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Abstract. We prove that there are infinitely many Maass–Hecke cuspforms over the field Q[
√
−3] such

that the corresponding symmetric cube L-series does not vanish at the center of the critical strip. This is
done by using a result of Ginzburg, Jiang and Rallis which shows that if a certain triple product integral

involving the cusp form and the cubic theta function on Q[
√
−3] does not vanish then the symmetric cube

central value does not vanish. We use spectral theory and the properties of the cubic theta function to show
that the non-vanishing of this triple product occurs for infinitely many cusp forms. We also formulate a

conjecture about the meaning of the absolute value squared of the triple product which is reminiscent of
Watson’s identity.

1. Introduction

The non-vanishing of L-series at the center of the critical strip has long been a subject of great interest—
particularly when the degree of the Euler product L-series is even. This is because, when normalized to have
functional equations going from s to 1−s, under many circumstances when the degree of the Euler product is
even the value at s = 1

2 is known, or conjectured, to have arithmetic significance. When the degree is odd, for
example, 1, it is the value at s = 1, or the residue of a pole, that is known, or conjectured, to have arithmetic
significance. Another example is the fact that for any GL(2) automorphic form there exists a half-integral
weight Shimura correspondent if and only if there exists a quadratic twist of the corresponding L-series that
does not vanish at the center. A very important example of the significance of non-vanishing is in the case
of an L-series corresponding to a modular form of weight 2, where the non-vanishing at the central point has
been shown to be equivalent to the finiteness of the group of rational points of the associated elliptic curve
[CW77, GZ86].

In the case of higher rank L-functions of even degree, such connections between non-vanishing at the center
and the finiteness of certain groups are believed to be true, but the relations remain purely conjectural. In
particular, in the case of the symmetric cube L-series, Chao Li and Dorian Goldfeld have informed us in a
private correspondence that the Beilinson-Bloch conjecture [Li21] predicts that the order of vanishing of the
symmetric cube L-function should be equal to the rank of the Chow group of the corresponding symmetric
cube motive. In particular, if the modular form corresponds to an elliptic curve E, one looks at the group
of homologically trivial algebraic cycles of dimension 1 on the threefold E × E × E, where the symmetric
group S3 acts via the sign character. Its rank is conjecturally the order of vanishing of the symmetric cube
L-function at the central point. There is some numerical evidence for this provided in a paper of Buhler,
Schoen and Top [BST97]. We mention this for interests sake, but the Maass forms we consider here are not
known to have any arithmetic structure.

For other applications of the non-vanishing of L-functions on or near the critical line, including L-functions
for symmetric powers of automorphic forms; see, for example, [PS85], [LRS95] and [LRS99].

In [GJR01], Ginzburg, Jiang and Rallis proved that non-vanishing of a certain triple product integral
involving a GL(2) automorphic form implies the non-vanishing at the center of the critical strip of the
corresponding symmetric cube L-series. The main purpose of this paper is to use this implication to prove
the following

J. H. would like to thank S. Friedberg and D. Ginzburg for some stimulating conversations on the work of D. Ginzburg,
D. Jiang and S. Rallis that is the basis of this paper. We also thank L. Cai and Y. Fan for correcting our statement of

the Ginzburg, Jiang and Rallis result, and thank P. Sarnak for informing us of some of the applications of non-vanishing of

automorphic L-functions. We thank anonymous referee for detailed comments and finding flaws in the proof of Lemma 2.13.
J.J. was supported by NSF grant DMS-1900993, and by Sloan Research Fellowship. M.L. was supported by Royal Society

University Research Fellowship “Automorphic forms, L-functions and trace formulas”.

1



2 JEFF HOFFSTEIN, JUNEHYUK JUNG, AND MIN LEE

Theorem 1.1. Let Γ3 = SL2(O3) be the Bianchi group, where O3 is the ring of the integers of Q[
√
−3].

Let Γ3(3) be the level 3 principal subgroup of Γ3. There are infinitely many Maass–Hecke cuspforms φj on
Γ3(3)\H3 such that

L

(
1

2
, sym3, φj

)
6= 0.

Remark 1.2. Speculating, with no evidence, we expect that unless there is a clear reason for vanishing,
such as a negative sign in the functional equation of the symmetric cube L-series, this L-series should be
non-vanishing at 1/2 for most φj, that is, for all φj with |tj | < r there should be on the order of r3 forms
φj such that the corresponding symmetric cube L-series does not vanish at 1/2.

In order to define the relevant triple product and further discuss our approach, it is necessary to first
provide some background on what are known as cubic metaplectic forms defined over Q[

√
−3]). This is

because a certain example of such a form, called a cubic theta function, is used to define the triple product
studied by Ginzburg, Jiang, and Rallis.

1.1. Some background on Mass forms, cubic metaplectic Eisenstein series, and cubic theta
functions defined over Q[

√
−3]. To understand what a cubic metaplectic form is, we first review the

theory of Maass forms on Bianchi orbifolds. We refer the readers to [EGM98] for more detailed discussion.
We parameterize the upper half-space H3 using quaternions as follows:

H3 = {w = x1 + ix2 + jy : y > 0}.

Then the SL2(C) action on H3 is given by(
a b
c d

)
w = (aw + b)(cw + d)−1,

where (cw + d)−1 is the multiplicative inverse of the quaternion cw + d. We denote by H(w) = y the y-
component function on H3. We identify the boundary of H3 with C∪ {∞}. The Laplace–Beltrami operator
on H3 is given by

∆ = y2
(
∂2
x1

+ ∂2
x2

+ ∂2
y

)
− y∂y, (1.1)

and the volume form is given by

dV =
dx1dx2dy

y3
.

Denote by Od the ring of integers of Q[
√
−d]. Then the Bianchi group Γd = SL2(Od) is a discrete subgroup

of SL2(C) such that the volume of the quotient space Γd\H3 is finite. For an ideal I ⊂ Od, the principal
congruence subgroup of level I in Γd is given by

Γd(I) =

{
γ ∈ Γd : γ ≡

(
1 0
0 1

)
(mod I)

}
.

For the rest of the article, we let d = 3, and in order to simplify the notations, we use the following:

• λ =
√
−3.

• ω = e
2πi
3 .

• Λ = O3 = Z[ω] is the ring of integers of K = Q[
√
−3].

• Γ = Γ3(3) is the principal congruence subgroup of the level (3) in Γ3 = SL2(Λ).
• e(z) = e2πi(z+z), z ∈ C.

We will mainly deal with Maass forms and metaplectic Maass forms on Γ\H3 in the subsequent sections.
The twelve equivalence classes of cusps of Γ are given in [Pat77], and are represented by

S = {∞, 0, ±1, ±ω, ±ω2, ±(1− ω), ±(1− ω)−1}. (1.2)

For a ∈ S, we pick σa ∈ Γ3 so that σa∞ = a. To be specific, we let σa be(
1 0
0 1

)
,

(
0 −1
1 0

)
,

(
1 0
±1 1

)
,

(
1 0
±ω2 1

)
,

(
1 0
±ω 1

)
,

(
±(1− ω) −1

1 0

)
,

(
1 0

±(1− ω) 1

)
, (1.3)

as done in [Pat77].
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Let Γa be the stabilizer subgroup of Γ corresponding to the cusp a. Observe that Γ is a normal subgroup
of SL2(Λ), and so we have

σ−1
a Γaσa = Γ∞.

A Maass form f on Γ\H3 is a smooth function on H3 that satisfies the following conditions:

• f(γw) = f(w) for all γ ∈ Γ,
• −∆f = (1 + 4t2)f for some t ∈ C, and
• there exists A > 1 such that f(σaw) = O(H(w)A) as H(w)→∞ for all a ∈ S.

Note that Γ∞ is isomorphic to 3Λ, and the dual lattice of 3Λ with respect to e(·) is λ−3Λ. So from the two
conditions, we see that any Maass form f on Γ\H3 has a Fourier expansion at the cusp ∞ of the form

f(w) = c0y
1+2it + c00y

1−2it +
∑

06=µ∈λ−3Λ

cµyK2it(4π|µ|y)e(µx), (1.4)

where x = x1 + ix2.
The Eisenstein series corresponding to the cusp a ∈ S is defined by

Ea(w, s) =
∑

γ∈Γa\Γ

H(σ−1
a γw)2s, (1.5)

for Re(s) > 1. Any Eisenstein series is a Maass form with the −∆-eigenvalue 4s(1 − s). In particular, the
Eisenstein series corresponding to the cusp ∞ is defined by

E(w, s) = E∞(w, s) =
∑

γ∈Γ∞\Γ

H(γw)2s.

For the functions F and G on Γ\H3 we denote by 〈F,G〉 the inner product

〈F,G〉 =

∫
Γ\H3

F (w)G(w)dV. (1.6)

1.2. Metaplectic Maass forms. Let κ be the character on Γ induced by the cubic residue symbol (·/·)3

in Q[
√
−3], as introduced by Kubota in [Kub71]. In other words, for γ =

(
a b
c d

)
∈ Γ,

κ(γ) =

{(
c
d

)
3

when c 6= 0,

1 when c = 0.
(1.7)

A Maass form f on Γ\H3 with respect to the character κ (referred to as a metaplectic Maass form) is a
smooth function on H3 that satisfies

• For any γ ∈ Γ,

f(γw) = κ(γ)f(w), (1.8)

• −∆f = (1 + 4t2)f for some t ∈ C, and
• there exists A > 1 such that f(σaw) = O(H(w)A) as H(w)→∞ for all a ∈ S.

In this paper, we consider two such functions. The first is the metaplectic Eisenstein series:

E(3)(w, s) = E(3)
∞ (w, s) =

∑
γ∈Γ∞\Γ

κ(γ)H(γ(w))2s (1.9)

The term metaplectic essentially means that the Eisenstein series transforms with respect to the character
κ as follows:

E(3)(γw, s) = κ(γ)E(3)(w, s),

where the notation in κ(γ) is the same as in (1.7) above. The other metaplectic form we will explore is the
cubic theta series that we will define below.
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1.2.1. Some history of generalized metaplectic theta functions and Eisenstein series. In the definitions above
we used the cubic residue symbol to define κ. If we had used the quadratic residue symbol instead we would
have obtained the somewhat better known half-integral weight Eisenstein series defined over the ground field
Q[
√
−3].

Rather than using 2 or 3, we could have defined κ using an nth order residue symbol, for general n, as long
as we were working over a ground field containing the nth roots of unity. If we had, we would have defined
what is known as the nth order metaplectic Eisenstein series, also known as the Eisenstein series on the n-fold
metaplectic cover of GL2(C). These were first explored by Kubota [Kub73]. He observed that for n ≥ 2, the
Eisenstein series have a meromorphic continuation and he provided an explicit functional equation for them.
He computed their Fourier coefficients and discovered they are Dirichlet series with nth order Gauss sums
as coefficients. When n = 2 these series factor into Euler products and are essentially quadratic Dirichlet
L-series, as was first observed by Maass [Maa37] working over Q. Siegel, in [Sie56] showed that taking the
Mellin transform of the half-integral weight Eisenstein series created a Dirichlet series whose coefficients, at
square free indices, were quadratic L-series.

However, when n ≥ 3 the series in the Fourier coefficients do not factor into an Euler product and are
quite mysterious. Nevertheless, the constant terms are expressible in terms of ratios of zeta functions of the
ground field (any field containing the nth roots of 1), and have simple poles at the point s = 1

2 + 1
2n . Because

of these poles in the constant term, the metaplectic Eisenstein itself has a pole at this point. Whichever n
we are working with, it is necessary to work over a base field that contains the nth roots of unity. This is
why we chose as a base field Q[

√
−3], as it is the simplest field that contains the cube roots of unity. If we

chose n = 2, that is, if we took κ to be induced by the quadratic residue symbol, the corresponding quadratic
Eisenstein series could be defined over the rationals. In this case it would be the usual half-integral weight
Eisenstein series, which has a pole at s = 3

4 with residue equal to the usual Jacobi theta function over the
base field Q.

Kubota generalized the notion of a theta function by defining the nth order theta function to be the
residue of the nth order metaplectic Eisenstein series at the point s = 1

2 + 1
2n . Kubota was not, however,

able to determine the nature of the Fourier coefficients of these generalized theta functions. In the case
n = 3, Patterson [Pat77] succeeded in computing the precise value of the Fourier coefficients of the residue
of the cubic Eisenstein series, that is, the cubic theta function, up to the sign of the constant term (which
he later determined in [Pat82]). The foundation of this present paper is the evaluation of these coefficients.
Interestingly, to this date, the nature of the coefficients of nth order theta functions for general n remains
almost completely unknown. There is a conjecture of Patterson in the case n = 4, and a conjecture of Chinta,
Friedberg, and Hoffstein [CFH12] in the case n = 6, but there are not even conjectures for any other values
of n. See the introduction of [BH16] for a brief history.

In the case we are considering, E(3)(w, s) has a simple pole at s = 2
3 , and the residue of E(3)(w, s) at this

point is a cubic analog of the quadratic Jacobi theta function. Denoting this by θ, we have

θ(w) = 2Ress= 2
3
E(3)(w, s). (1.10)

The Fourier expansion of the cubic theta series θ ∈ L2(Γ\H3, κ) at ∞ is given by

θ(w) = σy
2
3 +

∑
06=µ∈λ−3Λ

τ(µ)yK 1
3
(4π|µ|y)e(µx). (1.11)

Here σ = 9
√

3
2 [Pat82] and τ(µ) is defined explicitly in [Pat77, Theorem 8.1]. Leaving out roots of 1 and

powers of λ for simplicity, for µ ∈ Λ, if µ = m0m
3
1, with m0,m1 ≡ 1 (mod 3) and m0 square free, then

τ(m0m
3
1) = 27

√
Nm1

g(m0)√
Nm0

.

Here Nm = mm = |m|2 for m ∈ Q[
√
−3]. The coefficient vanishes if m0 is cube-free but not square-free.

Here g(m0) is the cubic Gauss sum

g(m0) =
∑

α mod m0

(
α

m0

)
3

e

(
α

m0

)
.
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The absolute values of the τ(µ) are all we will need, and these are given as follows. For a ∈ {0, 1, 2},
m0,m1 ≡ 1 (mod 3) and m0 square free,

|τ(µ)| =


32+n

2 (Nm1)
1
2 when µ = ±ωaλ3n−4m0m

3
1, n ≥ 1

3
n+5
2 (Nm1)

1
2 when µ = ±λ3n−3m0m

3
1, n ≥ 0,

0 otherwise.

(1.12)

1.3. The approach, and a conjecture. To begin to discuss our attack on the problem of proving the
non-vanishing of the symmetric cube L-series at the center of the critical strip, we first recall the main result
of Ginzburg, Jiang and Rallis [GJR01]:

Theorem 1.3 (Ginzburg, Jiang and Rallis). For a Maass–Hecke cuspform φ ∈ L2(Γ\H3), if

〈φ, |θ|2〉 6= 0

Then

L

(
1

2
, sym3, φ

)
6= 0.

Here θ ∈ L2(Γ\H3, κ) is the cubic theta series defined above.

Remark 1.4. Note that the inner product is well-defined because |θ|2 is invariant under Γ by the automorphic
condition (1.8).

We will prove Theorem 1.1 by first arguing that a weighted average of 〈φj , |θ|2〉 with Laplace eigenvalue
1 + 4t2j over |tj | < 2r must grow with r, and then using Theorem 1.3.

The implication of the non-vanishing of L
(

1
2 , sym3, φ

)
when 〈|θ|2, φ〉 6= 0 suggests that there may be an

identity relating the two. We formalize this in the following

Conjecture 1.5. Let φ be a Maass cusp form with ground field K containing the cube roots of unity. Then∣∣〈φ, |θ|2〉∣∣2 = cφ
L∗
(

1
2 , φ, sym3

)
L∗ (1, φ, sym2)

.

Here L∗(s, φ, symr) is the completed symmetric r-th power L-series of φ, and the constant cφ is non zero
and depends on local data of φ at the prime 3.

1.4. A heuristic supporting Conjecture 1.5. Suppose we replace φ, with spectral parameter 1 + 2it, by
the non-metaplectic Eisenstein series E(w, s), which has as parameter s, with Laplace eigenvalue 2s(2− 2s).

For Re(s) > 1 the inner product 〈E(w, s), |θ|2〉 unfolds to∫
Γ∞\H3

y2s|θ(w)|2dV.

Some caution must be used here. The inner product must be regularized. (We do this formally in §2.4.)
The Eisenstein series must be approximated by the truncated function

ET (w, s) =
∑

γ∈Γ∞\Γ

IT (H(γw))2s,

where IT is the characteristic function of the interval [T−1, T ], and T →∞.
When this is done, after unfolding ET (w, s), the inner product becomes∫∫∫

Γ∞\H3

∣∣∣∣∣∣σy 2
3 +

∑
06=µ∈λ−3Λ

τ(µ)yK 1
3
(4π|µ|y)e(µx)

∣∣∣∣∣∣
2

IT (y)2s dx1dx2dy

y3
.

Letting T → ∞ carefully, the term containing the square of the constant term vanishes due to an analytic
continuation argument and all terms disappear except the non-zero diagonal terms. This leaves us with〈

E(w, s), |θ|2
〉

= Vol(3Λ)

∫ ∞
0

y2s
∑

06=µ∈λ−3Λ

|τ(µ)|2K 1
3
(4π|µ|y)2 dy

y

=
9
√

3

2

∑
0 6=µ∈λ−3Λ

|τ(µ)|2
∫ ∞

0

y2sK 1
3
(4π|µ|y)2 dy

y
=

9
√

3

2(4π)2s

∑
06=µ∈λ−3Λ

|τ(µ)|2

Nµs

∫ ∞
0

y2sK 1
3
(y)2 dy

y
,
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after interchanging the order of integration and summation, changing variables and substituting 9
√

3
2 for the

value of Vol(3Λ).
By (1.21), given below, ∫ ∞

0

y2sK 1
3
(y)2 dy

y
=

2−3+2sΓ
(
s+ 1

3

)
Γ(s)2Γ

(
s− 1

3

)
Γ(2s)

.

The triplication formula for the Gamma function states that

Γ(z)Γ

(
z +

1

3

)
Γ

(
z +

2

3

)
= 2π3

1
2−3zΓ(3z).

Applying this to the above, with z = s− 1
3 , gives us∫ ∞

0

y2sK 1
3
(y)2 dy

y
=

2−2+2sπ3
3
2−3sΓ(3s− 1)Γ(s)

Γ(2s)
. (1.13)

Also, referring to (1.12),∑
06=µ∈λ−3Λ

|τ(µ)|2

(Nµ)s
=

∑
µ=±ωaλα,

a=0,1,2,α≥−3

|τ(µ)|2

3αs

∑
m=m0m

3
1,

m0,m1≡1 mod 3,
m0 square free

Nm1

(Nm0)s(Nm1)3s
.

The 3-part sums to

2 · 35+3s
(
1 + 31−2s

) (
1− 31−3s

)−1
,

while the part relatively prime to 3 sums to

ζ
(3)
K (3s− 1)ζ

(3)
K (s)

ζ
(3)
K (2s)

,

where ζ
(3)
K is the zeta function of the field K = Q[

√
−3] (2.1), with the Euler factor at the prime λ removed.

Assembling the above, since

ζ
(3)
K (s) = ζK(s)

(
1− 3−s

)
,

we have ∑
06=µ∈λ−3Λ

|τ(µ)|2

(Nµ)s
= 2 · 35+3s (1 + 31−2s)(1− 3−s)

(1− 3−2s)

ζK(3s− 1)ζK(s)

ζK(2s)
. (1.14)

We finally have〈
E(·, s), |θ|2

〉
= 392−2−2sπ1−2s (1 + 31−2s)(1− 3−s)

(1− 3−2s)

ζK(3s− 1)Γ(3s− 1)ζK(s)Γ(s)

ζK(2s)Γ(2s)
(1.15)

and the right hand side is meromorphic for s ∈ C, therefore the inner product continues to a meromorphic
function on the entire complex plane. Recalling the completed zeta function of the number field K is

ζ∗K(s) =

(
3

4π2

) s
2

Γ(s)ζK(s), (1.16)

we rewrite (1.15) as 〈
E(·, s), |θ|2

〉
= 3−s+

19
2 2−3 (1 + 31−2s)(1− 3−s)

(1− 3−2s)

ζ∗K(3s− 1)ζ∗K(s)

ζ∗K(2s)
. (1.17)

Analytically continuing to s = 1
2 + it and multiplying (1.17) by its conjugate, we obtain

∣∣〈E(·, 1/2 + it), |θ|2
〉∣∣2 =

318
∣∣1 + 3−2it

∣∣2 ∣∣∣1− 3−
1
2−it

∣∣∣2
26 |1− 3−1−2it|2

ζ∗K( 1
2 + 3it)ζ∗K( 1

2 − 3it)ζ∗K( 1
2 + it)ζ∗K( 1

2 − it)
ζ∗K(1 + 2it)ζ∗K(1− 2it)

.

(1.18)
The L-series, in a new variable u, attached to E(w, s), which we denote for convenience as E(s), is

L(u,E(s)) = ζK

(
u+ s− 1

2

)
ζK

(
u− s+

1

2

)
.
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To make E(s) resemble a Maass form with spectral parameter t we set s = 1
2 + it and have

L

(
u,E

(
1

2
+ it

))
= ζK (u+ it) ζK (u− it) .

We can now take the symmetric square L-series, getting

L

(
u,E

(
1

2
+ it

)
, sym2

)
= ζK (u+ 2it) ζK(u)ζK (u− 2it) ,

and finally the symmetric cube:

L

(
u,E

(
1

2
+ it

)
, sym3

)
= ζK (u+ 3it) ζK (u+ it) ζK (u− it) ζK (u− 3it) .

The L-series attached to E
(

1
2 + it

)
at the center of the critical strip is ζK

(
1
2 + it

)
ζK
(

1
2 − it

)
. Similarly the

symmetric square L-series has a pole, with residue ζK
(

1
2 + 2it

)
ζK
(

1
2 − 2it

)
, that is, L∗(2u,E(1/2+it), sym2)

has a pole at u = 1/2. The symmetric cube L-series is ζK
(

1
2 + 3it

)
ζK
(

1
2 + it

)
ζK
(

1
2 − it

)
ζK
(

1
2 − 3it

)
. Thus

(1.18) can be rewritten as∣∣〈E(·, 1/2 + it), |θ|2〉
∣∣2 = cE( 1

2 +it)
L∗
(

1
2 , E

(
1
2 + it

)
, sym3

)
2Resu= 1

2
L∗
(
2u,E

(
1
2 + it

)
, sym2

) (1.19)

and

cE( 1
2 +it) =

318
∣∣1 + 3−2it

∣∣2 ∣∣∣1− 3−
1
2−it

∣∣∣2
26 |1− 3−1−2it|2

.

The pole at u = 1
2 comes about because the Eisenstein series is not a cusp form. It seems reasonable to

believe that the appropriate substitute for the residue of the symmetric square in the case of an Eisenstein
series would be the symmetric square L-series itself in the case of a cusp form that is not a lift from GL(1),
which leads us to Conjecture 1.5.

1.5. A road map of the approach. After establishing some basic facts about the Fourier coefficients of
the theta function θ(w) and the metaplectic and non-metaplectic Eisenstein series, and the spectral theory of
L2(Γ\H3), we define a Poincaré series Pµ(w, s) in (2.6), and consider its inner product with |θ(w)|2, namely
|〈Pµ(·, s), |θ|2〉|. As explained in Lemma 2.6 this picks off the µ coefficient of |θ(w)|2, along with some
gamma factors. We then derive the spectral expansion of Pµ(w, s) in (2.8) and compute the inner product
|〈Pµ(·, s), |θ|2〉| in another way, using this expansion. We show that this breaks up into a continuous piece
plus a discrete piece. Setting s = α+ ir, for sufficiently large and fixed α, we show in Lemmas 2.9 and 2.10
that the continuous piece contribution is Oµ

(
e−π|r|(1 + |r|)2α−2

)
. In this same lemma, it is shown that the

remainder of the contribution to the spectral expansion is a linear combination over j of the inner products
ρj(µ)〈φj , |θ|2〉. Here {φj} is an orthonormal basis of cusp forms consisting of Maass—Hecke eigenforms
(Proposition 2.4), and ρj(µ) is the µ-th Fourier coefficient of φj (see (2.7)).

In Lemma 3.1 we compute the inner product differently, by multiplying θ(w) by its conjugate and using
Pµ(w, s) to pick off the µ coefficient, for any choice of µ, such as µ = 1. From this we obtain a collection of
shifted sums, and verify that there is a main term and an error term, and

|〈Pµ(·, s), |θ|2〉| ∼α,µ (1 + |r|)2α− 4
3 e−π|r|.

Comparing this with the continuous contribution, which is O
(
e−π|r|(1 + |r|)2α−2

)
, as 2 > 4

3 this means that

the discrete contribution contributes the difference, which implies ρj(µ)〈φj , |θ|2〉 6= 0 infinitely often.

1.6. Notation and miscellaneous results. As always, A�τ B means that |A| < CB for some constant
C = C(τ) depending only on τ . We write A ∼τ B when |A| �τ |B| and |B| �τ |A|. We will frequently use
Stirling’s approximation, in the following form.

Lemma 1.6 (Stirling). Fix 0 < a < b. For α ∈ [a, b], and r ∈ R, with large |r|, we have

|Γ(α+ ir)| ∼
√

2πe−
π|r|
2 (1 + |r|)α− 1

2 .
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Finally, we also use the following two integration formulas involving K-Bessel functions:∫ ∞
0

e−yK2it(y)(2y)s
dy

y2
= 2
√
π

Γ(s− 1 + 2it)Γ(s− 1− 2it)

Γ
(
s− 1

2

) . (1.20)

from [GR07, p.700 6.621.3.], and∫ ∞
0

Kµ(x)Kν(x)xs
dx

x
= 2−3+sΓ

(
s+µ+ν

2

)
Γ
(
s−µ+ν

2

)
Γ
(
s+µ−ν

2

)
Γ
(
s−µ−ν

2

)
Γ(s)

. (1.21)

from [GR07, p.684 6.576.4.].

2. Spectral summation

The main purpose of this section is to represent the inner product 〈Pµ(·, s), |θ|2〉 between a Poincaré series
(defined in §2.2) and |θ|2 as a spectral sum. Note that |θ|2 is not an L2 integrable function, so one can
not directly apply a Parseval-like theorem. We obtain such a spectral summation formula by first spectrally
expanding Pµ(w, s), and then by taking the inner product with |θ|2.

2.1. Basic spectral theory. We begin by reviewing the spectral theory of the Laplace-Beltrami operator
∆ (1.1) on L2(Γ\H3). We first describe the Fourier expansion of the Eisenstein series as follows. Recall that
S is the set of cusps (1.2), and Ea(w, s) is the Eisenstein series at a ∈ S, defined in (1.5).

Proposition 2.1. Let ζK(s) be the Dedekind zeta function associated to the imaginary quadratic field Q[
√
−3]

ζK(s) =
1

6

∑
06=c∈Λ

1

(Nc)s
, (2.1)

and let ζ∗K(s) =
(

3
4π2

) s
2 Γ(s)ζK(s) be the completed zeta function. Then the Fourier expansion of Ea at ∞

is given by

Ea(w, s) = δa,∞y
2s + ca(0, s)y2−2s +

∑
06=µ∈λ−3Λ

ca(µ, s)yK2s−1(4π|µ|y)e(µx), (2.2)

where

ca(0, s) =
ζ∗K(2s− 1)

ζ∗K(2s)
c̃a(0, s) (2.3)

and

ca(µ, s) =
1

ζ∗K(2s)
c̃a(µ, s), (2.4)

with c̃a(µ, s) being a Dirichlet polynomial in s.

Remark 2.2. It is conventional to write the Dedekind zeta function as the sum over ideals. Here for our
convenience we define ζK(s) as the sum over non-zero integers which is 1

6 of the usual Dedekind zeta function.

Proof. Following the standard computation [Kub73], we see that the µ-th Fourier coefficient of Ea at ∞ is
given by

1

Vol(3Λ)

∫∫
C/3Λ

∑
γ∈Γa\Γ

H(σ−1
a γw)2se(−µx)dx1dx2

which is equal to

y2sδa,∞ + ψa∞(0, s)
πΓ(2s− 1)

Vol(3Λ)Γ(2s)
y2−2s

for µ = 0, and
(2π)2s|µ|2s−1

Vol(3Λ)Γ(2s)
yK2s−1(4π|µ|y)ψa∞(µ, s),

for µ 6= 0, where

ψa∞(µ, s) =
∑

γ∈Γ∞\σ−1
a Γ/Γ∞

e
(
µd
c

)
|c|4s

,
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for γ =

(
∗ ∗
c d

)
. If we write σ−1

a =

(
∗ ∗
α β

)
, then Γ∞\σ−1

a Γ/Γ∞ is parameterized by (c, d) ∈ Λ2 such

that gcd(c, d) = 1, c ≡ α (mod 3) and d (mod 3c) with d ≡ β (mod 3). From this, we may arrange the
summation so that

ψa∞(µ, s) =
∑

0 6=c∈Λ
c≡α(3)

1

Nc2s

∑
d(3c)

d≡β(3), gcd(c,d)=1

e

(
µd

c

)
.

One may then verify the claim via directly evaluating Ramanujan’s sums∑
d(3c)

d≡β(3), gcd(c,d)=1

e

(
µd

c

)
,

and then expressing ψa∞(µ, s) as a ratio of a Dirichlet polynomial and ζ∗K(2s). �

Because ζ∗K(s) is meromorphic on C with simple poles only at s = 0 and 1, and because ζ∗K(s) does not
vanish if Re(s) ≥ 1, we infer from Proposition 2.1 the meromorphic continuation of Ea.

Proposition 2.3. For a ∈ S, Ea(w, s) admits a meromorphic continuation to Re(s) ≥ 1
2 with a simple pole

only at s = 1.

This implies that, aside from a constant function, there is no L2-integrable eigenfunction of the Laplace–
Beltrami operator which is a residue of an Eisenstein series.

Let Θ ⊂ L2(Γ\H3) be the subspace spanned by incomplete Eisenstein series

θa,ψ(w) =
∑

γ∈Γa\Γ

ψ(H(σ−1
a γw))

with ψ ∈ C∞0 (0,∞).

Let Θ̂ ⊂ Θ be the subspace spanned by the residues of Eisenstein series at s ∈ (1/2, 1], and let Θ0 be the

orthogonal complement of Θ̂ in Θ. Let L2
cusp(Γ\H3), the space of cusp forms, i.e., the subspace of square

integrable functions f ∈ L2(Γ\H3) such that∫∫
σ−1
a Γaσa\C

f(σa(x1 + ix2 + jy))dx1dx2 = 0

for almost all y, for all a ∈ S.

Proposition 2.4. We have the following direct sum of subspaces

L2(Γ\H3) = Θ̂⊕Θ0 ⊕ L2
cusp(Γ\H3).

Here Θ̂ is one dimensional and consists of constant functions. The spectrum of ∆ on Θ0 is purely continuous,
and the spectrum of ∆ on L2

cusp(Γ\H3) is discrete.

It is well-known that the Eisenstein series Ea

(
w, 1

2 + it
)

for a ∈ S span Θ0. Let {φj}j≥1 be an orthonormal

basis of L2
cusp(Γ\H3) that consists of Maass–Hecke eigenforms. Such a basis exists because ∆ and the Hecke

operators {Tµ} form a commuting family of self-adjoint operators. Let φ0 = (Vol(Γ\H3))−1/2. We summarize
the spectral expansion of a square-integrable function on Γ\H3 in the following proposition.

Proposition 2.5. For F in L2(Γ\H3), we have

F (w) =
∑
j≥0

〈F, φj〉φj(w) +
1

4π

∑
a∈S

∫ ∞
−∞
〈F,Ea(·, 1/2 + it)〉Ea(w, 1/2 + it)dt, (2.5)

in the sense of L2, i.e.,

〈F,G〉 =
∑
j≥0

〈F, φj〉〈φj , G〉+
1

4π

∑
a∈S

〈∫ ∞
−∞
〈F,Ea(·, 1/2 + it)〉Ea(·, 1/2 + it)dt,G

〉
for all G ∈ L2(Γ\H3). If we further assume that F is smooth, then (2.5) is true pointwise, and the right-hand
side converges absolutely.
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2.2. Poincaré series. For µ ∈ λ−3Λ, and s ∈ C, we define the Poincaré series by

Pµ(w, s) =
∑

γ∈Γ∞\Γ

Fs(γw) (2.6)

where Fs(w) = (8π|µ|y)2se−4π|µ|ye(µx), where x = x1 + ix2, and w = x+ yj.

Lemma 2.6. Assume that µ 6= 0, and let f be a Maass form on Γ\H3 with the Fourier expansion (1.4).
Assume that it ∈ (−1/2, 1/2) ∪ iR, and that R(s) > 3/2. Then we have

〈Pµ(·, s), f〉 = 36
√

3π
3
2 |µ|cµ

Γ(2s− 1 + 2it)Γ(2s− 1− 2it)

Γ
(
2s− 1

2

) .

Proof. By unfolding the integral, we first have

〈Pµ(·, s), f〉 =

∫∫∫
Γ\H3

Pµ(w, s)f(w)
dx1dx2dy

y3

=

∫∫∫
Γ∞\H3

(8π|µ|y)2se−4π|µ|ye(µx)f(w)
dx1dx2dy

y3
.

Since we assumed that µ 6= 0, the integral over x1 and x2 simplifies the expression to

= Vol(3Λ)

∫ ∞
0

(8π|µ|y)2se−4π|µ|ycµyK2it(4π|µ|y)
dy

y3

= 18
√

3π|µ|cµ
∫ ∞

0

e−yK2it(y)(2y)2s dy

y2
,

where we used Vol(3Λ) = 9
√

3/2 in the last equality. Now the statement follows from (1.20). �

2.3. The inner product formula. We assume that the Fourier expansion of φj (j ≥ 1) is given by

φj =
∑

06=µ∈λ−3Λ

ρj(µ)yK2itj (4π|µ|y)e(µx). (2.7)

We apply Lemma 2.6 to Proposition 2.5 with F = Pµ(w, s), which is square-integrable for all sufficiently
large Re(s):

Pµ(w, s) =
∑
j

〈Pµ(·, s), φj〉φj(w) +
1

4π

∑
a∈S

∫ ∞
−∞
〈Pµ(·, s), Ea(·, 1/2 + it)〉Ea(·, 1/2 + it)dt

=
36
√

3π3/2|µ|
Γ
(
2s− 1

2

) ∑
j

Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)ρj(µ)φj(w)

+
9
√

3π1/2|µ|
Γ
(
2s− 1

2

) ∑
a∈S

∫ ∞
−∞

ca (µ, 1/2 + it)Γ(2s− 1 + 2it)Γ(2s− 1− 2it)Ea(w, 1/2 + it)dt. (2.8)

Because |θ|2 does not belong to L2(Γ\H3), in order to express 〈Pµ(·, s), |θ|2〉 as the summation of the inner
product between each summand in (2.8) and |θ|2, we need to understand how ρj(µ) and 〈φj , |θ|2〉 behave as
j →∞. We begin with an estimate of the Fourier coefficients.

Lemma 2.7. As tj →∞, we have

|ρj(µ)| � t
1
3
j e

πtj |µ|.

Proof. By the standard upper bound for the supnorm of an eigenfunction on finite volume symmetric spaces
[HC68],

Vol(3Λ)
∑

0 6=µ∈λ−3Λ

|ρj(µ)|2y2K2itj (4π|µ|y)2 =

∫∫
C/3Λ

|φj |2dx1dx2 � sup |φj |2 � |tj |2

Assume without loss of generality that tj > 100, and, for a given µ ∈ λ−3Λ, choose y so that 4π|µ|y = 2tj .
Then we have

|ρj(µ)|2
t2j

4π2|µ|2
K2itj (2tj)

2 � t2j ,
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and so using the asymptotic of the K-Bessel function in the transition range [EMOT81, p88,(20)],

|ρj(µ)| � t
1
3
j e

πtj |µ|. �

It will be convenient to know how the Fourier expansion of θ(w) with respect to the cusp a ∈ S looks like.

Lemma 2.8. For a ∈ S, let the Fourier expansion of θ with respect to a be given by

θ(σaw) = cay
2
3 +

∑
06=µ∈λ−3Λ

τa(µ)yK 1
3
(4π|µ|y)e(µx). (2.9)

Then we have |τa(µ)| = |τ(µ)|, for all µ 6= 0.

Proof. Because of the relation (1.10)

θ(w) = 2Ress= 2
3
E(3)(w, s),

we have

τa(µ)yK 1
3
(4π|µ|y) = 2Ress= 2

3

1

Vol(3Λ)

∫∫
C/3Λ

E(3)(σaw, s)e(−µx)dx.

As done in [Kub73], we see that∫∫
C/3Λ

E(3)(σaw, s)e(−µx)dx =
(2π)2s|µ|2s−1

Vol(3Λ)Γ(2s)
yK2s−1(4π|µ|y)ψ

(3)
∞a(µ, s),

where

ψ
(3)
∞a(µ, s) =

∑
γ∈Γ∞\Γσa/Γ∞

κ(γσ−1
a )

e
(
µd
c

)
|c|4s

,

for γ =

(
∗ ∗
c d

)
. If we write σa =

(
∗ ∗
α β

)
, then Γ∞\Γσa/Γ∞ is parameterized by (c, d) ∈ Λ2 such

that gcd(c, d) = 1, c ≡ α (mod 3) and d (mod 3c) with d ≡ β (mod 3). From this, we may arrange the
summation so that

ψ
(3)
a∞(µ, s) =

∑
06=c∈Λ
c≡α(3)

1

|c|4s
∑
d(3c)

d≡β(3), gcd(c,d)=1

κ(γσ−1
a )e

(
µd

c

)
. (2.10)

One can check for each a that α, β, and κ are given by the following table.

a α β κ(γσ−1
a )

∞ 0 1 (c/d)3

0 1 0 (d/c)3

±1 ±1 1 (c/d)3

±ω ±ω2 1 (c/d)3

±ω2 ±ω 1 (c/d)3

±(1− ω) 1 0 (d/c)3

±(1− ω)−1 ±(1− ω) 1 (c/d)3

Comparing (2.10) with (5.4) of [Pat77], we see that for a 6=∞, ±(1− ω)−1, we have

|ψ(3)
a∞(µ, s)| = 1

Vol(3Λ)
|ψ(s, µ, 0)|

where ψ(s, µ, l) is defined by (5.18) of [Pat77]. This proves |τa(µ)| = |τ(µ)|. Now when a = ±(1− ω)−1, we

can express ψ
(3)
a∞(µ, s) as a linear combination of ψ(s, ελbµ, 0) as in (5.24) of [Pat77], where ε is a unit and

b ≥ 1. Then the equation follows by computing the residue of the summation ψ(s, ελbµ, 0) at s = 2/3. �

Finally, we bound the contribution coming from the continuous spectrum as follows.
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Lemma 2.9. Let s = α+ ir with sufficiently large α being fixed. Then for any a ∈ S, as r →∞, we have〈∫ ∞
−∞

ca

(
µ,

1

2
+ it

)
Γ(2s− 1 + 2it)Γ(2s− 1− 2it)Ea(·, 1/2 + it)dt, |θ|2

〉
�µ,ε e

−2π|r|(1 + |r|)4α−3+ε,

for any ε > 0.

Because the proof is quite lengthy, we present the proof of this lemma in §2.4.
We collect these estimates to derive the spectral summation formula for the inner product 〈Pµ(·, s), |θ|2〉.

Lemma 2.10. Fix sufficiently large α. We have

〈Pµ(·, s), |θ|2〉 =
36
√

3π3/2|µ|
Γ
(
2s− 1

2

) ∑
j

Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)ρj(µ)〈φj , |θ|2〉+Oµ,ε(e
−π|r|(1 + |r|)2α−2+ε),

for any ε > 0, and the summation converges absolutely.

Proof. We first have by the spectral expansion (2.8),

〈Pµ(·, s), |θ|2〉 =
36
√

3π3/2|µ|
Γ
(
2s− 1

2

) 〈∑
j

Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)ρj(µ)φj , |θ|2
〉

+
9
√

3π1/2|µ|
Γ
(
2s− 1

2

) ∑
a∈S

〈∫ ∞
−∞

ca (µ, 1/2 + it)Γ(2s− 1 + 2it)Γ(2s− 1− 2it)Ea(·, 1/2 + it)dt, |θ|2
〉
. (2.11)

Because, by Lemma 1.6,
1

Γ
(
2s− 1

2

) � eπ|r|(|r|+ 1)1−2α,

we bound the second term by Oµ,ε(e
−π|r|(1 + |r|)2α−2+ε) using Lemma 2.9.

Now we have

Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)� e−π(|r+tj |+|r−tj |)((|r + tj |+ 1)(|r − tj |+ 1))2α− 3
2 ,

and by the supnorm estimate [HC68], we have

〈φj , |θ|2〉 ≤ ‖θ‖2L2 sup |φj | � |tj |. (2.12)

Therefore we infer from Lemma 2.7 that〈
Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)ρj(µ)φj , |θ|2

〉
decays exponentially in tj , hence the summation in (2.11) is absolutely convergent, from which we may
interchange the order of the inner product and the summation. �

2.4. Proof of Lemma 2.9. We fix a fundamental domain F ∼= Γ\H3. Let ±4 be the triangle in C with
vertices 0, ±(1− ω)−1 and ±(1− ω2)−1. Following [Pat77, (2.2)], let

F0 =
{
x+ yj ∈ H3 : |x|2 + y2 > 1, x ∈ (+4) ∪ (−4)

}
(2.13)

and

Γ3,∞ =

{(
ε ν
0 ε−1

)
: ε unit , ν ∈ Λ

}
⊂ Γ3 = SL2(Λ).

Then, as in [Pat77, p.130],

F =
⋃
a∈S

⋃
m∈Γ3,∞/Γ∞

σamF0 (2.14)

is a fundamental domain for Γ. For η > 0, let

Dη =
{

(x, y) ∈ H3 : x ∈ U, y > η
}
,

where (+4) ∪ (−4) ⊂ U ∼= C/3Λ. There exists 0 < η < 1 such that F0 ⊂ Dη, and we let

D =
⋃
a∈S

⋃
m∈Γ3,∞/Γ∞

σamDη. (2.15)

Then F ⊂ D. Moreover, for any w ∈ σamDη, H(σ−1
a w) > η.
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For w ∈ H3, let

Ea(w;µ, s) =
1

2π

∫ ∞
−∞

ca(µ, 1/2 + it)Γ(2s− 1 + 2it)Γ(2s− 1− 2it)Ea (w, 1/2 + it) dt (2.16)

Lemma 2.11. For any cusp a ∈ S, the inner product〈
Ea(·;µ, s), |θ|2

〉
=

∫∫∫
Γ\H3

Ea(w;µ, s)|θ(w)|2dV

converges absolutely for <(s) > 2
3 .

Proof. For µ 6= 0, by (2.4),

ca(µ, 1/2 + it) =
c̃a(µ, 1/2 + it)

ζ∗K(1 + 2it)

where c̃a(µ, 1/2 + it) is a Dirichlet polynomial in it. Let c̃a(µ, 1/2 + it) be a Dirichlet polynomial in it such
that

c̃a(µ, 1/2− it) = c̃a(µ, 1/2 + it).

Then

ca(µ, 1/2 + it) =
c̃a(µ, 1/2− it)
ζ∗K(1− 2it)

.

Here ζ∗K(s) =
(

3
4π2

) s
2 Γ(s)ζK(s) is the completed zeta function. Note that ζ∗K(s) has simple poles only at

s ∈ {0, 1} and it satisfies the functional equation ζ∗K(s) = ζ∗K(1− s). When µ = 0, by (2.3), and by applying
the functional equation,

ca(0, 1/2 + z) =
ζ∗K(2z)

ζ∗K(1 + 2z)
c̃a(0, 1/2 + z) =

ζ∗K(1− 2z)

ζ∗K(1 + 2z)
c̃a(0, 1/2 + z) (2.17)

where c̃a(0, 1/2 + z) is a Dirichlet polynomial in z.
Recalling the Fourier expansion of Ea(w; 1/2 + it) in (2.2),

Ea(w;µ, s) = δa,∞
1

2πi

∫
(0)

c̃∞(µ, 1/2− z)
ζ∗K(1− 2z)

Γ (2s− 1 + 2z) Γ (2s− 1− 2z) y1+2zdz (2.18)

+
1

2πi

∫
(0)

c̃a(µ, 1/2− z)c̃a(0, 1/2 + z)

ζ∗K(1 + 2z)
Γ (2s− 1 + 2z) Γ (2s− 1− 2z) y1−2zdz (2.19)

+
1

2π

∫ ∞
−∞

c̃a(µ, 1/2 + it)

ζ∗K(1− 2it)
Γ (2s− 1 + 2it) Γ (2s− 1− 2it)

∑
06=ν∈λ−3Λ

ca(ν, 1/2 + it)yK2it(4π|ν|y)e(νx)dt.

(2.20)

Let α = Re(s) > 0 and we assume that α > 1
2 . We will consider each integral (2.18), (2.19) and (2.20)

separately.
For the first integral (2.18), we move the z-line of integration to Re(z) = −α+ 1

2 + ε for sufficiently small
ε > 0. Since 1 − 2Re(z) > 1 always, we do not pass over the zeros of ζ∗K(1− 2z). Note that we also do not
pass over any poles from other factors in the integrand of (2.18). Similarly for the second integral (2.19), we
now move the z-line of integration to Re(z) = α − 1

2 − ε for sufficiently small ε > 0. Again, 1 + 2Re(z) > 1

is always true for α > 1
2 , so we do not pass over the zeros of ζ∗K(1 + 2z), and we do not pass over any poles

from other factors in the integrand of (2.19). The series in the third integral, (2.20), converges absolutely
and the size is O(e−2πy).

Combining the above, we get

Ea(w;µ, s)�a,µ,α,ε y
2−2α+ε,

for y > 1. Since |θ(w)|2 = O(y
4
3 ) as y →∞, for α > 2

3 , y > 1, we have

|θ(w)|2 Ea(w;µ, s)�a,µ,α,ε y
10
3 −2α+ε.
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We now consider the asymptotic behaviour of |θ(w)|2Ea(w;µ) as w approachies a cusp b ∈ S. We consider
|θ(σbw)|2Ea(σbw;µ, s) as w →∞. By the definition of the Eisenstein series, for Re(s) > 1, we have

Ea(σbw, s) =
∑

γ∈Γa\Γ

H(σ−1
a γσbw)2s =

∑
γ∈Γa\Γ

H(σ−1
a σb · σ−1

b γσbw)2s.

For Γ = Γ3(3), we have σ−1
b Γσb = Γ for any σb in (1.3). There exist c ∈ S and γc ∈ Γ such that

c = γcσ
−1
b σa∞ = γcσ

−1
b a. Then σc = γcσ

−1
b σa. For γcσ

−1
b Γaσbγ

−1
c = Γc, we have

Ea(σbw, s) =
∑

γ∈Γc\Γ

H(σ−1
c γγcw)2s = Ec(w, s). (2.21)

For any b ∈ S, by (2.9), |θ(σbw)|2 = O(y
4
3 ) as y →∞, and following the previous argument, we have

|θ(σbw)|2 Ea(σbw;µ, s) = |θ(σbw)|2 Ec(w;µ, s)�c,µ,α,ε y
10
3 −2α+ε. (2.22)

By applying (2.22), and using the description of the fundamental domain F (2.14) and the Siegel domain
(2.15), ∣∣〈Ea(·;µ, s), |θ|2

〉∣∣ ≤ ∫
F
|Ea(w;µ, s)| |θ(w)|2dV

≤
∑
b∈S

∑
m∈Γ3,∞/Γ∞

∫∫∫
σbmDη

|Ea(w;µ, s)| |θ(w)|2 dx1dx2dy

y3

�
∑
b∈S

∑
m∈Γ3,∞/Γ∞

∫ ∞
η

|Ea(σbw;µ, s)| |θ(σbw)|2 dy
y3

�µ,α,ε

∑
b∈S

∑
m

∫ ∞
η

y
1
3−2α+εdy �µ,α,ε η

4
3−2α+ε, (2.23)

for α > 2
3 . Thus the inner product

〈
Ea(·;µ, s), |θ|2

〉
converges absolutely as claimed. �

Our goal is to express the inner product
〈
Ea(·;µ, s), |θ|2

〉
as an absolutely convergent integral involving

zeta functions, and then estimate in terms of s. We follow Arthur’s method for treating the truncated
Eisenstein series. See, for example, [Gol17].

For T > 1, let 1T (y) be the characteristic function such that

1T (y) =

{
1 when y > T,

0 otherwise.

For a ∈ S, define

ΛTa |θ|2(w) =
∑

γ∈Γa\Γ

1T (H(σ−1
a γw))H(σ−1

a γw)
4
3 .

Fix a compact C ⊂ Γ\H3. For T > 1, we see that there are only finitely many γ ∈ Γa\Γ, σ−1
a γ =

(
a b
c d

)
,

such that H(σ−1
a γw) = y

|cx+d|2+|c|2y2 > T , since there are only finitely many c, d ∈ Λ satisfying

|c|2
(
y2 +

∣∣∣∣x+
d

c

∣∣∣∣2
)
<
y

T
.

Thus ΛTa |θ|2(w) is a finite sum for w ∈ C, and the number of the terms depends only on C and T . Define

ΛT |θ|2(w) =
∑
b∈S

|cb|2ΛTb |θ|2(w)

and consider (|θ|2−ΛT |θ|2)(w). Following the arguments in the proof of Lemma 2.11, we can show that the
inner product

〈
Ea(·;µ), |θ|2 − ΛT |θ|2

〉
converges absolutely. Similarly, following (2.23),∣∣〈Ea(·;µ, s),ΛT |θ|2

〉∣∣� T
4
3−2α+ε.

For α > 2
3 , we get

lim
T→∞

〈
Ea(·;µ, s),ΛT |θ|2

〉
= 0.
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So we have

lim
T→∞

(〈
Ea(·;µ, s), |θ|2 − ΛT |θ|2

〉)
=
〈
Ea(·;µ, s), |θ|2

〉
− lim
T→∞

〈
Ea(·;µ, s),ΛT |θ|2

〉
=
〈
Ea(·;µ, s), |θ|2

〉
.

(2.24)

Lemma 2.12. The inner product
〈
Ea(·; 1/2 + it), |θ|2 − ΛT |θ|2

〉
converges absolutely for any sufficiently

large T > 1.

Proof. For any cusp c ∈ S, and w ∈
⋃
m∈Γ3,∞/Γ∞

σcmF0, for F0 as given in (2.13),

(|θ|2 − ΛT |θ|2)(w) = |θ(w)|2 − |cc|21T (H(σ−1
c w)H(σ−1

c w)
4
3 −

∑
c 6=b∈S

|cb|21T (H(σ−1
b w))(H(σ−1

b w)
4
3

=
(
1− 1T (H(σ−1

c w))
)
H(σ−1

c w)
4
3 −

∑
c 6=b∈S

|cb|21T (H(σ−1
b w))H(σ−1

b w)
4
3 +O(e−2πH(σ−1

c w)),

as H(σ−1
c w) → ∞. For sufficiently large X > 1, there exists 0 < δ < T such that for any w with

H(σ−1
c w) > X, H(σ−1

b w) < δ. Then 1T (H(σ−1
b w)) = 0. So as H(σ−1

c w)→∞, we have

(|θ|2 − ΛT |θ|2)(w) = O(e−2πH(σ−1
c w)).

Therefore we get∣∣〈Ea(·; 1/2 + it), |θ|2 − ΛT |θ|2
〉∣∣ ≤ ∫

F
|Ea(w; 1/2 + it)|

∣∣∣∣|θ|2(w)−
∑
b∈S

|cb|21T (H(σ−1
b w))

∣∣∣∣dV
≤
∑
c∈S

∑
m

∫
σcmDc

|Ea(w; 1/2 + it)|
∣∣∣∣|θ|2(w)−

∑
b∈S

|cb|21T (H(σ−1
b w))

∣∣∣∣dV
�
∑
c∈S

∑
m

∫ T

c

|Ea(σcw; 1/2 + it)|y 4
3
dy

y3
+

∫ ∞
T

|Ea(σcw; 1/2 + it)|e−2πy dy

y3
<∞. (2.25)

Thus the inner product
〈
Ea(·; 1/2 + it), |θ|2 − ΛT |θ|2

〉
converges absolutely for any T > c. �

By Lemma 2.12 and the argument above, both inner products converge absolutely and we may interchange
the order of the integral and the inner product:〈
Ea(·;µ, s), |θ|2 − ΛT |θ|2

〉
=

〈
1

2π

∫ ∞
−∞

ca(µ, 1/2 + it)Γ(2s− 1 + 2it)Γ(2s− 1− 2it)Ea (·, 1/2 + it) dt,
(
|θ|2 − ΛT |θ|2

)〉
=

1

2π

∫ ∞
−∞

ca(µ, 1/2 + it)Γ(2s− 1 + 2it)Γ(2s− 1− 2it)
〈
Ea (·, 1/2 + it) , |θ|2 − ΛT |θ|2

〉
dt. (2.26)

We now compute the inner product
〈
Ea (·, 1/2 + it) , |θ|2 − ΛT |θ|2

〉
, and then, by taking the limit T →∞

in (2.26), we compute
〈
Ea(·;µ), |θ|2

〉
.

Lemma 2.13. For each a ∈ S, for Re(s) = α > 2
3 ,

〈
Ea(·;µ, s), |θ|2

〉
= CK(µ; a)Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2π

∫ ∞
−∞

c̃a(µ, 1/2 + it)

ζ∗K(1− 2it)

39−it

2

(1 + 3−2it)(1− 3−
1
2−it)

(1− 3−1−2it)

ζ∗K(1/2 + 3it)ζ∗K(1/2 + it)

ζ∗K(1 + 2it)

× Γ(2s− 1 + 2it)Γ(2s− 1− 2it)dt. (2.27)

where CK(µ; a) is a constant given by

CK(µ; a) =
9
√

3

4

1

ζ∗K(4/3)

(
|ca|2c̃a(µ, 2/3) +

∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2c̃a(µ, 1/3)c̃c(0, 4/3)

)
. (2.28)
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Proof. By [Gol17, Lemma 3.1],

1

2πi

∫
(2)

1

u1+v

( y
T

)u
du =

{
(log( yT ))

v

Γ(1+v) when y > T,

0 otherwise.
(2.29)

and the integral converges absolutely for any Re(v) > 0. So

1T (y) = lim
v→0

(
1

2πi

∫
(2)

1

u1+v

( y
T

)u
du

)
. (2.30)

For Re(v) > 0, let

ΛTa |θ|2(w; v) =
∑

γ∈Γa\Γ

1

2πi

∫
(2)

T−u

u1+v
H(σ−1

a γw)
4
3 +udu. (2.31)

Then ΛTa |θ|2(w) = limv→0 ΛTa |θ|2(w; v). Since the sum over Γ and the integral converge absolutely, we change
the order and get

ΛTa |θ|2(w; v) =
1

2πi

∫
(2)

T−u

u1+v

∑
γ∈Γa\Γ

H(σ−1
a γw)

4
3 +udu =

1

2πi

∫
(2)

T−u

u1+v
Ea(w; 2/3 + u/2)du. (2.32)

By (2.2),

ΛTa |θ|2(w; v) = δa,∞δy>T y
4
3

(
log
(
y
T

))v
Γ (1 + v)

+
1

2πi

∫
(2)

T−u

u1+v
ca(0, 2/3 + u/2)y

2
3−udu

+
∑

06=ν∈λ−3Λ

1

2πi

∫
(2)

T−u

u1+v
ca(µ, 2/3 + u/2)yK 1

3 +u(4π|ν|y)e(νx)du. (2.33)

By (2.3),

ca(0, 2/3 +u/2) =
ζ∗K(u+ 1/3)

ζ∗K(u+ 4/3)
c̃a(0, 2/3 +u/2) =

(
3

4π2

)− 1
2 Γ

(
u+ 1

3

)
Γ
(
u+ 4

3

) ζK(u+ 1/3)

ζK(u+ 4/3)
c̃a(0, 2/3 +u/2). (2.34)

Since c̃a(0, 2/3 + u/2) is a Dirichlet polynomial in s (and thus uniformly bounded), by applying Stirling
(Lemma 1.6), we get

ca(0, 2/3 + u/2)� (1 + |Im(u)|)−1, (2.35)

so the first integral converges absolutely as v → 0 and at v = 0. When µ 6= 0, by (2.4),

ca(µ, 2/3 + u/2) =
c̃a(µ, 2/3 + u/2)

ζ∗K(u+ 4/3)
=

c̃a(µ, 2/3 + u/2)(
3

4π2

)u
2 + 2

3 Γ
(
u+ 4

3

)
ζK(u+ 4/3)

, (2.36)

with c̃a(µ, 2/3 + u/2) being a Dirichlet polynomial, |c̃a(µ, 2/3 + u/2)| �µ 1. By [DLMF, 10.32.11], we have

ca(µ, 2/3 + u/2)K 1
3 +u(4π|ν|y)�µ,y (1 + |Im(u)|)− 5

6 , (2.37)

so the integrals in the series in (2.33) over ν converge absolutely as v → 0 and at v = 0. By taking v = 0 for
(2.33), we get the following Fourier expansion for ΛTa |θ|2(w):

ΛTa |θ|2(w) = δa,∞1T (y)y
4
3 +

1

2πi

∫
(2)

T−u

u
ca(0, 2/3 + u/2)y

2
3−udu

+
∑

0 6=ν∈λ−3Λ

(
1

2πi

∫
(2)

T−u

u
ca(ν, 2/3 + u/2)yK 1

3 +u(4π|ν|y)du

)
e(νx). (2.38)

For z ∈ C, Re(z) > 1
2 , by unfolding,〈

Ea (·, 1/2 + z) , |θ|2 − ΛT |θ|2
〉

=

∫
Γ∞\H3

{
|θ(σaw)|2 −

∑
b∈S

|cb|2ΛTb |θ|2(σaw)

}
y1+2zdV
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For any a ∈ S, by (2.21), there exists c ∈ S such that

ΛTb |θ|2(σaw; v) =
1

2πi

∫
(2)

T−u

u1+v
Eb(σaw; 2/3 + u/2)du =

1

2πi

∫
(2)

T−u

u1+v
Ec(w; 2/3 + u/2)du

= ΛTc |θ|2(w; v). (2.39)

Here c ∈ S is determined by the σc(σ
−1
b σa)−1 ∈ Γ and it is uniquely determined up to the action of Γ. Then

we have ∑
b∈S

|cb|2ΛTb |θ|2(σaw) = |ca|2ΛT∞|θ|2(w) +
∑

c∈S,c 6=∞
b∈S,σb∈(σcσ

−1
a )−1Γ

|cb|2ΛTc |θ|2(w) (2.40)

By (2.9) and (2.38), we get

〈
Ea (·, 1/2 + z) , |θ|2 − ΛT |θ|2

〉
= Vol(3Λ)

∫ ∞
0

{
|ca|2y

4
3 − |ca|21T (y)y

4
3 +

∑
06=ν∈λ−3Λ

|τa(ν)|2y2K 1
3
(4π|ν|y)2

}
y1+2z dy

y3

−
∫ ∞

0

∫∫
C/3Λ

{
|ca|2

(
ΛT∞|θ|2(w)− 1T (y)y

4
3

)
+

∑
c∈S,c 6=∞

b∈S,σb∈(σcσ
−1
a )−1Γ

|cb|2ΛTc |θ|2(w)

}
dV

= Vol(3Λ)

{
|ca|2

T
1
3 +2z

1
3 + 2z

+ (4π)−1−2z
∑

06=ν∈λ−3Λ

|τa(ν)|2

|ν|1+2z

∫ ∞
0

K 1
3
(y)2y1+2z dy

y

}
− I(z;T ),

where

I(z;T ) =

∫ ∞
0

∫∫
C\3Λ

{
|ca|2

(
ΛT∞|θ|2(w)− 1T (y)y

4
3

)
+

∑
c∈S,c 6=∞

b∈S,σb∈(σcσ
−1
a )−1Γ

|cb|2ΛTc |θ|2(w)

}
y1+2zdV. (2.41)

By applying the Fourier expansion of ΛTc |θ|2(w) (2.38), we have

I(z;T ) =
∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2Vol(3Λ)

∫ ∞
0

{
1

2πi

∫
(2)

T−u

u
cc(0, 2/3 + u/2)y

2
3−udu

}
y1+2z dy

y3
. (2.42)

Our goal is to get a meromorphic continuation of I(z;T ) to z ∈ C. Assume first that Re(z) > 1
2 + ε for

sufficiently small ε > 0. We separate the y-integral into two pieces and using the description of cc(0, 2/3+u/2)
in (2.3), we get

∫ ∞
0

{
1

2πi

∫
(2)

T−u

u
cc(0, 2/3 + u/2)y

2
3−udu

}
y1+2z dy

y3

=

∫ 1

0

{
1

2πi

∫
(2)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)y

2
3−udu

}
y−1+2z dy

y

+

∫ ∞
1

{
1

2πi

∫
(2)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)du

}
y−1+2z dy

y
. (2.43)

We now consider the first integral of (2.43). We move the u-line of integration to 2
3 < Re(u) < 2

3 + 2ε. Note
that the u-integral converges absolutely for any Re(u) > 0 and we do not pass over any poles. Now the
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power for y is − 1
3 − Re(u) + 2Re(z) > 0, so we may change the order of the integrals and obtain∫ 1

0

{
1

2πi

∫
(2/3+ε)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)y

2
3−udu

}
y−1+2z dy

y

=
1

2πi

∫
(2/3+ε)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)

{∫ 1

0

y−
1
3−u+2z dy

y

}
du

=
1

2πi

∫
(2/3+ε)

T−u

u(− 1
3 − u+ 2z)

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)du. (2.44)

For the second integral, we assume that 1
2 + ε < Re(z) < 1

6 + 1. We change the order of the integrals and get∫ ∞
1

{
1

2πi

∫
(2)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)y

2
3−udu

}
y−1+2z dy

y

=
1

2πi

∫
(2)

T−u

u

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)

{∫ ∞
1

y−
1
3−u+2z dy

y

}
du

= − 1

2πi

∫
(2)

T−u

u(− 1
3 − u+ 2z)

ζ∗K(1/3 + u)

ζ∗K(4/3 + u)
c̃c(0, 2/3 + u/2)du. (2.45)

Since the integrand in the two integrals (they are the same) has a pole at u = − 1
3 + 2z, for 1

2 + ε < Re(z) <
1
6 + 1, we have∫ ∞

0

{
1

2πi

∫
(2)

T−u

u
cc(0, 2/3 + u/2)y

2
3−udu

}
y1+2z dy

y3

=
1

2πi

∫
(2/3+ε)

T−u

u(− 1
3 − u+ 2z)

cc(0, 2/3 + u/2)du− 1

2πi

∫
(2)

T−u

u(− 1
3 − u+ 2z)

cc(0, 2/3 + u/2)du

=
T

1
3−2z

− 1
3 + 2z

cc(0, 1/2 + z) =
T

1
3−2z

− 1
3 + 2z

ζ∗K(2z)

ζ∗K(1 + 2z)
c̃c(0, 1/2 + z). (2.46)

For Vol(3Λ) = 9
√

3
2 ,

I(z;T ) =
9
√

3

2

T
1
3−2z

− 1
3 + 2z

ζ∗K(2z)

ζ∗K(1 + 2z)

∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2c̃c(0, 1/2 + z) (2.47)

which continues to a meromorphic function of z ∈ C.

By Lemma 2.8, we have |τa(ν)|2 = |τ(ν)|2. By (1.14) and (1.13), for Vol(3Λ) = 9
√

3
2 , we get

Vol(3Λ)(4π)−1−2z
∑

06=ν∈λ−3Λ

|τa(ν)|2

|ν|1+2z

∫ ∞
0

K 1
3
(y)2y1+2z dy

y

= 39−z2−1 (1 + 3−2z)(1− 3−
1
2−z)

(1− 3−1−2z)

ζ∗K(1/2 + 3z)ζ∗K(1/2 + z)

ζ∗K(1 + 2z)
.

Therefore, we get〈
Ea (·, 1/2 + z) , |θ|2 − ΛT |θ|2

〉
=

9
√

3

2
|ca|2

T
1
3 +2z

1
3 + 2z

− 9
√

3

2

T
1
3−2z

− 1
3 + 2z

ζ∗K(2z)

ζ∗K(1 + 2z)

∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2c̃c(0, 1/2 + z)

+ 39−z2−1 (1 + 3−2z)(1− 3−
1
2−z)

(1− 3−1−2z)

ζ∗K(1/2 + 3z)ζ∗K(1/2 + z)

ζ∗K(1 + 2z)

and the inner product has a meromorphic continuation to z ∈ C.
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Applying to (2.26),

〈
Ea(·;µ, s), |θ|2 − ΛT |θ|2

〉
=

9
√

3

2
|ca|2

1

2πi

∫
(0)

c̃a(µ, 1/2− z)

ζ∗K(1− 2z)
Γ(2s− 1 + 2z)Γ(2s− 1− 2z)

T
1
3 +2z

1
3 + 2z

dz

− 9
√

3

2

∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2
1

2πi

∫
(0)

c̃a(µ, 1/2− z)c̃c(0, 1/2 + z)

ζ∗K(1 + 2z)
Γ(2s− 1 + 2z)Γ(2s− 1− 2z)

T
1
3−2z

− 1
3 + 2z

dz

+
1

2πi

∫
(0)

c̃a(µ, 1/2− z)
ζ∗K(1− 2z)

39−z

2

(1 + 3−2z)(1− 3−
1
2−z)

(1− 3−1−2z)

ζ∗K(1/2 + 3z)ζ∗K(1/2 + z)

ζ∗K(1 + 2z)

× Γ(2s− 1 + 2z)Γ(2s− 1− 2z)dz. (2.48)

Here we have used the functional equation ζ∗K(2z) = ζ∗K(1 − 2z). We move the z-line of integration of the
first integral to Re(z) = −α + 1

2 + ε. Since we assume that Re(s) = α > 2
3 , and Re(z) ≤ 0 it follows

that1− 2Re(z) > 1; therefore we do not pass over the zeros of the ζ∗K(1− 2z). We also do not pass over any
pole of other factors of the integrand of the first integral, except 1

1
3 +2z

, which has a pole at z = − 1
6 . Then

we get

1

2πi

∫
(0)

c̃a(µ, 1/2− z)
ζ∗K(1− 2z)

Γ(2s− 1 + 2z)Γ(2s− 1− 2z)
T

1
3 +2z

1
3 + 2z

dz

=
1

2

c̃a(µ, 2/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2πi

∫
(−α+ 1

2 +ε)

c̃a(µ, 1/2− z)

ζ∗K(1− 2z)
Γ(2s− 1 + 2z)Γ(2s− 1− 2z)

T
1
3 +2z

1
3 + 2z

dz.

Note that in the remaining integral, Re(z) = −α+ 1
2 + ε, so 1

3 +2Re(z) = 4
3 −2α+2ε < 0 for Re(s) = α > 2

3 .
Thus we have

1

2πi

∫
(0)

c̃a(µ, 1/2− z)
ζ∗K(1− 2z)

Γ(2s− 1 + 2z)Γ(2s− 1− 2z)
T

1
3 +2z

1
3 + 2z

dz

=
c̃a(µ, 2/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+O(T

4
3−2α+2ε).

Similarly, we move the z-line of the integration of the second integral of (2.48) to Re(z) = α − 1
2 − ε for

sufficiently small ε > 0 such that α > 2
3 + ε. Again, since 1 + 2Re(z) > 1, we do not pass over any poles of

the integrand of the second integral except 1
− 1

3 +2z
, which has a pole at z = 1

6 . Then we get

1

2πi

∫
(0)

c̃a(µ, 1/2− z)c̃c(0, 1/2 + z)

ζ∗K(1 + 2z)
Γ(2s− 1 + 2z)Γ(2s− 1− 2z)

T
1
3−2z

− 1
3 + 2z

dz

= −1

2

c̃a(µ, 1/3)c̃c(0, 4/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2πi

∫
(α−1/2−ε)

c̃a(µ, 1/2− z)c̃c(0, 1/2 + z)

ζ∗K(1 + 2z)
Γ(2s− 1 + 2z)Γ(2s− 1− 2z)

T
1
3−2z

− 1
3 + 2z

dz

= −1

2

c̃a(µ, 1/3)c̃c(0, 4/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+O(T

4
3−2α+2ε). (2.49)
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Combining the above we have

〈
Ea(·;µ, s), |θ|2 − ΛT |θ|2

〉
=

1

2

9
√

3

2
|ca|2

c̃a(µ, 2/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2

9
√

3

2

∑
c,b∈S

σb∈(σcσ
−1
a )−1Γ

|cb|2
c̃a(µ, 1/3)c̃c(0, 4/3)

ζ∗K(4/3)
Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)

+
1

2πi

∫
(0)

c̃a(µ, 1/2− z)
ζ∗K(1− 2z)

39−z

2

(1 + 3−2z)(1− 3−
1
2−z)

(1− 3−1−2z)

ζ∗K(1/2 + 3z)ζ∗K(1/2 + z)

ζ∗K(1 + 2z)

× Γ(2s− 1 + 2z)Γ(2s− 1− 2z)dz +O(T
4
3−2α+2ε).

Taking T →∞ gives us

lim
T→∞

〈
Ea(·;µ, s), |θ|2 − ΛT |θ|2

〉
= CK(µ; a)Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2π

∫ ∞
−∞

c̃a(µ, 1/2 + it)

ζ∗K(1− 2it)

39−it

2

(1 + 3−2it)(1− 3−
1
2−it)

(1− 3−1−2it)

ζ∗K(1/2 + 3it)ζ∗K(1/2 + it)

ζ∗K(1 + 2it)

× Γ(2s− 1 + 2it)Γ(2s− 1− 2it)dt,

where CK(µ; a) is a constant given in (2.28). �

We now need to estimate the right-hand side of (2.27) and complete the proof of Lemma 2.9. Recall
(2.27) and name the pieces〈
Ea(·;µ, s), |θ|2

〉
= CK(µ; a)Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
+

1

2π

∫ ∞
−∞

c̃a(µ, 1/2 + it)

ζ∗K(1− 2it)

39−it

2

(1 + 3−2it)(1− 3−
1
2−it)

(1− 3−1−2it)

ζ∗K(1/2 + 3it)ζ∗K(1/2 + it)

ζ∗K(1 + 2it)

× Γ(2s− 1 + 2it)Γ(2s− 1− 2it)dt =: I + II. (2.50)

The first piece, coming from the residues, is easy. As s = α+ ir, by Stirling’s formula

I = CK(µ; a)Γ

(
2s− 1 +

1

3

)
Γ

(
2s− 1− 1

3

)
�µ e

−2π|r|(1 + |r|)4α−3.

To estimate II we first apply the lower bound

ζK(1± 2it)� (log(2 + 2|t|))−2
.

This follows as ζK(1± 2it) = ζ(1± 2it)L(1± 2it, χ−3) and

ζ(1± 2it), L(1± 2it, χ−3)� (log(1 + 2|t|))−1
.

We then apply Stirling (Lemma 1.6) and obtain

II �µ

∫ ∞
−∞

(1 + |t|)−1+ε(|r + t|+ 1)2α− 3
2 (|r − t|+ 1)2α− 3

2 e−2πmax(|r|,|t|) |ζK(1/2 + 3it)ζK(1/2 + it)| dt.

Here we have absorbed the | log(1 + 2|t|)|2 in the ε of (1 + |t|)−1+ε. Because of the exponential decay when
|t| > |r| and the polynomial growth of the rest of the expression in t, we have

II �µ (1 + |r|)4α−3e−2π|r|
∫ |r|
−|r|

(1 + |t|)−1+ε |ζK(1/2 + 3it)ζK(1/2 + it)| dt. (2.51)

We estimate this by integration by parts, using the integral theorem for Dirichlet polynomials [IK04, Theorem
9.1]: ∫ T

0

∣∣∣∣∣∣
∑

1≤n≤N

ann
it

∣∣∣∣∣∣
2

dt� (T +O(N))
∑

1≤n≤N

|an|2.
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The conductors of ζK(1/2 + 3it), ζK(1/2 + it) are both |t|, and so each can be represented as a sum of length
a multiple of |r|, as |t| ≤ |r|. It follows then from Cauchy-Schwartz and the above that

∫ |r|
−|r|
|ζK(1/2 + 3it)ζK(1/2 + it)| dt�

(∫ |r|
−|r|
|ζK(1/2 + 3it)|2 dt

) 1
2
(∫ |r|
−|r|
|ζK(1/2 + it)|2 dt

) 1
2

.

Applying the approximate functional equation (the pole of the zeta function does not affect the estimate),
and the integral theorem we have

∫ |r|
−|r|
|ζK(1/2 + it)|2 dt�

∫ |r|
−|r|

∣∣∣∣∣∣
∑

1≤n≤|r|

ann
it

∣∣∣∣∣∣
2

dt
∑

1≤n≤|r|

1

n
� |r|1+ε.

Here the an are the coefficients of ζK . The same estimate applies to
∫ |r|
−|r| |ζK(1/2 + 3it)|2 dt, and so

∫ |r|
−|r|
|ζK(1/2 + 3it)ζK(1/2 + it)| dt� |r|1+ε (2.52)

We now integrate∫ |r|
−|r|

(1 + |t|)−1+ε |ζK(1/2 + 3it)ζK(1/2 + it)| dt�
∫ |r|

1

t−1+ε |ζK(1/2 + 3it)ζK(1/2 + it)| dt

by parts, setting

S(t) =

∫ t

1

|ζK(1/2 + 3it′)ζK(1/2 + it′)| dt′.

Then ∫ |r|
1

t−1+ε |ζK(1/2 + 3it)ζK(1/2 + it)| dt =

∫ |r|
1

t−1+εdS(t)

=
[
t−1+εS(t)

]|r|
1

+ (1− ε)
∫ |r|

1

t−2+εS(t)dt

� |r|2ε,

after applying (2.52).
Combining this with (2.51) finally gives us

II �µ (1 + |r|)4α−3+εe−2π|r|,

which completes the proof.

3. Completion of the proof of Theorem 1.1

We are going to compute the inner product 〈Pµ(·, s), |θ|2〉 directly, and then compare it with the summation
formula from Lemma 2.10. This will complete the proof of Theorem 1.1.

Lemma 3.1. Let s = α + ir with α being large and fixed. Assume that µ is chosen and fixed such that
Re(τ(µ)) 6= 0. Then we have

|〈Pµ(·, s), |θ|2〉| ∼α,µ (1 + |r|)2α− 4
3 e−π|r|,

as r →∞.
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Proof. We first unfold the integral and then represent the inner product as a summation of shifted convolution
sums as follows:

〈Pµ(·, s), |θ|2〉 =

∫∫∫
Γ\H3

Pµ(w, s)|θ(w)|2 dx1dx2dy

y3

=

∫∫∫
Γ∞\H3

(8π|µ|y)2se−4π|µ|ye(µx)|θ(w)|2 dx1dx2dy

y3

= σ
(
τ(−µ) + τ(µ)

)∫ ∞
0

K 1
3
(4π|µ|y)(8π|µ|y)2se−4π|µ|yy−

1
3
dy

y

+
∑

ν∈λ−3Λ
ν 6=0,−µ

τ(ν)τ(ν + µ)

∫ ∞
0

K 1
3
(4π|ν|y)K 1

3
(4π|ν + µ|y)(8π|µ|y)2se−4π|µ|y dy

y

= σ
(
τ(−µ) + τ(µ)

)
(4π|µ|) 1

3

∫ ∞
0

K 1
3
(y)(2y)2se−yy−

4
3 dv

+
∑

ν∈λ−3Λ
ν 6=0,−µ

τ(ν)τ(ν + µ)

∫ ∞
0

K 1
3

(
|ν|
|µ|
y

)
K 1

3

(
|ν + µ|
|µ|

y

)
(2y)2se−y

dy

y

=: I + II.

For the first integral, we use (1.20) so that

I = 2π
5
6σ
(
τ(−µ) + τ(µ)

)
|µ| 13

Γ(2s)Γ
(
2s− 2

3

)
Γ
(
2s+ 1

6

) .

If we take s = α+ ir, then from Stirling’s approximation (Lemma 1.6),

|I| ∼ σ|µ| 13 |τ(−µ) + τ(µ)|(1 + |r|)2α− 4
3 e−π|r|.

In Appendix A, we give proof of a crude estimate∫ ∞
0

K 1
3

(
|ν|
|µ|
y

)
K 1

3

(
|ν + µ|
|µ|

y

)
(2y)2se−y

dy

y
�µ,α

e−π|r|(1 + |r|)2α− 3
2 log(1 + |r|)

(|µ|+ |ν|+ |µ+ ν|)2α−1
. (3.1)

When combined with a trivial estimate τ(µ)� |µ| 13 , it implies that

II � e−π|r|(1 + |r|)2α− 3
2 log(2 + |r|)

provided that α is sufficiently large (say, α > 10). So the statement follows from the observation that
τ(µ) = τ(−µ). �

We now prove Theorem 1.1. We first fix µ 6= 0 such that Re(τ(µ)) 6= 0 and a large α > 10. One can take
for instance µ = 1 and α = 100. For such µ and α, by Lemma 2.10 and Lemma 3.1,

(1 + |r|)2α− 4
3 e−π|r| �α,µ

∑
j≥1

Γ(2s− 1 + 2itj)Γ(2s− 1− 2itj)

Γ
(
2s− 1

2

) ρj(µ)〈φj , |θ|2〉

�ε,µ

∑
j≥1

〈φj ,|θ|2〉6=0

e−π(|r+tj |+|r−tj |−|r|+|tj |)((1 + |r + tj |)(1 + |r − tj |))2α− 3
2 (1 + |r|)−2α+1(1 + |tj |)

4
3 +ε,

where we used (2.12) and Lemma 2.7 in the second estimate. Assume for contradiction that there are only
finitely many j’s such that 〈φj , |θ|2〉 6= 0. Then the right-hand side is

� e−π|r|(1 + |r|)2α−2

as r →∞, which cannot happen because 2α − 4
3 > 2α − 2. This completes the proof of Theorem 1.1 using

Theorem 1.3.
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Appendix A. Proof of (3.1)

Here we give a crude estimate of∫ ∞
0

K 1
3

(
|ν|
|µ|
y

)
K 1

3

(
|ν + µ|
|µ|

y

)
(2y)2se−y

dy

y
,

when ν 6= 0,−µ, which is used in Lemma 3.1. When Re(s) is fixed, it is possible to obtain an asymptotic
expansion uniform in µ, ν, Im(s) using a standard technique from harmonic analysis (see for instance [Ste93,
Ch. VII §2]), hence it is possible to obtain a sharper estimate than the estimate we prove here. However,
the proof of the weaker estimate (3.1) is much simpler and sufficient for our application.

To begin with, we recall that

K 1
3
(x) =

√
3

∫ ∞
0

exp
(
−x(1 + 4ξ2/3)

√
1 + ξ2/3

)
dξ.

Let f(ξ) = (1 + 4ξ2/3)
√

1 + ξ2/3 and substitute |ν||µ| and |ν+µ|
|µ| by a and b respectively. We then express the

integral as∫ ∞
0

K 1
3
(ay)K 1

3
(by)(2y)2se−y

dy

y
= 3

∫ ∞
0

∫ ∞
0

∫ ∞
0

e−y(af(ξ1)+bf(ξ2))(2y)2se−y
dy

y
dξ1dξ2

= 3 · 4s
∫ ∞

0

∫ ∞
0

∫ ∞
0

(1 + af(ξ1) + bf(ξ2))
−2s

y2se−y
dy

y
dξ1dξ2

= 3 · 4s−1Γ(2s)

∫∫
R2

(1 + af(ξ1) + bf(ξ2))
−2s

dξ1dξ2.

Now let s = α+ ir with α > 100 being fixed, and let∫∫
R2

(1 + af(ξ1) + bf(ξ2))
−2s

dξ1dξ2 =

∫∫
R2

g(ξ1, ξ2)e−2irφ(ξ1,ξ2)dξ1dξ2

where

g(ξ1, ξ2) = (1 + af(ξ1) + bf(ξ2))
−2α

and

φ(ξ1, ξ2) = log (1 + af(ξ1) + bf(ξ2)) .

Let ψ ∈ C∞0 (R) be a nonnegative function such that ψ(x) = 1 if x < 1, ψ(ξ) = 0 if |ξ| > 3/2, and
|ψ′|, |ψ′′| < 10.

Note that φξi = 0 if and only if ξi = 0, and so we treat the part containing a stationary phase

M =

∫∫
R2

ψ(ξ1)ψ(ξ2)g(ξ1, ξ2)e−2irφ(ξ1,ξ2)dξ1dξ2,

and the rest

R =

∫∫
R2

(1− ψ(ξ1)ψ(ξ2))g(ξ1, ξ2)e−2irφ(ξ1,ξ2)dξ1dξ2

separately. We further split R into two integrals:

R =

∫∫
R2

(1− ψ(ξ1))ψ(ξ2)g(ξ1, ξ2)e−2irφ(ξ1,ξ2)dξ1dξ2 +

∫∫
R2

(1− ψ(ξ2))g(ξ1, ξ2)e−2irφ(ξ1,ξ2)dξ1dξ2

= R1 +R2.

For R1, observe that by integration by parts,

R1 =
1

2ir

∫∫
R2

∂

∂ξ1

(
(1− ψ(ξ1))ψ(ξ2)g(ξ1, ξ2)

φξ1(ξ1, ξ2)

)
e−2irφ(ξ1,ξ2)dξ1dξ2,
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where

∂

∂ξ1

(
(1− ψ(ξ1))ψ(ξ2)g(ξ1, ξ2)

φξ1(ξ1, ξ2)

)
=
ψ(ξ2)

a

∂

∂ξ1

(
(1− ψ(ξ1)) (1 + af(ξ1) + bf(ξ2))

−2α+1

f ′(ξ1)

)

=
ψ(ξ2)

a

∂

∂ξ1

(√
9 + 3ξ2

1(1− ψ(ξ1)) (1 + af(ξ1) + bf(ξ2))
−2α+1

9ξ1 + 4ξ3
1

)
� α (b+ 1 + af(ξ1))

−2α
,

which holds uniformly in |ξ2| < 3/2. Therefore

|R1| �
α

r

∫ ∞
1

(b+ 1 + af(ξ1))
−2α

dξ1 �µ
1

r
(a+ b+ 1)−2α.

Likewise, we perform integration by parts with respect to ξ2 to infer that

|R2| �µ
1

r
(a+ b+ 1)−2α+1.

Now for the main contribution M , we first integrate by parts with respect to ξ1 and then ξ2 to see that

M � sup
|r1|,|r2|<3/2

∫ r1

−2

∫ r2

−2

e−2irφ(ξ1,ξ2)dξ1dξ2

∫ 2

−2

∫ 2

−2

∣∣∣∣ ∂2

∂ξ1∂ξ2
(ψ(ξ1)ψ(ξ2)g(ξ1, ξ2))

∣∣∣∣ dξ1dξ2.
Note that

|φξiξi | ∼µ r, |φξ1ξ2 | �µ r,

∣∣∣∣∂(φξ1 , φξ2)

∂(ξ1, ξ2)

∣∣∣∣� r2

as r →∞, so we apply the Lemma δ of Titchmarsh [Tit34] to obtain the following estimate

sup
|r1|,|r2|<3/2

∫ r1

−2

∫ r2

−2

e−2irφ(ξ1,ξ2)dξ1dξ2 �µ
log r

r

as r →∞. Combining with the following estimate∫ 2

−2

∫ 2

−2

∣∣∣∣ ∂2

∂ξ1∂ξ2
(ψ(ξ1)ψ(ξ2)g(ξ1, ξ2))

∣∣∣∣ dξ1dξ2
�
∫ 2

−2

∫ 2

−2

|g(ξ1, ξ2)|+ |gξ1(ξ1, ξ2)|+ |gξ2(ξ1, ξ2)|+ |gξ1ξ2(ξ1, ξ2)| dξ1dξ2

�α2(1 + a+ b)−2α,

we see that

M �µ,α
log r

r
(1 + a+ b)−2α.

This proves the estimate∫ ∞
0

K 1
3

(
|ν|
|µ|
y

)
K 1

3

(
|ν + µ|
|µ|

y

)
(2y)2se−y

dy

y
�µ,α

e−π|r|(1 + |r|)2α− 3
2 log(1 + |r|)

(|µ|+ |ν|+ |µ+ ν|)2α−1
,

where we used Stirling’s approximation (Lemma 1.6)

Γ(2s) ∼ e−π|r|(1 + |r|)2α− 1
2 ,

for s = α+ ir.
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