summer 2018 to observe the lab 
structure and contribute computational apprenticeship expertise to help refine our mentoring 
structure [39].

Research impact: The students in Project 1 were successful in prototyping a technique 
to create a Jupyter-based graphical user interface (GUIs) for a PhysiCell-based simulation 
model of cancer nanotherapy [20]. They presented their work at an Indiana University poster 
session and at a major NSF site visit. The students in Project 2 were able to prototype key 
elements of the ECM model and present their results at a poster session. The student in 
Project 3 was not able to make progress, primarily due to other extracurricular priorities for 
the student.

Other metrics: Five of the six students returned to continue research in the following 
semester. The remaining student was not asked to return due to insufficient research 
progress.

What worked: The students were able to make individual contributions to the projects. We 
observed growth in their C++ and Python skills, and independent creativity (particularly in 
Project 1).

Areas for improvement: While the students were able to make individual contributions 
to their projects, they expressed that they felt isolated from the lab and unaware of progress 
by other teams. They sought increased interactions between the teams. This is consistent 
with computational apprenticeship, which emphasizes the need for social learning and 
peer-to-peer information transfer. The PI observed that his weekly meetings with each team 
were not scalable or sustainable.
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2.4. Version 3 (Fall 2018–Spring 2019)
To address our Version 2 observations, we refined the mentoring structure to ensure that 
each team had a non-PI co-mentor who would take responsibility for the team. The updated 
lab structure is in Table A1 in Appendix 1. We also altered the weekly mentoring schedule:

• The PI met with all co-mentors in weekly one-on-one mentoring to discuss their 
team progress and plan their team’s next steps.

• The non-PI co-mentors met with their teams early each week (approximately 1 
hour) to set goals and work. The PI attended these meetings by request of the 
co-mentors.

• The undergraduate researchers worked on their own towards the weekly goals 
mid-week and/or on the weekend.

• We held an “all hands” lab meeting each Friday for 1–2 hours:

Team presentation: One of the teams prepared and presented a 10–20-minute 
presentation on their progress and open problems, followed by group discussion. 
This encouraged “cross-pollination” between teams and collective brainstorming, while 
developing undergraduate student presentation skills and encouraging individual student 
understanding of the work.

Unstructured mentoring time: For the remainder of the group meeting, we broke into 
teams, while the PI met with each team for extra mentoring and troubleshooting.

• We added a PI’s “state of the lab” talk to the end of each semester to summarize 
and contextualize progress and kick-start group discussion to assess our lab 
processes.

In these semesters, the projects included:

Project 1: Continue development of Jupyter notebook user interfaces for computational 
models (research staff, 3 undergraduates)

Project 2: Continue development of the ECM model (Ph.D. student 1, 3 undergraduates)

Project 3: Develop an improved nanoparticle model (Ph.D. student 2, 1 undergraduate)

Project 4: Continue developing of PI’s prototype of a cancer hypoxia model (Ph.D. student 
3, 2 undergraduates)

Project 5: Extend software for Microsoft Windows compatibility (research staff, 1 
undergraduate).

Assessment: At each semester’s final all-hands meeting, the entire lab (PI, scientific 
staff, Ph.D. students, undergraduate researchers) discussed the semester’s progress and name 
strengths and weaknesses of our current research organization. Afterwards, the PI, scientific 
staff, and Ph.D. students met to discuss the final lab meeting’s observations, together with 
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their own personal observations. Madamanchi performed student interviews (results were 
published in [39]) and consulted regularly with the PI on his observations.

Research impact: The students in Project 1 were successful in generalizing their previous 
prototype to develop xml2jupyter, which was featured in a student coauthored scientific 
abstract and peer-reviewed scientific paper [21]. Students in Projects 2, 3 and 4 continued 
to refine their computational models and presented their work at a poster session. Projects 
that had new undergraduate students and graduate mentors had more limited progress as 
those students needed more extensive PI training. The student in Project 5 made substantial 
progress in their software development project [62]. Two additional undergraduate students 
attended lab meetings irregularly and contributed to discussions but did not attend regularly 
enough to join projects.

Other metrics: One undergraduate student served as an undergraduate team lead in 
Project 2 and began training as successor so he could pursue interests in his core 
concentration (cyberphysical systems and computer engineering). Three undergraduate 
students contributed to a peer-reviewed journal article [21]; two of these ramped down 
their involvement and “graduated” from the lab after reaching this milestone, allowing them 
to pursue interests in their concentration of study. One student graduated from Indiana 
University and was employed in industry. Five of the remaining students returned to 
continue research in the following academic year. (As noted above, three left the group 
to research closer to their engineering concentration after successful knowledge transfer, and 
one graduated.)

What worked: The students made substantive individual contributions, including a peer-
reviewed publication [21]. Student creativity lead to unanticipated advances (ad hoc small 
team crowdsourcing), and we observed frequent undergraduate–undergraduate mentoring. 
Notably, this updated mentoring structure accommodated a near doubling of undergraduate 
involvement (an increase from 6 to 10 students).

Areas for improvement: Overall, we have found that this mentoring structure has been 
successful, but we identified areas for improvement. The large number of projects left 
the lab feeling fragmented and difficult to manage. Some of the teams were unbalanced: 
Projects 1, 2, and 5 benefited from a senior Ph.D. student (with prior mentoring experience 
in industry) or scientific staff. Projects 3–4 were co-mentored by younger Ph.D. students 
with less leadership experience and domain knowledge, leading to reduced progress. Student 
surveys also found that students in Projects 3–4 gained the impression that Projects 1–2 and 
5 were higher lab priorities. Thus better communication of priorities and the impact of each 
project were needed in the younger teams.

2.5. Version 4 (Fall 2019–present)
The Version 4 lab structure is in Table A1 in Appendix 1. We modified the Version 3 
mentoring structure in several ways:

• Organize teams around themes, rather than specific technical projects:
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Team 1: PhysiCell training and community: In support of a new NCI administrative 
supplement, this team worked to develop interactive training materials red: a series of 10–15 
minute training modules including PowerPoint slides, YouTube recordings with captions, 
and nanoHUB-hosted microapps to illustrate core code concepts. They also worked on 
developing a website to focus the growing international PhysiCell modeling community (2 
Ph.D. students, 4 undergraduate students).

Team 2: ECM model development: This team performed final computational investigations 
of the ECM model and worked on a scientific manuscript. The group also worked on 
drafting a scientific manuscript for the ad hoc crowdsourcing technique (1 Ph.D. student, 2 
undergraduate students).

Team 3: PhysiCell tools: This team continued xml2jupyter [21] refinements, but was also 
encouraged to creatively explore standalone tools that could increase the usability and utility 
of PhysiCell models (1 staff, 2 Ph.D. students, 4 undergraduate students).

• Devote some lab presentations to new team management or technical skills, 
rather than project progress. Examples included:

– Project management with Trello

– Scrums, sprints, and kanbans (software team skills)

– PhysiCell simulation data structures [15].

• The PI gives frequent updates from research travel and reinforces the key role of 
each team’s work in the lab’s long-term strategy.

Assessment: This iteration is still in progress. An end-of-semester “state of the lab” talk 
and discussion is planned for December 2019, as well as discussion among the senior staff 
(Ph.D. students, scientific staff, and PI) and Madamanchi. Macklin and Madamanchi are 
planning assessments for use in the Spring 2020 semester.

Research impact: Team 1 has prototyped educational microapps and tested presentations. 
They began brainstorming new outreach methods while designing the PhysiCell.org website. 
Team 2 continues to make good progress on their ECM model and is performing final 
analyses for their manuscript. Team 3 has released a “Python loader” tool [65, 66] to load 
simulation data into Python and add significant visualization and usability refinements.

Other metrics: This work is ongoing, but we see evidence of strong student leadership. 
The students in Team 1 (mostly sophomores) developed their own recording methodologies 
and are leading the development of educational microapps. They have also proposed leading 
a student-run minisymposium at the 2020 Annual Meeting of the Biomedical Engineering 
Society (BMES), showing a sense of intellectual co-ownership.

Team 2 is working independently: the PI coordinates work with the Ph.D. student lead, who 
has also encouraged leadership by the undergraduate students. Team 3 has shown substantial 
technical know-how and creativity in adapting open source tools to the PhysiCell software 
ecosystem. They are actively leading the development of new features.
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What worked: While this lab version is ongoing, preliminary observations find that 
grouping more students together in teams wrapped around themes has allowed greater 
peer-to-peer mentoring, individual creativity, and initiative. The students frequently suggest 
solutions and meet in smaller pairs to work new angles. Teams 1 and 3 have begun breaking 
their topics down into separate sub-projects to work in parallel.

Pairing two younger Ph.D. students in Team 1 was helpful in addressing the prior weakness 
of unbalanced teams (particularly teams where the undergraduate and graduate students 
were less experienced). Moreover, mixing new and returning students in Teams 1 and 3 
helped to balance expertise and encourage within-team peer mentoring.

Areas for improvement: Overall, we have found that this mentoring structure has 
addressed most of the issues identified in Version 3. We will continue to evaluate and refine.

2.6. Contextualization as Computational Apprenticeship
Undergraduate research is broadly considered a valuable component of undergraduate 
education in STEM disciplines. Participation in undergraduate research is associated with 
greater STEM retention and educational achievement [2, 55, 70]. However, the traditional 
models for undergraduate research have developed in the natural sciences, and there is a 
need for critical reflection on how to scale and adapt undergraduate research opportunities 
within computational and interdisciplinary fields.

The MathCancer lab’s evolving approach to undergraduate mentoring has developed a 
tiered mentoring structure that aligns with education research showing that students benefit 
from having both faculty and graduate or staff mentors [10, 68]. The apprenticeship 
relationship between undergraduate researchers and their mentors provides not only domain 
knowledge, but also higher-order skills including heuristic strategies, learning strategies, and 
metacognitive skills that are associated with “thinking like a scientist” [3]. Additionally, 
undergraduate researchers are socialized into the disciplinary community and can have 
gains in their disciplinary identity that are associated with long-term persistence within the 
field [63]. A tiered mentoring structure allows each undergraduate researcher to receive 
coaching and guidance from multiple mentors, as well as provides opportunities for 
students to learn by observing and modeling the disciplinary processes of their mentors 
and their undergraduate peers. Similarly, structured interactions with multiple lab members 
support the integration of the undergraduate researchers in the lab community. At primarily 
undergraduate institutions in which staff or graduate secondary mentors are not possible, 
more advanced undergraduates can play many of these important functions.

The MathCancer group recently partnered with computational education researchers to study 
the experience of their undergraduate researchers [39]. Our qualitative investigation found 
that the undergraduate researchers enjoyed and valued their time in the MathCancer group. 
Specifically, the students reported gains in their intellectual and personal development 
through their lab experience. Students reported increased knowledge of “real-world” 
engineering and modeling norms and practices, and they reported gains in their ability to 
“think like an engineer,” suggesting growth in both metacognitive skills and disciplinary 
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identity. The students’ self-reported development in these domains is similar to published 
findings from studies of undergraduate researchers in the natural sciences [56, 59, 63].

Our study also characterized the executive management and strategic knowledge component 
of the undergraduate researchers’ metacognition. Students displayed varied levels of 
these metacognitive skills, which reflected the differences in age and length of research 
experience. The students all reported an executive management approach of “guess and 
check” for implementing their research plan. More mature students were able to identify 
this approach as part of a larger iterative process of planning and evaluating. In contrast, 
students with less experience in the lab indicated a high degree of reliance upon their staff 
or graduate co-mentor to help identify the next step in the plan. The tiered mentorship 
structure of the MathCancer research group allows for greater scaffolding and support for 
novice researchers and builds in “fading” of that support and greater independence for 
more advanced undergraduates. The undergraduate researchers all indicated satisfaction with 
the growth in their strategic knowledge, but had difficulties in articulating the heuristic, 
control, and learning strategies that they use in the research process. Interviews with faculty, 
staff, and graduate mentors as well as examination of the group’s research documentation 
suggest that the undergraduate researchers did, in fact, gain experience with new heuristics 
for problem-solving but had difficulty recalling or articulating them in a decontextualized 
semi-structured interview.

To further support the metacognitive development of its undergraduate researchers, the 
MathCancer group intends to provide mentorship training to lab members and embed 
scaffolded reflection to its research process. Mentorship training will consist of a short 
seminar on computational apprenticeship model. This seminar is intended to remind both 
the mentors and the undergraduate researchers that learning consists not only of technical 
domain knowledge but also of metacognitive knowledge. The seminar will also cover 
the modes and sequencing of mentorship to help mentors understand different ways 
of organizing research tasks, and prompt students to be more intentional about their 
learning process (see Table A2 in Appendix 2, constructed from [3, 8]). The mentors 
in the MathCancer group already demonstrate many of the mentoring modalities of 
computational apprenticeship, but research indicates that foregrounding these approaches 
through mentorship training is beneficial for undergraduate researchers [27, 47].

Similarly, the MathCancer group plans to embed bimonthly scaffolded reflection prompts 
into their existing research documentation process. Specifically, they have adapted Howitt 
et al. Learner Logbook intervention for computational research as a way helping 
undergraduates absorb bigger picture learning during their research [23]. See Table A3 in 
Appendix 2.

3. CONCLUDING REMARKS
For many computational research labs, the educational infrastructure of the undergraduate 
research experience is often considered to be distinct from the software infrastructure 
developed by the lab. However, there are key parallels: as a platform that facilitates 
computational modeling, PhysiCell provides “software-realized scaffolding” that enables 
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scientists to more easily engage with disciplinary biology questions within the 
computational realm [13, 19]. Students with moderate programming experience can extend 
sample projects to implement complex models that integrate cutting-edge stochastic 
processes, 3-D diffusion, discrete processes without building these capabilities “from 
scratch,” allowing them to focus more deeply on (1) “translating” biological behaviors 
into mathematical submodels and agent rules, (2) rapidly testing and visualizing the 
emergent nonlinear behaviors of these complex systems, (3) analyzing their results, and 
(4) communicating what they have learned. Interdisciplinary undergraduate instruction and 
scientific communication are two arenas in which the software infrastructure of PhysiCell 
can support a computational apprenticeship analogous to the undergraduate research 
program of the MathCancer Group.

A major goal of interdisciplinary education at the intersection of life sciences and 
computational sciences is acculturating students to the modes of thinking within 
each discipline. Authentic learning experiences that provide students with realistic 
interdisciplinary problems are crucial for teaching students to “think like a biologist” and 
“think like an engineer/mathematician”.

However, presenting students with computational or systems concepts applied to life 
sciences problems can pose challenges to students by simultaneously introducing new 
disciplinary knowledge and new technical content. The use of educational “microapps” or 
interactives can be a powerful way of creating authentic learning experiences, while still 
providing the scaffolding and sequencing called for within the computational apprenticeship 
framework. Microapps can embed widgets and sliders that allow students to explore the 
problems globally or conceptually before implementing models on their own. Moreover, 
interactive exploration of complex computational models could help students build intuition 
for deep mathematical concepts far earlier than they are introduced in most classroom-based 
curricula. We found that freshmen researchers gained intuition in stochastic processes (e.g., 
Poisson birth-death processes and biased random walks) and partial differential equations 
(diffusion processes, Dirichlet and von Neuman boundary conditions, diffusion length 
scales) from using and developing these computational models. Future work should focus on 
how these apps can be refined and augmented with video recording and other scaffolding to 
improve this learning.

The MathCancer group is adapting xml2jupyter [21] (see Section 2.4) to build technological 
infrastructure to support these pedagogical approaches. Small, efficient agent-based models 
[45] can be purpose-built to illustrate biological concepts, automatically fitted with Jupyter-
based GUIs, and rapidly deployed as cloud-hosted educational microapps. These apps 
present didactic information, parameter tabs (default values guide novice users), a runnable 
simulation model, and tabs to visualize the cell behavior and chemical substrates (see Figure 
2 for an example that explores biased random cell migration.) Macklin has tested microapps 
in an undergraduate systems biology course, and the MathCancer lab is using the approach 
to build a series of microapp-enhanced training modules for PhysiCell (see Section 2.5). 
Moreover, Macklin uses the xml2jupyter workflow to enhance computational apprenticeship 
in the classroom: advanced multicellular systems biology students at Indiana University 
develop their own PhysiCell [17] models as a final project, convert them to cloud-hosted 
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models with xml2jupyter [21], and demonstrate their interactives in their final presentations. 
Future PhysiCell educational microapps could be developed, in careful collaboration with 
instructional experts, to supplement open educational materials in educational communities 
such as QUBES [11]. Moreover, such educational communities could act as “educational 
marketplaces,” connecting tool builders (e.g., engineering faculty) with educators including 
biologists and mathematicians who use interactives in their curriculum. Such partnerships 
between modelers and educators are critical in ensuring that shared research models 
are useful to student learning with sufficient scaffolding. This is an increasing area of 
focus for the MathCancer lab, and early feedback informs us that a scaffolding with the 
background mathematics, expected model behavior, and suggested exploration improves 
student experiences with these models. We are currently exploring the use of online videos 
on specific apps as further scaffolding.

Similar approaches may be valuable for interdisciplinary communication among practicing 
scientists. Current practices for communicating computational biology are limited to 
traditional paper formats that include the foundational equations or at best a link to the 
model code. This approach puts a high burden for replication and exploration on time-
limited readers. Worse, for biologists with limited computational training, this approach 
prevents any engagement with computational biology literature. The MathCancer Lab used 
xml2jupyter [21] to create pc4cancerimmune [35], its first “publication companion app” 
as part of [48]. This allows scientific readers to interactively explore and understand the 
key cancer immunology simulation model at the heart of the publication’s method, as 
well as to better disseminate the model to the broader scientific community. Moreover, 
cloud-hosted versions of published research-grade models can readily be used in classroom 
instruction, thus allowing educators to rapidly incorporate cutting-edge research in their 
curriculum. The MathCancer lab has tested using publication companion apps to illustrate 
intelligent systems modeling to sophomore engineering students at Indiana University, and it 
is currently seeking new educational communities to further test the concept.

The current work and future directions of the MathCancer lab highlight the value and 
mutual benefit of engaging with education scholarship and education researchers. We have 
observed several instances of what may be termed “convergent evolution” between our 
practice and education research findings. Our hierarchical mentoring model includes the 
mentoring triads that education researchers have identified as a best practice. Similarly, 
our approach to “rapid prototyping” our educational infrastructure mirrors the design-based 
research modality of education researchers. Consultation with education researchers can 
help educators to arrive at theoretically and empirically supported practices more quickly. 
Similarly, practitioners in rapidly evolving interdisciplinary education spaces can offer 
new perspectives that stimulate new education scholarship. Direct collaboration with 
the educational community will be essential if research-driven apps are to reach their 
pedagogical potential.
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APPENDICES

APPENDIX 1: MATHCANCER LAB MENTORING STRUCTURE
We summarize and compare the Version 1 (Section 2.2), Version 2 (Section 2.3), Version 3 
(Section 2.4), and Version 4 (Section 2.5) lab structure versions in Table A1.
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Table A1.

Evolving MathCancer lab and mentoring structure.

Version 1 Version 2 Version 3 Version 4

Scientific Staff 1 1 1 1

Ph.D. Students 1 3 3 5

Undergraduate Trainees 5 6 10 10

Fields engineering 
neurobiology

engineering engineering CS, 
informatics

engineering CS, 
informatics

Number of Teams / Projects 1 3 5 3

Co-mentors? Yes Yes Yes

Weekly meeting? Yes Yes Yes

State of the Lab? Yes Yes Yes

Mixed update and skills talks Yes

APPENDIX 2: COMPUTATIONAL APPRENTICESHIP MENTORSHIP AND 
REFLECTION

Modes and sequencing of mentoring in Computational Apprenticeship are given in Table 
A2. Scaffolded reflection prompts are given in Table A3.

Table A2.

Computational apprenticeship: mode and sequencing of mentoring.

Mode of Mentoring

Modeling Explicit demonstration of a task, including verbalizing the associated heuristics (strategies)

Coaching Observing students as they perform tasks and offering feedback

Scaffolding Making tasks accessible to students by calibrating difficulty levels

Articulation Asking students to verbalize their process as they complete tasks

Reflection Prompting students to compare multiple approaches to problem solving

Exploration Fading or slowly withdrawing as students gain the ability to perform complex tasks

Sequencing of Mentoring

Increasing complexity Organizing coding tasks from simple to more complex

Increasing diversity Allowing students to develop skills within one language/project before transferring those 
approaches to a new context

Global to local skills Sharing the overall conceptual approach using psuedocode before implementing specific 
subtasks

Table A3.

Scaffolded reflection prompts.

Students will select one question to briefly answer every 2 months:
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How has your group navigated any challenges you have encountered?

What might you have done differently if you had known two months ago what you know now?

Has your research question changed? If so, why, and what has it changed to?

How have you chosen the approach or methods that you are using for your project?

What are the connections between your research activities and your other studies?

Can you see ways in which you could apply what you have learned to other activities?
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Figure 1. Sample PhysiCell models.
Left: Cancer Immunotherapy. See a full description and 3D visualization at [31] and a 
cloud-hosted 2D interactive version at [35]. Adapted under CC-BY license from [17]. Right: 
cell–cell communication by chemical diffusion. See a cloud-hosted interactive version and 
full description at [36].
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Figure 2. Educational microapps.
The first PhysiCell/xml2jupyter educational microapp [37] was rapidly developed and 
deployed over 2 days in response to student learning needs. As part of Team 1’s work 
in the Version 4 lab (2.5), this has been refined to build a new microapp [26] to illustrate 
biased random cell migration in PhysiCell to train users to set key phenotypic parameters. 
Note that the app has didactic material (A), user-set parameters (B), a runnable simulation, 
and built-in visualization (C).
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