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Intersecting geodesics on the modular surface

Junehyuk Jung and Naser Talebizadeh Sardari

We introduce the modular intersection kernel, and we use it to study how geodesics intersect on the full
modular surface X = PSL,(Z)\H. Let C,; be the union of closed geodesics with discriminant d and let
B C X be a compact geodesic segment. As an application of Duke’s theorem to the modular intersection
kernel, we prove that {(p,0,) : p € B N Cy4} becomes equidistributed with respect to siné ds d6 on
B x [0, ] with a power saving rate as d — +o00. Here 6, is the angle of intersection between 8 and Cy
at p. This settles the main conjectures introduced by Rickards(2021).

We prove a similar result for the distribution of angles of intersections between Cy, and Cy, with
a power-saving rate in d; and d, as d; + d, — o0o. Previous works on the corresponding problem for
compact surfaces do not apply to X, because of the singular behavior of the modular intersection kernel
near the cusp. We analyze the singular behavior of the modular intersection kernel by approximating it by
general (not necessarily spherical) point-pair invariants on PSL,(Z)\ PSL,(R) and then by studying their
full spectral expansion.

1. Introduction

Let Y be a negatively curved surface of finite area. The prime geodesic theorem [Sarnak 1980] states that
the number of primitive closed geodesics having length less than L, which we denote by 7 (L), satisfies

L
e
a(L) ~ —,
(L)~
as L — 0o. A natural problem is to understand how primitive closed geodesics of length less than L are

positioned or distributed in ¥ as L — oo. In particular, one may ask

(1) how the number of transversal intersections I (|, op) between two primitive closed geodesics o
and o is distributed, or

(2) how the set of angles of intersections between o and oy is distributed,
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as one varies g, or both oy and a»? Bonahon [1986] defined the intersection form i : C x C — R™
on the space of currents C such that when u; (i =1, 2) is the unique invariant measure corresponding
to «;, then i (i1, o) = I (g, @p). When Y is compact, Pollicott and Sharp [2006] used an extension of
the intersection form to understand the distribution of angles of self-intersections of closed geodesic «
having length less than L, as L — co. When Y is a compact hyperbolic surface, using the intersection
form, Herrera Jaramillo [2015] proved that the distribution of 7 (or1, 2) /(I(e1)I(ex2)) for closed geodesics
o1, ap of length < L, is concentrated near 1/ (2712(g — 1)) =2/(r vol(Y)) with exponentially decaying
tail, as L — oo. Here [( -) is the length function, and g is the genus of Y.
In this article, we study a refined problem:

(3) How are the locations and angles of intersections between «; and «» jointly distributed relative to
o, as one varies o, or both o1 and oy ?

Let X = PSL;(Z)\H be the full modular surface. The connection between the geometry of geodesics
on X and number theory has a rich history. Artin [1924] discovered a relation between geometry of
geodesics in X and continued fraction expansion. As a result, he proved that there is a hyperbolic geodesic
in X that comes arbitrarily close to any given hyperbolic segment in X. So this geodesic is not only dense,
but dense in all directions simultaneously. Another deep connection is discovered in the spectacular
work of Katok [1985]. She showed that certain holomorphic Poincaré series (introduced by Petersson)
associated with closed geodesics on a Fuchsian group of the first kind, span the corresponding space
of cusp forms. Moreover, she proved a formula relating the intersection angles between pairs of closed
geodesics to the periods of these holomorphic Poincaré series.

On X, primitive oriented closed geodesics are in one-to-one correspondence with conjugacy classes of
primitive hyperbolic elements of PSL,(Z). Moreover there is a bijection between the primitive hyperbolic
conjugacy classes and the SL,(Z) equivalence classes of primitive integral binary quadratic forms of
nonsquare positive discriminant [Luo et al. 2009; Sarnak 1982]. So by the discriminant of a primitive
closed geodesic, we mean the discriminant of the corresponding binary quadratic form. In particular, if

the hyperbolic class y is associated to the binary quadratic form Q then y !

is associated to — Q.

Let (x4, y4) be the fundamental solution of Pell’s equation x2—d y2 =4, and letg; := %(xd +/d ya) > 1.
Each oriented primitive closed geodesics of discriminant d has a unique lift to a closed geodesic of
length 2 log &4 in the unit tangent bundle SX. Let 2(d) be the number of inequivalent primitive integral
binary quadratic forms of discriminant d. We denote the disjoint union of these 4 (d) closed geodesics by
%4 C SX, which has total length 2/(d) log g4.

Note that the closed geodesic on X has length log ¢; or 21og ¢4 according as Q is or is not equivalent
to —Q [Duke 1988, page 75]. We now let C; be the union of primitive (unoriented) closed geodesics of

discriminant d on X, and note that [(C;) = h(d) log &4 is the total length of C,.

Theorem 1.1. Fix T > 100, and let § be a compact oriented geodesic segment of length < 1 in the region
determined by y < T on X. For 0 < 6y < 0, < m, let Iy, g,(B, Cq) be the number of intersections between
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B and C4 with the angle between 0| and 6,. (Here the angle between B and C4 at p € B N Cy is measured
counterclockwise from the tangent to B at p to the tangent to Cy at p.)
Then we have

sin0do + O (d~>>/3384+¢)y,

[(B(Ca) — w2

uniformly in B, 01, and 0,, under the assumption that

Iy, 0,(B,Ca) 3 /92
0

1

0y — 0 > d~ 257168,

and that
1(B) > 4-25/7168

(Here and elsewhere, A <, B means |A| < C(t)B for some constant C(t) that depends only on t.)

Remark 1.1. This statement is false if Cy is replaced by individual geodesics. For instance, the set of
intersections between 8 and a closed geodesic « does not necessarily become equidistributed as /() — oo.
To see this, take a finite sheeted covering S of X whose genus is > 2. Then according to Rivin’s work
[2001] there are arbitrarily long simple closed geodesics on S. Note that these simple closed geodesics
must be contained in a compact part of S [Jung and Reid 2021]. This implies that there is a compact set
C C X which contains arbitrarily long primitive closed geodesics. Take a geodesic segment 8 in X — C.
Then there are infinitely many closed geodesics which do not intersect f.

Remark 1.2. The exponent —% can be improved slightly by refining our argument (for instance, by
inputting the Weyl-like subconvex bound [Petrow and Young 2019] instead of the Burgess-like subconvex
bound [Heath-Brown 1980]), but in order to keep the exposition simple, we do not discuss the optimal
rate in the current article.

As an immediate consequence, we deduce that the intersection points and corresponding angles become
equidistributed, resolving the main conjectures introduced by Rickards [2021].

Corollary 1.2. Fix a closed geodesic o. Then for any fixed segment 8 C «, and any fixed 0 < 0; <6, <,
we have
m eB.Ca) _ 1(B) % sin6

i = do.
o 1@, Cp) @) o, 2

Remark 1.3. Rickards’s work is motivated by the work of Darmon and Vonk [2022] on the arithmetic
(p-arithmetic) intersection between pairs of oriented closed geodesics on the modular surfaces (Shimura
curves). The arithmetic intersection between oriented closed geodesics «; and &, of discriminants D
and D, only depends on D; and D, and the angles of intersections between «; and «p. Darmon and
Vonk [2022, Conjecture 2] conjectured that the p-arithmetic intersection is algebraic and belongs to the
composition of the Hilbert class field of real quadratic fields of discriminants D; and D;.
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To prove our main results, we introduce the modular intersection kernel. For § > 0 and 6y, 6, € (0, ),
let kg"ez : SH x SH — R be the integral kernel defined by

K02 (xy, £1), (00, £2)) = 1,

if the geodesic segments of length § from x; with the initial vector &; intersect at an angle € (61, 6»), and
0 otherwise. Under the identification SH = PSL;(R), for a given discrete subgroup I' C PSL,(R), we

define the modular intersection kernel Ki"* : T\ PSLy(R) x I'\ PSLy(R) — R by taking the average of

0,,0
kg7 over I':

K% (g1, =D k" " (g1, v82).
yell

The basic idea of the proof of Theorem 1.1 then is as follows. Heuristically,

Iy, .0,(B, Ca)

should be well approximated by

1 01,6
W[@‘/BK‘SI *(s1, $2) dsy dsy, (I-1)

where B C SXis a lift of 8 with either of orientations of B

B(t) = (B®), B'(1)),
under assuming that B(¢) is parametrized by the arc length. As noted in [Luo et al. 2009], Duke’s theorem
[1988] can be extended to the equidistribution of %, in PSL,(Z)\ PSL,(R) as d — o0o. Observing that

1

o f K% (s1, g) ds (1-2)
B

is a compactly supported function in g for compact 8, (1-1) is

(€,
- K¥a) f / KD (s), ) ds) dyu,,
gJB

282

which is asymptotically (3/72)I(Cy)I(B) f0912 sina da as § — 0, by an explicit computation.

Note that (1-2) is a discontinuous function. Therefore, in order to obtain the rate of convergence,
we need a smooth approximation of (1-2), and a quantified version of Duke’s theorem with explicit
dependency on the test functions. To this end, we follow the argument sketched in [Luo et al. 2009] to

prove:

Theorem 1.3. Assume that f € C3°(PSLy(Z)\ PSLa2(R)) has support in the region determined by y < T.
Then we have

1 3
f)ds=— f(@)dug + Oc(og T d=>P125|| fllyec).
1(Ea) Je, 7% JPSL,(2)\ PSLa (R)
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Here ||-||w«.» is the Sobolev norm:

I llwer = mgllagl(yax)“z(yay)%fllu-

Remark 1.4. The proof of Theorem 1.1 is based on the equidistribution of the lifts of C,; in the unit
tangent bundle. For this reason, one may generalize Theorem 1.1 to any surfaces and any sequence of
closed geodesics whose lifts become equidistributed on the unit tangent bundle.

1A. Intersecting two closed geodesics. We now consider the number of intersections between two closed
geodesics when both vary.

Theorem 1.4. The following estimate holds uniformly in dy,d> > 0, and 0 < 0; < 6, < 7w such that
62 — 01 > (d1do) 33072
lon0r(Ca. Car) _ 3 / " 66 -+ O.((drd) /N5,
(Ca)l(Ca)) 72 Jg,

Note that if I" is cocompact, then the modular intersection kernel coincides with the intersection kernel
from [Lalley 2014] when 6 = 7 and § > O is sufficiently small. However, when I"\H is noncompact,
then they are never the same; for instance, we have K?"e"’ (g, 8) = Q(y) as y — oo (Proposition 2.2). In
particular, Kgl’gz is not a Hilbert—Schmidt kernel, so the usual spectral theory does not apply. This is
the main technical difficulty of dealing with the modular intersection kernel for noncompact quotients
of H. As it will be shown in the subsequent chapters, when both «; and «, are closed geodesics,
Iy, 6, (ct1, 02) /(I (1)l (e2)) is the integral of 6_2K§1’92/(l(a1)l(a2)) over @] X ap. When o1 and a vary
over closed geodesics of length < L, as L — oo, we expect that the integral converges to the integral
of 6_2K59"92 over '\SH x I'\ SH, since «; X o becomes equidistributed in '\ SH x I'\SH, as L — oo.
However, unboundedness of the modular intersection kernel K causes issues of interchanging the limit
and the integral. In particular, the argument of [Pollicott and Sharp 2006] using intersection form does
not apply in this case. Hence, in order to prove Theorem 1.4, we study the full spectral expansion of
Kgl’ez (g1, &2). This is similar to the existing work on the weight m Selberg’s trace formula [Hejhal 1976],
except that we have to deal with all weights simultaneously, and that the modular intersection kernel is not
diagonalizable in general. We go over this carefully in Section 5. Once the spectral expansion is obtained,
the integral of § 2K 39] % over & x oy becomes a linear combination of the period integrals of the form

/¢1dSX/ ¢2ds.

We may now use the same estimates that we use in order to prove the effective Duke’s theorem to bound
these, which leads to Theorem 1.4, generalizing [Pollicott and Sharp 2006] to a noncompact hyperbolic
surface.
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2. The modular intersection kernel

2A. Parametrization. Recall that PSL,(R) acts transitively on H and on SH with the fractional transfor-
mations. For g € PSL,(R), z € H and u € SH we write these actions by gz and gu. We parametrize the
points of H and SH with x +iy and (x + iy, exp(i6)). Let

I((x +iy, exp(i))) :=x + iy,

be the projection map from SH to H.
Fix zo =1 and ug = (i, exp(i/2)). Let g = naRy € PSL;(R) be the Iwasawa decomposition where

1 x 12 cosf —sinf
n:n(x):(o 1), aza(y)=<y0 y1/2>’ and RQ:(sinG COS@>.

Then we have
gzo=x+iy and gup= (x +iy, exp(i(% +29))).

For the rest of the paper, we identify SH with PSL,(R) by sending g € PSL,(R) to gug. We often use
the following fact in our computation without mentioning.

Proposition 2.1. The image under y € SL(R) of the geodesic segment of length & corresponding to
g = (x, &) is the geodesic segment of length § corresponding to y g.

We use the volume form given by dV = (dx dy df)/y*. The volume of SX is then 72/3.

2B. Preliminary estimates. We first recall here the definition of the modular intersection kernel described
in the introduction. For § > 0 and 61, 6, € (0, ), we define the integral kernel

k9% 0 SH x SH — R
by
01,62
ks 2 ((x1, 61), (x2,82)) =1,
if the geodesic segment of length 6 on H from x; with the initial vector £; and the segment from x, with
the initial vector &, intersect at an angle € (1, 8;), and 0 otherwise. Here the angle of the intersection

of geodesic segments /; and [, at p € [{ N[, is measured counterclockwise from /; to /;. Under the
identification SH = PSL,(R) from Section 2A, we note here that

kS (gg1, g82) = ki (g1, 82)

for any g, g1, g2 € PSL(R).
Now for a given discrete subgroup I' C PSL,(R), we define the modular intersection kernel Kg"ez :
'\ PSL,(R) x I'\ PSL,>(R) — R by taking the average of kg"gz over I':

6,6 0,0
K% (g1, 820 =) k5" " (g1, v22).
yel
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Note that when I" is cocompact, and § > 0O is less than a half of the injectivity radius of I"\H, we have
Kg"gz < 1. However, when I"\H is noncompact, Kg"gz (g1, g2) becomes arbitrarily large near the diagonal
g1 = g2 as y1, y» — oo. This is illustrated in the following proposition when I' = PSL;,(Z).

Proposition 2.2. Fix 0 <6 < w. Then for any 1 > § > 0, we have

K% (g, 9) = Qo (8y).

Proof. Consider
g= (Rei(”/2+°’(8)), eid(5)) € SH,

where «(§) is chosen such that the geodesic segment
Bei=1{Re’ : |0 —Z| <a(8)} CH

has length §. Note that the length of the segment does not depend on R and that «(§) ~ § as § — 0. From
this, we infer that 8, and B8, +n with 0 <n < R§ intersect.
The angle of intersection is explicitly given by 2 arcsin %. So for all sufficiently small 0 < < 6, we

I n
k§1’92<g, (0 1) g) =1,

Kg“ez(g,g) >8R > 8y. O

have

for 0 < n <« R§. This implies that

In view of Proposition 2.2, the following proposition provides a nice upper bound of the modular
intersection kernel.

Proposition 2.3. Let ' = PSL,(Z) and let 1 > § > 0. Let h be a compactly supported function on SH,
where we assume that h(( -, £)) is supported in Bs(i) for any € € S'. Define H : T\SH x I'\SH by

H(gi,g) =Y hig'vg2)

yel
for g1, go € '\ PSLy(R). Then for g; = (z;, &) with distr\n(z1, 22) > 28, we have
H (g1, g2) =0.

When y, > 0 and y, > 0 are sufficiently large, we have

H (g1, 82) K3 /yiy2llhllre=.

Proof. If H > 0, then there exists y € I' such that
h(gi'vg2) > 0.
This implies that the balls of radius § centered at z; and y z, intersect, hence

disty(z1, yz2) < 26,
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which contradicts the assumption.

Now to prove the second estimate, we first note that when y; is sufficiently large, we have y(yg») <1
unless y = (). Therefore i(g;'yg2) > O only if y = (). Note that h(g; 'yg2) = 1 holds only if
disty(z1, n 4 z2) < 28. This is equivalent to

N2 Y
(n+x2—x1) "+ )’2)><28’

arccosh (1 +
yiy2

and so
(n+x2 — x1)* < y1y2(cosh(28) — 1) — (y1 — y2)* < y1y2(cosh(28) — 1),
from which we infer that there are at most < 8.,/y;y> choices of ¥ which makes i(g;, yg2) > 0. (|

Now we analyze the modular intersection kernel when one variable is assumed to be contained in a
compact set. We first note that if § is less than half of the injectivity radius of go in I'\SH, then for each
g € SH, there is at most one y € I such that

K5 (g0, yg) #0.

Therefore Kf"ez (go, - ) coincides with kg"gz (go, -) in the 2§-neighborhood of gy, which is a translation
of k" ((i, i), -) around (i, i).

Lemma 2.4. For 0 < 6; < 6, < 7, we have
01,62 ;/: - _ 2
/ ks ((i,1), g)dV = (cos 0 —cos0,)5".
H

Assume that 0 < § < 1. Then for any ¢ = 0(8) and € = 0(6, — 01) there exist a smooth majorant Mgl’ez

. 01,0 .
and a smooth minorant mg"", i.e.,

0<mi® <k (G, i), ) < M"*,

such that
/ mi"*dv  and / M v
are both
(cos B) — cos 02)8%(1 + O(¢)),
and that

01,0 01,0 —k
lms' 2 llweoe + 1 Mg lwroe = Or(e75).

Proof. Note that the action of the geodesic flow of time ¢ on SH = PSL,(R) is the multiplication from
the right by a(e’). For given ¢ € (01, 6;), we describe the collection of g € PSL,(R) for which the
corresponding geodesic segment of length 8 intersects {iy : ¢® > y > 1} transversally at angle ¢. Note
that this happens only when

a(e"*)Ry )2,

e |
a(e"?)Rgyx)2-



Intersecting geodesics on the modular surface 1333

for some 0 < #1, t, < 8. Hence

_ [a(e"/*)Ryppa(e/?),
&7 late?) Ripsmpate /).
Consider ¥ : AKA — PSL,(R) given by

(t1, ¢, ) > a(e"'*) R, pa(e /%)

The determinant of the Jacobian of W is a nonzero multiple of |sin ¢| (we refer the readers to the Appendix
for the computation), and so this defines a local diffeomorphism away from ¢ = 0 and 7. Observe that &
is injective away from ¢ = 0 and 7. From this we infer that the support of kg"ez ((i, i), g) is the image of
the open box

{(t, 0. ):0<t, <8, 0 <p<brorb+m <@ <0, +7}

under W, and

o0 8 8 (22 $ § pbr+m
/ks" 2((, i),g)dV:%f / f |sin()| dg d1 dtz+%/ / f Isin(@)| de dty dt,
H 0 JO J6O; 0 JO Joi+m

= (cos 6] — cos 6,)82,

where we used dV = %lsin(p| do dt dty ((A-1)).

Note that the support of kgl 62 ((i, 1), - ) is an open set which has a piecewise smooth boundary. Therefore,
under the assumption that ¢ = o(§) and ¢ = 0(6, — 61), there exist smooth majorant and minorant whose
L' norms are (cos 8 — cos 6,)82(1 4+ O(¢)), and whose k-th derivatives are Oy (¢ 7). Il

As an immediate application, we have the following corollary.

Corollary 2.5. Fix a compact subset C C I'\SH, and assume that § is less than the half of the infimum of
injectivity radius of g € C in I'\SH. Then for any given compact geodesic segment 8 C C, and for any
given & > 0 which is 0(8) and 0(6, — 6y),

/Kgl’@(s, ) ds
B

admits a smooth majorant Mgféez and a smooth minorant mgl’fz such that
Pl Mg =1 01 —cos 62)8*(1 + O
lmg s lpr, IMg 5~ L = 1(B)(cos 01 — cos 62)6°(1 + O (¢)),

and that
01,0 01,621 _
lmg 5 ke + 1M oo = Ok (U(BYET).

2C. Intersection numbers. In this section, we prove formulas relating the number of intersections
between two geodesics to the integral of the modular intersection kernel over the two geodesics.
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Lemma 2.6. Let a; = {a;(¢) : t € [0, [(ct;))} be closed geodesics in T'\H parametrized by the arc length,
and let a; = {(; (¢), alf(t)) 1t €[0,l(x;))} C SH be the lifts of a; fori = 1, 2. Then for any § > 0,

I _ 1 01,62
o1,6, (a1, 2) = 2 K" (s1,52) dsy dss.
a Ja

Remark 2.1. For each «;, there are two choices of parametrization by the arc length, namely «; (#) and
a;(—t), but the integral does not depend on the choice of the parametrizations.

Proof. By abuse of notations, we think of each «; with ¢ € [0, [(®;)) a geodesic segment in H and
accordingly @; a corresponding curve in SH. For a geodesic segment o C H parametrized by ¢ € [a, b], let
[a] C H be the biinfinite geodesic {«(¢) : t € R} that contains . Then we express the integral as follows:

1
—2/ / K lez(sl,sz)dsldsz—z / / k9% (s1, 52) dsi dsa
) a Jag yaz Jo

/ f kS (51, 52) dsy ds
yel"/l"[a J ylea]

1
- Z Z 5_2/ ~/ kgl’ez(sl,sz)dsldsz
Yyl Ja

}/EF[D,I]\I‘/ l—‘[012] )//GF[O,]]
! 01,0
- Z 2| ~ |~ kg7 (s1, 82) dsi dsy.
Y€l \I'/ iy ylon] Jen]

Here I'fy,; is the stabilizer subgroup of I' with respect to [;].

Now because two geodesics in H may intersect at most once, for each intersection point p € o1 Ny
on I'\H, there exists a unique y € I'/ I'|4,] such that a1 and y[o2] intersect at a lift of p. Also, because
[oe1] is a disjoint union of Y’y with y’ € T'[q,}, each {y’y : ¥’ € I'jq,]} contains at most one y’y such that
y'y[as] intersects aj.

Therefore the intersections of o1 and « are in one-to-one correspondence with y € I'jq,]\I'/ I'(«,] such
that y [«o] intersects [or1]. We complete the proof by observing that

/~/~ k(?l’gz(slasz)dS] ds2=1,
ylaz] Jaq]

if [1] and y[wr7] intersect at an angle € (61, 6>), and = 0 otherwise. O

Now let 8 = {B(¢) : t € [0,1(B))} be a compact geodesic segment in ['\H, and let o, be a closed

geodesic as before. Then
1
8_2/ /Kgl’ez(sl,sz)dsl dsy
o Jp

does not always give I (8, ap). Instead, it is a weighted sum over the intersections of By := {8(¢) : t €
[0,1(B) + )} and ap. We prove the following.
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Lemma 2.7. With the same notations as above, assume that 0 < § < [(B) and that By has no self
intersection. For 0 < 01 < 6, < m, let S(Bo, o2)g,.0, be the set of intersections between fy and oz where

the intersection angle is € (01, 0;). Then we have

1 o
5%/ /~K§1'02(51’52)d51d82= E min{’B (p)’l’l(,B)-HS B (P)}‘
o B

8 8
PES(Bo.a2)e; .0,

Proof. As in the proof of Lemma 2.6, we first have

! 1
E/ fo"ez(sl,sz)dsl dszzza—zf /:kgl’ez(sl,sz)dsl s
&2 ﬁ

yel yda J B
1
- Z 3_2/~ ‘/:kgl’gz(sl,SQ)dS] dss.
Y€/ Tay) vl J B

Note that because we assumed that By has no self-intersection, p € S(Bo, ®2)g,,6, 1S in one-to-one

—_~

correspondence with y € I'/ '] such that By and y [«2] intersect at p at an angle € (6, 62). We denote
by y, the y corresponding to p. Observe that

‘/~‘/:k§1’62(s1a52)d51 dsy =0,
yl] JB

if y[&\g] N By = &. So it is sufficient to prove that

%f~/k?"@(sl,sz)dslds2=min{ﬁ () | 1B +5—p <p>}.
8 Vp[OCZ] ,5 8 5

This follows by observing that
kP (B(1), B(1)), (vpaa(ta), (ypan) (12))) = 1

for
(ti, ) € (B (p) =8, B (p) x (a; ' (p) = 8,05 (p)),

and 0 otherwise, whereas the integral over 5 is over the range ¢#; € (0, [(B)). O

3. Spectral theory

3A. Spectral expansion. We first go over the spectral decomposition of L2(SX). Readers may find more
details on the subject in [Kubota 1973; Lang 1985]. On G = PSL,(R), there is a differential operator of
order 2 that commutes with the G action,

Q= yzaf + y23§ + yaxag,

which is called the Casimir operator. An equivariant eigenfunction of 2 is a function f € C*°(SX) that
satisfies

Qf = Af



1336 Junehyuk Jung and Naser Talebizadeh Sardari

for some A € R, and

F(gR) =e"" f(g) (3-1)

for some m € 2Z. We say that a function has weight m if it satisfies (3-1).
Each irreducible (cuspidal) subrepresentation of the right regular representation

pg : f(h) = f(hg)

on L?(SX) is generated by an equivariant eigenfunction of .
We let E* and E~ to be the raising and lowering operator acting on equivariant functions on L?(SX),
which are given by [Jakobson 1994]

ET =e29iyd, +2yd, +id) and E~ =e*%(2iyd, —2yd, +idp). (3-2)

Note that E* (resp. E~) maps a weight m eigenfunction of 2 to a weight m+2 (resp. m —2) eigenfunction
of Q.
For an even integer m let
ws,m (g) = yseftmG .
Note that v ,, is invariant under the action of the unipotent upper triangular matrices. The weight m
Eisenstein series is then given by

En(g9)= Y Ysn(ra),

Y El\I

where 'y, = {((l)’f

right-hand side of the equation is absolutely convergent only for Re(s) > 1, the weight m Eisenstein

) :n € Z} is the stabilizer subgroup of I' with respect to the cusp ioc. Although the

series has a meromorphic continuation to the entire complex plane.
Let ® be the closure of

{/OO h(t)En(g. 5 +it)dt - h(t) € CP(R), m € ZZ}

—o0

in L*(5X), and let

1
L2 (SX) = {f € Lz(SX) : / f(n(x)g)dx =0 for almost every g € SX}
0

cusp
be the space of cusp forms. Then we have the decomposition
LA(SX) = ({1}) ® © @ L2, (X),

where ({1}) is the subspace spanned by a constant function.
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We express the cuspidal subspace as a direct sum of subspaces generated by Maass forms and modular
forms as in [Luo et al. 2009, (1.10)],

L2, (8X) = ZW D) Z(W ® W),

m>12 j=1
where each W,T;n corresponds to a G and Hecke irreducible subspace of a right regular representation on

Lgusp Here d,, is the dimension of the space of holomorphic cusp forms of weight m for PSL;(Z). Each

7r]0 corresponds to a Maass—Hecke cusp form which we denote by d)?. For m > 0, JT}” corresponds to a

holomorphic Hecke cusp form ¢7. We identify a weight m function on I'\H

fr) =z d)" f@) for (ﬁ Z) —yer
with a weight m I'-invariant function ' on PSL,(R) via
F(g)=y""f(@)e ™. (3-3)
When m > 0, viewing ¢?’ as a function on SX, each Wn]r,n is spanned by
o (ETYeT, (ETY¢Y, ET¢Y, ¢, EYeT. (ET¢V, (EY)¢f,

Note that when m > 0, E‘(Z)?1 =0
For m < 0, we set

Now let
U”.? = Wn? and Un;" = Wﬂ}n @ an—m,
when m > 0. We specify an orthonormal basis of each Uﬂ}_n as follows.

The Maass cusp form case m = 0: Let —(}1 + tjz) be the Laplacian eigenvalue of ¢?,T for some real ¢;.
We set ¢?,0 = d)Q, and define (;59, ; for I € 27 inductively by

E~¢), =(+1-2itp)¢?}, , and E*¢), =+1+2i1))¢),.,. (3-4)

The holomorphic Hecke cusp form case m > 0: We set d);?fm = ¢T and ¢;?f_ ¢;” and define d)’” for
| € 27 inductively by

E" ¢} =1—-m)¢},_, and E+¢]1 = +m)¢7 . (3-5)
Finally, note that we have the following relation among the weight m Eisenstein series.
E E,(g. 5 +it)=(m+1-2i)E, (g, 3 +it), and
EYE,(g. 5 +it) =(m+1420)Ep(g. 5 +it).

TFormally, it is the eigenvalue of the Laplace—Beltrami operator on X that corresponds to ¢>;.).
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With these notations, we have:

Proposition 3.1. Let f € L2(SX). Then we have

fle)=
4
3 n e
;/SXf(gl)d&-i-ZZ Z (.97 1)sx9T1(9)+ Z E/ (f, En () 34i1)) o Em (g, S+it) dt,
’glzrgjzl ‘lﬁ;ﬁ me2Z

where we set dy = +00.

4. Effective equidistribution

4A. Invariant linear form. Define u 4 to be the integral over discriminant d oriented closed geodesics

on SX,
wa(F) :=/ F(s)ds = E / F(s)ds.
o c

a disc(q)=d * €@
where C(g) C SX is the oriented closed geodesic associated to the binary quadratic form ¢ [Luo et al.
2009, 2.3]. Then for any F € Un}n, we have

pa(F) = pa(@iHm} (F)
for some linear form nT on Uﬂ}_n invariant under the diagonal action [loc. cit., Section 3.7.1], which we

describe below following [loc. cit., Section 3.2]. (Note that the parameter s in [loc. cit.] is replaced by
2it in this article for consistency.)

The Maass cusp form case m = 0: Let ¢?’ ; be the Maass form defined by (3-4). When 4|/ and [ > 4, we
have

(1 —=2it;)(5 —2it;)--- (I —3—=2it))
(B+2it;)(T+2it;)--- (I —1+2it)’
and 719(‘?21) is identically O if [ = 2 (mod 4). Note that {qﬁ?’ Y2z 1s an orthogonal basis of Un?, and
normalized so that,

n)(@)) =n(¢) )= (4-1)

1691112 = 1671l 2.
The holomorphic Hecke cusp form case m > 0: Let ¢>;?fl be the holomorphic Hecke cusp form defined
by (3-5). When m =2 (mod 4), 77;.” is identically O.
When m =0 (mod 4), for/ >4 with 4|/,

0@ s)) = 0@ ) =

and n?” (¢;?fm ;) vanishes for / =2 (mod 4).

1-3:-5---(/2—=1)
(m+1Dm+3)---(m+1/2—1)

(4-2)

Note that {¢71}1€22,|1|Zm is an orthogonal basis of U,,Jr_n, and normalized so that

10702 = 171 2.

forl €27, |l| > m.
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Eisenstein series case: By the above identities and following [Luo et al. 2009, Section 3], we have

1a(Em(g. 5 +it)) =n(m, Hpa(Eo(g. 5 +it)),
where for m > 4 such that 4 | m,

(1 =2it)(5 —2it) - -- 2m — 3 — 2it)

= . . — (4-3)
B+2it)(T+2it)---2m — 1+ 2it)

and n(m, t) is identically O if m =2 (mod 4).

4B. Period integrals.

4B1. Holomorphic cusp forms. In this section, we give an upper bound on the period integrals of
holomorphic forms. We first use the results of Shintani to relate the period integrals of holomorphic
cusp forms to the Fourier coefficients of half integral holomorphic forms. We then apply the result of
Kohnen and Zagier [1981] which gives an explicit version of the Waldspurger’s formula for the Fourier
coefficients of half integral holomorphic forms. An upper bound on these period integrals is deduced by
using the subconvexity bounds on the central value of the L-functions and the Ramanujan bound on the
Fourier coefficients of holomorphic modular forms.

Note that c(d) is identically zero when m = 2 (mod 4), and so we assume that 4 | m. Let (3;" be a
normalization of the Hecke holomorphic cusp form ¢;?1 of weight m such that a; = 1. Let

c(d) := ¢ (2)q(z, " dz,
disc(q)=d ¥ €@

where q@j” (z) is the associated holomorphic modular form defined on the upper half plane and the
integration is on the upper half plane (3-3). By [Luo et al. 2009, (2.4) page 14], we have

le(d)| = 1d™* | na @] (4-4)
Let
0(z. 97) = c(d)edz).

d=1
By [Shintani 1975, Theorem 2], 6(z, ¢;”) is a Hecke holomorphic cusp form of weight (m + 1)/2 and
level I'g(4). By [Luo et al. 2009, (6.2), page 37], we have the following explicit version of Rallis inner

product formula
. . 2—-1)! A
O@), 0(d)) = ML(%, o7 D).

mgm/2

Suppose that d = Db? with D a fundamental discriminant. By [Kohnen and Zagier 1981, Theorem 1],
for D a fundamental discriminant with D > 0 and 4 | m, we have

AC(D)ZA :(m/2—1)!D(m71)/2L(1/2Aa¢;?1®XD)
(0@, 0m) T2 (@7, o7T)
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which implies that

1y (/2= 1)! I
e(D)| = D"V (L5 67)L (3. 67 © o))

By using the Ramanujan bound on the Fourier coefficients of integral weight cusp forms and the above,

1/2

we have
_ _ (m/2—1)! 1/2
le(d)] e 0" Ne(D) | e d" T (L5 )L (5 0 © )
and so
. (m/2—1)! 12
a @] <e ' (L (5. 07 )L (5. ¢ © x0)) .
by (4-4).

We now use the convexity bound

L(3, ¢]) <em'/?*e,
and the subconvexity bound [Blomer et al. 2007, Theorem 1]
L(% " ® XD) & mT5+120)/16 1/2=(1/8)(1-20)+¢
9 ,] 9
where 6 = % is the best exponent toward Ramanujan conjecture for Maass forms, to see that

m (m/2—1)! B
[1a ()] Ke d1/4+62m/2—nm/2m2~64D1/4 25/512.

It is well-known that

mo Smy __ F(m)

2 m
L(1, sym”¢7)
up to a constant. Hence, by Stirling’s approximation
(@) <e d\/4+e 29 D1/4=25/512 o 41/2-25/512+€ 2.9, (4-5)

4B2. Maass forms. In this section, we give an upper bound on the period integrals of Maass forms. We
first recall some results of Katok and Sarnak [1993] that generalize the work of Shintani [1975] to Maass
forms and related the period integrals to the Fourier coefficients of half integral weight Maass forms.
Then we use an explicit version of the Waldspurger formula [Baruch and Mao 2010] and give a nontrivial
bound on these period integrals by using the subconvexity bound on the central value of the L-functions
and the best bound toward Ramanujan conjecture for Maass forms.

Let ¢? be a Hecke—Maass form with (¢, q‘)?) = 1 and with the Laplacian eigenvalue —(% + tjz) For
d>0,let

o(d) == ¢) ds

1/4 73/4
V8 1/4d3/ dise(gr=d ) C@
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be the associated period integral, and let

O((u+iv), ¢>§-)) = Z o (d)Wsgn(ayya.ir; 24 |d|v)e(du),
d#0

where Wgn(a)/4,it; /2 is the usual Whittaker function. Here p(d) for d < 0 is the sum of ¢§.) over the CM
points with the discriminant d appropriately normalized; see [Katok and Sarnak 1993, page 197] or
[Sardari 2021, Section 3.3] for a detailed discussion.

Note from [Katok and Sarnak 1993] that 0 ((u + iv), ¢0) is a welght > Hecke—Maass form with the
Laplacian eigenvalue —(% + ) By [Katok and Sarnak 1993, (5.6), page 224] or [Luo et al. 2009, (6.4),
page 38], we have the following version of the Rallis inner product formula

0@, 0(6)) = 3A(5, ¢7),

A5, 99 = nfr<s *'Zitf)r<s _2itj>L(s, )

where

is the completed L-function.
By an explicit form of Waldspurger formula [Baruch and Mao 2010, Theorem 1.4], and the best
exponent toward the Ramanujan conjecture [Lester and Radziwitt 2020, Corollary 6.1], we have

0 1/2
p(d) < 1 (L(1/2, ¢; ®XD)) / p7/6%4+e || sen(@) /4 gl /4
O@N, 0@ VIdI\ L1, sym?¢Y) ’

where d = Db? with D a fundamental discriminant. Note from Stirling’s formula that

F(l/Z;itj>F<l/22_ itj) <ty e,

from which we infer that

1@ < d**|p(@)|
L(1/2, ¢9®XD)

<cd A Ga) (itea
’ J

<. d1/4( (2’¢_) (274) ® xp ))1/2b7/64+e|tj|—((sgn(d)+1)/4)+e_

We now use the convexity bound,

1/2
) b7/64+e|tj|7sgn(d)/4en|tj\/4

L(3.9Y) <e lt;]"/?F,
and the subconvexity bound [Blomer et al. 2007, Theorem 1],
L(% ¢§) ® XD) & |tj|(3l+4€+e)/16D1/27(1720)/8+e’
to conclude that

Md(d)?) L d1/4+6|tj|3/4b7/64+6D1/4—25/512 < d1/2_25/5]2+6|tj|3/4. (4_6)
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4B3. Eisenstein series. For a nonsquare integer d =0, 1 (mod 4), let d = Db? where D is a fundamental
discriminant. Then we have the following explicit formula for the period integral of the Eisenstein series
[Zagier 1981, page 282]:"

C(s/2)%d*/*L(s, d
wa(Eol-.5)) = (S/r)m;(zs;S )

4-7)
where

Lis.d) = L(s. XD>(Zum)(g)a—fm_zs(g)). (48)

alb

Here L(s, xp) is the Dirichlet L-function attached to the quadratic Dirichlet character xp(-) = (Q)
w(-) is the Mobius function, and o,,(-) =), I a is the divisor function.
Now assume that s = % + it for some ¢t € R. By Stirling’s formula, we have

I'(s/2)?

-1/2
t .
) < |t

By the zero free region of {(2s) around 2s = 1 + 2it, we have

1£2s)| e 1™

We also have the convexity bound
JORS At

and we know from [Heath-Brown 1980] that
L(% +it, XD) L ((It] + 1) D)>/16+<,

Finally, observe that we have

> u@(2)a o1 g5(2) <e d”.
alb

Combining all these estimates, we deduce the following estimate from (4-7) for s = % +it:

Ra(Eo(-,5)) K d'/21/16%¢, (4-9)

4C. Proof of Theorem 1.3. For any compactly supported smooth function F € C{°(5X), recall from
Proposition 3.1 that we have

F(g)
3 o m m 1 > | 1 -
== f Fgndsit) ) ) (F.dflsxsfi( @)+ — / (F\ En (- 3+i1)) s En(g. 3+it) d,
= Jsx 1121|30j=1|ll»|€>22 meaz T =0
m =m

TWhen b = 1, this is a classical result due to Hecke [Siegel 1965, page 88].
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and so from the discussion of Section 4A, we have

dm

3
ma(F) = Md(;) /SX F(g)dg+ Z Z,ud((p;”) Z<F’ ¢7fl>sx77;'n(¢%)
TFW?FII . m
- Z E/ (F. En(-. 3 +it))gen(m. 5 +it)ua(Eo(- . 3 +it)) dr.
meaZ -0

Firstly, we have from (4-1), (4-2), and (4-3) that 7} (¢,) and n(m, § + it) are both O(1). Note by
successive integration by parts and Cauchy—Schwarz inequality, we have for all N > 1,

(F. 7)) <n (1P + D™V Fllwavacsy.

when m > 0, and
(F. ¢ ) <y (1P + 1t + D7V Fllwavacsx)-

Likewise, assuming that the support of F is contained in y < 7', we have
(FEn(-, 3 +it))g <n (mPP + 27+ D7V Fllyanasx log T,

where we used [Kubota 1973, (6.1.6)] and [Jakobson 1994, (1.6), (1.7)].
Now for m > 0, we take N = 3 and apply (4-5) to see that

d
Z Z Md((ﬁ;n) Z (F, ¢;?1>SX777 ((/5711) K¢ d1/2_25/512+6 ||F||W6v2(sx),
m>0 j=1 ledZ
41m [{|=m

and for m = 0, we take N =2 and apply (4-6) to deduce

(o)
D 1a@) Y (F, 00 ) sxn(@)) Ke dPTEPYF s sy,
j=1 ledz

For the Eisenstein series contribution, we take N = 2 and apply (4-9) to see

1 [ . . .
> o / (F.En(-,3+it))gn(m. 3 +it)pa(Eo( -, 5 +it))dt K log Td""OF€||F [l yysasx).-
medz -

Therefore Theorem 1.3 will follow once we establish the following lower bound for the total length of %;:

1(€y) = 2h(d)logeq > d'/*7¢. (4-10)

To see this, let d = Db* where D is a fundamental discriminant. Then by Dirichlet class number formula
[Davenport 1967, page 50] for binary quadratic forms discriminant d (or by letting s — 1 in (4-7)), we
have

h(d)log(eq) =d"*L(1, d)
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with the same L( -, d) given in (4-8), i.e.,

L(1,d) = L(l, xw(Z p@)(g)alo-y (%))-

alb

Y @ (2)a o () =Y n@(2)e =13 e [T - (2)p™

alb calb elb ple

Note that

where e = ac, and that

2 e [T =(R)p ) >e~.

elb ple

Now (4-10) follows by using Siegel’s lower bound [1935]
L(l’ XD) >>€ D_Ev
and this completes the proof of Theorem 1.3.

4D. Proof of Theorem 1.1. We are now ready to prove Theorem 1.1. Assume that 8 : [0, /(8)] — Xis a
sufficiently short compact geodesic segment in the region determined by y < T such that 8([—I(8), 2I(B)])
has no self intersection. (We fix T for simplicity, but it is possible to vary 7" with d.) For § = d~¢ with
a > 0 to be chosen later, such that /(8) > §, let

Br:={B(®):1€[0,[(B) =48]} and pr:={B(r):1€[=5,1(B)]}.

Then from Lemma 2.7, we have
1 01,62 01,0, 01,62
2 K (s1,s2)dsidsy < I"" (B, a2) < 82 K (s1, 52) dsi dsy
@

for any closed geodesic ay. Now define fi, f> € C5°(5X) using Lemma 2.4 by
1 _ 1 _
A =55 [ oodn =g [ Mot as,
1 2

with ¢ = d~2¢, where we assume that 8, — 6; > d~“. Note that m(gl_lgg) and M(gl_lgz) are minorant
and majorant of K§|,92 (g1, &) for g1 € B;, g» € SX for all sufficiently large d. Hence, for all sufficiently

large d (independent of a»), we have

fol(S)dSSle“ez(ﬂ,az)S/N fa(s)ds,

and so

fi(s)ds <21%%(B,Cy) < | fo(s)ds, (4-11)
Ca Ca

where the factor 2 amounts to the fact that 4 is a double cover of Cy.
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We now apply Theorem 1.3 to see that

3
“(s)ds = - (2)d 0. (d=2/512+¢ i ).
1@ J, TP = /SXf@) te+ Ocl I fillwooe)

Because of the choice of f; and f,, we have

I fillws.e < e7CL(B) < d"1(B),

and
/sx fi(8) dpg = (cos B —cos ) (L(B) + O(8)) (14 O(e)) = (cos b — cos )I(B)(1+ O(d ™))

by Lemma 2.4. Now we complete the proof of Theorem 1.1 for sufficiently short geodesic segments

by choosing a = % and applying these estimates to (4-11). This then implies Theorem 1.1 for any
geodesic segment of length < 1 by dividing the segment into finitely many sufficiently short geodesic

segments, and then applying Theorem 1.1 to each of them.

5. Selberg’s pretrace Formula for PSL;(R)

Let k € C;°(PSL,(R)), and let K be the integral kernel on SX defined by

K(g1.82) =) k(g1.v82),
yel

where k(gi, g2) = k(gl_1 g2). The corresponding integral operator Tk acts on f € L*(5X) by

Te(f) = /S K1) () dea = /P k(g7 g2)f (82) dgo.

SL2(R)
It follows that Tk (f) € L?(SX). In this section, we study the spectral expansion of K in terms of the

equivariant eigenfunctions of the Casimir operator, which are explicitly described in Section 3A. In other
words, we derive Selberg’s pretrace formula for PSL,(Z)\ PSL, (R).

5A. Cuspidal spectrum. In this section, we describe explicitly the spectrum of Tk acting on the cuspidal
subspace L% . (SX). Let R, (f)(x) = f(xg) be the right regular action of PSL,(R) on

cusp

L2, (T\PSLy(R)) = L2, : $X).

2 .
cusp *

Lemma 5.1. Let m be an irreducible unitary representation of PSLy(R). Then for any f € W, C
L% (5X), we have

cusp

TK(f)GWn-

Proof. Observe that

k(s g2) f (g2) dgo = f k() f (g1u) du,

PSL;(R)

k(g1, g2) f(g2)dgr = /

PSL, (R)

TK(f)(gl):/

PSL; (R)
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where u = gl_1 g>. Hence, we have
T1<(f)=/ k(u)Ry(f)du,
PSL,(R)

and because R, (f) € W, for every u, we conclude that Tx (f) € W;. O

From 5A, for an abstract irreducible unitary representation 7 of PSL,(R) and f € W, we define the
action of k on f by

kx f= k() (u)(f)du,
PSL; (R)
which agrees with Tk (f) when W, is a subspace of Lgusp(SX).

Let ¢ : W, — W, be an isomorphism of representations 7t and 7’. Note that for f € W, and f' € Wy
with ¢ (f) = f/, we have ¥ (k x ) = k = f’. We denote by ¢,, € W, the unique (up to a unit scalar)
vector of norm 1 and weight m. We fix the unit scalar except for the spherical or the lowest weight vector,
by using the normalized lowering and raising operator that we introduced in (3-4) and (3-5).

Now let

h(k,m,n,n) = (k*¢ma¢n>’ (5_1)

and let M, (m,n)(g) = (m(g)¢m, ¢») be the matrix coefficient of 7. We note that h(k, m, n, r) and
M (m, n)(g) do not depend on the choice of the unit scalar of the spherical or the lowest weight vector.
We recall some properties of M, (m, n)(g) in the following lemma.

Lemma 5.2. We have for every g € PSL,(R),
|M7(m,n)() =1,

and
My (m, n)(RygRg) = e~ ™0™ M, (m, n)(g).

Proof. We have
I=1m(@)¢nl* =) (T(@)bm, ¢n)°,

n

from which it is immediate that | M, (m, n)(g)| < 1. For the second identity, we have
Mz (m, n)(RorgRo) = (7 ()7 (Ro)pm» T(R_)pn) = """ My (m, n)(g). O

Define ky , € C5°(PSL2(R)) by

1 2w 2 o
knn(8) = 71— f k(RggRg)e™"" =" d6' d6. (5-2)
= Jo 0
Note that
km,n(RﬂlgRﬁz) = ein0| km,n(g)eimgz- (5'3)

The following lemma holds for every unitary irreducible representation of PSL;(R).
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Lemma 5.3. We have

h(kaman7 ﬂ)=/ km,n(”)Mn(m’ n)(u)dua
PSL,(R)

and for all nonnegative integers Ny, No, we have the following estimate
h(k,m,n, ) Ky=yyens (L Im) ™V A+ 10D ™2kl yar.

Proof. Recall from the definition that

h(k,m,n,rr):/

PSL>(R)

k() (7t () @m, ¢u) du =/ k(u)Mz (m, n)(u) du,

PSL>(R)

and so

h(k,m,n,n):/ k(u)M,(m,n)(u) du.
PSL,(R)

1
:_2/ //k(Re/uRe)Mn(m,n)(Rg/uRg)deG’du
4= JpsL,m) Jo Jor

. 1
T 472

:/ kmn(U)My(m, n)(u) du.
PSL>(R)

M, (m, n)(u) / / k(RguRg)e ™ e 40 do’ du
PSL, (R) 0 /

Therefore, by integration by parts, we have

h(k,m,n,ms/ o (10| it
PSL, (R)

B ~/PSL2([R€)

<y (L+m)™ A+ [n)) ™|kl

1 . .
— / / k(RyuRg)e ™ e 40 do’| du
472 9 Jo

where we used |M, (m, n)(u)| <1 from Lemma 5.2. This completes the proof of our lemma.
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S5A1. Principal series representation of SL,(R). For our application in the subsequent chapters, we need

a refined estimate for 4 (k, m, n, m) when 7 is a unitary principal series representation. We first give an

explicit representation of h(k, m, n, ).

Lemma 5.4. Let W, be a unitary principal series representation of SLy(R) with the parameter % + it

[Knapp 2001, Chapter VII]. Let

h(k,m,n,t) ::/ ko n ()21 7m0 gg
PSL; (R)

where g = na(y)Rg. Then we have

hk,m,n,m)=h(k,m,n,t).

(5-4)



1348 Junehyuk Jung and Naser Talebizadeh Sardari

Proof. We note that principal series representations are induced from the unitary characters of the
upper triangular matrices to PSL;(R) [Knapp 2001, Chapter VII]. In this model, a dense subspace of a
representation is given by

{f : PSLy(R) — C continuous : f (xan) = e!/'T1/2102@ ¢y}

with the norm

2 1 2
lf1°= 7 | f(Rg)|” db,
T Je
and the PSL;(R) action is given by
w(g) f(x) = f(g %)
The weight m unit vectors are explicitly given by
$m(Roa(y)n) = ™7y~ (1210,
Note that the orthonormal basis {¢,,} is normalized as our convention in (3-4), i.e.,
E ¢p=m+1-2it)p,_» and ET¢,=m+1+2it)dnu 2.
With these, we first see that

k* ¢ (Ry) = / k(u)y(uflRe,)7(1/2+it)eim0(u*1RH/) du
PSL,(R)

= f k(Re/U_l)y(v)_(l/2+if)eim9(v) d'l),
PSL,(R)

where v=u"'Ry and v = Rowya(y(v))n(v). We therefore have
h(k,m,n, w) = (k* fu, fn)

1 _
~ / k% fu(Rg') fu(Ror) dO'
T Jo

_ L e—mg// k(Rgrv_l)y(v)_(l/H”)eme(”) dv do’
2 Jy PSL>(R)
1 ) PV

- y1/2+11/ efzn() eilm‘gk(Rg/u)) 4o’ dw
27 Jpsi,(w) '

Z/ km’n(UJ)yl/2+it€7im9 dw,
PSL, (R)

where w = v~! and w = na(y)Ry. Note that y = y(v)~! and 6 = —0(v). O
We now prove that i(k, m, n, t) decays fast in all parameters uniformly.

Lemma 5.5. Suppose that k is supported inside the compact subset C C SL(R). Then we have
/ k()2 e dg <y, (L4 Im )™ (L4 1nD ™ (L4 12) T 1kl e
PSL2(R)

forany Ny, Ny, N3 >0, where N = N; + N, + N;.
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Proof. From the definition, we have

1/2+it —im0 5 _ _ 1 o 1/2+it —inb,—imb), ;5 ,dxdy
()21 ™M dg = — k(Rgin(x)a(y) Rgy)y/2ite= 0= g7 g6y ===
PSL: (R) r JuJo Jo y

and so the statement follows from integration by parts. U

5B. Continuous spectrum. For k,, ,, given by (5-2), let

Kinn(81.82) =Y kmn(gr 'v82). (5-5)
yel

Then we infer from (5-3) that

imb,
9

Kn.n(g1Ro,, 82Re,) = e """ Ky n(g1, g2)e

and so it defines an integral operator that maps weight m forms to weight n forms. Denote by S C
L?(I'\ PSL,(R)) the space of weight m forms and by S”  the space of weight m forms in L2 _(SX).

cusp cusp
We first recall the following result regarding the decomposition of K, ,,.

Theorem 5.6 [Hejhal 1976]. The integral kernel

1 [ N (110
Km,m(glagZ)_ 47T / h(ksmamvt)Em(gla %+lt)Em(g27 %+lt) dt
—00

defines a compact operator SI. . — ST that acts trivially on ®. (Here h(k, m,m, t) is given by (5-4).)

cusp cusp

We define E% tobe (ET)% if a > 0, and (E7)%l if a < 0. We have
E'=(-E)™,

which follows directly from (3-2). Let ¢, , be given by

En_mEm(g’ 5)= Cm,n(S)En(gs s).
Observe that

Enfmysefime — Cmyn(s)ysefiné’
and that

Cmn (3 +it) = cum(L+it) (5-6)

for ¢t € R.

Theorem 5.7. Form,n € 27,

1 * N (10
Km,l’l(glv 82) - E/ h(k7 m7 n’ t)En(gb %‘Fll‘)Em(gL % +lt) dt
—0o0

defines a compact operator S¢y, — Sl that acts trivially on ©.
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Proof. Note that
/ E} (K (81, 82)f(g2)dga=0
for every g1, m #n, and f € C;°(I'\ PSLy(R)). Hence
Tk E"™": C°(I'\ PSL2(R)) — Cy°(I'\ PSL2(R))
is an integral operator with the integral kernel

K'(s1.8) =Y K(g'vg).
yel

where

K (g) = (—=E)""k(g) = E"""k(g).

Then by Theorem 5.6, we see that

” o 1 © / 1 . 1 .
K" (81, 8) =K, (81, 8) — P h(k',n,n,t)E,(g1, 5 +it)Ey(g2, 5 +it)dt
—00

defines a compact operator Tk : Sgusp — Sgusp that acts trivially on ®. Note that

o -
/ hk' n,n, t)En(gl, %—I—it)En(gz, %—I—it) dt

—0c0
_/00 hk',n,n,t)
—o00 Cmn(1/2+101)

En(g1, 5 +it)E"""E, (82, 3 +it) dt.

Let

1 [ hK',n,n,t)
K"(31.82) = Knn(81. )——f Annt)
81, 82 m,n\&1, 82 (211D

yy Eq(g1. 3 +it)En(g2. 3 +it) dt.

Note that

TK// = TK/// (o] El’l’l—l’l‘

Firstly, since E™~" does not annihilate the Eisenstein series, Tg acts trivially on ©.

n m
Ifm>n=0o0rm<n=<0, then as a map Sg,;, = Siysps
Sm

cusp as

ker (E™™") is empty, and we may decompose

St =S(E" ™ @R,

cusp —
where R is a finite dimensional subspace of S¢y, spanned by modular forms of weight > n and their
images under raising operators in S¢; ,. Note that

— —1 L~ —
(E"™)~1 Q(E™TT) > S
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is a bounded operator, hence
—ny—1
TK///|Im(Em—n) = TK// (¢] (Em n)
is a compact operator. This implies that Tk~ is a direct sum of a compact operator and finite dimensional

linear operator, which is a compact operator.

Ifn>m>00rn<m<0, then E®"":8" — S§"

Cusp cusp 18 surjective, and so we may define a bounded

operator

(E" ™78, — (ker(E™ )+

from which it follows that

TK/// = TK// (o] (E'm_n)_1

is a compact operator.
If n>0>morm> 0> n, then we further decompose Tx~ to

E" 0 E™ Tyxm
n m K n
Scusp ’ Scusp ” Scusp ” Scusp’

and then combine the above arguments to see that Tk~ is a compact operator.
Finally, observe that

hk',n,n,t) =/ (En—mk(g))y%—i-itein@ dg=Cn,m(%+l't)/ k(g)y%—’_iteime dg,
PSL,(R) PSL, (R)

and we complete the proof using (5-6). O

5C. General case. We are now ready to describe Selberg’s pretrace formula for PSL, (R).

Theorem 5.8. For k € C3°(PSLy(R)), let K be the integral kernel on SX defined by

K(g1.82) =) k(gi.v82)-
yell

Then we have

d,
9 ¢ -
Kng = [[Kenedaan+ Y 3 hikomonx)6,2097, ()

e>0 j=1 m,ne2Z

2e Iml,|n|=e
1 oo —
A m,ne27 ¥~

where Jr]‘f is the irreducible unitary representation of PSL;(R) associated to qb;.
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Proof. We first note from (5-2) and (5-5) that

1 2r 2w B T
Km,n(81,82)=zm/0 /0 k(R g 'vg2Rg)e™ "1~ d6] db;

2r  p2n
4712 f Y k(R 81 ' v82Re)e ™2 db; by
yel

2w 2
4712 / K (g1Ry;, 82Ry; e =M% do] de;
271 2
/ K((Xl, yl’ 9 ) (x2 )’2, 02))8”10 —1m02 d@ de/ —1n91+lm92.
4712
Therefore, we have the Fourier expansion of K,
K (g1, g) = Z Knn(g1, 82),

n,me2Z

where the summation is uniform for g; and g, in compacta.
We infer from Theorem 5.7 that

L[ N 1 N
Km,n(gla 82) - E/ h(kv mv n/v Z)En(glv %‘FU)Em(gZ’ % +lt) dt
—00

defines a compact operator acting on Ly, that acts trivially on ©. Because it only acts nontrivially on
weight m forms, we see that

L [= N T 1 oA
Km,n(gla g2) - H/ h(ka m,n, t)En(gls %+lt)Em(ng %+lt) dt
—0oQ

min{|m|,|n|} d,

:_// Knn(g1,82)dg1 dgr + Z Zh(k m,n, w55, (8185 ,,(82).
STe
where we used (5-1), and the fact that
o0 e
/ h(k,m,n, )Eq(g1, 3 +it) En(g2, 5 +i1) dt

—0o0

acts trivially on L2 Note that the integral on the right-hand side of the equation vanishes unless

cusp®
m = n =0, in which case it is identical to

9
— // K (g1, g2)dgidgs. O
T

5D. Proof of Theorem 1.4. We now present a proof of Theorem 1.4. By Theorem 5.8, we have

1 / / 1
—_— K(s1,8)dsidsp =M+ D+ —E,
[ (ngl )l ((fdz) G, J G, 477
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where
9
=—4// K (g1, 82)dgi1dga,
1a (@5, 1a,($5,,)
D= 22 Zzzh(kmn 5) @ 1@
e J m,ne
2]e |m|,|n|>e
ay (95 )Md2(¢ ) . N
—X(;Z ) Ty L Mm@ D)
e>0 j=1 m,nedZ
4le Iml,|n|>e
and
Z / Bk m. Md](En(',1/2—|—it))p,d2(Em(-,1/2+it)) i
[(%q,) 1(%y,)
m,ne2Z
Mdl(Eo('71/2+il)) M, (Eo(-, 1/2+i1)) L AT T o
h(k, m et L 4it)dr.
mnXe;Z/ ( 1(%y,) 1(%4) '7(” 2 ”)’7(’" 2 ”) t

For D with e > 0, we use (4-2), (4-5), Lemma 5.3 with N; = N, =5, and (4-10) to see that

/’Ld|(¢)ﬂd2(¢) N _
ZZ 1(Ca) 1(Ca) > htkom n w05 @505 @5,)

e>0 j m,nedz
4le Im|,|n|=e

Ke ) i) BEEE N T | Pl koo

e>0 m,nedz
4le Im|,|n|=e

L (dd) 2Py
For D with e =0, we use (4-1), (4-6), Lemma 5.5 with N; = N, =2 and N3 =4, and (4-10) to see that

i wa (89) 1y (@)

0y,,0/ 40 \. 0,0
1(G0) 1(Ca) > heomon a)nd@},)nl @],

j=1 m,nedz
o0

Le Y (dvd) PPN (L Im )T A+ ) T2+ 1D s
j=1 m,nedz

K (dida) PP ysoe
For E, we use (4-3), (4-9), Lemma 5.5 with N = N, =2 and N3 = 3, and (4-10) to see that

Har(EoC 1/2410) pay(BoC T/2H00) |y o s
h(k,m n,s+it)nlm, 5 +it)dt
msz [(Ga) Wy "t +i)
e / (did) V1A 4 im D T2+ |n) (e + D) 72k oo di
m,nedz

<L (dvdo) I k.o
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Now observe that
2

3 T
// K (g1, g2)dg1 dgs = f f ko g dgrdgi = = [ k(g)ds,
sx Jsm 3

SH
and so

3
M=—[ k(g)dg.
SH

72
So far, we proved the following:

Theorem 5.9. For any k € C3°(SH), we have

1 / / 3 —25/512+
- K (s1, s2) ds; ds :—/ k(g)dg + O.((dydr) ™ P12F€ k|| wioe).
[l @a) Sy Sy R T R [, S e v

Remark 5.1. Note that this is not the same as equidistribution of €, x €y, in SX x §X. For instance, if
we replace K with any compactly supported smooth function in $X x SX, then the equality may not hold
when d; is fixed and d, tends to co.

In order to prove Theorem 1.4, we make specific choices of k in Theorem 5.9. We let K| and K, to
be the kernel corresponding to k = mgl’gz and k = Mgl’ez defined in Lemma 2.4, respectively. Then by
Lemma 2.4, we have

1 / / 1
S — K(s,s)dsdsf—/
{Ga)l(Ca) Sy Sy~ T W Ga)l@ay) S

dy

1 / /
< K> (s1, 52) dsy dsa,
{Ga)l(Ca) Sy Sy 20

/ K% (s1, 52) dsy dsa
G,

while we know from Lemma 2.6 that
/ / K§1‘92 (51, 82) ds1 dsy = 48 Ip, 6,(Cay, Ca).
Gay JCa,
We now apply Theorem 5.9 and Lemma 2.4 to see that

| / / 3 5 —25/5124¢ .—10
- Ki(s1,52) dsy dsy = —5(cos ) —cos 02)82 (1 + O(e)) + Oc ((d1dp) ~2/712H¢e~10),
L)) ey, S m? 6

Therefore, we have

Iy, 6,(Cq,, Cay)
I(Ca)I(Cygy)

and by choosing 82 =¢=(dd>

3
= ;(cos 0) —cos62)(1+ 02 (1 + 0(&)) + Oc ((dydy) ~2/P12Heg=10572y,

)~23/6144 e complete the proof of Theorem 1.4.

Appendix: Jacobian computation

Recall that W : AKA — SL,(R) is given by

etl/2 0 e_tZ/z O e(tl_IZ)/z cOS % _e(tl +t2)/2 Sin %
(t1, ¢, 1) > _n2 | Re /2] — —t1—10)/2 gin & L(ta—11)/2 ¢ |-
0 e l/ 2 0 e 2/ e( 1 2)/ sin 7 e 2 l)/ cOS E
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si

In this section, we compute the pullback of dV = dx dy df/y* under W. We start with the identity
* ok
=n(x)a(y)Ry = sin® .
y oW

e(tl _[2)/2 CcOS % _e([l +t2)/2 sin %
e(IZ_[l)/Z CcOS %

<e(_t1 _12)/2 Sin %

e(tl _IZ)/2 CcOS %i — e(tl+t2)/2 Sin @

By comparing the image of i € H, we have
FHY = i sin €1 1 e 2 cos 8
and for simplicity, we write this as %. By comparing the second row of each matrix, we have
oi?
— =B8.
vy
From a quick computation, we see that
A A B A A B el B e A AR 1
— 5 — 7 = = 7> = — < D, = L4, N} =1, an———
L) L) E) E) ¢ 2 L) |B|2
We use these to express the Jacobian matrix in terms of A and B as follows:
A d 1 A?
e v [R5 dm Re-T -5 )
. y.6) — | 34 _Rel %(_Q_QA_Z)
a1, 12, 9) B 5 >, B
0o 1xE e
2VB 2|BJ?
From this, we have
i a(xvy70) =|B4 a(xsy70)
y2|a(t, 12, 9) a1, 12, )
A o~ A?
= ’—%e_” Re(E) + %s(BZ)S(AB (e“ +eh ﬁ» '
R S 2n( 2
=|—S(B )+4|B|2(—2Re(AB)— |[AI“I(B7))|.

T
Now we use the definition of A and B to compute each term explicitly as follows
2Re(AB) = —(e? +e ") sing

¢"I(B?) =sing
_ .2 — %
e MAP> =e”sin?> = + e cos® =
29 %

B> =e tzsm25—|—e’zcosza,

9(r,,6) —l|sin |
=3 ®|.

8(1‘1, 1, (P)
(A-1)

and so
1
32

Therefore, we conclude that
dV = Lising|dt dt, d.
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