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Intelligent manufacturing machines envisioned for the future must be able to autonomously select process
parameters that maximize their speed while adhering to quality specifications. Accordingly, this paper pro-
poses a framework and methodology for using a physics-based and data-driven digital twin of a feed drive to
maximize feedrate while respecting kinematic and contour error limits. To correct for inaccuracies intro-
duced by unmodeled dynamics and disturbances, the data-driven model is updated on-the-fly using sensor
feedback. Experiments on a 3-axis CNC machine tool prototype are used to demonstrate up to 35% cycle time

reduction without violating error tolerances compared to the status quo.
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1. Introduction

Quality and productivity are two important and often competing
attributes in manufacturing. Therefore, manufacturers often seek to
maximize productivity subject to quality (tolerance) constraints. In
practice, this goal is often achieved by trial-and-error. However, there
is a push for self-optimizing (intelligent) manufacturing machines
that are capable of, among other things, optimizing their speed while
maintaining desired quality levels autonomously, without need for
trial-and-error [1].

One major source of quality degradation in CNC machine tools is
motion-induced servo error, which can result from the limited band-
width of feedback controllers, flexible structures, nonlinear friction
and backlash. Another source of servo error is cutting force. Since
motion- and cutting-force-induced servo errors typically increase
with speed, it is of interest to maximize motion speed subject to con-
straints on servo error.

The goal to maximize feedrate subject to motion and cutting force
related constraints has been researched extensively under the topic of
feedrate scheduling and feedrate optimization. Feedrate scheduling
methods for CNC machines typically focus on maximizing feedrate in
each NC block while keeping cutting force under desired levels via mech-
anistic force models [2]. On the other hand, the vast majority of feedrate
optimization methods maximize feedrate subject to kinematic limits, like
speed, acceleration, and jerk [35], where one of the ways to define
maximum speed is using allowable cutting force [6]. However, the works
in [26] do not directly restrict servo error.

To directly constrain servo error, some feedrate scheduling tech-
niques maximize feedrate while regulating machining error due to
tool deflection [7] or force-induced servo error [8,9] under desired

tolerance. However, the works in [79] do not incorporate motion-
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induced servo error, which is important in toolpaths with high curva-
tures that can trigger significant structural vibration. Some feedrate
optimization techniques impose kinematic limits, along with
motion-induced servo error constraints via steady-state [10] or static
(i.e., algebraic instead of using differential-equation) [11,12] servo
models associated with motion velocity and acceleration. Still, their
inability to incorporate dynamic components of servo error (e.g.,
dynamic servo error pre-compensation) limit their accuracy and abil-
ity to effectively optimize feedrate. A few works in feedrate optimiza-
tion [13] constrain kinematics and motion-induced error via linear
physics-based models of servo dynamics. However, the methods in
[1013] do not incorporate errors induced by cutting force. More-
over, all works in [713] cannot accurately constrain actual servo
error when unmodeled dynamics or uncertainties exist in motion
dynamics or cutting force. Hence, their efficacy to maximize feedrate
with servo error constraints is very limited.

There is increasing interest in the utilization of digital twins (DTs)
in manufacturing. A DT is a virtual representation, parallel to a physi-
cal system, built on a bi-directional link between simulation and
actual data collection [1]. DTs incorporating physics-based models
and measured data can provide more-accurate predictions of servo
error for feedrate optimization [14,15]. For instance, a hybrid servo
model, consisting of physics-based and data-driven models, was used
in [15] to more-accurately predict the servo errors of a feed drive
with unmodeled nonlinearities. However, no feedrate optimization
was incorporated into the hybrid model. To address this shortcoming,
this paper proposes an intelligent method to optimize feedrate with
servo error constraints using a DT by making the following original
contributions:

1) It augments the data-driven component of the hybrid model in
[15] with a feature vector filtered by a periodic internal model
to effectively predict servo errors due to motion and cutting
forces on-the-fly.


https://doi.org/10.1016/j.cirp.2023.04.063
https://doi.org/10.1016/j.cirp.2023.04.063
http://www.ScienceDirect.com
http://https://www.editorialmanager.com/CIRP/default.aspx
mailto:okwudire@umich.edu
https://doi.org/10.1016/j.cirp.2023.04.063

326 H. Kim and C.E. Okwudire / CIRP Annals - Manufacturing Technology 72 (2023) 325328

2) It formulates an intelligent feedrate optimization approach
capable of employing the developed DT to accurately impose
servo error and kinematic limits in response to real-time data
measured from a machine.

The outline of the paper is as follows: Section 2 presents the pro-
posed intelligent framework exploiting DT composed of physics-
based and data-driven servo models. The efficacy of the proposed
approach is numerically and experimentally validated using a CNC
machine tool prototype in Section 3. Section 4 concludes the paper
and discusses future work.

2. Proposed intelligent feedrate optimization framework and
approach

2.1. Framework for intelligent feedrate optimization

The framework for the proposed intelligent feedrate optimization is
depicted in Fig. 1. First, an operator submits a part together with the
desired contour error tolerance to an intelligent manufacturing machine.
The goal of the machine is to autonomously produce the part as quickly
as possible while respecting the given error tolerance and other machine
constraints. The machine is equipped with a DT comprising a physics-
based model of its servo dynamics together with a data-driven model
that is trained on data gathered from the machine’s sensors. The intelli-
gent feedrate optimization algorithm uses the servo error predictions
from the DT to determine the fastest feedrate to run the machine while
respecting the acceptable limits for the servo errors (and the kinematic
limits of the machine). The measured sensor output is compared with
the predicted output and used to adjust the data-driven model and opti-
mization algorithm in the next iteration of the feedrate optimization.

~,
Part + Tolerance fin
%Wﬁ"““‘w‘ Phyrsics-
Sensor o
O @ XX E XXX ) Sensor output hased
) )
0 tor Max Feedrate 2 [{ oL
per ‘aducti i v| ~—| Optimization |Serva 2
e ‘:\cc::]g ' Intelligent U - error Data-
B o N N o
Iuam' ,  manufacturing Opiimized prediction,_triven
s machine feedrate

i Digital
Fig. 1. Diagram ofilr?t;H-igem feedrate optimization framework using a prtwin

2.2. DT-based servo error prediction including cutting force effects

A flowchart of the proposed intelligent feedrate optimization is
given in Fig. 2 for the x-axis of a machine tool. Small batches (win-
dows) x'q of a desired position trajectory are fed into an intelligent
feedrate optimizer to produce the optimized motion command, X/,
where j = 0, 1, 2, ..., represents the batch index. The optimized
motion commands are sent to the servo system Hy to produce actual
position x'. The servo system is composed of a servo error pre-com-
pensation C, followed by machine dynamics Gy, i.e., Hx = GxCx.

A key requirement for the feedrate optimization is accurate predic-
tion of servo errors which is achieved using a DT based on the hybrid
model presented in [15] augmented with a periodic internal model to
facilitate prediction of cutting-force-induced servo errors. The hybrid
model takes input x/. and predicts the actual position I’ using a phys-
ics-based model B , of H,. The predictions Ik’ do not capture the effects of
unmodeled dynamics and cutting force disturbances. Therefore, the
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Fig. 2. Flowchart of intelligent feedrate optimization using digital twin (y-axis omitted
for simplicity).

prediction error (delayed by one batch) is computed as g i'=x! x!'and
combined with x! and xI! then fed into a data driven model to gen-erate
an improved prediction » xI which is used for constraining servo
errors in the feedrate optimization.

Each element »x8tb of » xJ (where t =0, T, 2T, 3T, ... represents
discrete time at sampling interval Ts) is computed as

X 8t % c W 1p

where c, is arow feature vector at time t and W is the corresponding
column weight vector. The sub elements of ¢, are given by

a2p

The first three elements ¢, c,» and c,3 were contained in the
hybrid model of [15]. They respectively represent a bias term, the
past n, and current time steps of ks, and the past n; time steps of ey,
where n, and nj; are user defined. The fourth element c.4 is new in
the proposed hybrid model. It consists of c; filtered by an internal
model L that contains information about dominant frequency compo-
nents of the cutting force. Specifically, the internal model, in Laplace
domain, is a filter of the form

X v?2
LashP % e a3p
. 82 b vi2
where s is the Laplace operator and v; (rad/s) are key harmonic fre-
quencies contained in the cutting forces. Notice that the filter in Eq.
(3) introduces infinite gain (poles) at each v;, hence ensuring that the
data-driven model emphasizes dynamics occurring at v;.

» x) at the j-th batch is predicted based on weight W from the
previous batch j1, which is trained as follows. Given that the length of
each batch is n, for the O-th batch, i.e,t=0,T,, ..., (n,1)T,, the weight
vector W and its covariance matrix P are initialized using ridge
regression with regularization factor A

W %A b c ¢ c xdth o4p
P % Mbct%t]

For the rest of batches j=1, 2, ..., i.e, t =n,T,, (ny+1)T,, ..., W and P
are corrected via recursive least-squares using a forgetting factor f, as

W W b koxdtb ¢, Wb; where k% Pc fab ¢, Pc, t a5b

P &P kc,PP=f

Using the final weight in batch j1 to substitute W in Eq. (1), » x!
can be predicted using the feature vector ¢, formulated by Eq. (2).
Since the past sensor data xi! is provided up to t = (jn,1)T,, for
entries in batch j that have unavailable terms in c3, ex iS approxi-
mated using predicted values » x, i.e.,

ex % X XM X X A a6b

and c4 can be similarly expressed using the approximated c;.

Finally, we show that »x(t) is linear in terms of x'y, by showing
that the only alterable feature in ¢, which is the last term in ¢, (i.e.,
R(t)), is linear in x/y. Let F, 2R™™ be the matrix (lifted domain)
representation of B, truncated by length n,. The last ny, rows in Fy
can further be decomposed into two parts: its first nyn, columnsF ,
and its last n,, columns Fy . as

" #
Fe% = a7p
Fxp Fxe

If x., represents the last n, n, elements of the x. at past time-
steps, R(t) can be re-written as

Xj% FxeXq b Fx;pXep o8P
;xbtb Ya ’VJltFx;cXi] b MIFX;PXCP

where M, is a selection matrix that picks the entry at timestep t.
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Let the alterable and unalterable features in Eq. (2) be ¢, (=k(t))
and c,, and their corresponding sub-weights be W, and W, respec-
tively. Then, using Eq. (8), » x(t) is linearly related to x'q by

»x0th % caWa b CuWu 89p

% MFy,c W, :%meid b MFypXepWa b cu Wy :%To

2.3. Intelligent feedrate optimization using DT

The feedrate optimization using the DT is formulated in accor-
dance with the authors’ previous work [13]. Taking the x-axis, for
example, a desired trajectory X4 = f(p) is parametrized with respect to a
normalized, monotonically increasing path variable p. Then, Xq4(t) is
linearized as x4(t) with respect to p(t) using an estimated lineariza-
tion point pe(t) as

xq0th % ¢pdtb pedtbb b fEp.Btbh 510p
. DYpcOtb

@

The procedure for computing the optimal p’ (corresponding to the
optimal feedrate) using the DT is as follows. The path variable p’ is
maximized under monotonicity, maximum feedrate, and axis-accel-
eration constraints as

max 17p/

s:t: pdt 1ppdtb1 o11p
h i

D p VinuTs
h i

D? xJ AmaxT?
where 1 is a ones-vector, D is a difference operator, and V,x and
An.x are the vectorized representations of feedrate and acceleration
limits, respectively. In addition, kinematic and dynamic continuity
between adjacent windows is enforced. The process described above
for the x-axis can be applied to the y-axis.

The position predictions » xi of the DT are integrated into the fee-
drate optimization by using them to constrain the servo errors. To do
this, we leverage the fact that the proposed hybrid model is a linear
operator, because its physics-based and data-driven components are
both linear operators. Therefore, the predicted servo error » ex(t) fort
= jnyTs, ..., (G + Dny1)T; in the j-th batch can be expressed using
» x(t) fromEq.(9)as

»exOth % x,0tP » X3P % 3My Txbx, The a12p

The processes described above are repeated for the y-axis to com-
pute » €. Finally, contour error & can be estimated from DT-pre-
dicted axis tracking errors » &£y and » ey and constrained under
tolerance E .« using a linear approximation [16] as
jej % sindube”p cosdube” E pax 613p

x y
where u is inclination angle of the curve (Xq,yaq), and En,x is the vec-
torised representation of Eax.

Overall, the DT-based intelligent feedrate optimization becomes a
linear programming in terms of the decision variable p'.

3. Validation
3.1. Numerical validation of DT-based servo error prediction

A simple simulation case study is presented here to highlight the
importance of augmenting the hybrid model in [15] with an internal
model to enable accurate prediction of motion-induced and cutting-
force-induced servo errors. To do so, a desired trajectory on x-axis
with its velocity shown in Fig. 3 is selected with maximum velocity as
100 mm/s and acceleration as 1 m/s’>. The simulated output x is
modeled as sum of motion-induced position x,, and cutting-force-
induced position xs as

é’- z 100 T T ] 5
2 E 50 N 1
g E . . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Time [s]

Fig. 3. Velocity of desi trajectory on x-axis.

X% Xm b X¢ %4 Hyxq b X¢ 014b
x;0tb % 0:01x,0tP sinv;t

where v; % 523.6 rad/s (5000 rpm) is used. For the DT, n,, =20, n, =2, n;
=20,A=0.01 and f, = 1 are used; for the internal model, v; % v is used.
The data-driven model is trained for one cycle of the trajectory in Fig. 3
prior to testing. The physics-based model H y is 8efined as a 2nd order
system with v,= 157 rad/s and z = 0.05; H, is modeled with mis-match
in coefficients by 10% deviation as v = 1.1¢y, and 2= 09¢z, i,

bx Y% 2zvps b v2=g2 b 2zvps b v2 a15p

0 fg® | nfg°2 o fg'n fg°2
Hy % 228 v'® sp'V'E “=s2 p 227 V'8 5p v'E

Fig. 4 shows thenprediction errornusing the DT without and with
the internal model. Using the internal model, the RMS prediction
error of x is reduced by 27.7%. The following Sections 3.2 and 3.3 will
highlight the performance of the DT-based feedrate optimization
using the internal model in experiments.
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Fig. 4. Prediction error using DT without and with the internal model.

3.2. Experimental setup

For experimental validation, Nomad3 three-axis CNC machine
tool prototype is used. The optimization algorithm is implemented
on dSPACE 1007 real-time control board running at 500 Hz sampling
rate, connected to DRV8825 stepper motor drivers for x, y, and z-
axes stepper motors. Renishaw RKLC20-S optical linear encoders are
attached on the x and y- axes gantries to measure x and y- axes posi-
tions that are fed back to dSPACE 1007.

A frequency response function (FRF) is measured for the x and y
axis of the machine to identify the machine dynamic component of
physics-based model, &, and (:J\y The input of each FRF measurement is
a swept sine acceleration command to the stepper motors, and the
output is the relative acceleration between the x and y axis using two
PCB 393B05 shear accelerometers. Then, the measured FRFs are mod-
elled via curve fitting. The discrete-time transfer function of &, and
Gy with Ty =2 ms are

0:487z% 0:84712% b 0:7827z 0:3768

8% & 214975 p 203722 0:99172p 01495

a16b

0:437823 b 0:4994z% 0:0569zp 0:0128

8y % 7 0:12855 p 0:05172 0:0012p 0:0001

The servo error pre-compensation Cy and Cy are formulated using
6, and Gy via limited-preview filtered B-spline method in [17].

3.3. Experimental validation of DT-based feedrate optimization

This section validates proposed DT-based approach by comparing its
performance with physics-based approach (without data-driven model)
and conservative method generated using a trapezoidal acceleration
profile with kinematic limits tuned by trial-and-error to achieve the
servo error tolerances. A butterfly toolpath [18] in Fig. 5 is used for air
cutting and machining an aluminum workpiece with 3.175 mm diame-
ter flat-end mill and spindle speed of 7000 rpm. Kinematic limits are
set as Viax = 30 mm/s and Amax = 1 m/s? in the feedrate optimization; ny
=30,n,=2,n3;=30,A=0.01 and f, = 1 are used in the data-driven model,
which is pre-trained using one cycle of physics-based feedrate
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optimization. The frequencies v; of L in Eq. (3) are experimentally identi-
fied as in Fig. 6, based on encoder data measured during cutting. A safety
factor of 25% is applied to the desired tolerance, i.e., a contour error
bound of E.x = 0.12 mm is applied in optimization to achieve error tol-
erance of 0.15 mm in experiments.

= 0
=
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Fig. 5. Desired toolpath.
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Fig. 6. Experimentally identified disturbance frequencies for internal model.

Figs. 7 and 8 show the profiles of commanded feedrate, accelera-
tion, contour error, and prediction error of x and y using conservative,
physics-based, and DT-based approaches in air-cutting and machin-
ing, respectively. The DT-based approach reduces the prediction error
in x-axis by 47.3% and 45.7%, and in y-axis by 4.0% and 34.6% during
air-cutting and machining, respectively, compared to the physics-
based method, which allows the tolerance to be satisfied. However,
the physics-based method violates the tolerance due to unmodeled
dynamics and/or cutting force. As a result, the proposed approach
completes the motion 35.0% and 17.2% faster than the conservative
method in air-cutting and machining, respectively, without sacrific-
ing contouring accuracy. The DT-based algorithm runs in real-time
by computing the entire trajectory for machining within 2.04 s.

Fig. 9 shows the machined surfaces using trajectories from Fig. 8.
The surface quality of the proposed approach is improved compared
to that of physics-based approach, while staying similar to that of
conservative part.

[ Gumeraivy —— DTl (praposed) —=—=

»

Feedrate
[miznfs]

Accel

error
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error
[ram]

Time [s] Time [s]

Fig. 7. Feedrate, acceleration, contour error and prediction error using conservative,
physics-based and DT-based feedrate optimization in air-cutting.

error
[mm]

Time [s] Time [s]

Fig. 8. Feedrate, acceleration, contour error and prediction error using conservative,
physics-based and DT-based feedrate optimization in machining.

4. Conclusion and future work

This paper presents a framework and approach for intelligent fee-
drate optimization using a DT that allows for a machine to produce parts
with desired part quality specifications as quickly as possible. The DT is

Conservative Physics-based DT-based (Proposcd)
" ﬂ | [ )

Top
surface

Bottom-
right
portion

Fig. 9. Machined surfaces using the three approaches investigated.

first built on a physics-based dynamics model. Then, a data-driven model
with an internal model is updated on-the-fly to adapt to unknown
dynamics and cutting force disturbances. Using experiments on a CNC
machine tool prototype, the proposed approach showed its performance
in accurately constraining the contour error while reducing cycle time by
up to 35% compared to conservative approach. The future work will
explore improving robustness of the data-driven model, and machine-
to-machine learning using the data-driven model in a DT framework.
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