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Abstract

We search for gravitational-wave (GW) transients associated with fast radio bursts (FRBs) detected by the
Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project, during the first part of the third
observing run of Advanced LIGO and Advanced Virgo (2019 April 1 15:00 UTC-2019 October 1 15:00 UTC).
Triggers from 22 FRBs were analyzed with a search that targets both binary neutron star (BNS) and neutron star—
black hole (NSBH) mergers. A targeted search for generic GW transients was conducted on 40 FRBs. We find no
significant evidence for a GW association in either search. Given the large uncertainties in the distances of our FRB
sample, we are unable to exclude the possibility of a GW association. Assessing the volumetric event rates of both
FRB and binary mergers, an association is limited to 15% of the FRB population for BNS mergers or 1% for
NSBH mergers. We report 90% confidence lower bounds on the distance to each FRB for a range of GW
progenitor models and set upper limits on the energy emitted through GWs for a range of emission scenarios. We
find values of order 10°'~10°" erg for models with central GW frequencies in the range 70-3560 Hz. At the
sensitivity of this search, we find these limits to be above the predicted GW emissions for the models considered.
We also find no significant coincident detection of GWs with the repeater, FRB 20200120E, which is the closest

Abbott et al.

known extragalactic FRB.

Key words: Gravitational wave astronomy — Radio transient sources

1. Introduction

Fast radio bursts (FRBs) are millisecond duration radio
pulses that have been observed out to cosmological distances,
several with inferred redshifts greater than unity (Lorimer et al.
2007; Cordes & Chatterjee 2019; Petroff et al. 2019). Although
intensely studied for more than a decade, the emission
mechanisms and progenitor populations of FRBs are still one
of the outstanding questions in astronomy.

Some FRBs have been shown to repeat (Amiri et al. 2019a;
CHIME/FRB Collaboration et al. 2019; Kumar et al. 2019),
and the recent association of an FRB with the Galactic
magnetar SGR 193542154 proves that magnetars can produce
FRBs (Bochenek et al. 2020; CHIME /FRB Collaboration et al.
2020). Alternative progenitors and mechanisms to produce
nonrepeating FRBs are still credible and have so far not been
ruled out (Zhang 2020a). Data currently suggest that both
repeating and nonrepeating classes of FRBs have dispersion
measures (DMs), a quantity equal to the integral of the free
electron density along the line of sight, and sky locations
consistent with being drawn from the same population.
However, the two classes have been shown to differ in their
intrinsic temporal widths and spectral bandwidths (CHIME/
FRB Collaboration et al. 2021). Whether genuine nonrepeating
sources have a different origin compared to that of their
repeating cousins is an unresolved question.

The first discovery of an FRB was made over a decade ago by
Parkes 64 m radio telescope (Lorimer et al. 2007). This burst,
FRB 010724 or FRB 20010724A, known as the Lorimer burst,
first indicated an extragalactic origin for FRBs through its
observed DM. This burst had a DM of 375 pc cm >, far in excess
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of the likely Galactic DM contribution along the line of sight (of
order 45pccm > for this event), supporting an extragalactic
origin. The precise localizations of FRB host galaxies have since
unambiguously confirmed an extragalactic hypothesis (Chatterjee
et al. 2017; Bannister et al. 2019; Heintz et al. 2020; Li &
Zhang 2020), and constraints on the progenitor population are
starting to be understood (e.g., Bhandari et al. 2020). The inferred
cosmological distances for many FRBs have shown that these
transients have extreme luminosities by radio standards, of the
order 10°%-10* erg s ' (Zhang 2018).

Recent studies suggest a volumetric rate of order
35137 x 10* Gpcyr ' above 10*ergs™' (Luo et al.
2020). Up to mid-2018, around 70 FRBs had been publicly
announced (Petroff et al. 2016). The majority of the detections
during this period had been made by Parkes (27 FRBs at
~1.5 GHz; Thornton et al. 2013; Champion et al. 2016) and
ASKAP (28 FRBs at central frequencies of ~1.3 GHz;
Bannister et al. 2017; Shannon et al. 2018). Other detections
were contributed by telescopes including UTMOST (Caleb
et al. 2017) and the Green Bank Telescope (Masui et al. 2015),
each operating around 800 MHz, and Arecibo (Spitler et al.
2014), operating around ~1.5 GHz.

The FRB detection rate has greatly increased since the
Canadian Hydrogen Intensity Mapping Experiment (CHIME)
instrument (Bandura et al. 2014; Newburgh et al. 2014;
CHIME/FRB Collaboration 2020; see)317 began its commis-
sioning phase in late 2018, and its first FRB observation run
shortly after. The CHIME radio telescope observes in the
frequency range 400-800 MHz and consists of four
20 x 100m cylindrical parabolical reflectors. Its large
collecting area and wide field of view (~200 deg?) make it a
valuable survey instrument for radio transients. FRB detection
for this instrument has been led by the CHIME/FRB project
(CHIME /FRB Collaboration et al. 2018), which published its
first sample of 13 FRBs during its early commissioning phase,
despite operating at a lower sensitivity and field of view than
design specifications (Amiri et al. 2019b).

317 hitps: / /chime-experiment.ca/
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The CHIME/FRB project recently published a catalog of
535 FRBs detected during their first year of operation; this
includes 62 bursts from 18 previously identified repeating
sources (CHIME/FRB Collaboration et al. 2021). This is the
first large collection, O(100 s), of FRBs from a homogeneous
survey and represents a significant milestone in this area of
study. The CHIME/FRB data is supportive of different
propagation or emission mechanisms between repeaters and
nonrepeaters; however, it is still not clear whether all FRBs do
repeat (Ravi 2019), and significantly, the FRB emission
mechanism remains unknown. There presently exist many
competing FRB emission theories (Platts et al. 2019), some of
which predict the accompaniment of a time-varying mass
quadrupole moment, and, thus, the emission of gravitational
waves (GWs).

A number of studies have looked at the possibility of GW
emission associated with FRBs indirectly, using radio observa-
tions to search for coherent FRB-like emissions associated with
short, hard gamma-ray bursts (GRBs; Anderson et al. 2018;
Rowlinson & Anderson 2019; Bouwhuis et al. 2020; Gourd;i
et al. 2020; Rowlinson et al. 2021).

The identification of an FRB within the sensitive reach of
GW interferometric detectors could provide conclusive proof of
an association or constrain the parameters of the emission
mechanisms for a given FRB. The increased population of
detected FRBs from the CHIME /FRB Project therefore offers
a unique chance of achieving this endeavor.

The first search for GW counterparts to transient radio
sources was conducted by Abbott et al. (2016). This used a
minimally modeled coherent search (X-Pipeline)
42 minutes around the detection time of 6 Parkes FRBs using
GW data from GEO600 (Grote 2010) and initial Virgo
(Accadia et al. 2012). No GW coincidences were found, but
this study provided a useful framework for future searches
using improved GW sensitivities.

In this paper, we present the second targeted GW follow-up
of FRBs using bursts detected by CHIME /FRB during the first
part of the third observing run of Advanced LIGO and
Advanced Virgo (O3a; Aasi et al. 2015; Acernese et al. 2015),
which took place between 2019 April 1 15:00 UTC and 2019
October 1 15:00 UTC. This search uses both a generic GW
transient search and a modeled search targeting coalescing
binary systems.

The organization of this paper is as follows: in Section 2, we
describe the motivation of this study by discussing possible
GW counterparts to FRBs. We introduce the CHIME/FRB
data sample in Section 3 and in Section 4 discuss the GW
search methods employed,; this includes an overview of both of
the pipelines used in our analysis. Section 5 provides the results
of the GW analysis of the FRB sample. In Section 6, we report
results of a gravitational-wave analysis of the repeater,
FRB 20200120E, which is the closest known extragalactic
FRB. Finally, in Section 7, we summarize the astrophysical
implications of our results and discuss future GW searches for
FRB counterparts at greater GW sensitivities.

2. Proposed Gravitational-wave Counterparts to FRBs

This section will review some of the more popular models of
nonrepeating and repeating FRBs that could provide plausible
GW counterparts and could therefore be constrained or
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confirmed through GW searches. (An online theory catalog
tracks new FRB models; see).318

As the millisecond durations of FRBs indicate compact
emission regions, many models of nonrepeating FRBs have
suggested cataclysmic events, including coalescing compact
objects. As will be discussed below, the fraction of the energy
budget emitted by proposed FRB emission models is
comparatively small compared to O(10°%)erg emitted in
GWs (e.g., Abbott et al. 2017¢) but high by radio standards.

A number of studies have investigated the possibility of
FRB-like emissions from binary neutron star (BNS) coales-
cence around the time of merger (see review in Platts et al.
2019). During this phase, the magnetic fields of the neutron
stars (NSs) are synchronized to binary rotation, and a coherent
radiation could be generated due to magnetic braking. The
mechanism requires magnetic fields of the order 10'2-10'?
Gauss and could lead to energy-loss rates of the order
10* ergs™'. The predicted FRB pulse widths are consistent
with the timescale of the orbital period of the BNS just prior to
coalescence (Totani 2013).

Wang et al. (2016) considered that an FRB could be
produced during the final stages of a BNS inspiral through
magnetic reconnection due to the interaction of a toroidal
magnetic field, produced as the NS magnetospheres approach
each other. The predicted energy-loss rates are order
10** erg s assuming magnetic fields of the order 10'* Gauss.
One should note, the dynamic ejecta launched shortly after the
final merger would produce significant opacity over a large
solid angle, thus screening an FRB-type signal via absorption
(Yamasaki et al. 2018). Zhang (2020b) has also entertained the
idea that similar interactions between the two NS magneto-
spheres could produce repeating FRB-like coherent radio
emissions decades or centuries before the final plunge.

Other mechanisms to produce prompt coherent radio
emission on millisecond timescales include excitation of the
circumbinary plasma by GWs (Moortgat & Kuijpers 2005),
from dynamically generated magnetic fields post-merger
(Pshirkov & Postnov 2010), or from the collision of a GRB
forward shock with the surrounding medium (Usov &
Katz 2000; Sagiv & Waxman 2002).

Mergers of significant fractions of BNSs are likely to give
rise to millisecond magnetars (Gao et al. 2016; Margalit et al.
2019), although this is highly dependent on the unknown
nuclear equation of state (see Sarin & Lasky 2021, for a
review). If the remnant NS mass is greater than the maximum
nonrotating mass, it can survive for hundreds to thousands of
seconds before collapsing to form a BH (Ravi & Lasky 2014).
As the magnetic field lines snap as they cross the black hole
(BH) horizon, an outwardly directed magnetic shock would
dissipate as a short, intense radio burst (Falcke &
Rezzolla 2014; Zhang 2014). The energy in the magnetic
shock can be estimated as O(10%7) erg, which is more than
sufficient to support an FRB emission. This model has been
motivated by the observation of relatively long-lived X-ray
plateaus following short gamma-ray bursts that exhibit an
abrupt decay phase, commonly interpreted as the collapse of
the nascent NS to a BH (Troja et al. 2007; Lyons et al. 2010;
Rowlinson et al. 2010, 2013). Such collapses are expected to
occur <5 x 10% s after the merger (Ravi & Lasky 2014).

318 hitps: //frbtheorycat.org
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The detection of the intense millisecond duration radio
associated with the Galactic magnetar SGR 193542154
(CHIME/FRB Collaboration et al. 2020) has provided
significant evidence to an FRB—magnetar connection (Popov
& Postnov 2013). It is known that the energy stored in
rotational kinetic energy and the magnetic field of a millisecond
pulsar is ample to power a repeating FRB (Metzger et al. 2017).
In terms of the energy, Margalit et al. (2020) used the energy-
loss rates of repeater FRB 20121102A to estimate an energy
budget for repeaters at least 10*'~10*° erg. This lower limit is
based on the so-far observed pulses and without consideration
of beaming, so could increase with further monitoring of this
source (Petroff et al. 2022).

Resonant oscillation modes in the core and crust of
magnetars have been suggested to cause quasi-periodic
oscillations observed in the X-ray tails of giant flares. If the
process by which FRBs are created also excites nonradial
modes in the magnetars, then GWs could simultaneously be
produced (e.g., Levin & van Hoven 2011; Quitzow-James et al.
2017).

The stellar oscillation mode that couples strongest to GW
emission is the fundamental f-mode. The frequency of this
mode depends on the equation of state; however, analyses of
the tidal deformability of GW170817 are consistent with NS
f-mode frequencies typically being around 2 kHz (Abbott et al.
2017b, 2017d, 2018; Wen et al. 2019). This is above the most
sensitive  frequency of the Advanced LIGO/Virgo
observatories.

Early theoretical studies suggested ~10**~10* erg in GW
energy emitted at around 1-2kHz (Ioka 2001; Corsi &
Owen 2011); large enough for f-mode oscillations from
Galactic magnetar flares to be observable by Advanced
LIGO/Virgo. The predictions by Levin & van Hoven (2011),
Zink et al. (2012) span a much lower range ~10°°~10°% erg
suggesting lower effective energy conversion to GWs.

Other modes such as gravity g-modes (here the restoring
force is buoyancy) and Rossby r-modes (where the restoring
force is the Coriolis force) emit at frequencies closer to the
most sensitive range for Advanced LIGO/Virgo; however,
these modes couple more weakly to gravitational modes, and
are therefore not likely to be detectable in association with
an FRB.

3. The CHIME/FRB Sample

The CHIME/FRB data sample provided for this analysis
consists of 338 bursts observed within O3a out of 806 total
bursts. Out of this sample, 168 bursts have been published in
the first CHIME/FRB catalog (CHIME/FRB Collaboration
et al. 2021). Within the sample of 338 bursts, only events
overlapping with up-time of at least one of the three GW
observatories were considered for analysis. Within this
subsample, the selection of bursts that were analyzed was
based on the inferred distance to each burst. This selection will
be described at the end of this section, after the calculation of
the inferred distance is described.

The data for each FRB include localization information, a
topocentric arrival time, and a measure of the total DM. For
each burst, a transient name server (TNS; see https://www.
wis-tns.org) designation was also provided. The TNS naming
convention takes the form FRB YYYYMMDDLLL with the year
(YYYY), month (MM), and day (DD) information in UTC and
LLL a unique, sequential letter code starting with A up to Z,
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Figure 1. An example of a CHIME localization confidence interval plot for the
closest nonrepeating burst in our sample, FRB 190425A. The plot shows 4
localization islands and is centered at the beam with the highest S/N.

then from AA to AZ, up to ZZZ, in order of detection on any
given day.

The arrival time at the CHIME instrument’s location
(topocentric) at 400 MHz was converted to a dedispersed
arrival time using the DM value associated with each event.
This time was used as the central event time around which each
GW search was conducted.

The localization information of each FRB is in the form of
up to 5 disjoint error regions of varied morphology centered
around the region with the highest signal-to-noise ratio (S/N);
each separate localization island has a central value and a 95%
confidence uncertainty region. An example is shown in
Figure 1.

The localization regions are reported in the sample as a list of
5 R.A. (R.A) values, 5 95% confidence uncertainty region
sizes for the R.A. values, 5 decl. (decl.) values, and 5 95%
confidence uncertainty region sizes for the decl. values. The
different approaches to these localization data adopted by the
generic transient and modeled search pipelines will be
described in Section 4.

To determine a measure of the luminosity distance of each
FRB, we employ the Macquart relation (Macquart et al. 2020).
This relation maps the redshift to the quantity DMy, which is
the DM contribution from extragalactic gas along the line of
sight; this can be obtained after all other contributions are
subtracted. Taking into account all contributions to the total
DM, the quantity DMr, a measure of redshift can therefore be
determined by solving the following:

DMr(z) = DMmw + DMy + DMigm(z)
+ DMyoq(2) /(1 + 2), (D

where DMy is the Milky Way contribution to the DM along
the line of sight, DMy, is the contribution from the Milky
Way halo, and DMy, is the contribution from the host galaxy,
which is corrected by the cosmic expansion factor. The
estimates of z are then converted to a luminosity distance
assuming a “flat-A” cosmology with the cosmological para-
meters Q,, =0.31, 2, =0.69, and Hy=67.8 km g1 Mpc_1
(Planck Collaboration et al. 2016).

To determine redshift values for each FRB, we employ the
Bayesian Markov Chain Monte Carlo (MCMC) sampling
framework described in Bhardwaj et al. (2021b) with a
posterior distribution defined by the following:

L(DMr,0|0) ()

P | DMy o) = ,
@ | T,0) Z

where L£(DMro | 0 ) is the likelihood distribution of the
observed quantity DMt o given the parameters 0, w(@) are the

2
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prior distributions on 9, and Z is the Bayesian evidence; this
latter factor enters Equation (2) as a normalization factor
independent of the model parameters and can be ignored if one
is only interested in the posterior distribution rather than model
selection. We assume a Gaussian likelihood function provided
as the following:

_ (DMro — DMc(9))
202

E(DMT’O | 9 ) = exp

s

2no
3)

with ¢ the uncertainty on DMt o for each burst and DMt given
by Equation (1) (Rafiei-Ravandi et al. 2021).

For the Milky Way contribution DMyw, there is no
consensus between the two popular models of Cordes & Lazio
(2002), Yao et al. (2017). Therefore, we follow Bhardwaj et al.
(2021b) and assume a Gaussian prior based around the
minimum of DMyw from these two models along the line of
sight; a standard deviation of 20% of this value is also used.

The contribution DM,,,;, has been estimated in a number of
studies but is quite uncertain. For example, Yamasaki & Totani
(2020) found values of DMy, ~ 30-245 pc cm 3 using a two
component model. Studies by Dola% et al. (2015) found values
between DMy, ~ 30-50 pccm ~ based on cosmological
simulation, and Prochaska & Zheng (2019) estimated values
between 30 and 80 pccm™. To take account of the large
uncertainty in this quantity, we follow Bhardwaj et al. (2021b)
and assume a Gaussian prior such that, at 30, DMy, has a
value 0 or 80 pccm™.

The prior on DMgy assumes the parameterization
A = DMjgm/(DMigMm) With the denominator obtained through
the Macquart relation. This takes the form provided in
Macquart et al. (2020):

—(A -
2020%y ’

with opp =02z, and [, §] = 3; the value of C is
determined by requiring that (A) = 1. The form of this model
is motivated by the requirement that the DM distribution
approaches a Gaussian at small opy; in accordance with the
Gaussianity of large scale structure. It also incorporates a skew
at large oy to reflect the possibility of overdensities along the
line of sight.

Finally, for a prior on DMy, we adopt a lognormal
distribution with median e¢” =68.2, and logarithmic width
parameter oy, = 0.88 as in Macquart et al. (2020).

The quantities outlined above have a large range of
uncertainty, and there could be additional contributions, e.g.,
circumburst material. As a result, redshift values calculated
from DMs are generally taken as upper limits. We perform
MCMC sampling using the emcee package (Foreman-Mackey
et al. 2013) based on an affine-invariant sampling algorithm
(Goodman & Weare 2010) using 256 walkers of 20,000
samples. The inferred values of z, and thereby luminosity
distance, and their 90% credible intervals are thus determined
for each FRB, based on the observed values of DMy, R.A. and
decl., the estimated DMy along the line of sight, and the
priors on other DM contributions described above.

Given the large uncertainties in the distances of FRBs, we
based our analysis and results on the 90% credible intervals
inferred for the CHIME/FRB sample of bursts. However, for

P(A) = AN Pexp [ “4)
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Figure 2. The distribution of inferred median distances for the CHIME /FRB
data sample based on the MCMC analysis of Section 3; there is a large
uncertainty in these distances; thus, this distribution should be taken as only an
approximate representation. The distribution peaks between 1700 Mpc
(z~0.3) and 6000 Mpc (z ~ 0.9). The closest nonrepeating event analyzed
in our sample was FRB 20190425A for which we inferred a median distance of
133 Mpc and a range [13-386] Mpc at 90% confidence; the most distant was
FRB 20190601C with a median inferred distance of 914 Mpc within a range
[199-1737] Mpc.

102

illustration, we show in Figure 2 the distribution of the median
distances of the total sample of 338 FRBs that occurred during
O3a. The plot shows that most events seem to occur within
1700 Mpc (z ~ 0.3) and 6000 Mpc (z ~ 0.9). The closest events
in the distribution include a significant number of repeating
FRBs. Due to the relatively limited range of the GW detectors,
in selecting which bursts to analyze, we first downselected the
sample to all bursts from the closest 10% of CHIME/FRB
nonrepeating bursts that have GW detector network data
available for analysis (if the recent CHIME/FRB catalog of
535 bursts is representative of the FRB population, at least
around 11% of FRBs repeat). Within this selection, a coherent
analysis using modeled waveforms was then conducted on a
smaller subset of the closest 22 nonrepeating events for which
data were available from at least one interferometric GW
detector, and a generic transient coherent analysis was
conducted on a subset of FRBs for which data were available
from at least two interferometric GW detectors. The further
downselection to the final set of analyses reported was based on
two considerations. For some events, the systematic noise in
the detector was too significant near the time of the burst for
one or both of our two searches, and these events were then
excluded. Finally, as each search requires significant person
power and computational resources, we performed searches on
the remaining subset of events in order of increasing distance,
until we reached a point of diminishing returns caused by the
reduced overlap between the effective detection range of the
GW detection network and the inferred distance to each FRB
event. These considerations yielded a sample of 34 nonrepeat-
ing FRBs that were analyzed by one or both types of analysis.
Using the same considerations for selection, we analyzed a
total of 11 repeated bursts from the closest 3 repeating
sources: FRB 20180916B (7 repeat events during O3A),
FRB 20180814A (2 repeat events), and FRB20190303A (2
events). The lower and upper 90% limits of the credible
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intervals on the luminosity distances to each of the nonrepeat-
ing FRBs analyzed are included in the tables in Section 5.

4. Search Methods

Here, we will provide a description of the two targeted
search methods used in this paper. These are the same methods
applied to search for GW events coincident with GRBs that
occurred during the first (Abbott et al. 2017a), second (Abbott
et al. 2019a), and third (Abbott et al. 2021) Advanced LIGO
and Advanced Virgo observing runs. In Section 4.1, we
describe the modeled search method that aims to uncover
subthreshold GW signals emitted by BNS and neutron star—
black hole (NSBH) binaries (PyGRB; Harry & Fairhurst 2011;
Williamson et al. 2014), highlighting choices in analysis
configuration that are unique to the follow-up of FRB events.
In Section 4.2, we discuss the search for generic GW transients
(X-Pipeline; Sutton et al. 2010; Was et al. 2012).

4.1. PyGRB—Modeled Search for Binary Mergers

The modeled search for GWs associated with FRB events
makes use of the PyGRB data analysis pipeline (Harry &
Fairhurst 2011; Williamson et al. 2014), and the search is
configured to be similar to the search for GW signals coincident
with GRBs in O3a (Abbott et al. 2021). This is a coherent
matched-filtering pipeline that compares the GW detector
network data with a bank of pregenerated waveforms,
including the inspiral of BNS and NSBH binaries. PyGRB
uses the PyCBC (Nitz et al. 2020) open-source framework for
distribution of the analysis of the GW data across large
computing clusters, and also relies on several elements of the
LALSuite software library (LIGO Scientific Collaboration
2018).

The PyGRB analysis searches the combined detector data in
the range 30—-1000 Hz. A set of coherent data streams is formed
by combining the data from the detectors, using a sample of
sky positions in the region reported for the FRB event that is
being studied. These data streams are then compared using
matched filtering to the same predefined bank of waveform
templates (Owen & Sathyaprakash 1999) used in the search for
GWs associated with GRBs events in O3a (Abbott et al. 2021).
The bank is created with a hybrid of geometric and stochastic
template placement methods across target search space (Harry
et al. 2008, 2014; Brown et al. 2012; Capano et al. 2016; Dal
Canton & Harry 2017), using a phenomenological inspiral-
merger-ringdown waveform model for non-precessing point-
particle binaries (IMRPhenomD; Husa et al. 2016; Khan et al.
2016). This bank of templates is designed to cover binary
masses in the range [1.0, 2.8]M, for NSs, and [1.0, 25.0]M
for BHs. The bank also allows for aligned-spin, zero-
eccentricity BNS and NSBH, with dimensionless spins in the
range [0, 0.05] for NSs and [0, 0.998] for BHs.

Coherent matched filtering can be susceptible to loud
transient noise in the detector data and can produce a high
S/N (Nitz et al. 2017). To combat this, the analysis performs
additional tests on each point of high S/N data, which we also
refer to as triggers. These tests can either remove the trigger or
reweight the S/N using a x test. This latter test determines
how well the data agrees with the template over the whole
template duration. Such cuts and reweighting significantly
improve the ability of the search to distinguish a GW from
many types of transient noise, thus improving the significance

Abbott et al.

of real GW triggers. The final reweighted S/N of each
candidate event is used as the measure of its relative
significance, or ranking statistic, within the search.

The PyGRB analysis searches for GW inspiral events that
merge within 12's of the dedispersed event time of each FRB,
with an asymmetric on-source window starting 10 s before the
FRB event and ending 2 s after the event. The search window is
chosen to strike a balance between maximizing the possible
progenitor models through a wider window or maximizing the
sensitivity of the search by using a narrower window. In this
search, we seek a GW signal with a merger time close to the
time of the FRB, assuming the FRB results from the interaction
of the two binary components.

The sensitivity of the search is governed by the comparison
between the most significant event in the on-source window
and the most significant event in equivalent trial searches of
12 s windows in the surrounding data, known as the off-source
trials. These off-source trials form the background data for the
search, and if a sufficient number of background trials are
conducted, this allows the search to determine the significance
of any candidate events in the on-source window to the level
needed to make a confident detection statement by computing a
false-alarm probability.

If multiple detectors are available, then additional effective
background data can be produced by combining the data from
the detectors with an intentional misalignment in time of at
least the light-travel time across the network to ensure any
detected events cannot possibly be true coherent GW
candidates (Williamson et al. 2014). This can be repeated for
multiple possible time shifts, and in this search, these time
shifts are set to match the on-source window length of 12s.
This produces fewer time shifts than a 6 s on-source window,
as used in previous searches for GW associated with GRB
events such as Abbott et al. (2021). This again impacts the
effective significance of any detected events, because the
amount of background data used by the search is limited by the
amount of coherently analyzable data for all detectors in the
network that surrounds the target time. Thus, a search is only
conducted if a minimum of 30 minutes of data is available.

In the results section, we report the effective range of each
search conducted as a 90% exclusion distance, Dqy. This is
calculated by first creating a set of simulated GW signals to
inject into the off-source data, then attempting to find these
injected signals with the standard search pipeline. The signals
are injected with amplitudes appropriate for a distribution of
distances between their simulated origin and the detectors, and
the Dy distance is defined as the distance within which 90% of
the injected simulated signals are recovered with a ranking
statistic greater than the loudest on-source event.

Mirroring the approach taken in the O3a search for GW
events associated with GRB detections (Abbott et al. 2021), the
injected signals include BNS systems with dimensionless spins
in the range —0.4 to 0.4, taken from observed pulsar spins
(Hessels et al. 2006), and are distributed uniformly in spin and
with random orientations. The injections also include aligned-
spin NSBH binaries, and NSBH binaries with generically
oriented spins up to 0.98, motivated by X-ray binary
observations (e.g., Ozel et al. 2010; Kreidberg et al. 2012;
Miller & Miller 2014). The simulated signals are intentionally
generated using different GW signal models than those used in
the matched-filtering template bank, to approximate the target
search space difference between the approximate templates
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used and the true GW signals. In particular, the injected
waveforms are identical to those used in the equivalent O3a
GRB event follow-up analysis (Abbott et al. 2021). Precessing
BNS signals are simulated using the TaylorT2 time-domain,
post-Newtonian inspiral approximant (SpinTaylorT2;
Sathyaprakash & Dhurandhar 1991; Blanchet et al. 1996;
Mikoczi et al. 2005; Arun et al. 2009; Bohé et al. 2013, 2015;
Mishra et al. 2016), while NSBH injected waveforms are
generated assuming a point-particle effective-one-body model
tuned to numerical simulations, which can allow for precession
effects from misaligned spins (SEOBNRv3; Pan et al. 2014;
Taracchini et al. 2014; Babak et al. 2017). Again, identical to
the injections used in Abbott et al. (2021), NS masses for the
injections are taken between 1 My and 3 M from a normal
distribution centered at 1.4 My with a standard deviation of
0.2 My (Kiziltan et al. 2013) and 0.4 M for BNS and NSBH
systems, respectively. BH masses are taken to be between 3 Mg
and 25 M from a normal distribution centered at 10 Mg with a
standard deviation of 6 Mg,

Although this PyGRB follow-up of FRB events mirrors the
search conducted for GWs associated with GRB events in O3a
(Abbott et al. 2021) where appropriate, there were several
differences in the choices of analysis parameters for the FRB
analysis. The first major difference has been noted above,
wherein a 12 s on-source window is used, which is double that
of the GRB analysis. This does reduce the significance of any
detected signals, but has the benefit of allowing for more
progenitor models where the EM emission occurs further in
time from the peak of the GW emission.

Another significant change was the method of determining
the area of sky over which to search for the GW signals. The
FRB data sample contains multiple localizations for each event,
each with their own R.A. and decl. uncertainties. This
effectively creates multiple patches on the sky where the
source could potentially reside. The effective GW network
localization capability results in 90% credible regions for
detections on the order of ~10~10,000 deg?, with an average of
order 100 deg”. In contrast, the multiple O3a FRB sample
localizations spanned only the order 1 deg” in total (Abbott
et al. 2020a). The sensitivity of the search also did not vary
significantly over the sky localizations, and so the final set of
sky positions considered by the analysis was one circular patch
on the sky with a size large enough to ensure coverage over all
possible provided FRB localizations. This circular region is
centered on the median of the provided R.A. and decl. values,
with a radius scaled to match either the largest position error
provided or the largest R.A. or decl. separation between the 5
localization points, using whichever is greater. Within this
patch, the sky is sampled by creating a circular grid of sky
positions such that the time-delay between grid points is kept
below 0.5 s (Williamson et al. 2014). This ensures coverage of
the possible sky location of the source. For each sky position,
the timestream data from each GW detector are combined with
the appropriately different time offsets required to form a
coherent stream of data for that point on the grid. These
multiple coherent time streams are finally each considered in
the search.

4.2. X-Pipeline—Unmodeled Search for Generic
Transients

The search for generic transients is performed with the
coherent analysis algorithm X-Pipeline (Sutton et al. 2010;
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Was et al. 2012). This targeted search uses the sky localization
and time window for each CHIME/FRB trigger to identify
consistent excess power that is coherent across the network of
GW detectors. We use different search parameters in our
searches for repeating and nonrepeating FRB sources.

There are a number of differences between our generic
transient search on nonrepeated sources and those previously
conducted on GRBs (Abbott et al. 2017a, 2019a, 2021). As in
GRB searches, the on-source time window is chosen to start
600 s before the trigger, but is extended from 60 s seconds post
trigger to 120s to allow for the possibility of GW emissions
delayed relative to the FRB emission. This on-source window
is also longer than the +120s window employed in the
previous FRB search (Abbott et al. 2016). The extended
window allows for a greater number of noncompact binary
coalescence (CBC) sources than those considered in GRB
searches and possible GW emissions from magnetars, given the
recent FRB—magnetar association (CHIME /FRB Collaboration
et al. 2020).

The broadband search for FRBs with X-Pipeline covers
the range 32 Hz up to 2 kHz, the upper range being higher than
the GRB search (20-500 Hz) in order to include GW emissions
from oscillation modes of NSs that are likely to occur above
1 kHz, specifically f-modes (Wen et al. 2019; Ho et al. 2020).
We note that above 300 Hz a ocf” frequency dependence in
energy (see later Equation (5)) combined with the of' of the
noise power spectral density of the detector increases the GW
energy required to enable a confident detection as ocf°.
Although including high-frequency data increases the compu-
tational cost, including this data allows us to set limits on a
wider variety of signal models.

X-Pipeline processes the on-source data around each
FRB trigger by combining the GW data coherently after the
data is whitened by dividing by each detector’s amplitude
spectrum (Abbott et al. 2020b). The coherent combination is
formed by taking into account the antenna response and noise
level of each detector to generate a series of time—frequency
maps. The maps show the temporal evolution of the spectral
properties of the signal and allow searches for clusters of pixels
with excess energy significantly greater than one would expect
from background noise. These clusters are referred to as events.

Events are given a ranking statistic based on energy and are
subjected to coherent consistency tests based on the signal
correlations between data in different detectors. This allows X—
Pipeline to veto events that have properties similar to the
noise background.

The surviving event with the largest ranking statistic is taken
to be the best candidate for a GW detection. Its significance is
quantified as the probability for the background alone to
produce such an event. This is done by comparing the S/N of
the trigger within the 720 s on-source to the distribution of the
S/Ns of the loudest triggers in the off-source trials. The off-
source data are set to consist of at least 1.5 hr of coincident data
from at least two detectors around the trigger time. This
window is small enough to select data where the detectors
should be in a similar state of operation as during the on-source
interval, and large enough so that, through artificial time-
shifting, probabilities can be estimated at the subpercent level.

We quantify the sensitivity of the generic transient search by
injecting simulated signals into off-source data and recovering
them. We account for calibration errors by jittering the
amplitude and arrival time of the injections according to a
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Gaussian distribution representative of the typical calibration
uncertainties expected in O3a. We compute the percentage of
injections that have a significance higher than the best event
candidate and determine the amplitude at which this percentage
is above 90%; this value sets the upper limit.

As discussed in Section 3, the localization information for
each FRB is in the form of up to 5 noncontiguous or
overlapping error regions of varied morphology. Occasionally,
these islands can be dominated by the uncertainty of a single
island. The sky position errors can span a few degrees or more
in R.A. This could result in a temporal shift causing a GW
signal to be rejected by a coherent consistency test (Was et al.
2012). For each island, we set up a circular grid around the
central location of the island, with overlapping grid points
discarded. A coherent data stream is formed from the GW
detector data with an appropriate time offset for each point on
the grid. These data streams are then analyzed. The grid
positions are large enough to cover the error radius and dense
enough to ensure that a maximum timing delay error, set as
125 x 107" s, is within 25% of the signal period at our
frequency upper limit of 2000 Hz. This is 4 times finer than
GRB searches that typically analyze data up to a frequency
cutoff of 500Hz. Using this grid approach, the antenna
responses change only slightly over sky position; of the order
of a few percent over a few degrees (Aasi et al. 2014). The
responses are known to change rapidly near a null of the
response; in such a case, they are already negligible.

A particular difference between this search and other
searches focused on GRBs is the increased number of
simulated waveform types used in this study. Given the
uncertainty in plausible GW emissions, we consider a larger
range of generic burst scenarios, using an extended set of those
used in both GRB and magnetar searches (Abbott et al.
2019b, 2021). Also, as we have no knowledge on whether or
not FRBs are beamed along the rotation axis of the progenitor,
all of our signal models correspond to elliptical and random
polarization.

The waveforms chosen to cover the search parameter space
are from 3 families that have different morphological
characteristics: binary signals, generic burst-like signals, and
accretion disk instability (ADI) models. X-Pipeline is
equally adept at detecting signals whose frequency decreases
with time (ADI) and signals whose frequency increases with
time (CBC models; Abadie et al. 2012; Abbott et al. 2017a).
This paper reports the results for CBCs when obtained using
the dedicated modeled search (described in Section 4.1), so we
will limit our discussions here to only the latter two waveform
families.

The generic burst-type waveforms are described in Table 1,
where we list the most important parameters (see also Abbott
et al. 2019c¢). In all cases, to determine exclusion distances for
this model family, we assume an optimistic emission of energy
in GWs of Egw=10"Mgc* (Abbott et al. 2021). The
waveforms in this family aim to capture the general
characteristics of a burst of GW energy:

Sine—Gaussian. These signals have been used previously to
represent the GWs from stellar collapses. The models are
defined in Equation (1) of Abbott et al. (2017a) with a Q
factor of 9 and varying central frequency as shown in
Table 1. They can also model f-modes in the core of a
canonical NS. We therefore also include them in the search
over repeating sources, and include sine—Gaussian (SG)
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Table 1
The Main Parameters of the Waveform Injections Used for the Generic
Transient Search

Label Frequency Duration Parameter
(Hz) (ms)
Sine-Gaussian Chirplets
SG-A 70 14
SG-B 90 11
SG-C 145 6.9
SG-D 290 34
SG-E 650 1.5
SG-F 1100 0.9
SG-G 1600 0.6
SG-H 1995 0.5
SG-I 2600 0.38
SG-T* 3100 0.32
SG-K* 3560 0.28
SG-L* 1600 0.6
SG-M*¢ 1995 0.5
Ringdowns
DS2P-A 1500 100
DS2P-B 1500 200
White Noise Bursts
WNB-A 150 (100-200) 11
WNB-B 150 (100-200) 100
WNB-C 550 (100-1000) 11
WNB-D 550 (100-1000) 100

Notes. Models and their parameters have been chosen to cover as large a
parameter space as possible. For all models, the central frequencies are shown.
We note that WNB models are defined by an additional frequency bandwidth;
this parameter is shown in parenthesis. For the SG and WNB waveforms, the
duration parameter scales the width of the Gaussian envelope; for the DS2P
models, this parameter defines the decay time constant. An asterisk (*) denotes
waveforms used in the repeaters search only; ¢ denotes waveforms with a
circular polarization.

waveforms at additional frequencies listed in Table 1. In
order to better constrain some models, we also include
circularly polarized SG chirplets at the frequencies nearest
the f-mode range (1600 and 1995 Hz) in the search over
repeated sources.

Ringdowns (DS2P). These signals capture the form of
damped sinusoids (DS2P) at a frequency of 1500 Hz and
decay constants of 100 and 200 ms.

White noise bursts (WNB). These signals mimic broad bursts
of uncorrelated white noise, time-shaped by a Gaussian
envelope. We use two models band-limited within frequen-
cies of 100200 and 100-1000 Hz, and with time constants
of 11 and 100 ms.

Following the predictions from oscillation modes for NS
starquakes (Li et al. 2019; Wen et al. 2019), the first two
waveforms in this family (SG and DS2P) have been used in the
search for GWs associated with magnetar bursts (Abbott et al.
2019b, 2022).

We also consider a range of models. These are long-lasting
waveforms, which are modeled to represent the GW emissions
from instabilities in a magnetically suspended torus around a
rapidly spinning BH. The model specifics and parameters used
to generate the five types of ADI signals, designated ADI-A to
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ADI-E, are the same used in the previous searches (see Table 1
of Abbott et al. 2017a).

The version of X-Pipeline used in this analysis has a new
feature named autogating. This feature increases the sensitivity
of the longer-duration (=10 s) signals, previously limited by
loud background noise transients (Abbott et al. 2021). This
technique gates the whitened data from a single detector if the
average energy over a ls window exceeds a user-specified
threshold. To minimize the possibility of a loud GW transient
being gated, this procedure is canceled if the average energy at
the same time in any other detector exceeds the threshold.

4.2.1. X-pipeline Search on Repeating FRBs

A subset of 11 of the FRBs that we analyze has been
identified to repeat. Repeating FRBs are possibly caused by a
process distinct from those that produce singular FRBs; most
notably they are unlikely to be associated with CBC events. We
therefore only run the X-Pipeline generic transient search
on these events, and we choose the parameters to provide
maximal sensitivity to the GW transients that would most
probably be produced by flaring magnetars.

This search is similar to that for GW events associated with
magnetars during the third observing run of Advanced LIGO
and Advanced Virgo (O3; R. Abbott et al. 2023, in
preparation). The frequency band of the search ranges from
50 to 4000 Hz, which encapsulates the NS f-mode frequency
band, but excludes the lowest frequencies where nonstationary
noise could potentially pollute the search statistics. The search
spans 8 s of time centered within 1 s of the arrival time of the
FRB to ensure optimal sensitivity at the event time. Injected
waveforms are chosen to reasonably model the f-modes of a
canonical NS as described in Kokkotas et al. (2001). This
includes a series of SG chirplets with a qualtiy (Q) factor of 9
and varying center frequencies as shown in Table 1. We also
neglect to use the autogating algorithm for noise transients as
described above, as its tendency is also to gate fast injections
such as SG. We also inject WNBs to estimate the sensitivity at
broadband frequency ranges.

4.3. RAVEN Coincident Analysis

To perform a wider sweep of the O3a data, we also looked
for coincidences between these CHIME/FRB events and
existing GW candidates using the tools of the Rapid, on-
source VOEvent Coincidence Monitor (RAVEN; Urban 2016;
Cho 2019) to query the Gravitational-Wave Candidate Event
Database (GraceDB; Pace et al. 2012). This query to GraceDB
tests whether any GW candidates were found by any of the
modeled or generic transient low-latency GW search pipelines
within a time window around the FRB events. The queries used
the same on-source search windows as our modeled and
generic transient searches, with [—10, +2s] and [—600,
+120s] windows around the FRB triggers, respectively. We
then computed the joint false-alarm rate of any coincident GW
candidate within these windows using the overall rate of FRB
events in the CHIME/FRB sample calculated across the full
span of the O3a observing run and the false-alarm rate of the
GW candidate. The joint false-alarm rates were compared
against thresholds of around 6 and 1yr~' for modeled and
generic transient searches respectively. This analysis, although
not as sensitive as a targeted search, is a strategy that allows us
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Figure 3. The cumulative distribution of p-values for the loudest on-source

events for the modeled search in O3a around CHIME /FRB data. The dashed

line indicates an expected uniform distribution of p-values under a no-signal

hypothesis, with the corresponding 90% confidence band shown by the dotted
lines.

to perform a broad search across O3a data for possible
coincidences missed by our analysis.

5. Results of Analysis
5.1. Analysis Subsample

We performed two different searches: for nonrepeating
FRBs, a PyGRB modeled search was completed on a total of 22
FRB events; and an X-Pipeline search for generic transient
signals was completed on a total of 29 nonrepeaters and 11
repeating FRBs.

5.2. The False-alarm Probability (p-value) Distribution

The searches conducted for GW counterparts returned no
likely GW signals in association with any of the analyzed
repeating or nonrepeating FRB events.

The most significant events found by the PyGRB search and
the X-Pipeline search had p-values of 3.74 x 107> and
1.90 x 102, respectively. For the X-Pipeline analysis of
the repeating FRBs, the lowest p-value was 1.3 x 107",
corresponding to the repeat FRB 20190702B of burst
FRB 20190303A, for which we analyzed 2 burst events.

The cumulative p-value distributions from both search
methods are shown in Figures 3 and 4. In both figures, the
dashed lines indicate the expected background distribution
under the no-signal hypothesis, and the dotted lines indicate the
90% confidence band around the no-signal hypothesis.

5.3. Exclusion Distance Results

Figure 5 shows the cumulative 90% exclusion distances for
the 22 FRBs followed up with the modeled search. The lowest
exclusion distances, of order 40 Mpc, were obtained for FRBs
that occurred during times in which only Virgo data were
available.



THE ASTROPHYSICAL JOURNAL, 955:155 (26pp), 2023 October 1

10°
- —=— Observed
| ---- Expected
. _
M _
[a'ad /
— /
B 7 i
/|
g /
—1 U
E 10 E /
/
— /
— /,
//
— /
/
| /,
//
T T T TTT] T T T TT]
107! 10
p-value

Figure 4. The cumulative distribution of p-values for the loudest events from
the generic transient search for transient GWs associated with 29 nonrepeating
CHIME/FRB bursts. The dashed line represents the expected distribution
under the no-signal hypothesis, with the 90% bands shown as dotted lines.
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Figure 5. Cumulative histograms of the 90% confidence exclusion distances,
Dy, for the 22 CHIME/FRB bursts followed up by the modeled search. The
blue line shows generically spinning BNS models, the orange line shows
generically spinning NSBH models, and the thick green line shows aligned-
spin NSBH models. We define Dg, as the distance within which 90% of the

simulated GW signals injected into the off-source data were recovered with a
significance greater than the most significant on-source trigger.

For each of the three simulated signal classes considered in
the modeled search, we quote the median of the Dy results in
the top row of Table 2; we see values of the order of 190 Mpc
for BNS and around 260 Mpc (350 Mpc) for NSBH with
generic (aligned) spins.
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Table 2
Median Values for the 90% Confidence Level Exclusion Distances, Dgg
Modeled
Search NSBH NSBH
Generic Aligned
BNS Spins Spins
Doy [Mpc] 191.9 256.6 345.1
Unmodeled SG SG SG SG
search
A B C D
Doy [Mpc] 77.9 63.3 43.7 24.9
Unmodeled SG SG SG SG
search
E F G H
Dgy, [Mpc] 6.8 2.3 1.2 0.5
Unmodeled DS2P DS2P WNB WNB WNB WNB
search
A B A B C D
Dgy, [Mpc] 0.7 0.7 66.4 71.7 15.2 9.2
Unmodeled ADI ADI ADI ADI ADI
search
A B C D E
Dgy, [Mpc] 17.6 64.9 23.1 8.4 25.7

Note. Modeled search results are shown for three classes of BNS progenitor
model, and generic transient search results are shown for models described in
Table 1.

Figure 6 provides the cumulative 90% exclusion distances
for 29 nonrepeating FRBs considered in the generic transient
search. This plot shows three representative burst models: ADI-
A, SG-C, and a WNB-C; the latter two have central frequencies
of 145 and 550Hz respectively. Based on a standard
Egw ~ 107>My, ¢* of emitted GW energy, there is a noticeable
offset between the SG and the other two GW burst models. For
the ADI-A waveform model, this is due to the energy of the
former being distributed over a longer signal duration, of the
order ~40s; for the WNB-C model, this effect is due to a
significant portion of its energy content being at higher
frequency where detector performance is more comparatively
limited.

The lower rows of Table 2 show the median of the Dy
estimates for all other waveforms considered by the generic
transient search. We see that SG models spanning central
frequencies 702000 Hz have corresponding median values of
Dy, in the range 78-0.5 Mpc; the latter models’ performance
diminished at higher frequency through a detector response.
This is also clearly evident for the DS2P ringdown models,
which are more likely to encounter a transient burst of noise
than SG models due to their longer durations. Similarly, the
median Do, values for the higher-frequency WNB models are
lower in comparison with the lower-frequency models (WNB-
A and WNB-B). These median Dg, values of the 150 and
550 Hz models differ by around a factor of at least 4. Overall,
the median Dy varies within a range approaching 2 orders of
magnitude, reflecting the wide range of models used in the
analysis.

In comparison with Dg, values obtained in the O3a GRB
paper (Abbott et al. 2021), the values in Table 2 are almost
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Figure 6. Cumulative histograms of the 90% confidence exclusion distances,
Dy, for SG model (C) (orange line), accretion disk instability signal model (A)
(blue line), and white noise burst model (C) (green, thick line). The quantity
has the same definition as described in Figure 5.

systematically a factor of 2 smaller for the SG and ADI models
used in that study. We find that this is a result of the sky
locations surveyed by CHIME corresponding with a region of
weak sensitivity for the Virgo interferometric detector, due to
their relative locations on the surface of the Earth. The average
antenna responses for the LIGO Hanford (H1) and LIGO
Livingston (L1) detectors are of order 0.72 and 0.65
respectively; the same metric for the V1 instrument is 0.28.
This has a severe effect when V1 is one of only two detectors in
a network, a situation that has occurred 55% of the time for the
generic transient analysis of nonrepeating FRBs. Looking
ahead, this type of sensitivity bias will be a feature of future
searches for CHIME /FRB triggers, as well as surveys by other
facilities, depending on their location on the Earth.

In Table 3, we present the exclusion distances achieved for
each of the FRBs analyzed in our joint analysis. For the
modeled search, we quote values from each of the 3 classes of
compact binary progenitor models considered. For the generic
transient search, we present values of Dy for a representative
sample of SG, ADI, DS2P, and WNB models. We also provide
information relating to the times and positions of these events
as well as values of the DM, and the inferred 90% credible
intervals on the luminosity distance. Table 3 allows comparison
of the inferred luminosity distances of each FRB with the Dy,
value for different searches.

Figure 7 compares the Dgq values for the BNS and NSBH
(with generic spin) emission models with the 90% credible
intervals on Dy inferred by the MCMC analysis. The plot
shows the FRB sample in order of increasing distance. No
event can be fully excluded from any of the models we have
considered for this search, because there is still a sufficient
region of space from which the FRB events could have
originated that is outside the detection range of the searches
performed.
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5.4. RAVEN Analysis Results

As described in Section 4.3, two RAVEN coincidence
searches were completed with differing time windows,
[600s, +120s] for the generic transient search and [—10s,
+2 5] for the modeled search. The generic transient search
found 8 coincidences, and the modeled search found 1
coincidence. However, none of these were of sufficient
significance, as determined by the computed joint false-alarm
rate from the two samples, to be distinguished from random
coincidences. All of the FRBs in these coincidences had
distances that were well beyond the values of Do, obtained,
with the exception being FRB 20190518E, a repeat of burst
FRB 20190518A, with 9 episodes occurring during O3a. Of
these 9 repeating episodes, 7 were also analyzed using our
generic transient search method, as described earlier. Again,
none of the repeating episodes returned a significant false-alarm
probability, with the minimum p-value across the search of
repeating FRB events equal to 1.3 x 107",

5.5. Upper Limits on GW Energy

A measure of the inferred distance to an FRB source also
allows one to place constraints on the energy carried in a burst
of GWs. The GW energy, Egw, emitted by an elliptically
polarized GW burst signal can be related to the root-sum-
square signal amplitude &, and the central frequency of the
source, fo, through the following (Sutton 2013):

2 w23
Egw = gTDszozhrzss’

&)

where Dy is the luminosity distance to the source. As the DMs
of FRBs provide a measure of the maximum distance, one can
use Equation (5) to place 90% upper limits on the GW energy

emitted by each FRB source, Ecw’. This estimate, calculated

using h?sg’%, the 90% detection upper limit on the root-sum-

squared GW amplitude, is highly dependent on the detector
sensitivity and antenna factors at the time of the FRB as well as
the central frequency of the simulated waveform injections.

Tables Al and A2 provide the upper limits on EQw’ for SG
models and DS2P or WNB GW burst models respectively.
These limits assume that the FRB distances are at the lower
limits of their inferred distance ranges. Given a large range of
models, and since this quantity scales as k> f02, one would
expect the lower-frequency models to provide the most
constraining limits. For SG models, the most constraining
estimate was 2.5 x 10°° erg for the 70 Hz SG-A model, and for
the highest-frequency model considered, SG-H at 1995 Hz, the
upper limit was 7.9 x 10°* erg. These values were obtained for
the closest inferred burst in the sample, FRB 20190425A.
The same burst yielded upper limit values in the range
4.8—470 x 10°erg for the WNB model. The DS2P
model gave the best constraints, 5.8 — 6.4 x 10> erg, for
FRB 20190531B.

For completeness, in Tables A3 and A4, we also provide less
constraining limits on ESw’ based on the upper credible
intervals on the distance of each FRB.

Table 4 lists the repeating bursts that were analyzed in the
generic transient search. The most sensitive counterpart to a
repeating FRB was for CHIME/FRB event FRB20190825A.
The SG injection centered at 1600 Hz (which most closely
models an f-mode) was recovered 90% of the time at
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Table 3
Details of the FRB Sample and the 90% Exclusion Distances for Each of the Events Considered in This Analysis
Dyy (Mpc)
FRB Name UTC Time R.A. Decl. Network DM D -low D, -high BNS Generic Aligned SG SG ADI DS2P WNB
(pc cm™?) (Mpc) (Mpc) NSBH NSBH C F A A C
FRB 20190410A 12:19:41 17"33™43° —2°10 L1V1 270 60 960 160 190 300 36 1.1 15 0.57 6.4
FRB 20190418A 22:34:17 4"21m07° 15°27 V1 180 27 610 40 50 72
FRB 20190419B 22:38:24 17"02™02° 86°44/ L1Vl 170 25 580 130 170 250 34 1.1 10 0.5 6.2
FRB 20190423B 13:51:43 19"54™44° 26°19 H1V1 590 58 1700 190 250 320 13 0.33 5.6 0.16 3.1
FRB 20190425A 10:47:49 17"02™47¢ 21°30 HIL1VI 130 13 390 240 390 440 66 32 27 0.13 21
FRB 20190517B 20:33:37 4"16™49° 73°10/ V1 190 20 540 130 230 300
FRB 20190517C 22:06:34 5h50™57° 26°34 LI1V1 340 44 1000 40 1.3 10 0.72 7.4
FRB 20190518D 09:04:35 12"06™50° 89°25’ HIL1 200 62 850 140 190 220 54 32 21 1 16
FRB 20190531B 08:47:40 17"31™26° 49°18/ L1V1 170 37 680 210 310 370 56 3.5 23 2.1 20
FRB 20190601C 21:13:28 5"55m06° 2828’ HIL1V1 420 200 1700 66 3.2 21 1.1 21
FRB 20190604G 23:12:19 803™13* 59°32/ L1V1 230 97 1100 14 0.47 8.8 0.3 1.6
FRB 20190605C 02:20:41 11"14™04° —5°18 L1Vl 190 68 890 190 260 370 29 0.94 15 0.59 5.4
FRB 20190606B 22:19:30 7M14™428 86°58' HIL1VI 280 170 1500 44 2.3 18 0.95 15
FRB 20190611A 18:52:42 4h05™12° 73°37 V1 200 19 550 43 57 72
FRB 20190612B 05:30:37 14"48™53° 4°21" HIL1 190 65 920 220 300 410 70 33 26 1.1 21
FRB 20190613B 18:56:15 4h23m08* 42°37 HIL1V1 290 28 780 270 320 470 78 4.3 28 1.5 23
FRB 20190616A 05:56:30 15"34™04° 34°21 H1V1 210 110 1100 17 0.64 9 0.31 4.3
FRB 20190617A 02:12:33 11"49™13¢ 83°50/ HIL1VI 200 62 870 210 310 420 54 29 23 14 19
FRB 20190618A 11:42:06 21"24™m28° 25°25' HIL1 230 78 960 270 360 480 80 4.3 25 1.6 26
FRB 20190621A 02:21:17 12"06™36° 74°43' L1Vl 200 78 980 150 220 300 15 0.41 22 0.31 2.9
FRB 20190624B 22:11:00 20"01™07* 73°34' H1V1 210 47 820 30 1.3 7.5 0.45 9.2
FRB 20190710A 22:09:19 9h26™32° 63°06 HIL1 200 89 1000 78 4.3 31 1.9 23
FRB 20190713A 02:19:56 1"35™49° 72°53/ H1V1 340 140 1400 29 0.9 11 0.39 7
FRB 20190718A 01:11:16 13"04™18° 74°14 HIL1 200 72 970 220 300 410 58 3.5 25 1.6 21
FRB 20190722A 18:30:18 6"35™11° 64°17 LI1V1 250 98 1100 18 0.65 11 0.39 2.1
FRB 20190812A 04:35:08 17"53™14° 50°48' HIL1VI 250 190 1400 79 4.1 24 1.5 24
FRB 20190903A 12:25:19 3"12m01¢ 21°25’ LI1V1 210 67 930 180 260 360 13 0.33 7.3 0.27 3.1
FRB 20190912A 00:50:21 16"13™58° 22°13/ L1Vl 210 98 1100 15 0.46 9.4 0.29 35
FRB 20190912B 08:51:31 o"15™57° 6°12 HIL1 130 23 490 240 300 440 74 3.6 27 1.1 21
FRB 20190912C 09:46:46 1"13™16° 67°08' H1 340 42 1000 190 240 320
FRB 20190913A 15:11:12 6"40™m02° 39°39/ L1 230 32 710 200 250 330
FRB 20190922A 00:11:04 16"14™10° 68°48' H1VI 200 66 960 140 220 290 16 0.53 3.1 0.19 34
FRB 20190928A 21:32:10 14"00™25° 80°06 HIL1V1 140 20 510 220 270 370 57 3 22 1.1 19
FRB 20190929B 13:32:01 6"02™53° 11°51 HIL1VI 380 150 1500 77 3.9 26 1.7 22

Notes. The TNS name is provided in the first column. The network column lists the GW detector network used: LIGO Hanford (H1), LIGO Livingston (L1), and Virgo (V1). The total DM for each FRB is listed in the
DM column, and the 90% credible intervals on the luminosity distance of each burst are provided in columns Dy -low and Dy -high. Where the generic transient search (Section 4.2) and the modeled search (Section 4.1)
used a different Interferometer network, the network used by the generic transient search is shown in parentheses. The last 8 columns show the 90% confidence exclusion distances for each FRB (Dg) for the following
emission scenarios: BNS, generic and aligned-spin NSBH from the modeled search, and from the generic transient search, SG-C, SG-F, ADI-A, DS2P-A, and WNB-C; for the latter 5 types of GW bursts, we assume a

total radiated energy Egw = 1072 M, %
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Figure 7. Lower limits on the 90% confidence level exclusion distances for BNS (lower bar), generic spin NSBH (middle bar), and aligned-spin NSBH (upper bar)
progenitor systems are shown as found by the modeled search. These are compared to the 90% credible intervals (whisker plot) on the Dy, posterior determined by the

MCMC method for the FRBs considered in this study.

heo =2.62 x 10722, The distance to this event is
148.1-149.9 Mpc. This corresponds to an energy upper limit
range of 5.83 x 10°° to 5.98 x 107 erg.

These estimates are well above predictions of the GW emissions
through the NS’s fundamental f-mode discussed in Section 2.

6. The M81 Repeater FRB 20200120E

A repeater, FRB 20200120E, which was discovered by
CHIME/FRB on 2020 January 20, overlaps with the second
part of the third observing run of Advanced LIGO and

20

Advanced Virgo (0O3b), which took place between 2019
October 1 15:00 UTC and 2020 March 27 15:00 UTC. This
burst is at 3.6 Mpc, the closest extragalactic FRB so far
discovered (Bhardwaj et al. 2021a). This event was shown to
be conclusively associated with a globular cluster in the M81
galactic system (Kirsten et al. 2022), which supports the
possibility that it was formed from an evolved stellar
population such as a compact binary system. Due to the
proximity and significance of this burst, we discuss it in this
paper, despite it being discovered after O3a.
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Table 4
Details of the 3 Repeating FRBs Analyzed in the Generic Transient Search and Their Various Repeating Episodes

FRB Name UTC Time R.A. Decl. Network DM Dy -low Dy -high

) (pc em™) (Mpe) (Mpc)
FRB20190817A 14:39:52 4"21m08° 73°47' HIL1VI 190 19 540
FRB20190929C 11:58:29 4h20m5¢ 73°40 HIL1V1 190 21 550
FRB20190518A 18:13:33 1"58™14° 65°46/ L1Vl 350.5 148.1 149.9
FRB20190518E 18:20:57 1"57™50° 65°43' L1Vl 350.0 148.1 149.9
FRB20190519A 17:50:16 1"43™44° 65°48’ H1V1 350.0 148.1 149.9
FRB20190519C 18:10:41 1"58m00° 65°47 H1VI 348.8 148.1 149.9
FRB20190809A 12:50:40 1"58™16° 65°43' HIL1 356.2 148.1 149.9
FRB20190825A 11:48:18 1"58™07° 65°42' HIL1 349.6 148.1 149.9
FRB20190825B 11:51:54 1"58™04° 65°23' HIL1 349.9 148.1 149.9
FRB20190421A 08:00:04 13"51™57° 48°10/ HIL1V1 230 130 1300
FRB20190702B 03:14:36 13"52m25° 48°15’ L1Vl 220 130 1300

Notes. The TNS name is provided in the first column. The network column lists the GW detector network used: LIGO Hanford (H1), LIGO Livingston (L1), and
Virgo (V1). The total DM for each FRB is listed in the DM column, and the 90% credible intervals on the luminosity distance are provided in columns Dy -low and
D, -high. 11 total events were analyzed for the three different FRB repeaters considered. For FRB 20190518A and its associated repeats, we list only the distance of

Marcote et al. (2020) obtained by galaxy localization.

The burst FRB 20200120E was shown to repeat at least 4
times. Two of the repeats occurred after O3b; another episode,
despite being consistent with the localization of the other
associated bursts, had no intensity data saved. Therefore, we
discuss here only the initial burst FRB 20200120E, for which
GW data exists.

At the time of FRB 20200120E, only H1 data were available;
thus, a generic transient search was not conducted. Likewise,
since this is a repeating event, it does not pass our criteria for
conducting a modeled search. Due to these restrictions, only a
RAVEN coincidence search was conducted within a [—6000,
+6000] s time window. No coincidences were found with
sufficient significance as determined by the coincident false-
alarm rate. Given the relative close proximity of this burst,
further repeat emissions will be of interest for GW follow-up
during the fourth observing run of Advanced LIGO, Advanced
Virgo, and Kagra (O4; Abbott et al. 2020a) when constraints on
the energy emitted in GWs will be of order 10°° at around
500 Hz.

7. Conclusions

We performed a targeted search for GWs associated with
FRBs detected by the CHIME /FRB project during O3a. As the
sources of nonrepeating FRBs are currently not known, we ran
both a modeled search for BNS and NSBH signals (Harry &
Fairhurst 2011; Williamson et al. 2014) and a generic transient
search for generic GW transient signals (Sutton et al. 2010;
Was et al. 2012).

Our searches found no significant GW event candidates in
association with the analyzed FRBs. We set 90% confidence
lower bounds on the distances to FRB progenitors for several
different emission models. Additionally, we present 90%
credible intervals on the luminosity distance, Dy, inferred from
the DM measurement of each FRB source.

The D, information can be used to test models based on the
simulated injections used for calculating the D, values of each
FRB. However, the significant uncertainties in the relative
contributions to the total DM for each FRB produce relatively
wide credible intervals for the Dy posteriors. We find no FRB
event can be fully excluded from any of the models we have
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considered due to some posterior support on Dy existing for the
FRB outside the detection range of the analyses performed.

The results, however, as illustrated in Figure 7, indicate that
the GW network’s detection range is advancing into cosmo-
logical volumes where FRB emissions are expected. This is
encouraging as we look forward to future GW searches at
higher sensitivity. Furthermore, the redshifts obtained from the
ongoing efforts to localize host galaxies (there are currently 18
FRBs with an associated host galaxy; see)’'® could signifi-
cantly improve the chances of constraining progenitor popula-
tions (Heintz et al. 2020; Bhandari et al. 2022).

The distance estimates for each FRB allowed us to place
90% upper limits on the GW energy emitted by each FRB
source, ESw’. For each nonrepeating FRB analyzed with a
generic transient search, we provided limits on Edw’ for a
range of emission models. Repeating FRBs were also analyzed
to determine 90% upper limits on the energy emitted through
GWs. For the most sensitive repeating FRB analysis in our
sample, we find an energy upper limit range of 5.83 x 10°* to
5.98 x 10% erg, well above the predictions for GW emissions
from the fundamental f-modes of NSs. Based on Equation (5),
an FRB event such as that associated with SGR 19354-2154
occurring during O3a would have allowed the search to probe
the more optimistic of these estimates allowing limits,
Egw ~ 10% erg, assuming a generic burst waveform emitting
at roughly 1 kHz at 10 kpc.

We also analyzed the repeater, FRB 20200120E, discovered
on 2020 January 20 during O3b. A RAVEN (Urban 2016;
Cho 2019) coincidence search for any previously detected
compact binary coalescence GW events was conducted within
a [—6000, +6000] s time window around the first burst of this
repeater. No coincidences were found with sufficient signifi-
cance to be distinguished from random coincidences, as
determined by the computed joint false-alarm rate from the
two samples.

A comparison of the expected volumetric rates is one avenue
to yield insights on possible associations between two transient
source populations. An analysis of the most recent Gravita-
tional Wave Transient Catalog 3 (GWTC-3 The LIGO
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Scientific Collaboration et al. 2021, 2023) has inferred
merger rates in the ranges 10-1700 Gpc > yr~ ' for BNS and
7.8-140 Gpc > yr~' for NSBH populations. These estimates
are significantly lower than estimates of the FRB rate
3.5537 x 10* Gpc > yr~! provided by Luo et al. (2020) for
sources above 10*ergs™. Based on these numbers, the
percentage of FRBs that could possibly be associated with
BNSs is at most 15%, and for NSBH sources, the percentage is
1%. As noted by Luo et al. (2020), if BNS and/or NSBH
sources were only associated with FRBs from the high end of
the luminosity function (>10* ergs™"), such rates could be
comparable.

However, there are a number of unknown factors that
complicate reconciling the GW and FRB source populations;
these include the proportion of FRBs that may repeat or the
possible effects of beaming (Ravi 2019; Connor et al. 2020).

Probing the local population of FRBs through targeted
searches, the strategy adopted in this study can constrain
associations between GW sources and FRBs. The distance
uncertainties in the FRB sample are a particular obstacle, and
ongoing efforts to identify FRB host galaxies (Chatterjee et al.
2017) could provide valuable prior information for FRBs
discovered within the BNS and/or NSBH detection range of
future searches.

CHIME/FRB is deploying a set of Outrigger telescopes
located at sufficient distances to allow autonomous very-long-
baseline interferometry on CHIME/FRB detected bursts
(Cassanelli et al. 2022; Mena-Parra et al. 2022). This
development promises subarcsecond localizations on hundreds
of FRBs per year allowing host galaxy identification and
redshift determination through optical follow-ups or through
cross matching of positional data with photometric galaxy
surveys (Shin et al. 2023). The resulting sample of FRBs at low
redshift will be a significant development for GW detection
networks, particularly as the sensitive volume increases with
future observation runs and should allow targeted searches to
obtain statistical evidence toward supporting or ruling out GW—
FRB associations.
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Table A1
The Upper Limits on the Energy Emitted through GWs in erg for the Generic Transient Search Using the SG Waveforms Described in Table 1

FRB Dy, SG SG SG SG SG SG SG SG

(Mpc) A B C D E F G H
FRB 20190410A 6.0 x 10 1.5 x 102 2.8 x 10° 4.9 x 107 4.1 x 107 5.5 x 10%* 5.4 x 10°° 3.0 x 10°° 1.1 x 10%7
FRB 201904198 2.5 x 10 2.6 x 107! 4.3 x 10°! 9.7 x 10°! 5.9 x 10°2 9.4 x 107 8.9 x 10°* 5.0 x 107 1.5 x 10°®

FRB 20190423B 5.8 x 10! 5.9 x 10”2 8.9 x 10°? 3.7 x 10°3 3.7 x 10°* 4.6 x 10 5.6 x 10°° 3.4 x 10°7 1.1 x 10°
FRB 20190425A 1.3 x 10! 2.5 x 10% 3.5 x 10 6.5 x 10%° 3.4 x 10°! 2.6 x 107 2.7 x 103 1.6 x 10> 7.9 x 10>

FRB 20190517C 4.4 x 10 5.8 x 10°! 8.8 x 10°! 22 x 107 1.3 x 10 2.3 x 10™ 2.1 x 107 9.8 x 107 3.5 x 10°°
FRB 20190518D 6.2 x 10 9.5 x 10°! 1.3 x 10 23 x 1072 9.5 x 10% 1.1 x 103 6.8 x 103 3.6 x 107 2.0 x 10°
FRB 20190531B 3.7 x 10 3.2 x 10°! 3.4 x 10! 7.9 x 10! 3.3 x 107 2.5 x 107 2.0 x 10°* 8.1 x 10°* 3.1 x 10
FRB 20190601C 2.0 x 10? 8.6 x 10”2 1.1 x 10% 1.6 x 107 6.3 x 10> 1.1 x 10 6.8 x 10% 4.8 x 10°° 1.5 x 10”7
FRB 20190604G 9.7 x 10 1.1 x 107 3.2 x 107 9.0 x 107 3.7 x 10°* 8.7 x 107 7.5 x 10°° 3.2 x 10”7 1.2 x 10°%
FRB 20190605C 6.8 x 10! 3.0 x 10°? 2.8 x 10”2 1.0 x 103 5.2 x 107 8.7 x 10°* 9.4 x 10% 5.2 x 10°° 1.6 x 10”7
FRB 20190606B 1.7 x 10% 1.7 x 107 13 x 107 2.7 x 107 8.2 x 10°° 1.1 x 107 9.6 x 10> 3.6 x 10°° 1.4 x 10”7
FRB 20190612B 6.5 x 10! 8.2 x 10°! 8.5 x 10°! 1.5 x 107 7.3 x 102 8.0 x 107 7.0 x 10%* 3.7 x 10 3.6 x 10°°
FRB 20190613B 2.8 x 10! 1.2 x 10°! 1.0 x 10°! 22 x 10°! 1.3 x 10”2 9.3 x 107 7.4 x 107 42 x 10™ 1.8 x 107
FRB 20190616A 1.1 x 10? 1.9 x 10% 2.1 x 10 6.9 x 10% 3.1 x 10°* 3.5 x 107 5.1 x 10%¢ 2.8 x 10%7 8.2 x 10°7
FRB 20190617A 6.2 x 10 9.5 x 10°! 1.3 x 10”2 2.4 x 107 9.2 x 10”2 9.2 x 107 8.3 x 10°* 42 x 10 8.8 x 10°°
FRB 20190618A 7.8 x 10 6.0 x 10°! 7.7 x 10! 1.7 x 1072 7.0 x 103 6.8 x 107 5.9 x 103 3.0 x 107 1.4 x 10
FRB 20190621A 7.8 x 10" 1.1 x 107 12 x 107 4.6 x 107 1.5 x 10°* 5.4 x 107 6.5 x 10°° 1.7 x 1077 4.9 x 10”7
FRB 20190624B 4.7 x 10! 1.3 x 102 1.9 x 1072 4.2 x 107 1.7 x 107 2.9 x 10> 2.3 x 107 1.5 x 10°° 8.3 x 10°°
FRB 20190710A 8.9 x 10! 1.1 x 102 1.6 x 10”2 2.3 x 1072 1.0 x 10 9.4 x 107 7.6 x 10> 3.3 x 107 1.4 x 10°°

FRB 20190713A 1.4 x 10? 1.2 x 103 1.6 x 107 43 x 107 2.3 x 10 42 x 10% 4.4 x 10°° 2.2 x 10%7 6.7 x 10”7
FRB 20190718A 7.2 x 10 1.1 x 107 1.1 x 102 2.8 x 1072 1.1 x 107 1.1 x 10°* 7.7 x 10°* 3.1 x 107 1.2 x 10°°
FRB 20190722A 9.8 x 10! 7.0 x 107 1.3 x 103 5.0 x 10% 3.3 x 10°* 5.4 x 10% 4.0 x 10%° 1.6 x 1077 9.6 x 107
FRB 20190812A 1.9 x 10? 3.7 x 10°? 4.1 x 107 9.9 x 1072 43 x 107 43 x 10% 3.7 x 10°° 1.6 x 10%° 5.8 x 10°°
FRB 20190903A 6.7 x 10! 9.0 x 10 9.8 x 102 5.0 x 103 4.4 x 10 5.5 x 10% 7.4 x 10%¢ 3.4 x 10%7 9.2 x 10”7
FRB 20190912A 9.8 x 10 1.2 x 107 2.0 x 107 7.9 x 107 4.6 x 10°* 1.0 x 10°° 8.1 x 10°° 3.8 x 10”7 1.7 x 10°®

FRB 20190912B 23 x 10 7.1 x 10 9.1 x 103 1.7 x 10°! 8.1 x 10°! 6.9 x 102 7.1 x 103 3.9 x 103 1.5 x 107
FRB 20190922A 6.6 x 10 5.1 x 1072 7.7 x 107 3.1 x 107 1.5 x 103 2.4 % 10 2.8 x 10 1.5 x 10”7 47 % 10”7
FRB 20190928A 2.0 x 10 9.9 x 10%° 1.1 x 10°! 2.3 x 10°! 9.2 x 10°! 1.1 x 107 8.2 x 10°* 3.7 x 10°* 1.4 x 10%

FRB 20190929B 1.5 x 10? 2.9 x 107 3.9 x 1072 6.7 x 1072 3.4 x 10° 2.8 x 10% 2.6 x 107 1.2 x 10°° 4.0 x 10°°

Note. The distances represent the lower bounds of 90% credible intervals from the MCMC inference described in Section 3.
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Table A2
The Upper Limits on the Energy Emitted through GWs in erg for the Generic Transient Search Using the DS2P and WNB Waveforms Described in Table 1
FRB Dy DS2P DS2P WNB WNB WNB WNB
(Mpc) A B A B C D

FRB 20190410A 6.0 x 10" 2.0 x 10°° 1.8 x 10°° 1.2 x 107 9.5 x 10°2 3.4 x 10°* 1.0 x 10
FRB 20190419B 2.5 x 10! 44 x 10 3.0 x 107 1.6 x 10°* 1.8 x 10 6.0 x 10 1.7 x 10°*
FRB 20190423B 5.8 x 10 24 x 10°7 2.6 x 1077 2.8 x 10° 3.0 x 107 1.4 x 10® 3.6 x 10°
FRB 20190425A 1.3 x 10 1.7 x 10°° 46 x 10°* 48 x 10°° 7.9 x 10°° 1.4 x 10> 4.7 x 10°*
FRB 20190517C 44 % 10" 6.7 x 10° 5.8 x 107 24 x 10°* 3.1 x 107 1.4 x 10°* 7.3 x 10°*
FRB 20190518D 6.2 x 10' 6.7 x 10° 1.1 x 10°° 2.0 x 10°2 2.6 x 107 5.8 x 107 1.7 x 10>
FRB 20190531B 3.7 x 10" 5.8 x 10°* 6.4 x 10°* 5.7 x 10°! 8.6 x 10°! 1.4 x 10 5.6 x 107
FRB 20190601C 2.0 x 107 5.5 x 10°° 8.3 x 10 1.2 x 109 1.6 x 10% 3.4 x 10 8.6 x 10°
FRB 20190604G 9.7 x 10 1.9 x 10”7 1.6 x 10”7 49 x 10°* 1.5 x 10°° 3.4 x 10°°
FRB 20190605C 6.8 x 10" 24 x 10°° 1.7 x 10°° 3.5 x 107 1.6 x 107 6.2 x 10°* 1.8 x 10°°
FRB 20190606B 1.7 x 10° 5.7 x 10°° 9.9 x 10° 3.6 x 107 2.0 x 107 47 x 10°* 1.3 x 10
FRB 20190612B 6.5 x 10" 6.2 x 10%° 1.1 x 10°® 1.3 x 102 2.1 x 102 3.7 x 107 12 x 10>
FRB 20190613B 2.8 x 10" 62 x 10°* 1.1 x 107 1.6 x 10°! 25 x 10°! 5.4 x 10> 1.6 x 10°
FRB 20190616A 1.1 x 10? 22 x 10°7 2.7 x 10”7 1.1 x 10> 73 x 107 24 x 10 1.4 x 10>
FRB 20190617A 6.2 x 10' 3.6 x 10°° 5.1 x 10% 3.3 x 10°* 2.7 x 10 3.9 x 10™ 1.6 x 10>
FRB 20190618A 7.8 x 10" 44 x 10 7.0 x 107 9.9 x 10°! 1.8 x 10 3.6 x 10 1.2 x 10°*
FRB 20190621A 7.8 x 10" 1.1 x 10° 4.8 x 10°° 9.3 x 107 2.8 x 10 5.9 x 107
FRB 20190624B 47 % 10" 1.9 x 10°° 3.6 x 10°° 2.8 x 10°2 44 x 10°2 1.0 x 10 3.7 x 10°*
FRB 20190710A 8.9 x 10 39 x 10°° 43 x 107 1.7 x 10™ 2.6 x 107 5.6 x 107 1.6 x 10°*
FRB 20190713A 1.4 x 10* 23 x 10°7 3.7 x 1077 3.1 x 107 50 x 10° 1.5 x 10 44 x 10
FRB 20190718A 7.2 x 10" 3.7 x 107 6.1 x 107 1.7 x 10 23 x 10°? 4.6 x 107 1.4 x 10°*
FRB 20190722A 9.8 x 10' 1.1 x 10”7 8.0 x 10%° 92 x 10° 2.7 x 10° 8.2 x 10% 1.8 x 10°°
FRB 20190812A 1.9 x 10? 27 x 10°° 5.3 x 10% 8.2 x 10° 1.1 x 10% 2.4 % 10%* 7.1 x 10°*
FRB 20190903A 6.7 x 10" 1.1 x 10”7 7.3 x 10°° 5.0 x 107 3.6 x 10° 1.7 x 10 45 x 10°°
FRB 20190912A 9.8 x 10" 2.0 x 10%7 1.5 x 10%7 7.9 x 10° 6.6 x 10° 2.9 x 10% 8.9 x 10
FRB 20190912B 2.3 x 10! 7.6 x 10°* 1.4 x 10% 1.4 x 10! 1.7 x 10°! 43 x 1072 12 x 103
FRB 20190922A 6.6 x 10" 22 x 10°7 3.2 x 10”7 1.5 x 10°* 42 x 10° 1.5 x 10 3.9 x 10°°
FRB 20190928A 2.0 x 10 6.2 x 10°* 1.1 x 10 1.8 x 10°! 2.6 x 10°! 43 x 10> 1.7 x 10
FRB 201909298 1.5 x 10 1.4 x 10° 3.0 x 10%° 6.6 x 10°2 7.3 x 10° 1.8 x 10°* 47 x 10°*

Note. The distances represent the lower bounds of 90% credible intervals from the MCMC inference described in Section 3.

Table A3
As for Table Al but with Distances Based on the Upper Bounds of 90% Credible Intervals on the Luminosity Distance
FRB Dy SG SG SG SG SG SG SG SG
(Mpc) A B C D E F G H

FRB 20190410A 9.6 x 107 3.9 x 10°* 7.2 x 10°* 1.2 x 10° 1.0 x 10°° 1.4 x 10”7 1.4 x 10°® 75 x 10°® 2.7 x 10°°
FRB 20190419B 5.8 x 107 1.4 x 10°* 23 x 10°* 5.2 x 10°* 3.2 x 107 5.1 x 10°° 4.8 x 107 2.7 x 10°® 8.0 x 10%
FRB 20190423B 1.7 x 10° 5.1 x 10°° 7.7 x 10 3.2 x 10°° 3.2 x 10”7 4.0 x 10° 49 x 10% 2.9 x 10%° 9.4 x 10%°
FRB 20190425A 3.9 x 10° 24 x 107 3.3 x 107 6.1 x 10° 3.2 x 10°* 24 x 10°° 2.5 x 10°° 1.6 x 10”7 7.5 x 10”7
FRB 20190517C 1.0 x 10° 3.1 x 10°* 4.7 x 10°* 1.2 x 10™ 6.8 x 10> 1.2 x 10”7 1.1 x 10°® 53 x 10°® 1.9 x 10™
FRB 20190518D 8.5 x 107 1.8 x 10> 24 x 10°* 44 x 10°* 1.8 x 10% 2.0 x 10°° 1.3 x 10”7 6.9 x 10”7 3.8 x 10°
FRB 20190531B 6.8 x 10° 1.0 x 10°* 1.1 x 10°* 2.6 x 10°* 1.1 x 10> 82 x 10™ 6.7 x 10°° 2.7 x 10”7 1.0 x 10°®
FRB 20190601C 1.7 x 10° 6.6 x 10°* 8.3 x 10°* 1.2 x 10 4.8 x 10 8.2 x 10°° 5.2 x 1077 3.6 x 10°% 1.1 x 10°°
FRB 20190604G 1.1 x 10° 1.5 x 10 4.5 x 10 1.3 x 10°° 5.1 x 10°° 1.2 x 10 1.0 x 10™ 4.5 x 10° 1.6 x 10%
FRB 20190605C 8.9 x 107 5.1 x 10°* 49 x 10°* 1.7 x 10 8.9 x 10™ 1.5 x 10”7 1.6 x 10°® 8.9 x 10°® 2.7 x 10°°
FRB 20190606B 1.5 x 10° 1.3 x 10 9.6 x 10°* 2.0 x 10° 6.2 x 10° 8.3 x 10°° 7.3 x 1077 2.7 x 10°® 1.0 x 10°°
FRB 20190612B 9.2 x 107 1.7 x 10> 1.7 x 10 3.1 x 10°* 1.5 x 10 1.6 x 10°° 1.4 x 1077 74 x 1077 7.3 % 10°®
FRB 20190613B 7.8 x 10? 9.7 x 10° 8.2 x 10™ 1.8 x 10™ 1.0 x 10> 74 x 10°° 5.8 x 10°° 3.4 x 10”7 1.4 x 10°®
FRB 20190616A 1.1 x 10° 2.1 x 10 24 x 10® 7.6 x 10° 3.4 x 10°° 3.9 x 10°7 5.6 x 10° 3.1 x 107 9.0 x 10°°
FRB 20190617A 8.7 x 107 1.9 x 10°* 2.5 x 10°* 47 x 10°* 1.8 x 10 1.8 x 10°° 1.6 x 10°7 8.2 x 10”7 1.7 x 10°®
FRB 20190618A 9.6 x 107 9.1 x 10° 1.2 x 10°* 2.6 x 10°* 1.1 x 10 1.0 x 10°° 9.0 x 10°® 45 x 10°7 2.1 x 10°®
FRB 20190621A 9.8 x 107 1.7 x 10% 2.0 x 10 7.2 % 10°° 2.3 x 10° 8.4 x 10%7 1.0 x 10%° 2.6 x 10% 7.7 x 10%°
FRB 20190624B 8.2 x 107 4.0 x 10°* 5.8 x 10°* 1.3 x 10 5.1 x 10 8.9 x 10°° 7.0 x 10”7 4.6 x 10°8 2.5 x 10°
FRB 20190710A 1.0 x 10° 1.4 x 10> 2.0 x 10°* 2.9 x 10°* 1.2 x 10 1.2 x 10> 9.5 x 10°° 4.1 x 10°7 1.7 x 10°®
FRB 20190713A 1.4 x 10° 1.2 x 10% 1.6 x 10 44 x 10 2.4 x 10°° 44 x 10°7 4.6 x 10% 22 x 10% 6.9 x 10°°
FRB 20190718A 9.7 x 107 2.0 x 10°* 2.1 x 10°* 5.1 x 10°* 2.0 x 10 1.9 x 10°° 1.4 x 10”7 5.8 x 10”7 23 x 10°®
FRB 20190722A 1.1 x 10° 9.4 x 10°* 1.7 x 10 6.7 x 10° 4.4 x 10%° 7.2 x 10°7 53 x 10° 22 x 10% 1.3 x 10%
FRB 20190812A 1.4 x 10° 2.0 x 10%* 22 x 10°* 53 x 10°* 2.3 x 10% 23 x 10°° 2.0 x 10%7 8.7 x 10°7 3.1 x 10°
FRB 20190903A 9.3 x 10? 1.7 x 10> 1.9 x 10 9.6 x 10°° 8.4 x 10°° 1.0 x 10°® 1.4 x 10°° 6.5 x 10™° 1.8 x 10
FRB 20190912A 1.1 x 10° 1.5 x 107 2.5 x 10 9.9 x 10°° 5.8 x 10°° 1.2 x 10°® 1.0 x 10* 4.7 x 10°° 2.2 x 109
FRB 20190912B 4.9 x 107 3.2 x 107 4.1 x 10> 7.7 x 10°3 3.7 x 10°* 3.1 x 10°° 3.3 x 10°® 1.8 x 10°7 6.7 x 10°7
FRB 20190922A 9.6 x 107 1.1 x 10 1.6 x 10 6.6 x 10°° 3.2 x 10°° 5.0 x 10°7 5.9 x 10° 32 x 10™ 9.8 x 10°°
FRB 20190928A 5.1 x 107 6.1 x 10> 6.9 x 107 1.5 x 10> 5.7 x 10°* 6.6 x 10°° 5.1 x 10°® 23 x 10”7 8.4 x 1077
FRB 20190929B 1.5 x 10° 3.0 x 10°* 4.1 x 10°* 7.1 x 10°* 3.6 x 10 3.0 x 10°° 2.8 x 10”7 1.3 x 10°® 42 x 10°®
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Table A4
As for Table A2 but with Distances Based on the Upper Bounds of 90% Credible Intervals on the Luminosity Distance
FRB Dy DS2P DS2P WNB WNB WNB WNB
(Mpc) A B A B C D

FRB 20190410A 9.6 x 10% 5.0 x 10°® 45 x 10° 3.2 x 10 2.4 x 107 8.6 x 10 25 % 10”7
FRB 20190419B 5.8 x 10% 2.3 x 10%® 1.6 x 103 8.3 x 10 9.5 x 103 3.2 x 10% 9.0 x 10
FRB 20190423B 1.7 x 10° 2.1 x 109 2.2 x 109 2.4 x 10°° 2.6 x 10°° 1.2 x 10°® 32 x10°8
FRB 20190425A 3.9 x 10? 1.6 x 10%° 4.4 x 10”7 45 x 107 7.4 x 10 1.3 x 107 4.4 x 107
FRB 20190517C 1.0 x 10° 3.6 x 108 3.2 x 10 1.3 x 10° 1.7 x 10 7.5 x 103 4.0 x 10”7
FRB 20190518D 8.5 x 10? 1.3 x 10°® 2.1 x 10°® 3.7 x 10°* 4.9 x 10> 1.1 x 10°° 3.2 x 10°°
FRB 20190531B 6.8 x 10% 1.9 x 1077 2.1 x 1077 1.9 x 10°* 2.9 x 10 4.5 x 10% 1.8 x 10°°
FRB 20190601C 1.7 x 103 42 x 10°® 6.4 x 10° 9.4 x 10> 1.2 x 10% 2.6 x 10°° 6.6 x 10°°
FRB 20190604G 1.1 x 10° 2.6 x 10% 2.2 x 10% 6.8 x 10°° 2.0 x 10 4.7 x 10
FRB 20190605C 8.9 x 107 4.1 x 10°® 2.9 x 10° 5.9 x 10% 2.7 x 10% 1.1 x 10”7 3.0 x 10°7
FRB 20190606B 1.5 x 10° 43 x 10° 7.5 % 10% 27 x 10% 1.5 x 10% 3.6 x 103 9.7 x 10°
FRB 20190612B 9.2 x 10% 1.3 x 10°® 2.2 x 109 2.7 x 107 42 x 10%* 7.5 x 107 2.5 x 10°°
FRB 20190613B 7.8 x 10° 4.9 x 10”7 8.9 x 1077 1.3 x 10°* 2.0 x 103 43 x 10 1.3 x 10
FRB 20190616A 1.1 x 10° 2.4 x 107 3.0 x 10 1.2 x 10°° 8.0 x 107 2.6 x 10”7 1.6 x 10°%
FRB 20190617A 8.7 x 107 7.1 x 10°7 1.0 x 108 6.4 x 10> 5.3 x 10°* 7.7 x 107 3.2 x 10°°
FRB 20190618A 9.6 x 10% 6.7 x 10°7 1.1 x 10°® 1.5 x 107 2.7 x 10°* 5.4 x 107 1.8 x 10°°
FRB 20190621A 9.8 x 10% 1.8 x 10% 7.6 x 108 1.5 x 10 4.4 x 1077 9.2 x 10”7
FRB 20190624B 8.2 x 10? 5.9 x 10°® 1.1 x 10® 8.5 x 10°* 1.4 x 10% 3.1 x 10°° 1.1 x 10”7
FRB 20190710A 1.0 x 10° 4.8 x 10”7 5.4 x 1077 2.1 x 10%* 3.2 x 10 6.9 x 10% 2.0 x 10%°
FRB 20190713A 1.4 x 10° 2.4 x 10” 3.8 x 10 3.2 x 10 5.2 x 10” 1.6 x 10”7 45 x 10”7
FRB 20190718A 9.7 x 10? 6.7 x 10°7 1.1 x 10 3.2 x 1074 42 x 107 8.4 x 10% 2.6 x 10°°
FRB 20190722A 1.1 x 10° 1.5 x 10% 1.1 x 10% 1.2 x 10°® 3.6 x 10°° 1.1 x 10°® 23 x 10°®
FRB 20190812A 1.4 x 10° 1.4 x 10> 2.8 x 103 4.4 x 10™ 6.1 x 103 1.3 x 10> 3.8 x 10%°
FRB 20190903A 9.3 x 10% 2.1 x 10% 1.4 x 10% 9.6 x 107 7.0 x 107 3.3 x 107 8.7 x 10”7
FRB 20190912A 1.1 x 103 2.5 x 10” 1.8 x 10% 9.9 x 10% 8.2 x 10 3.7 x 10°7 1.1 x 10°
FRB 20190912B 49 x 10? 3.5 x 10°7 6.4 x 1077 6.5 x 107 7.9 x 107 2.0 x 10 53 x 107
FRB 20190922A 9.6 x 10? 4.7 x 10% 6.7 x 10% 3.2 x 10°° 8.8 x 107 3.1 x 10°7 8.3 x 10°7
FRB 20190928A 5.1 x 10? 3.8 x 10”7 7.1 x 10”7 1.1 x 10> 1.6 x 10°* 2.6 x 107 1.1 x 10°°
FRB 20190929B 1.5 x 10° 1.5 x 10 3.1 x 10°® 7.0 x 10> 7.8 x 10°* 1.9 x 10 5.0 x 10%°
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