NON-VANISHING OF SYMMETRIC CUBE L-FUNCTIONS

JEFF HOFFSTEIN, JUNEHYUK JUNG, AND MIN LEE

ABSTRACT. We prove that there are infinitely many Maass—Hecke cuspforms over the field Q[v/—3] such
that the corresponding symmetric cube L-series does not vanish at the center of the critical strip. This is
done by using a result of Ginzburg, Jiang and Rallis which shows that if a certain triple product integral
involving the cusp form and the cubic theta function on Q[v/—3] does not vanish then the symmetric cube
central value does not vanish. We use spectral theory and the properties of the cubic theta function to show
that the non-vanishing of this triple product occurs for infinitely many cusp forms. We also formulate a
conjecture about the meaning of the absolute value squared of the triple product which is reminiscent of
Watson’s identity.

1. INTRODUCTION

The non-vanishing of L-series at the center of the critical strip has long been a subject of great interest—
particularly when the degree of the Euler product L-series is even. This is because, when normalized to have
functional equations going from s to 1 —s, under many circumstances when the degree of the Euler product is
even the value at s = % is known, or conjectured, to have arithmetic significance. When the degree is odd, for
example, 1, it is the value at s = 1, or the residue of a pole, that is known, or conjectured, to have arithmetic
significance. Another example is the fact that for any GL(2) automorphic form there exists a half-integral
weight Shimura correspondent if and only if there exists a quadratic twist of the corresponding L-series that
does not vanish at the center. A very important example of the significance of non-vanishing is in the case
of an L-series corresponding to a modular form of weight 2, where the non-vanishing at the central point has
been shown to be equivalent to the finiteness of the group of rational points of the associated elliptic curve
[CWT77, GZ86].

In the case of higher rank L-functions of even degree, such connections between non-vanishing at the center
and the finiteness of certain groups are believed to be true, but the relations remain purely conjectural. In
particular, in the case of the symmetric cube L-series, Chao Li and Dorian Goldfeld have informed us in a
private correspondence that the Beilinson-Bloch conjecture [Li21] predicts that the order of vanishing of the
symmetric cube L-function should be equal to the rank of the Chow group of the corresponding symmetric
cube motive. In particular, if the modular form corresponds to an elliptic curve E, one looks at the group
of homologically trivial algebraic cycles of dimension 1 on the threefold E x E x E, where the symmetric
group S3 acts via the sign character. Its rank is conjecturally the order of vanishing of the symmetric cube
L-function at the central point. There is some numerical evidence for this provided in a paper of Buhler,
Schoen and Top [BST97]. We mention this for interests sake, but the Maass forms we consider here are not
known to have any arithmetic structure.

For other applications of the non-vanishing of L-functions on or near the critical line, including L-functions
for symmetric powers of automorphic forms; see, for example, [PS85], [LRS95] and [LRS99).

In [GJRO1], Ginzburg, Jiang and Rallis proved that non-vanishing of a certain triple product integral
involving a GL(2) automorphic form implies the non-vanishing at the center of the critical strip of the
corresponding symmetric cube L-series. The main purpose of this paper is to use this implication to prove
the following

J. H. would like to thank S. Friedberg and D. Ginzburg for some stimulating conversations on the work of D. Ginzburg,
D. Jiang and S. Rallis that is the basis of this paper. We also thank L. Cai and Y. Fan for correcting our statement of
the Ginzburg, Jiang and Rallis result, and thank P. Sarnak for informing us of some of the applications of non-vanishing of
automorphic L-functions. We thank anonymous referee for detailed comments and finding flaws in the proof of Lemma 2.13.
J.J. was supported by NSF grant DMS-1900993, and by Sloan Research Fellowship. M.L. was supported by Royal Society
University Research Fellowship “Automorphic forms, L-functions and trace formulas”.

1



2 JEFF HOFFSTEIN, JUNEHYUK JUNG, AND MIN LEE

Theorem 1.1. Let T's = SLy(O3) be the Bianchi group, where Oz is the ring of the integers of Q[v/—3].
Let T'3(3) be the level 3 principal subgroup of T's. There are infinitely many Maass—Hecke cuspforms ¢; on
[3(3)\H? such that
1
L <2,sym3,¢j> #£0.
Remark 1.2. Speculating, with no evidence, we expect that unless there is a clear reason for vanishing,
such as a negative sign in the functional equation of the symmetric cube L-series, this L-series should be

non-vanishing at 1/2 for most ¢;, that is, for all ¢; with |t;| < r there should be on the order of r* forms
¢; such that the corresponding symmetric cube L-series does not vanish at 1/2.

In order to define the relevant triple product and further discuss our approach, it is necessary to first
provide some background on what are known as cubic metaplectic forms defined over Q[v/—3]). This is
because a certain example of such a form, called a cubic theta function, is used to define the triple product
studied by Ginzburg, Jiang, and Rallis.

1.1. Some background on Mass forms, cubic metaplectic Eisenstein series, and cubic theta
functions defined over Q[v/—3]. To understand what a cubic metaplectic form is, we first review the
theory of Maass forms on Bianchi orbifolds. We refer the readers to [EGM98] for more detailed discussion.
We parameterize the upper half-space H? using quaternions as follows:

H3 = {w = 21 +izy +jy : y >0}

Then the SLy(C) action on H? is given by
a b _ —1
(c d) w = (aw +b)(cw +d)™",
where (cw + d)~! is the multiplicative inverse of the quaternion cw + d. We denote by H(w) = y the y-

component function on H3. We identify the boundary of H*® with CU {oc}. The Laplace-Beltrami operator
on H3 is given by

A=y (02 + 02, +02) — yoy, (1.1)
and the volume form is given by
dridxad
av = 7‘”1;2 Y.

Denote by Oq4 the ring of integers of Q[v/—d]. Then the Bianchi group I'y = SLy(0,) is a discrete subgroup
of SLy(C) such that the volume of the quotient space I'y\H? is finite. For an ideal I C Oy, the principal
congruence subgroup of level I in I'y; is given by

1
Ty(I) = {7 ely : v= (O (1)> (mod I)}
For the rest of the article, we let d = 3, and in order to simplify the notations, we use the following:

A= V3.
w=e75.

A = O3 = Z[w] is the ring of integers of K = Q[v/—3].

I' =T'3(3) is the principal congruence subgroup of the level (3) in I's = SLa(A).

e(z) = 2mH2) 5 € C.

We will mainly deal with Maass forms and metaplectic Maass forms on I'\H? in the subsequent sections.
The twelve equivalence classes of cusps of T" are given in [Pat77], and are represented by

S = {0, 0, +1, +w, +w? +(1 -w), £(1 -w) '} (1.2)

For a € S, we pick o4 € I's so that o,00 = a. To be specific, we let o, be

B N O N O NG I NI

as done in [Pat77].
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Let I'y be the stabilizer subgroup of I' corresponding to the cusp a. Observe that I' is a normal subgroup
of SLy(A), and so we have

o4 S N
A Maass form f on T'\H? is a smooth function on H® that satisfies the following conditions:

o f(yw)= f(w) for all y € T,
o —Af=(1+4t?)f for some t € C, and
e there exists A > 1 such that f(oqw) = O(H(w)?) as H(w) — oo for all a € S.

Note that ', is isomorphic to 3A, and the dual lattice of 3A with respect to e(-) is A™3A. So from the two
conditions, we see that any Maass form f on I'\H? has a Fourier expansion at the cusp oo of the form

Fw) = ey +cooy' T+ Y ey Ko (dnluly)e(p), (1.4)
0AnENT3A

where x = 21 + ix9.
The Eisenstein series corresponding to the cusp a € § is defined by

Eo(w,s)= > H(og 'yw)®, (1.5)
’YEFG\F

for Re(s) > 1. Any Eisenstein series is a Maass form with the —A-eigenvalue 4s(1 — s). In particular, the
Eisenstein series corresponding to the cusp oo is defined by

E(w,s) = Ex(w,s) = Z H(yw)*.
YET o \T

For the functions ' and G on I'\H? we denote by (F,G) the inner product

(F,G) = F(w)G(w)dV. (1.6)
I'\H3

1.2. Metaplectic Maass forms. Let x be the character on I' induced by the cubic residue symbol (-/-)3
in Q[v/—3], as introduced by Kubota in [Kub71]. In other words, for v = (2%) €T,

K(y) = {52)3 when ¢ 70, (1.7)

when ¢ = 0.

A Maass form f on I'\H?® with respect to the character s (referred to as a metaplectic Maass form) is a
smooth function on H® that satisfies

e For any v €T,
flyw) = &(y) f(w), (1.8)

o —Af = (1+4t?)f for some t € C, and
e there exists A > 1 such that f(oqw) = O(H(w)?) as H(w) — oo for all a € S.

In this paper, we consider two such functions. The first is the metaplectic Eisenstein series:

E@(w,s) = EQ(w,s) = > w(1)H(yv(w))* (1.9)
YEL o\

The term metaplectic essentially means that the Eisenstein series transforms with respect to the character
k as follows:
E® (yw, s) = k(7)) ED (w, ),

where the notation in £(7y) is the same as in (1.7) above. The other metaplectic form we will explore is the
cubic theta series that we will define below.
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1.2.1. Some history of generalized metaplectic theta functions and Eisenstein series. In the definitions above
we used the cubic residue symbol to define x. If we had used the quadratic residue symbol instead we would
have obtained the somewhat better known half-integral weight Eisenstein series defined over the ground field
Q[v=3.

Rather than using 2 or 3, we could have defined  using an n** order residue symbol, for general n, as long
as we were working over a ground field containing the n** roots of unity. If we had, we would have defined
what is known as the n** order metaplectic Eisenstein series, also known as the Eisenstein series on the n-fold
metaplectic cover of GLo(C). These were first explored by Kubota [Kub73]. He observed that for n > 2, the
Eisenstein series have a meromorphic continuation and he provided an explicit functional equation for them.
He computed their Fourier coefficients and discovered they are Dirichlet series with n!” order Gauss sums
as coefficients. When n = 2 these series factor into Euler products and are essentially quadratic Dirichlet
L-series, as was first observed by Maass [Maa37] working over Q. Siegel, in [Sie56] showed that taking the
Mellin transform of the half-integral weight Eisenstein series created a Dirichlet series whose coefficients, at
square free indices, were quadratic L-series.

However, when n > 3 the series in the Fourier coefficients do not factor into an Euler product and are
quite mysterious. Nevertheless, the constant terms are expressible in terms of ratios of zeta functions of the
ground field (any field containing the n*" roots of 1), and have simple poles at the point s = % + % Because
of these poles in the constant term, the metaplectic Eisenstein itself has a pole at this point. Whichever n
we are working with, it is necessary to work over a base field that contains the n'" roots of unity. This is
why we chose as a base field Q[v/—3], as it is the simplest field that contains the cube roots of unity. If we
chose n = 2, that is, if we took k to be induced by the quadratic residue symbol, the corresponding quadratic
Eisenstein series could be defined over the rationals. In this case it would be the usual half-integral weight
Eisenstein series, which has a pole at s = % with residue equal to the usual Jacobi theta function over the
base field Q.

Kubota generalized the notion of a theta function by defining the n!* order theta function to be the
residue of the n*® order metaplectic Eisenstein series at the point s = % + ﬁ Kubota was not, however,
able to determine the nature of the Fourier coefficients of these generalized theta functions. In the case
n = 3, Patterson [Pat77] succeeded in computing the precise value of the Fourier coefficients of the residue
of the cubic Eisenstein series, that is, the cubic theta function, up to the sign of the constant term (which
he later determined in [Pat82]). The foundation of this present paper is the evaluation of these coefficients.
Interestingly, to this date, the nature of the coefficients of n!* order theta functions for general n remains
almost completely unknown. There is a conjecture of Patterson in the case n = 4, and a conjecture of Chinta,
Friedberg, and Hoffstein [CFH12] in the case n = 6, but there are not even conjectures for any other values
of n. See the introduction of [BH16] for a brief history.

In the case we are considering, E®)(w, s) has a simple pole at s = 2, and the residue of E®)(w, s) at this
point is a cubic analog of the quadratic Jacobi theta function. Denoting this by 6, we have

O(w) = 2Ress:§E(3) (w, s). (1.10)
The Fourier expansion of the cubic theta series § € L*(T'\H3, x) at oo is given by

O(w) = oys + Z T(n)yK
0FpEN3A

(4r|ply)e(pa). (1.11)

1
3

Here o = 97‘/3 [Pat82] and 7(u) is defined explicitly in [Pat77, Theorem 8.1]. Leaving out roots of 1 and
powers of A for simplicity, for u € A, if u = mem$, with mg,m; =1 (mod 3) and my square free, then

- g(mo)
T(mem3) = 27/ Nm, NG

Here Nm = mm = |m|? for m € Q[v/=3]. The coefficient vanishes if mg is cube-free but not square-free.
Here g(mg) is the cubic Gauss sum

- 3 (2)()

a mod mg
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The absolute values of the 7(u) are all we will need, and these are given as follows. For a € {0,1,2},
mo,m1 =1 (mod 3) and mg square free,

325 (Nmy)2  when g = +w A3 4mem3,n > 1
| n+5

={3" (Nmy)2z  when p = £X"3mgm3,n > 0, (1.12)

0 otherwise.

|7 (1)

1.3. The approach, and a conjecture. To begin to discuss our attack on the problem of proving the
non-vanishing of the symmetric cube L-series at the center of the critical strip, we first recall the main result
of Ginzburg, Jiang and Rallis [GJRO1]:

Theorem 1.3 (Ginzburg, Jiang and Rallis). For a Maass—Hecke cuspform ¢ € L?>(T\H?), if
(¢, 101%) # 0
Then

2
Here 6 € L*(T\H?, k) is the cubic theta series defined above.
Remark 1.4. Note that the inner product is well-defined because |0|? is invariant under T' by the automorphic
condition (1.8).
We will prove Theorem 1.1 by first arguing that a weighted average of (¢;, |#|?>) with Laplace eigenvalue
1+ 4t7 over |t;] < 2r must grow with 7, and then using Theorem 1.3.

The implication of the non-vanishing of L (3,sym?®, ¢) when (|0]2, ¢) # 0 suggests that there may be an
identity relating the two. We formalize this in the following

L (1,sym3, qb) #0.

Conjecture 1.5. Let ¢ be a Maass cusp form with ground field K containing the cube roots of unity. Then
L* (3, ¢,sym’)

L*(1,¢,sym?)

Here L*(s, ¢, sym") is the completed symmetric r-th power L-series of ¢, and the constant cg is non zero
and depends on local data of ¢ at the prime 3.

(6,162 = cs

1.4. A heuristic supporting Conjecture 1.5. Suppose we replace ¢, with spectral parameter 1+ 2it, by
the non-metaplectic Eisenstein series E(w, s), which has as parameter s, with Laplace eigenvalue 2s(2 — 2s).
For Re(s) > 1 the inner product (E(w, s), |#]?) unfolds to

/ y?*|0(w) 2V,
Do \H3

Some caution must be used here. The inner product must be regularized. (We do this formally in §2.4.)
The Eisenstein series must be approximated by the truncated function

E(w,s)= Y In(H(yw))*,
YET o \I
where Ir is the characteristic function of the interval [T~1, T, and T — oo.
When this is done, after unfolding E7 (w, s), the inner product becomes

2

T 7 Z( 1 47‘(‘ SG:U ded
oo HE® 3 (& 1

0ApEXT3A

Letting T' — oo carefully, the term containing the square of the constant term vanishes due to an analytic
continuation argument and all terms disappear except the non-zero diagonal terms. This leaves us with

o0 . d
(E(w,s),]0/%) =V01(3A)/0 vy \T(u)IQK%(‘l?TIu\y)Q;y
0£UEA3A

:¥ > IT(M)IQ/OOO?JQSK;,(szuIy)Qdy— AL > W/Omysté(y)Qdy’

DY 2s s
0#£UENT3A Yy 2(47T) 0#APENT3A N/J, y
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after interchanging the order of integration and summation, changing variables and substituting % for the
value of Vol(3A).
By (1.21), given below,

0 y I'(2s)
The triplication formula for the Gamma function states that

NG (z + ;) r <z + i) = 27377 %[(3z).

/oo ok (y)Zdi/ 27T (s 1) T(s)?T (s — 3) .

Applying this to the above, with z = s — %, gives us

o dy 272T25733-35D(35 — 1)I(s
0 Y ['(2s)

(1.13)

Also, referring to (1.12),

3 [r(W? _ 3 7 (w)[? 3 Nmy
s as s 3s
0£REAT3A (Nu) p=tw A, 3 m=mom?, (N'mo)*(Nma)
a=0,1,2,a>-3 mo,m1=1 mod 3,

mo square free
The 3-part sums to
9. 35+3s (1 + 31—2s) (1 _ 31—33)*1 7
while the part relatively prime to 3 sums to
235 = 1) (s)
Cx(29)

where CS) is the zeta function of the field K = Q[v/—3] (2.1), with the Euler factor at the prime A removed.
Assembling the above, since

Dls) = Crls) (1-37%),

we have
TP _ o geras (L3172 (1 =37%) (e (3s — 1)(k(s)
LA iy 2R 132 Ce(2s) .
We finally have
(E(-,5),|0]?) = 3927227125 (1+32)(1—37°) Cr(3s — 1)I'(3s — 1)¢x (s)T'(s) (1.15)

(1 —3729) Cr(25)T'(29)
and the right hand side is meromorphic for s € C, therefore the inner product continues to a meromorphic
function on the entire complex plane. Recalling the completed zeta function of the number field K is

Gt = (¢ ) D(5)Cie (), (1.16)

42

we rewrite (1.15) as

ey (L0 37) G(3s ~ 1Gl)
e =3y G

Analytically continuing to s = % + it and multiplying (1.17) by its conjugate, we obtain

(1.17)

2
18 —2it|2 — 1t - . N .
B [14 372" L= 340 e (1 i (1 i (L4 it)ci (B — it)
26 |1 — 3—1-2it|? G (14 2it) ¢ (1 — 2it)

(E(,1/2+it),]0])]" =

(1.18)
The L-series, in a new variable u, attached to E(w, s), which we denote for convenience as E(s), is

L(u, B(s)) = Cxe <u+s—;> Cx (u—s—i—;).
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To make F(s) resemble a Maass form with spectral parameter ¢ we set s = % + it and have

L<u,E<;+z‘t)> G (u+ i) Cie (u— it) .

We can now take the symmetric square L-series, getting

L (u,E (; +it> ,sym2) = (x (u+ 2it) Cx (u)Cx (u — 2it)

and finally the symmetric cube:

1 .
L <u,E (2 + it> ,symj) = (x (u+ 3it) (x (u+it) (x (u —it) (x (u — 3it).
The L-series attached to (% + z't) at the center of the critical strip is (g (% + it) (x (% — it). Similarly the
symmetric square L-series has a pole, with residue (g (% + 2it) (K (% — 2it), that is, L* (2u, E(1/2+it), sym?)
has a pole at u = 1/2. The symmetric cube L-series is (x (% + 3it) (x (% + it) (x (% - it) (x (% — Sit). Thus
(1.18) can be rewritten as

L (5B (4 + it) .sym)

2

E(-,1/2+it),10/)]" =¢ , 1.19
|< ( / ) | | >’ E(%+zt) QReSu:%L (2U,E (% +Zt) ,sym2) ( )

and

18 —2it |2 1l
318 [14 372" |1 — 373
CB(3+it) = 26 |1 — g3—1-2it|?

The pole at u = % comes about because the Eisenstein series is not a cusp form. It seems reasonable to

believe that the appropriate substitute for the residue of the symmetric square in the case of an Eisenstein
series would be the symmetric square L-series itself in the case of a cusp form that is not a lift from GL(1),
which leads us to Conjecture 1.5.

1.5. A road map of the approach. After establishing some basic facts about the Fourier coefficients of
the theta function #(w) and the metaplectic and non-metaplectic Eisenstein series, and the spectral theory of
L*(T'\H?), we define a Poincaré series P, (w, s) in (2.6), and consider its inner product with |#(w)|?, namely
|(P.(,s),|0]*)]. As explained in Lemma 2.6 this picks off the u coefficient of |§(w)|?, along with some
gamma factors. We then derive the spectral expansion of P, (w,s) in (2.8) and compute the inner product
|(P,(-,5),]0]?)| in another way, using this expansion. We show that this breaks up into a continuous piece
plus a discrete piece. Setting s = « + ir, for sufficiently large and fixed «, we show in Lemmas 2.9 and 2.10
that the continuous piece contribution is O, (e=™"/(1 + |r[)?¢=2). In this same lemma, it is shown that the
remainder of the contribution to the spectral expansion is a linear combination over j of the inner products
pi(n){(¢;,10|?). Here {¢;} is an orthonormal basis of cusp forms consisting of Maass—Hecke eigenforms
(Proposition 2.4), and p;(u) is the p-th Fourier coefficient of ¢; (see (2.7)).

In Lemma 3.1 we compute the inner product differently, by multiplying 6(w) by its conjugate and using
P,(w, s) to pick off the p coefficient, for any choice of u, such as ¢ = 1. From this we obtain a collection of
shifted sums, and verify that there is a main term and an error term, and

-4 —nr
|<PM('75)7 ‘0|2>| ~oa,pu (1 + |7"D2a 3e | ‘

Comparing this with the continuous contribution, which is O (e=™!"I(1 + |r[)22=2), as 2 > % this means that

the discrete contribution contributes the difference, which implies p;(u){(;, |8]*) # 0 infinitely often.

1.6. Notation and miscellaneous results. As always, A <, B means that |A| < C'B for some constant
C = C(7) depending only on 7. We write A ~, B when |A| <, |B| and |B| <, |A|. We will frequently use
Stirling’s approximation, in the following form.

Lemma 1.6 (Stirling). Fiz 0 < a <b. For o € [a,b], and r € R, with large |r|, we have

ID(c+ ir)| ~ V2re™ "5 (1 + |r])o 3.
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Finally, we also use the following two integration formulas involving K-Bessel functions:

- dy (s — 1+ 2it)T(s — 1 — 2it)
Honl)2)" e =2 : 1.20
/o e Y Kait(y)(2y) )2 VT ey (1.20)
from [GRO7, p.700 6.621.3.], and
oo Sdz 5. T Stutv\ P (Szpdv o (stA=V) [ (Szh=V
R e e e (1.21)
0

from [GRO7, p.684 6.576.4.].

2. SPECTRAL SUMMATION

The main purpose of this section is to represent the inner product (P,(-, s), |#|?) between a Poincaré series
(defined in §2.2) and |0|? as a spectral sum. Note that |@|? is not an L? integrable function, so one can
not directly apply a Parseval-like theorem. We obtain such a spectral summation formula by first spectrally
expanding P, (w, s), and then by taking the inner product with |6]2.

2.1. Basic spectral theory. We begin by reviewing the spectral theory of the Laplace-Beltrami operator
A (1.1) on L*(T'\H?). We first describe the Fourier expansion of the Eisenstein series as follows. Recall that
S is the set of cusps (1.2), and E,(w, s) is the Eisenstein series at a € S, defined in (1.5).

Proposition 2.1. Let (x(s) be the Dedekind zeta function associated to the imaginary quadratic field Q[/—3]

1 1
() == 3 ——, 1)
=5 2 T

Nl

and let (i (s) = (122)? T'(s)Ck (s) be the completed zeta function. Then the Fourier expansion of Eq at 0o

is given by
Eo(w, s) = 5a,ooyZS +ca(0,8)y° 7% + Z ca(p, $)yKas—1(4m|uly)e(p), (2:2)
0#pEAT3A
where ( )
C(2s—1)_
_ 2.
¢q(0, 5) Cr(29) ¢q(0, 5) (2.3)
and )
calit, 8) = = Calpt, s), 2.4
(01:9) = G gy ) (24)

with ¢q(u, s) being a Dirichlet polynomial in s.

Remark 2.2. [t is conventional to write the Dedekind zeta function as the sum over ideals. Here for our
convenience we define (x (s) as the sum over non-zero integers which is % of the usual Dedekind zeta function.

Proof. Following the standard computation [Kub73], we see that the u-th Fourier coefficient of F, at oo is
given by
aw /. 2
Vol(3A) H(og " yw)**e(—px)dridrs
Vol(3A) JJe/3n ve%.:\r ’
which is equal to
2s 7TF(25 — 1) o 9e
g 0. 5) 2 1)
Y~ 0a,00 + Vaco ’S)V01(3A)1—‘(23)y
for =0, and
G
. _yKo, (4 o, 8),
Vol BA T (2s) VK 2e=1 (A lptly ) race (11, 5)

for u # 0, where

o (1l
%oo(th) = Z ( - )a

|C|4s
Y€l \og 'T /T
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for v = (2 2) If we write o;! = (Z ;), then I'o,\ogT'/T is parameterized by (c,d) € A? such

that ged(c,d) = 1, ¢ = a (mod 3) and d (mod 3¢) with d = S (mod 3). From this, we may arrange the

summation so that
1 ud
b= ¥ o X ()

0#ceA d(3c)
c=a(3) d=p(3), ged(c,d)=1

One may then verify the claim via directly evaluating Ramanujan’s sums
<Md>
> el )
c
d(3c)
d=pB(3), ged(c,d)=1

and then expressing 1q00 (1, s) as a ratio of a Dirichlet polynomial and ¢} (2s). O

Because (j(s) is meromorphic on C with simple poles only at s = 0 and 1, and because (j(s) does not
vanish if Re(s) > 1, we infer from Proposition 2.1 the meromorphic continuation of Ej.

Proposition 2.3. Fora € S, Eq(w,s) admits a meromorphic continuation to Re(s) > % with a simple pole
only at s = 1.

This implies that, aside from a constant function, there is no L2-integrable eigenfunction of the Laplace—
Beltrami operator which is a residue of an Eisenstein series.
Let © C L?(I'\H?) be the subspace spanned by incomplete Eisenstein series

Oap(w) = Y (H(og 'yw))
’YGFR\F
with ¢ € C§°(0, 00).
Let © C © be the subspace spanned by the residues of Eisenstein series at s € (1/2, 1], and let ©¢ be the

orthogonal complement of © in ©. Let Lgusp (I\H?), the space of cusp forms, i.e., the subspace of square

integrable functions f € L?(I'\H?) such that

i f(oalas + iz + jy)doidas = 0
U_lFﬂO'n\C
for almost all y, for all a € S.

Proposition 2.4. We have the following direct sum of subspaces

LA (T\H?) = © @ 09 @ L2, (T\H?).

cusp

Here © is one dimensional and consists of constant functions. The spectrum of A on Oq is purely continuous,
and the spectrum of A on L2, (T\H?) is discrete.

cusp

It is well-known that the Eisenstein series E, (w, % + it) for a € S span ©g. Let {¢;};>1 be an orthonormal

basis of L2, (I'\H?) that consists of Maass—Hecke eigenforms. Such a basis exists because A and the Hecke

cusp
operators {T},} form a commuting family of self-adjoint operators. Let ¢o = (Vol(T'\H?))~'/2. We summarize

the spectral expansion of a square-integrable function on I'\H? in the following proposition.

Proposition 2.5. For F in L?(T\H?), we have
P = SR + 0 3 [ (BBl 1/2 i) Bt 2+ 0 (25)
in the sense of L?, i.e., b )
(F,G) = ZJ}F, 0;) (95, G) + % Zg </_oo (F,Bq(-,1/2 + it)) Ea(-, 1/2 + it)dt, G>
j> ae o0

for all G € L2(T\H?®). If we further assume that F is smooth, then (2.5) is true pointwise, and the right-hand
side converges absolutely.
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2.2. Poincaré series. For ;€ A™2A, and s € C, we define the Poincaré series by
Py(w,s)= Y Fy(yw) (2.6)
'YEFOO\F
where F,(w) = (87|uly)* e~ "MV (uz), where x = 21 + ixy, and w = x + yj.
Lemma 2.6. Assume that u # 0, and let f be a Maass form on T'\H? with the Fourier expansion (1.4).
Assume that it € (—1/2,1/2) UiR, and that R(s) > 3/2. Then we have
T(2s — 1+ 2it)(2s — 1 — 2it)

(25— 1)

<P;L('as)7f> - 36\/37'(%“14‘@

Proof. By unfolding the integral, we first have

/// dridzody
(w, s) f (w) ———= "
\ 3

— duyduad
/// B (87 |uly)>S e e () f (w) T2

Since we assumed that p # 0, the integral over z; and x5 simplifies the expression to

> o —druly— dy
= Vol(3A) / (87| uly)? e '“'yc,Lngit(Mluly)E
0

o0 d
—18V3rluley | ¢ Kanlo) 2SS,
0

where we used Vol(3A) = 94/3/2 in the last equality. Now the statement follows from (1.20). O
2.3. The inner product formula. We assume that the Fourier expansion of ¢; (j > 1) is given by
di= > pi(WyKau, (47|ply)e(pz). (2.7)
0AHEAT3A

We apply Lemma 2.6 to Proposition 2.5 with F' = P,(w, s), which is square-integrable for all sufficiently
large Re(s):

Pati,8) = Yo (P8 6)650) + 1= 5 [ (PuCos) Bal 12 4 i0) B, /2 + i)

J aGS

36 3/2 P
F(\gj—u' ZF 25 — 14 2it;)0(2s — 1 = 2it;) p; ()¢5 (w)

9 1/2

\/;w Iulz/ Ca (1, 1/2 4 )T (25 — 14 2it)T(2s — 1 — 2it) Eq(w, 1/2 + it)dt. (2.8)

s— 1)
2/ aes

Because |0]? does not belong to L?(T'\H?), in order to express (P, (-, s), |0|?) as the summation of the inner
product between each summand in (2.8) and |0|?, we need to understand how p;(u) and (¢;, |8|>) behave as
j — 00. We begin with an estimate of the Fourier coefficients.

Lemma 2.7. Ast; — oo, we have
F—
0 ()| < tFe™ | p.

Proof. By the standard upper bound for the supnorm of an eigenfunction on finite volume symmetric spaces
[HC68],

Vol(38) 3 19y () Py Koo, (4 uly)? // 1652y iy < sup |2 < |t;]?
0ApEAT3A

Assume without loss of generality that ¢; > 100, and, for a given p € A™3A, choose y so that 4r|uly = 2t;.

Then we have )

t 2 2
‘pj(/u‘)| A 2| ‘2K21t( ) <<tja
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and so using the asymptotic of the K-Bessel function in the transition range [EMOTS81, p88,(20)],
F—
o ()| < t7 €™ |ul. O

It will be convenient to know how the Fourier expansion of §(w) with respect to the cusp a € S looks like.

Lemma 2.8. For a € S, let the Fourier expansion of 0 with respect to a be given by
2
Oloaw) = cay® + Y, Talp)yK1(dz|ply)e(pz). (2.9)
0AnENT3A
Then we have |1q(p)| = |7(u)|, for all p # 0.
Proof. Because of the relation (1.10)

O(w) = 2Res,_» E® (w, s),

2
3
we have
1
Ta(/,L)yK% (47T|/,L‘y) = 2ReSS:%m / o/ E(3)(0aw,s)e(—,um)dl‘
As done in [Kub73], we see that

(22>

E® (g —px)de = 2T R, (4 8
S B o et ua)de = A Syl (i) o).

where

e (Ld)
3 — c
t(xu)a(:u‘?S) = § K(Yoa 1) lc|4s
€T o \I'oa /Too

* ok . %
for v = (c d)' If we write oy = 5)’
that ged(c,d) = 1, ¢ = a (mod 3) and d (mod 3¢) with d = S (mod 3). From this, we may arrange the
summation so that

then 'y, \I'oy/T's is parameterized by (c,d) € A? such

1 — ([ pd
S s) =Y o 3 k(yoaLe <c> (2.10)
0#ceA d(3c)
c=a(3)  d=p(3), sed(c,d)=1

One can check for each a that «, 8, and k are given by the following table.

a a B | r(yoah)
00 0 1] (¢/d)s
0 1 0| (d/c)s
+1 £1 |1 (¢/d)s
+w +w? 1| (¢/d)s
+w? +w 1| (c¢/d)s
+(1 - w) 1 0| (d/c)s
+1-w) 21 —-w) [ 1| (c/d)3
Comparing (2.10) with (5.4) of [Pat77], we see that for a # oo, +(1 —w)~!, we have
1
Wﬁi)o(/% S)l = mhﬂ(s,ﬂ, 0)|

where (s, i, 1) is defined by (5.18) of [Pat77]. This proves |74(x)| = |7(1)|. Now when a = £(1 —w)™t, we
can express 1) (i, s) as a linear combination of v(s,eAy,0) as in (5.24) of [Pat77], where ¢ is a unit and
b > 1. Then the equation follows by computing the residue of the summation (s, eA’u,0) at s =2/3. O

Finally, we bound the contribution coming from the continuous spectrum as follows.
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Lemma 2.9. Let s = a + ir with sufficiently large o being fixed. Then for any a € S, as r — 00, we have

> 1
</ (u, + zt)F(Qs — 14 2it)T(2s — 1 — 2it)Eq(-,1/2 + it)dt, |9|2> Lpe €I 4 |p|)te—3Fe
for any € > 0.

Because the proof is quite lengthy, we present the proof of this lemma in §2.4.
We collect these estimates to derive the spectral summation formula for the inner product (P, (-, s),|0]?).

Lemma 2.10. Fiz sufficiently large «. We have

3/2
(P 5), 10 = 28V3T '“‘

T@s-1) Z D(2s — 1+ 2it;)T(2s — 1= 2it;)p; (1) (5, 10]%) + Opue (7™ (L + [r[)2727),

for any € > 0, and the summation converges absolutely.
Proof. We first have by the spectral expansion (2.8),

3m3/2
(B0 o) = “'<ZF 120025~ 1~ 2it)p <>¢],|e|2>

+ 9F\(lei2|2u| Z</Ooul/2+zt) (25 — 1+ 2it)T(2s — 1 — 2it) Eq (-, 1/2 + it)dt, |92> (2.11)

Because, by Lemma 1.6,
1

T (25 — %)
we bound the second term by O,, ((e~™I"l(1 + |r[)2*~2+¢) using Lemma 2.9.
Now we have

(25 — 1+ 2it;)T(2s — 1 — 2it;) < e "I+l =t (|0 ] 4+ 1) (|r — t;] + 1))2*7 2,
and by the supnorm estimate [HC68], we have
(05, 101%) < (161172 sup ;] < [t;]. (2.12)
Therefore we infer from Lemma 2.7 that
<r(2s — 1+ 2it;)0(2s — 1 — 2it;)p; ()b |9\2>

< 67r|r|(|r| + 1)1—2&7

decays exponentially in ¢;, hence the summation in (2.11) is absolutely convergent, from which we may
interchange the order of the inner product and the summation. |

2.4. Proof of Lemma 2.9. We fix a fundamental domain F = T'\H?. Let +A be the triangle in C with
vertices 0, +(1 — w)™! and +(1 — w?)~L. Following [Pat77, (2.2)], let

={z+yj el [z +y* > 1L,z € (+A)U(-A)} (2.13)
and
I'300 = {(8 631) teunit ,v € A} C I's = SLa(A).
Then, as in [Pat77, p.130],
F= U U oamFo (2.14)

AES MET3 00 /Too
is a fundamental domain for I'. For i > 0, let

D, ={(z,y) eH’ : z € U,y > n},
where (+A) U (=A) C U = C/3A. There exists 0 < n < 1 such that Fy C D,;,, and we let
p=J) U oumD, (2.15)
a€ES mels /I

Then F C D. Moreover, for any w € oamD,,, H(og'w) > n.
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For w € H?, let

Ealwsp,s) = % / ca(p, 1/2 4+ it)T(2s — 1 4 2it) (25 — 1 — 2it) Eq (w,1/2 +it) dt (2.16)

—0o0

Lemma 2.11. For any cusp a € S, the inner product
(Ealsp,8),101%) = /// Ea(w; p, 5)|0(w)|*dV
T\H3

converges absolutely for R(s) > 2.

Proof. For pu # 0, by (2.4),
Ca(p,1/2 4 it)
i (1 + 2it)
where éq(u,1/2 + it) is a Dirichlet polynomial in it. Let ¢q(u, 1/2 + it) be a Dirichlet polynomial in it such
that

cality 1/2 + it) =

Ca(,1/2 = it) = a(p, 1/2 + it).
Then
Calp, 1/2 — it)
Giol1 — 2iD)
Here (5 (s) = (%)% I'(s)Ck(s) is the completed zeta function. Note that (} (s) has simple poles only at
s € {0,1} and it satisfies the functional equation (. (s) =} (1 —s). When u = 0, by (2.3), and by applying
the functional equation,

ca(p, 1/2 +it) =

Ck(22) Ce(1—22) .
0,1/2 = ———"—Cq(0,1/2 = ——=Cq(0,1/2 2.17
cﬂ( ’ / +Z> C}k((1+22)ca( ’ / —|—Z> C;}(l+22§)ca( ) / +Z) ( )
where ¢,(0,1/2 4+ z) is a Dirichlet polynomial in z.
Recalling the Fourier expansion of Eq(w;1/2 + it) in (2.2),
1 Coo(,1/2 — 2) 1+2
Ea(w;p, s :5@0—,/ = P (25— 1+22) 0 (2s — 1 —22)y'*%dz 2.18
1 Ca(pt,1/2 — 2)€a(0,1/2 + 2) 12
— '2s—1+22)I'(2s—1—-2 *d 2.19
5w Sy (1 +22) (25 = 1+22)1(2s 2y Tz (2.19)
1 [~ é 1/2 + it
L [T G 2R b o i (25— 1— 20t) S calv, 1/2 + ity Ko (4 lvly)e(var)dt.
2m J_oo Cr(1—2it) 0A£VEA3A

(2.20)

Let o = Re(s) > 0 and we assume that o > 5. We will consider each integral (2.18), (2.19) and (2.20)
separately.

For the first integral (2.18), we move the z-line of integration to Re(z) = —a + % + ¢ for sufficiently small
€ > 0. Since 1 — 2Re(z) > 1 always, we do not pass over the zeros of (j.(1 — 2z). Note that we also do not
pass over any poles from other factors in the integrand of (2.18). Similarly for the second integral (2.19), we
now move the z-line of integration to Re(z) = o — § — ¢ for sufficiently small € > 0. Again, 1+ 2Re(z) > 1
is always true for a > %, so we do not pass over the zeros of (j (1 + 2z), and we do not pass over any poles
from other factors in the integrand of (2.19). The series in the third integral, (2.20), converges absolutely
and the size is O(e=2™).

Combining the above, we get

ga(w; ,U, S) <<a,u,oz,e y272a+6,
for y > 1. Since |0(w)]? = O(y%) as y — oo, for a > %, y > 1, we have

10 _
\0(w)|2 Ea(w; 1y 8) Kapove Y3 2ate
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We now consider the asymptotic behaviour of |§(w)|?Eq(w; 1) as w approachies a cusp b € S. We consider
|0(opw)|?Eq(oew; 11, 8) as w — oo. By the definition of the Eisenstein series, for Re(s) > 1, we have

Ey(opw,s) Z H(og opw)?® = Z H(og lop - oy yopw)?s.
YET\D YET\T
For I' = T'3(3), we have Ub_lfab = T for any op in (1.3). There exist ¢ € S and 7, € I such that
c= fycob_laaoo = 'yccrb_la. Then o, = fycab_laa. For fycab_lFan,'yc’l =T, we have
Eq.(opw, s) = Z H(o ' yyew)?® = Ec(w, s). (2.21)
'Yerf\r
For any b € S, by (2.9), [0(cw)|? = O(y?) as y — oo, and following the previous argument, we have
10(c6w)|? Ea(ovw; 11, 5) = |0(ouw)|? Ec(w; 1, 8) epae yF 227 (2.22)

By applying (2.22), and using the description of the fundamental domain F (2.14) and the Siegel domain
(2.15),

[(Eatise ) 10)] < [ 1Estwsp o)l o) Pav
S| (ws )] ) P22

bES MmETs, 00 /T oo ”"D"

<Y ¥ / (0603 1, >||9<abw>|25—§’

bES MET3 00 /Too

e Z Z/ y3 2a+edy Lpane 773 2a+€ (223)

beS m

for a > % Thus the inner product <€u(-; W, s), |02 > converges absolutely as claimed. O

Our goal is to express the inner product <5a(~; iy S), |9|2> as an absolutely convergent integral involving
zeta functions, and then estimate in terms of s. We follow Arthur’s method for treating the truncated
Eisenstein series. See, for example, [Goll17].

For T > 1, let 17(y) be the characteristic function such that

L (y) = 1 wheny>T,
T = 0 otherwise.

For a € S, define
_ _ 4
ATIOP(w) = D 1p(H(og yw)H(og yw)s.
’YEFH\F
Fix a compact C' C T'\H3. For T > 1, we see that there are only finitely many v € To\I', o5ty = (¢ 4),

such that H(oglyw) = ez > T, since there are only finitely many ¢, d € A satisfying

\C$+d\2+|
|’ Y
2 (.2 a@ Yy
|e| (y +x+c ><T.
Thus AT|0]?(w) is a finite sum for w € C, and the number of the terms depends only on C' and T'. Define
ATIOP (w) =Y leo|*AG 101 (w)
beS

and consider (|0|> — AT|6|?)(w). Following the arguments in the proof of Lemma 2.11, we can show that the
inner product (€q(-; 1), [6]> — AT|6]?) converges absolutely. Similarly, following (2.23),

Kg AT|0| >| <<T3—2a+e
For o > %, we get

lim <€a(';/~j’7 s),AT|0‘2> =0

T—o00
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So we have
. . 2 AT|p2\ | — . 2 . Tp12\ _ . 2
Jim (ol s) 101 = ATIOR) ) = (EaCi s 07) = i (0l ), ATIO) = (Eati 5. 0F).

(2.24)

Lemma 2.12. The inner product (Eq(;1/2+it),|0|* — AT|6]*) converges absolutely for any sufficiently
large T > 1.

Proof. For any cusp ¢ € S, and w € Um€F3 T ocmFy, for Fy as given in (2.13),

(102 = ATI0]2) (w) = |0(w)]? — e 1r(H (o7 w) H (o w) — > Jeo|* 1 (H (o 'w)) (H (o Mw) 3
c#£beS

= (1 — lT(H(O':lw))) )8 Z |Cb| 1 (H ))H(Ub_lw)% _|_O(e—27rH(g:1w))’
c#beS

as H(o 'w) — oo. For sufficiently large X > 1, there exists 0 < § < T such that for any w with
H(o7'w) > X, H(op 'w) < . Then 17(H (o 'w)) = 0. So as H(o7 w) — oo, we have

(16]> = AT|6]?) (w) = O(e~2rH (e w)y,

Therefore we get

[(Bas1/2-+i0), 10 - A7) < | |Eu<w;1/2+it>|\|0|2<w>ZchlT(H(o.:lw))\dv

beS
< ZZ/ | Eq(w; 1/2 + it) |’|9 -y |0521T(H(a;1w))‘dv
ces m JoemDe beS
T . ady > 2y dY
< ZZ/ |Ea(ocw; 1/2 +it)|y® — +/ |Ea(0cw; 1/2 + it)|e 2™ =% < 0. (2.25)
ce§ m “¢ Y T Y
Thus the inner product (Eq(+;1/2 + it),|0]* — AT|6]*) converges absolutely for any T > c. O

By Lemma 2.12 and the argument above, both inner products converge absolutely and we may interchange
the order of the integral and the inner product:

<€u('; 1y 8)7 |0|2 - AT|0|2>

| —
_ <2/ calm 12 10T (25 — 1+ 2i)T(2s — 1 — 2it)Eq (-, 1/2 + it) dt, (|6]* - AT9|2)>
™ — 00
R L
=5 ca(p, 1/2 +it)T'(2s — 1 + 2it)['(2s — 1 — 2it) (Eq (-,1/2 + it) , [0] — AT|6]*) dt. (2.26)
T J—co
We now compute the inner product (Eq(-,1/2+it),|6]> — AT|6]?), and then, by taking the limit 7' — oo
in (2.26), we compute (Eq(-;p), |0]?).

Lemma 2.13. For each a € S, for Re(s) = o >

<5a(';ﬂ78)7|9|2> Ck (s a)l (28—1+ ) 25—1—)
L  Calp, 1/2 +it) 39 it (143720 (1 — 3727) (5 (1/2 + 3it) ¢ (1/2 + it)
21 J_oo (e (1 —2it) (1 —3-1-2) Cr (14 2it)
x [(2s — 1+ 2it)[(2s — 1 — 2it)dt. (2.27)

where Cg (p; a) is a constant given by

93 1

<|cu|25u<u,2/3>+ 3 |cb|2au<u,1/3>a<o,4/3>). (2.28)
c,beS
op€(oco)TID
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Proof. By [Goll7, Lemma 3.1],

)
- . (E) du = 4 T+ when y > T, (2.29)
2mi ) (2) u T 0 otherwise.

and the integral converges absolutely for any Re(v) > 0. So

1 1 AN
) = im (2 [ (5 ). >
7(y) vlg%<2m. /(2) i \7 du) (2.30)
For Re(v) > 0, let
ATIOP (ws0) = Y / —H(og S lyw)3tdu. (2.31)
Y€l \1" @Y

Then AT |62 (w) = lim,_,o AT'|0|?(w;v). Since the sum over I' and the integral converge absolutely, we change
the order and get
1 T

1 T 4

T —1 Z+u _ .

AT|0]2 (w;v) = 5 /(2) e ;F :\FH(% yw)i iy = o o 0 (w3 2/3 + u/2)du. (2.32)
ol a

By (2.2),

i (log ()" 1 T
AT 9 2 . _ 5 005 = ( T
a| ‘ (w,v) a, y>Ty37F(1+U) +727T’L' o 1+v
+ E ! T_uc( 2/3+u/2)yK1,,Ar|vly)e(ve)du. (2.33)
27_” ( ) ’Ul+v a /1'7 y §+u y . .
0£vEA—3A

ca(0,2/3 4+ u/2)y3 ““du

By (2.3),

ca(0,2/3+u/2) =

M 3 >_% F(u+ %) CK(U+1/3)Ea(O,2/3+u/2). (2.34)

Cr(u+4/3) 472 T (u+3) Cuu+4/3)

Since é4(0,2/3 + u/2) is a Dirichlet polynomial in s (and thus uniformly bounded), by applying Stirling
(Lemma 1.6), we get

2a(0,2/34u/2) = (

ca(0,2/3 +u/2) < (1 + |Im(u)|) 1, (2.35)
so the first integral converges absolutely as v — 0 and at v = 0. When p # 0, by (2.4),
C 2/3 2 C 2/3 2
caliis2/3+uy2) = 231 u2) Calp,2/3 + u/2) (2.36)

(i (u+4/3) (£22)7 79T (u+ 2) Cuelu+4/3)
with éq(p,2/3 + u/2) being a Dirichlet polynomial, |éq(u,2/3 4+ u/2)| <, 1. By [DLMF, 10.32.11], we have
Cali,2/3+ 4/ K )y (dloly) gy (14 [Im(u)])F, (2.37)

so the integrals in the series in (2.33) over v converge absolutely as v — 0 and at v = 0. By taking v = 0 for
(2.33), we get the following Fourier expansion for AT|6]2(w):

4 1 T

3

+ = Tca(0,2/3+u/2)y%*“du

AT1012(w) = 04 001
a 017 (w) = ba,0017(y)y 2t

211
0AvEAT3A

1 T‘
+ > (/ —ca(1.2/3+ u/2)yK1+u(47r|yy)du> e(vr). (2.38)
@
For z € C, Re(z) > %, by unfolding,

<Ea(-,1/2—|—z),\9|2 —AT\9|2> :/ {|9 Oqw Z|c 1*AL1602 (an)}y1+22dV
[ oo \H3

beS
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For any a € S, by (2.21), there exists ¢ € S such that

1 T 1 T-u
ATQu‘z—/—EQQ 2 /—Ec ) 2
60" (daw;v) 9 J gy w7 (aw;2/3 +u/2)du =5 (o) 1T (w3;2/3 +u/2)du
= AT102 (w;v). (2.39)

Here ¢ € S is determined by the ac(ob_laa)_1 € I' and it is uniquely determined up to the action of I'. Then
we have

3 JeoPAT 18] (00w) = |ealPAL |01 (w) + > o [PAT 101 (w) (2.40)
beS cES, cF#0
b65,0h6(0(0;1)71F

By (2.9) and (2.38), we get
(Ea(1/2+2),16]" = AT16])

> 4 4 zdy
—voi3a) [ {leout el a4 X )Py (nln?

3
0AVENT3A Yy
AR R R FD DI e H )
C/3A cES,cF#oo
bES(rbE(o’ca_l)_lF
1422
:V01(3A){|Cu|2?3+(47T)_1_22 |Ta1 : / K 2 1+2zdy} I(z;T),
3 +22 oo v[Hr2E
0#£VENT3A
where
1(:7) / /I {|ca| ATIOPw) — lr@ut) + 3 |chA?|e|2<w>}yl+QZdv. (2.41)
C\3A €S, c£00

beS,05€(0cox )T

By applying the Fourier expansion of AT||?(w) (2.38), we have

(1 r d
I(xT) = > |cb\2vol(3A)/ {/ cc(0,2/3 +u/2)y _“du}yH‘QZg. (2.42)
271 U Y
c,beS 0 (2)
o’he(oro;l)’lf‘

Our goal is to get a meromorphic continuation of I(z;T) to z € C. Assume first that Re(z) > 1 + ¢ for
sufficiently small € > 0. We separate the y-integral into two pieces and using the description of ¢(0,2/3+u/2)
n (2.3), we get

(1 / T dy
— 0,2/3 +u/2)y3 “du} 1422 2
[ a0/ up -

[ T ¢ (1/3+u) u —u gy, C142:0Y
- {m/@) IR R O ERRTC R

0o L T G{(l/3+u)~ 71+2z@
+/1 {2m’ /(2) u (L (4/3 +u)cc(072/3+u/2)du}y " (2.43)

We now consider the first integral of (2.43). We move the u-line of integration to 2 < Re(u) < 2 + 2¢. Note
that the u-integral converges absolutely for any Re(u) > 0 and we do not pass over any poles. Now the
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power for y is —% — Re(u) + 2Re(z) > 0, so we may change the order of the integrals and obtain

D! T (1 2
/ {/ CK( /3+U)Ec(072/3+u/z)y3—udu}y—1+22dy
0 2/34¢€)

2mi u (5 (4/3+u) Yy
_ T Ge(/3+u) { ' 1u+22dy}
= 0,2/3 2 3 — od
2 Jiajare w Ced/3 4w 023 ur) /oy y J
1 T G134 ),

" 2mi (2/34¢) u(—% — u+2z) (i (4/3 +u ) ¢c(0,2/3 + u/2)du.  (2.44)

For the second integral, we assume that 1 +€ < Re(z) < % + 1. We change the order of the integrals and get

L T Gell/3 v u), ju }1+2zdy
/1 {27m'/(2) U C}k((4/3+u)cc(072/3+u/2)y du py y

1 TG (/34 u) { > ;,,u+zzdy}
2w Jgy u C}‘<(4/3+u)6‘(0’2/3+u/2) /1 Y Y du
1 T Ge(1/3+w)

" % )y u(- T —ut22) (A3 ) 2(0,2/3 +u/2)du. (2.45)

Since the integrand in the two integrals (they are the same) has a pole at u = f% + 2z, for % +e<Re(z) <
% + 1, we have

> (1 / T Lo, dy
— 0,2/3 + u/2)y? “du} T2z =
/0 {27T’L (2) u ( / / y3

1 T 1 T
— ————c(0,2/3 + u/2)du — = | ———————c(0,2/3 +u/2)d
" omi (2/3+¢) U(—%_U‘FQZ)CC( 3+ u2)a 2mi /2) u(_%_“"'?Z)CC( 3+ u/2)du

T35 T57%  ((22)

= —F——c(0,1/2+2z) =
—3+2z e(0,1/2+2) —1 4922 (1+22)

(0,1/2+z). (2.46)
For Vol(3A) = %ﬁ,

I(z;T) = lep]?E.(0,1/2 4 2) (2.47)

9v3 T3 22 (3(22) Z
2 —3+22((1+22) ¢,beS
0’[,6(0}0‘;1)711‘

which continues to a meromorphic function of z € C.
By Lemma 2.8, we have |7,(v)|? = |7(v)|?. By (1.14) and (1.13), for Vol(3A) = f , we get

d
V01(3A)(47T)_1_22 Z ||7;ﬂ1+22 / K )2 1+22 y
0#£vEXNTS3A y

L+372)(1 = 3737%) Ge(1/2 4 32)C(1/2 + 2)

__Q9—=2 —1(
=32 (1 —3-1=22) Cr(1+422)

Therefore, we get

(Ea (-1/2+2),|0] = AT|0])

_9\/§| |2T3+2z 9\/> T——2z C* (22) Z
T 1+2: 2 —142:¢(1+22)

|co|*E(0,1/2 + 2)
c,besS
op E(Uco’;l)_ll—‘

(1+372)(1 = 37272) Ge(1/2 +32) G (1/2 + 2)
(1—312) o (1+22)

and the inner product has a meromorphic continuation to z € C.

+ 39—22—1
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Applying to (2.26),

9{ 1 Zalp,1/2 = 2) ERES
Eal 012 — AT|0?) = —"|ca|? / T T (2s— 142225 —1—2 d
< ﬂ( /1'78)7| | | | > | Cl| 27TZ ) C;}(l—QZ) ( 8 + Z) ( S Z)%+2Z &
1 Zali, 1/2 = 2)E.(0,1/2 T2
_% 2 : |b|2 / Cu(,u, / _ Z)Cc(oa / +Z)F(2$—1—|—2Z)F(2$—1—22)1376&“
2 s 2mi J o) Cr(1422) —35+22

0'1,6(0,;0;1)’11"
1[Gl 1/2-2)3%7F (14372)(1—3727%) (R (1/2 4+ 32) 5 (1/2 + 2)
xT'(2s —1+22)'(2s — 1 — 22)dz. (2.48)

Here we have used the functional equation (5 (2z) = (1 — 2z). We move the z-line of integration of the

first integral to Re(z) = —a + 3 + €. Since we assume that Re(s) = a > 2, and Re(z) < 0 it follows
thatl — 2Re(z) > 1; therefore we do not pass over the zeros of the (- (1 —2z). We also do not pass over any
pole of other factors of the integrand of the first integral, except ﬁ, which has a pole at z = —%. Then
we get ’
1 Calpt,1)2 — T5+2e
— MF(QS —1422)0(25 —1—22)1—dz
2mi Jioy C(1—22) 3 +22
1 1
_1 al ’2/3)I‘ 2s—14+-|'(2s—1—<
2 (5 (4/3) 3 3
1 Calp,1/2 — 3127
— Mr@s —1422)0(25 — 1 22) T——dz.
210 J(Catito) ¢ (1—22) 3+ 22
Note that in the remaining integral, Re(z) = —a+ 1 +¢, so  +2Re(z) = 5 —2a+2e < 0 for Re(s) = a > 2.
Thus we have
1 Calpt,1)2 — 22
— MF(QS —1422)0(25 —1—22)T—dz
2mi Jioy C(1—22) 3 +22
Ca(p,2/3) ( 1) < 1) 3—20+2
= (95— 142 )T (25— 1— 2 ) + O(T3 2012,
(i (4/3) 3 3

Similarly, we move the z-line of the integration of the second integral of (2.48) to Re(z) = a — & — € for

sufficiently small € > 0 such that o > £ —i— €. Again, since 1 + 2Re(z) > 1, we do not pass over any poles of
the integrand of the second integral except which has a pole at z = %. Then we get

1742’
—_— . ~ Tl72z
27 J (o) Cr(1+22) -3 +22
1 Zalin, 1/3)2(0,4/3) i i
—= I'i2s—1+=-)T'(2s—1— =
2 Ch4f3) )T
1 —_— 1 o ~ 1 T——Qz
1 Ca(/% /2* Z)Cc(07 /2+2>F(28—1+2Z)P(28—1—22)7(12
271 (a—1/2—¢) <K(1 + 22) —3 + 2z

_la(u, 1/3):(0,4/3) 5 — 1 s—1— 1 42042
> G (2 b 3> s (2 ! 3> +0(T ). (2.49)
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Combining the above we have

1 Calpt, 2 1 1
(Ealsspy8),1012 — AT|01?) = *gﬁlcalwa(“’ /3)F (25 1+ 3> r (25 1— 3)

22 (i (4/3)
19v3 Ca(p,1/3)¢(0,4/3) 1 1
+5 c;g |co @) r<251+3>r<2513)

op€(oeo )Tl

L[ G 1/2—2) 397 (L4372 (1 - 3737%) G(1/2 4 32) G (1/2+ 2)
21 (0) C}*((l — 2z) 2 (1 — 3_1_2z) C}k{(l + 22)

xT(2s —1+22)T'(2s — 1 —22)dz + O(T%—2a+25).

Taking T" — oo gives us

. 1 1
Jim (51, 5), 101 = ATI01) = Cre (s )T (25 —1+ 3> r (25 —1- 3>

b Calpe, 1/2 +at) 3977 (14 372it)(1 — 3= 2t) (% (1/2 + 3it) (5 (1/2 + it)
o1 J_oo Ch(1—2it) 2 (1 — 3—1-2it) G (14 2it)
x T'(2s — 1+ 2it)['(2s — 1 — 2it)dt,

where Ck (p; a) is a constant given in (2.28). O

We now need to estimate the right-hand side of (2.27) and complete the proof of Lemma 2.9. Recall
(2.27) and name the pieces

3

1 [ Galp, 1/2+it) 3971 (14 3720)(1 — 37 27%) (5(1/2 + 3it)C5 (1/2 + it)
T ) Cp(1—2it) 2 (1 — 3-1-2it) Ci (1 4+ 2it)

x D(2s — 1+ 2it)['(2s — 1 — 2it)dt =: I + I1. (2.50)

(Eal311,9), 16%) = Cic (s @)D (25 1y ;) r (23 L 1>

The first piece, coming from the residues, is easy. As s = « + ir, by Stirling’s formula
1 1
I=Ckg(p;a)T (25 -1+ 3) r (2.9 -1- 3) <L e T 4 fr)yde3,
To estimate 11 we first apply the lower bound
Cr (14 2it) > (log(2 + 2J¢])) 2.
This follows as (x (1 £ 2it) = (1 £ 2it) L(1 + 2it, x—3) and
C(1 + 2it), L(1 + 2it, x_3) > (log(1 + 2[t|)) "

We then apply Stirling (Lemma 1.6) and obtain

11 <, / (L4 )7 (4 ¢ + 122 (|r — ] 4+ 1)20 2= 2mmax(rb D) 0 (1/2 4 3it) Cx (1/2 + it)| dt.

—0o0

Here we have absorbed the |log(1 + 2[t|)|? in the € of (1 + |¢t|)~!T¢. Because of the exponential decay when
[t| > |r| and the polynomial growth of the rest of the expression in ¢, we have

7l
IT <, (14 |r|)te=3e=2r] / (1 + )71 Cx (1/2 + 3it)Cxe (1/2 + it)| d. (2.51)

—Ir|

We estimate this by integration by parts, using the integral theorem for Dirichlet polynomials [IK04, Theorem
9.1):
2

/T > ann™| dt < (T+ON) > lanl*.

0 l1<n<nN 1<n<N
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The conductors of (x(1/2+ 3it), (x(1/2+it) are both |¢|, and so each can be represented as a sum of length
a multiple of |r|, as [¢| < |r|. It follows then from Cauchy-Schwartz and the above that

Ir|
</| ||§K(1/2+it)|2dt>

Applying the approximate functional equation (the pole of the zeta function does not affect the estimate),
and the integral theorem we have

1 1
|7 2 2

|
/ G (124300124 1) e < ( /

I —Ir

CK(1/2+3it)2dt>
|

2
I7|

i ) 1
1/2 +it)|* dt anitl o dt = Ite,
/_ ICx (1/2 + it)] <</ Z anpn Z n<< 7|

Ir! “IrH1<n<r 1<n<|r|

Here the a,, are the coefficients of (x. The same estimate applies to flr‘lr' ICr (1/2 + 32'25)|2 dt, and so
]
/ 1o (1/2 4 3it)Cre (1/2 + it)| dt < [r[ 1+ (2.52)
—|r|

We now integrate

7| 7|
/ (L4 1) G (1/2 + 3it)Cie (1/2 + it)] dt < / G (1/2 4 Bit)Cre (172 + i) d
_ 1

I7|

by parts, setting
t
S() :/ i (1/2 + 3it)Cie (1/2 + it .
1

Then

Ir| 7]
/ - 1+e |Cre (1/2 + 3it)Cxe (1/2 + it)| dt = / t*1+edS(t)
1

1
7]
= [res@] 11— o) / 1251 dt
1
< |,r,|26’

after applying (2.52).
Combining this with (2.51) finally gives us

II <, (1 + |T‘)4a—3+ee—2ﬂ\r\’

which completes the proof.

3. COMPLETION OF THE PROOF OF THEOREM 1.1

We are going to compute the inner product (P, (-, ), |#|?) directly, and then compare it with the summation
formula from Lemma 2.10. This will complete the proof of Theorem 1.1.

Lemma 3.1. Let s = a + ir with « being large and fized. Assume that p is chosen and fized such that
Re(7(n)) # 0. Then we have

(B, ), 01)] ~a (L [r)** S eI,

as r — 00.
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Proof. We first unfold the integral and then represent the inner product as a summation of shifted convolution
sums as follows:

dxidxady
Putes) 087 = [[[ Putw oo
[\H?3 Y
o —dr dxidzady
-/ / . 3(87T|u|y)2 et ) o) T2
1 dy

= 0’( / Ky (47| ply) (8| ply)>s e *mIHvy o

Y se—4T dy
+ 3t / K (4|uly) K ) (4l + ply) (8 |puly)> e Y
vEXT3A 0 Y
v#£0,—p

:0'( (=) +7(p) 47T|M| %/ Ki( 25~ Yy "3 dy

£ 2, )/o % (5 )K%<V:|M|y) e

For the first integral, we use (1.20) so that

1=2rk0 (7(-) + 7)) mlw
6

If we take s = a + ir, then from Stirling’s approximation (Lemma 1.6),

1 — 1\ a—% —7|r
| ~ olul = [r(=p) + () (1 + [r])**~ 3e,

In Appendix A, we give proof of a crude estimate

o —71'\7"\ 1 2(1—31 1
[0 () ¢y () e e, A )
0 ) "\ y (el + | + [+ v])

When combined with a trivial estimate 7(p) < |¢|#, it implies that
IT < e ™1+ r))2* 2 log(2 + |r])

provided that « is sufficiently large (say, a > 10). So the statement follows from the observation that
(1) = 7(—p). O

We now prove Theorem 1.1. We first fix o # 0 such that Re(7(u)) # 0 and a large a > 10. One can take
for instance ;= 1 and a = 100. For such p and «, by Lemma 2.10 and Lemma 3.1,

(25 — 1+ 2it;)T(2s — 1 — 2it;)

-4 _n -
(14 |2 de ™ <o > T 1) 20 (1) {b5.101)
i>1 573
ey eI LD (14 e ) (L4 [r = £])22 75 (L4 ) T2+ )3
j>1
(#5,1017)7£0

where we used (2.12) and Lemma 2.7 in the second estimate. Assume for contradiction that there are only
finitely many j’s such that (¢;, |#|?) # 0. Then the right-hand side is

< e M1 4 |r])2*2

as r — 0o, which cannot happen because 2a — % > 2a — 2. This completes the proof of Theorem 1.1 using
Theorem 1.3.
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APPENDIX A. PROOF OF (3.1)

Here we give a crude estimate of

/ Kl <V| )Kl <|V+:LL| >(2y)25 7ydy
0 3 ‘N| s |l y'

when v # 0, —u, which is used in Lemma 3.1. When Re(s) is fixed, it is possible to obtain an asymptotic
expansion uniform in y, v, Im(s) using a standard technique from harmonic analysis (see for instance [Ste93,
Ch. VII §2]), hence it is possible to obtain a sharper estimate than the estimate we prove here. However,
the proof of the weaker estimate (3.1) is much simpler and sufficient for our application.

To begin with, we recall that

Ki(z f/ exp a(1 +4¢ /3)\/1+£2/3)d§.

Let f(&) = (1+4£2/3)/1 + £2/3 and substitute “VI and |”|;|“| by a and b respectively. We then express the
integral as

e 1 25 yi V(@ f (€)+b1(€2)) (9,120 —y W

| gy emeer® =5 [ [T [T e Lagds,
=9 43/ / / (1+ af(€) + bf(62) ™ e yd&d@
3. 4511(2) //R (14 af(6) + bf (€))% derdes.

Now let s = o + ir with a > 100 being fixed, and let

/ / (L4 af(€) + bf(E) ™ deydés = / / 962, £2)e 2068 d e,
R2 R2

where

9(61,62) = (L+af(€) +bf (&)

and

#(€1,82) =log (1 +af(&1) +bf(E2)) -

Let ¢ € C§°(R) be a nonnegative function such that ¢¥(z) = 1 if z < 1, ¢(§) = 0 if |{] > 3/2, and
[’ [4"] < 10.
Note that ¢¢, = 0 if and only if & = 0, and so we treat the part containing a stationary phase

M= [[ vt ge e e,
and the rest
R[] 0= ven@se ae e i e,

separately. We further split R into two integrals:
— [[ 1= vt e e inda + [[ 1w g e S
R2 R2
=R + Rs.

For Ri, observe that by integration by parts,

(1 —9(61))¥(§2)9(81,82) \ _airg(er )
" 2ir //R? 96 ( e, (§1,62) ) ¢ dérdes,
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where

9 ((1 —w<£1>>¢(§2>g<£1,52)) _¥(&) 9 ((1 — (&) L+ af(&) +bf(§2))_2a+1>

& e, (€1, 62) a 06 F1(&)
P(&) 0 [VI+3EG0 —v(&) (1+af(&) +bf(&) >
a0 9y + 4¢3

<ab+1+af(&)) >,
which holds uniformly in |€3| < 3/2. Therefore

a [ _oa 1 _
|R1| < ;/ (b+1+4af(&)) > de; <, ;(a—&- b+ 1)7%,
1
Likewise, we perform integration by parts with respect to &; to infer that
1
|Ra| <, ;(a +b41)72H,

Now for the main contribution M, we first integrate by parts with respect to & and then & to see that

r1 To ) 2 2 82
M —2ird(&1,€2) ¢ derdes,.
< s [f adsa [ [ |50 eu@(e.))| dadss
Note that 5
|¢£i§i ~u T |¢El§2| <L, T, g?gi’?j;) > r?

as r — 00, so we apply the Lemma ¢ of Titchmarsh [Tit34] to obtain the following estimate

1 T2 ) 1
sup / / 6_2”“¢(§1752)d§1d§2 < ogr
[ri],|re]<3/2J -2 J -2 r

as r — oo. Combining with the following estimate
2 2
1.1,
2 2
< [ ] 19+ e (€0,6)] + loea(6r, 0] + loeie 61,60 e
—2J-2

<a?(14a+b)~2e,

82
GaE; WEvEs(En, @))] 0, déy

we see that )
ogr
M <0 %(1 +a+b)"2.

This proves the estimate

00 d —xlrl(q 2@—31 1
/ K (My) K (ly + N|y) (QQ)QSB_yfy <y = (1+ M) - Og(za:i—1|7“|)7
o \lul s\ |u Y (Il + v+ [p+v])

where we used Stirling’s approximation (Lemma 1.6)
T(2s) ~ e ™ (1 4 [r])2* 72,

for s = a +ir.
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