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Abstract. We introduce a tracking evasion game comprising a single
mobile pursuer, two mobile trackers and one static high value target.
The trackers rely on individual measurements of the location of the tar-
get using, for instance, their individual distance to the target and are
assumed to be slower than the pursuer. The pursuer seeks to minimize
the square of the instantaneous distance to one of the trackers, while the
trackers aim to jointly maximize a weighted combination of the deter-
minant of the Fisher Information Matrix and the square of the distance
between the pursuer and the tracker being pursued. This formulation
models the objective of the trackers which is to maximize the informa-
tion gathered about the target, while delaying capture. We show that
the optimization problem for the trackers can be transformed into a
Quadratically Constrained Quadratic Program. We then establish that
the game admits a Nash equilibrium in the space of pure strategies and
provide several numerical insights into the trajectories and the payoff of
the mobile agents. Finally, we outline how this work can be generalized
to the case of multiple trackers and multiple targets.

Keywords: Pursuit Evasion · Game Theory · Target Tracking.

1 Introduction

The decreasing cost and increasing capabilities of Unmanned Aerial Vehicles
(UAVs) have led to their widespread use in many applications such as environ-
mental monitoring, surveillance and defense [3,19]. However, ease of access to
UAV technology has found adversarial use [23]. A commonly reported adversar-
ial application is deploying multiple adversarial UAVs (or intruders) to breach a
perimeter [27,2]. In most of the works on perimeter defense, it is assumed that
the location of the perimeter is known to the adversary, which may not be true
in all applications. For instance, the location of a high value defense/research
facility (target/perimeter) is not precisely known to the adversary. In such sce-
narios, prior to deploying intruders to breach the perimeter, the adversary will
typically obtain the estimates of the location of the facility by deploying ad-
versarial UAVs (or trackers) equipped with some low cost range sensor [5]. To
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tracking process, many works [16,4,30,31,24] have focused on identifying such
geometries and motion strategies that optimize the tracking performance such
as the determinant of the Fisher Information Matrix (FIM) or the trace of the es-
timation error covariance of the EKF. Tracking based on metrics of observability
have also been considered [9,21,22].

All of the above mentioned works only focus on determining optimal tra-
jectories for the trackers to optimize a certain tracking performance, but do
not consider the presence of a pursuer. Authors in [14] design strategies for the
pursuers to optimize the tracking performance while maintaining a desired for-
mation. In [25], an adaptive sampling approach is considered to track mobile
targets and maintain them in the őeld of view. Authors in [1] propose an algo-
rithm based on rapidly exploring random trees for pursuers to detect and track
a target.

Pursuit of mobile agents (or evaders) in the presence of a target has been
extensively studied as a differential game known as Target-Attacker-Defender
(TAD) games [29,12,10,11]. In these works, the attacker tries to capture a target
while simultaneously evading a defender. The objective in these works is to
determine optimal cooperative strategies for the the target and the defender
to delay the time taken to capture or evade the attacker. This paper differs
from the aforementioned TAD games as the trackers do not seek to capture
the target. Instead, through the measurements obtained, the trackers aim to
maximize the information gathered about the target while, evading the pursuer.
Another variant of pursuit evasion games is pursuit tracking [26,18,32] where the
objective of the pursuer is to track the evader by maintaining a őxed distance
or Line of Sight to it. In contrast, in this work, the pursuer seeks to capture the
trackers which are tracking a static target.

1.2 Preliminaries and Contributions

Recall that one of the objectives of the trackers is to maximize the informa-
tion obtained from the set of range measurements to the target. This motivates
the use of Fisher Information Matrix (FIM). The FIM is a symmetric, positive
deőnite matrix that characterizes the amount of information provided by the
measurements for the position of the target that is to be estimated. In other
words, by moving to locations that provide the highest information, the track-
ers aim to improve the outcome of the estimation process. Maximizing the FIM
can be achieved by maximizing a real-valued scalar function (or a metric) of
the FIM. The most commonly used metrics are the trace, determinant and the
eigenvalues of the FIM, also known as the A-optimality, D-optimality and E-
optimality criteria, respectively [28]. Although the trace of the FIM is easy to
compute, we consider the determinant as a metric to be maximized by the track-
ers. This is because the trace of FIM may be non zero even when the FIM is
singular, implying that optimizing the trace of the FIM can result in singular
conőgurations.

In this paper, we seek to understand the role of a pursuer in tracking prob-
lems. Equivalently, we aim to understand how the cost of evasion combined with
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the tracking cost affects the trajectories, and consequently, the payoff of the
trackers. In particular, we consider an instantaneous two player zero sum game
between the pursuer and the trackers wherein the pursuer seeks to minimize the
(square of) distance to one of the trackers at every time instant whereas the
trackers aim to jointly maximize a weighted combination of the determinant of
the FIM at every time instant and the distance from the pursuer. Our main
contributions are as follows:

1. Tracking-Pursuit Game with a target: We introduce a tracking-pursuit
problem, modelled as a zero sum game, in a planar environment which con-
sists of a single mobile pursuer, two mobile trackers and a single static tar-
get. For ease of presentation, we assume that the tracking agents can only
measure the distance to the target and are assumed to be slower than the
pursuer. At every time instant, the pursuer aims to minimize the square of
the distance to a tracker, whereas the trackers aim to jointly maximize a
weighted combination of the determinant of the FIM and the square of the
distance to the pursuer from the nearest tracker. The game terminates when
the pursuer captures a tracker.

2. Computing Nash Equilibrium Strategies: We őrst establish the opti-
mal strategy for the pursuer. Although the payoff for the trackers is a non-
convex function, we show that the optimization problem can be converted
to a Quadratically Constrained Quadratic Program (QCQP). We further es-
tablish that the optimal strategies obtained for the pursuer and the trackers
form a Nash equilibrium of this game.

3. Numerical Insights: We provide several numerical examples highlighting
the trajectories of the mobile agents and the affect on the instantaneous
payoff. In particular, we show that due to the presence of pursuer the deter-
minant of the FIM achieves a lower value. We also show, through one of the
examples, that the pursuer can capture a tracker even when the tracker is
faster than the pursuer.

4. Extension to multiple trackers and targets: Finally, we thoroughly
describe how this work extends to the scenarios when there are multiple
trackers or multiple targets.

This paper is organized as follows. Section 2 comprises the formal problem
deőnition. In section 3, we derive optimal strategies for the pursuer and the
trackers, Section 4 provides several numerical insights into the problem and
Section 5 describes the extension of this work to the case of multiple targets and
trackers. Finally, Section 6 summarizes this work and outlines future directions
for this work.

2 Problem Description

We consider a tracking evasion problem in a planar environment which consists
of a single static target, a single mobile pursuer and two mobile trackers. We
denote the two trackers as E1 and E2, respectively (cf. Fig. 2). Each mobile
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the target, we replace s by its estimate ŝ which is obtained from a centralized
EKF. Thus, we obtain the determinant of the FIM as
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where X̂t
i = ŝx − etx,i and Ŷ t

i = ŝy − ety,i for all i ∈ {1, 2}. Note that the
determinant of the FIM for a single tracker is equal to zero implying that the
conőguration is always singular in the case of one tracker.

At the őrst time instant (t = 1), the pursuer selects the tracker which is
closest to the pursuer. This selection is characterized by α ∈ {0, 1}. Speciőcally,
if tracker E1 is closest to the pursuer, then α = 1. Otherwise, α = 0. The
pursuer, then selects its control, ut, such that the square of the distance to
the selected tracker is minimized at every time instant t ≥ 1. On the other
hand, the trackers jointly select their control at every time instant t ≥ 1 to
maximize a weighted combination of the determinant of the FIM and the square
of the distance between the selected tracker and the pursuer. We assume that
the trackers have information of the location of the pursuer and thus, the choice
of α is known to the trackers. Since the two trackers jointly maximize the payoff,
we model the interaction between the trackers and the pursuer as a two player
zero sum game with the payoff, at time instant t+ 1, deőned as

J(vt1, v
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t) = det(f(ŝ, et1, e
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2)) + δ(α∥et1 + vt1 − pt − ut∥2+

(1− α)∥et2 + vt2 − pt − ut∥2),
(3)

where δ ∈ R is a őxed weight associated with the evasion cost (distance between
the pursuer and the selected tracker) and is assumed to be known by all agents.
The game terminates when the pursuer captures the selected tracker since the
determinant of the FIM is always zero for one tracker. We use tf to denote the
time instant when the game terminates.
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We now provide two deőnitions that will be helpful in establishing our main
result in Section 3.

Deőnition 1 (Best Response). For a two player zero sum game with the
payoff deőned as J(γ, σ), the strategy γ∗ ∈ Γ1 for player 1 (minimizer) is called
the best response to player 2’s (maximizer) strategy σ ∈ Γ2 if the following holds

J(γ∗, σ∗) ≤ J(γ, σ∗), ∀γ ∈ Γ1.

Note that the best response for the maximizer can be analogously deőned.

Deőnition 2 (Nash Equilibrium). Given a strategy γ ∈ Γ1 for player 1 and
a strategy σ ∈ Γ2 for player 2 in a two player zero sum game with the payoff
J(γ, σ), the pair of strategies (γ∗, σ∗) is said to be a saddle-point equilibrium
strategy if the following holds.

J(γ∗, σ) ≤ J(γ∗, σ∗) ≤ J(γ, σ∗), ∀γ ∈ Γ1, σ ∈ Γ2. (4)

Observe that equation (4) in Deőnition 2 can be rewritten as [13]

J(γ∗, σ∗) = min
γ∈Γ1

J(γ, σ∗), and J(γ∗, σ∗) = max
σ∈Γ2

J(γ∗, σ),

implying that the pair of strategies (γ∗, σ∗) form a Nash equilibrium if γ∗ (resp.
σ∗) is the best response to σ∗ (resp. γ∗).

We now formally state our objective for the above model.

Problem 1. The aim of this work is to determine saddle-point strategies ut∗ ∈ R
2
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holds subject to the individual agents maximum speed constraints, i.e.,

∥ut∥ ≤ 1, ∥vt1∥ ≤ µ1 < 1, ∥vt2∥ ≤ µ2 < 1.

For the problem to be well-posed, we make the following assumption.

Assumption 1 (EKF Convergence) There exists a time instant te < tf at
which the estimates obtained by the trackers are equal to the true location of the
target, i.e., ||ŝ− s|| = 0, ∀t ≥ te.

3 Optimal Strategies

In this section, we determine the optimal strategies for the pursuer and the
trackers. We start with the optimal strategy of the pursuer followed by that of
the trackers.
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3.1 Optimal Strategy of the Pursuer

Without loss of generality, let α = 1 at the őrst time instant and suppose that vt1
was known to the pursuer. Then, the pursuer solves the following optimization
problem.

min
ut

δ(∥et1 + vt1 − pt − ut∥)2, (5)

subject to ∥ut∥ ≤ 1

where we used the fact that the term det(f(ŝ, et1, e
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2)) is not a function of

the pursuer’s control ut. It follows directly that the solution to the optimization
problem (5) is

ut∗(vt1) =
et1 + vt1 − pt

∥et1 + vt1 − pt∥
,

meaning that the pursuer moves directly towards the őrst tracker, E1, with unit
speed as long as the tracker’s position at time instant t+ 1, i.e., et1 + vt1, is not
within a unit distance from the current position of the pursuer. Otherwise, the
optimal pursuer strategy is et1 + vt1 − pt, implying that the tracker is guaranteed
to be captured (evasion cost is zero) at time instant t + 1 = tf . This further
implies that the trackers will move only to maximize the determinant of FIM at
time instant t = tf − 1 as tracker E1 is guaranteed to be captured at time t+1.

Thus, the optimal strategy for the pursuer at every time instant t < tf − 1 is

ut∗(vt1, v
t
2) =







et
1
+vt

1
−pt

∥et
1
+vt

1
−pt∥

, if α = 1,
et
2
+vt

2
−pt

∥et
2
+vt

2
−pt∥

, otherwise.
(6)

Further, the optimal strategy for the pursuer at time instant t = tf − 1 is

ut∗(vt1, v
t
2) =

{

et1 + vt1 − pt, if α = 1,

et2 + vt2 − pt, otherwise
(7)

if ∥et1 + vt1 − pt∥ < 1 (resp. ∥et2 + vt2 − pt∥ < 1) for α = 1 (resp. α = 0). Oth-
erwise, the optimal strategy for the pursuer at time instant tf − 1 is given by
equation (6). Note that although we assumed that vti , ∀i ∈ {1, 2} was known to
the pursuer, in reality, the pursuer does not have this information. This means
that the optimal strategy deőned in (6) is an anticipatory strategy of the pur-
suer based on the belief of the trackers’ strategy. As will be clear from the next
subsection, we use the optimal strategy, ut∗(vt1, v

t
2), of the pursuer to determine

the optimal state-feedback strategies of the trackers vt
∗

1 and vt
∗

2 . Substituting
vt

∗

1 and vt
∗

2 into (6) implies that ut∗ is a state-feedback strategy.
In the next section, we determine the optimal strategies of the trackers. Since

maximizing only the determinant of the FIM has been extensively studied [16],
we only focus on the case that the position of the tracker being pursued at time
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instant tf − 1 is more than a unit distance from the current position of the
pursuer. In other words, the pursuer’s optimal strategy is given by equation (6)
at time tf −1. Note that the optimal strategy of the pursuer for any time instant
t < tf − 1 is given by equation (6). Further, for ease of presentation, we drop
the dependency on time from the notations in the next subsection.

3.2 Optimal Strategies of the Trackers

For a given value of α, the trackers jointly solve the following optimization
problem.

max
v1,v2

det(f(ŝ, e1, e2, v1, v2)) + δ(∥e1 + v1 − p− u∥)2

subject to ∥v1∥ ≤ µ1, ∥v2∥ ≤ µ2,

where, without loss of generality, we assumed that α = 1. Substituting u∗(v1, v2)
from equation 6 as well as the expression of the determinant yields

max
v1,v2

1

σ2
ν Ŝ

2
1 Ŝ

2
2
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(X̂1 − vx,1)(Ŷ2 − vy,2)−(Ŷ1 − vy,1)(X̂2 − vx,2)
)2

+

δ(∥e1 + v1 − p∥ − 1)2,

subject to ∥v1∥ ≤ µ1, ∥v2∥ ≤ µ2.

(8)

Although the constraints are convex, the objective is a non-convex function of
vi, ∀i ∈ {1, 2} and thus, computing a global maximizer is difficult. In what fol-
lows, we show that this optimization problem is equivalent to solving a quadrat-
ically constrained quadratic program (QCQP) [6].

For ease of presentation, we use the following notation in the next result.
Let V =

[

vx,1 vy,1 vx,2 vy,2 vx,1vy,2 vx,2vy,1
]′
∈ R

6 and let
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1 Ŝ
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)2
.

Lemma 1. Suppose α = 1 and let m = ∥e1 + v1 − p∥. Then, the optimization
problem deőned in (8) is equivalent to solving a QCQP given by

max
Ṽ

Ṽ ′PṼ

subject to

Ṽ ′Qj Ṽ ≤ 0, ∀j ∈ {1, 2}

Ṽ ′FṼ = 0,

Ṽ ′M1Ṽ = 0,

Ṽ ′LgṼ = 0, ∀g ∈ {1, . . . , 10}

Ṽ8 = 1,

(9)
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where Ṽ ≜
[

V ′ m 1 zV ′ zvx,1vx,2 zvy,1vy,2 z
]′
∈ R

17, Ṽk denotes the kth en-

try of vector Ṽ and the matrices P,M1, Qj , ∀j ∈ {1, 2} and Lg, ∀g ∈ {1, . . . , 10}
are as deőned in the Appendix.

Proof. By replacing ∥e1 + v1 − p∥ by m, the optimization problem deőned in (8)
can be rewritten as

max
v1,v2,m,z

1

σ2
ν

z2 + δ(m− 1)2

subject to ∥v1∥ ≤ µ1, ∥v2∥ ≤ µ2, m2 = ∥e1 + v1 − p∥2,
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− z2Ŝ2
1 Ŝ
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2 = 0.

Observe that the optimization problem is now a polynomial in the original opti-
mization variables and the additional variables z and m. By adding some extra
variables corresponding to the terms that are polynomial in the optimization
variables vx,i and vy,i, ∀i ∈ {1, 2}, we now convert the aforementioned optimiza-
tion problem into a QCQP.

Let V =
[

vx,1 vy,1 vx,2 vy,2 vx,1vy,2 vx,2vy,1
]′

∈ R
6. Then, we deőne a

vector of optimization variables Ṽ ∈ R
17 as

Ṽ =
[

V ′ m 1 zV ′ zvx,1vx,2 zvy,1vy,2 z
]′
.

Taking the square on both sides of the norm constraints, the above optimiza-
tion problem yields the QCQP form as deőned in (9). Note that the constraint
Ṽ ′M1Ṽ ≡ ∥e1 + v1 − p∥2 −m2. Further, the set of constraints Ṽ ′LgṼ = 0, ∀g ∈

{1, . . . , 10} characterize the relationship between the elements of Ṽ . As described
in [15], the equality constraints in optimization problem (9) can be replaced with
two inequality constraints ,thus, reducing the optimization problem in the stan-
dard QCQP form. This concludes the proof. ⊓⊔

Following similar steps, an analogous optimization problem when α = 0 is

max
Ṽ

Ṽ ′PṼ

subject to

Ṽ ′Qj Ṽ ≤ 0, ∀j ∈ {1, 2}

Ṽ ′M0Ṽ = 0,

Ṽ ′FṼ = 0,

Ṽ ′LgṼ = 0, ∀g ∈ {1, . . . , 10}

Ṽ8 = 1,

(10)

where matrix M0 is as deőned in the Appendix. Note that all of the matrices
Qj , ∀j ∈ {1, 2}, P,M0,M1, F and Lg, ∀g ∈ {1, . . . , 10} are sparse matrices.
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We now establish the main result of this paper, i.e., that the pair of strate-
gies (ut∗ , {vt

∗

1 , vt
∗

2 }) form a pair of Nash equilibrium. Note that if the optimal
strategies of the trackers and the pursuer form a pair of Nash equilibrium, there
is no incentive for the trackers to deviate from their optimal strategy (see Def-
inition 2). This means that the pursuer has the correct belief of the trackers
strategy and can determine its state-feedback strategy, ut∗ by őrst solving the
QCQP to determine vt

∗

1 and vt
∗

2 and then substituting these into (6). However,
to determine the strategy of the trackers, the pursuer needs the information of
the estimates that the trackers have of the target’s location. Since the pursuer
does not have this information, we propose that the pursuer uses the true value
of the target’s location to solve the QCQP and consequently determine ut∗ .

Theorem 1. At every instant te ≤ t < tf , the pair of strategies (ut∗ , {vt
∗

1 , vt
∗

2 })
deőned in (6) and obtained by solving the optimization problem (8), form a pair
of Nash equilibrium strategies for the payoff function J(ŝ, eti, p

t, vti , u
t) as deőned

in (3).

Proof. Observe that once the estimates about the location of the target converges
to the true value, all of the mobile agents use the same value of the target’s
location to solve the QCQP. Further, at every time instant te ≤ t < tf , the
optimal strategy of the pursuer deőned in equation (6) is the best-response of the
pursuer to the trackers strategy. Similarly, the optimal strategy of the trackers
obtained by solving the optimization problem deőned (9) (if α = 1) and (10)
(otherwise) is the best response of the trackers to an optimal pursuer strategy.
The result then follows directly from Deőnition 2. This concludes the proof. ⊓⊔

We now brieŕy describe how the game is solved. At every time instant, de-
pending on the value of α, the pursuer solves the optimization problem 9 or 10
using the true location of the target (s) to obtain vt

∗

1 and vt
∗

2 . The pursuer then
moves to the location by determining its control via 6. On the other hand, the
trackers jointly solve the same optimization problem using the estimates of the
target (ŝ) and move to the next location using vt

∗

1 and vt
∗

2 .

Remark 1 (Bearing Measurements). If the trackers use a sensor that measures
the bearing (angle) of the target relative to their positions instead of range
measurements, then the determinant of the FIM is given by [20]

f(ŝ, et1, e
t
2, v

t
1, v

t
2) =

1

σ2
ν Ŝ

4
1 Ŝ

4
2

(

(X̂t
1 − vtx,1)(Ŷ

t
2 − vty,2)− (Ŷ t

1 − vty,1)(X̂
t
2 − vtx,2)

)2

.

As the pursuer’s optimal strategy does not change, by following similar steps as in
Section 3.2, the optimization problem for the trackers can similarly be expressed
as a QCQP and thus, this work easily extends to scenarios when trackers have
access to bearing measurements.

4 Numerical Observations

We now present numerical simulations of the optimal strategies deőned in Section
3 and highlight the trajectories of the mobile agents. In all of our simulations, the
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(a) Trajectories of the mo-
bile agents for δ = 0. tf =
44.

(b) Trajectories of the mo-
bile agents for δ = 0.2. tf =
68.

(c) Trajectories of the mo-
bile agents for δ = 5. tf =
71.

Fig. 3: Trajectories of the pursuer and the trackers for different values of δ. The
cross represents the starting locations of the mobile agents. The target is denoted
by the green square.

(a) δ = 0 (b) δ = 0.2 (c) δ = 5

Fig. 4: Determinant of FIM vs Time plots for different values of δ.

parameter σ2
ν was kept őxed to 0.03 and the target’s location was chosen to be

(0, 0). Due to the number and size of the sparse matrices in the proposed QCQP
optimization problem (9), generating the trajectories was time consuming. Thus,
we use fmincon function in MATLAB to determine the optimal strategies of the
trackers which was veriőed to be consistent with the strategies obtained by
solving optimization problem in (9).

4.1 Example 1 (α = 1)

Our őrst numerical simulation (cf. Fig. 3) focuses on the trajectories of the mobile
agents when the pursuer moves to capture the őrst tracker, E1. Speciőcally, we
select the initial locations such that α = 1. To highlight the role of evasion by
the trackers, we provide a numerical plot with δ = 0 in Fig. 3, i.e., the evaders
move to maximize only the determinant of the FIM. Note that the time taken
by the pursuer to capture E1 is mentioned in the description of each sub-őgure
in Fig. 3. The initial locations for all of the simulations presented in Fig. 3 were
kept the same and selected to be (−10,−10), (20,−1) and (−35,−15) for E1,
E2 and the pursuer, respectively. Further, the parameters µ1 and µ2 were set to
be 0.65 and 0.5, respectively.
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(a) µ1 = 1.1 and µ2 = 0.5.
tf = 17. (b) µ1 = 1.2 and µ2 = 0.5. (c) µ1 = 1.1 and µ2 = 0.65.

Fig. 5: Trajectories of the pursuer and the trackers for δ = 0.14 and different
values of µi, ∀i ∈ {1, 2}.

Observe that in Fig. 3a, the trackers move to position themselves such that
the angle subtended at the target by the position of the trackers is π

2 . This
is consistent with trajectories that maximize only the FIM as reported in [4].
Upon reaching that position, the trackers remain at that position until tracker
E1 is captured by the pursuer. Based on the value of δ in Fig. 3b as well as
in Fig. 3c, observe that the tracker E1 őrst moves away from the pursuer and
then it moves away from the target, maximizing both the time to capture as
well as the determinant of the FIM. Fig. 3b shows the cooperative behaviour
of E2. In particular, although the pursuer does not move towards E2, tracker
E2 őrst moves downwards and then changes its direction in order maximize the
determinant of the FIM by moving to a location such that the position of the
trackers subtend an angle of π

2 at the target. Once the angle between the position
of the trackers is π

2 , tracker E2 remains stationary at its location while E1 evades
Finally, in Fig. 4, observe that the determinant of the FIM monotonically

increases in Fig. 4a and then converges to 33.33. Although in Fig. 4b the deter-
minant of FIM reaches the value 33.3, the value then decreases as the trackers
cannot stay at that position due to the evasion cost. Note that at time t = 60,
the cost converges to 33.3 highlighting the fact that the angle subtended by the
position of the trackers to the target is now at π

2 , and thus, tracker E2 remains
at its position whereas tracker E1 moves in a straight line maintaining the same
angle. Similar trend is observed in Fig. 4c. However, tracker E1 is captured be-
fore the angle subtended by the trackers to the target is π

2 . This is due to the
higher value of δ as compared to that in Fig. 4b because of which tracker E1

moves directly away from the pursuer. Thus, the trackers require more time to
reach the positions from which the angle subtended to the target is π

2 .

4.2 Example 2 (Faster trackers)

This numerical simulation considers a scenario that at one tracker is faster than
the pursuer. The initial locations of the trackers and the pursuer was set to
(18,−1), (−15,−15) and (−13,−20), respectively. Finally the parameter δ was
kept őxed to 0.14 and from the initial locations, α = 1.



14 S. Bajaj and S.D. Bopardikar

In Fig. 5a, although tracker E1 is faster (µ1 = 1.1 and µ2 = 0.5) than the
pursuer, the pursuer is able to capture tracker E1. However, for the same initial
locations of all of the mobile agents, the pursuer is unable to capture tracker E1

when µ1 = 1.2 and µ2 = 0.5 (cf. Fig. 5b), implying that for faster trackers, there
may exist winning regions for the pursuer as well as the trackers. Speciőcally, it
may be possible to partition the environment into a winning region (ΩP ) for the
pursuer, i.e., the pursuer can always capture a tracker if the initial locations of all
of the mobile agents lie inside ΩP . Similarly, it may be possible to characterize
the winning region (ΩT ) for the trackers, i.e., the trackers can always evade the
pursuer if the initial locations of all of the mobile agents lie inside ΩT . Finally,
observe that for the same initial locations and µ1 = 1.1 (cf. Fig. 5c), the pursuer
cannot capture tracker E1 if the speed of the tracker E2 is increased from 0.5
(Fig. 5a) to 0.65.

We now describe how this work extends to two different scenarios. We start
with a scenario with multiple targets followed by a scenario with multiple track-
ers.

5 Extensions

In this section, we describe how our analysis extends to the case of multiple
targets and multiple trackers. We also show that in both scenarios the pursuer’s
optimal strategy remains the same as established in Section 3. We further es-
tablish that the optimization problem for the trackers can be converted to a
QCQP.

5.1 Multiple targets

In this scenario, we consider that there are N > 1 targets, two mobile track-
ers and a single mobile pursuer. Each tracker has access only to range mea-
surements from each of the N targets. Thus, in this case, the measurement
vector is h(s1, . . . , sN , et1, e

t
2) =

[

∥s1 − et1∥ ∥s1 − et2∥ . . . ∥sN − et1∥ ∥sN − et2∥
]′

,
where s1, . . . , sN denote the őxed locations of the N targets. By taking the
partial derivatives with respect to the locations of the targets and replacing
sj∀j ∈ {1, . . . , N} with its estimate ŝj , the FIM at time instant t+1 becomes a
block diagonal matrix given by

F (ŝ1, . . . , ŝN , eti, v
t
i) =











f(ŝ1, e
t
i, v

t
i) 02×2 . . . 02×2

02×2 f(ŝ2, e
t
i, v

t
i) . . . 02×2

...
...

. . .
...

02×2 . . . . . . f(ŝN , eti, v
t
i)











where f(ŝj , e
t
i, v

t
i), ∀1 ≤ j ≤ N is the FIM deőned analogously as f(ŝ1, e

t
i, v

t
i)

(see Section 2). Using the fact that determinant of a block diagonal matrix is
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the product of the determinant of its blocks yields

det(F (ŝ1, . . . , ŝN , eti, v
t
i)) =

N
∏

j=1

det(f(ŝj , e
t
i, v

t
i)).

Thus, the expression for the payoff is given by

J(ŝ1, . . . , ŝN ,eti, p
t, vti , u

t) = det(F (ŝ1, . . . , ŝN , eti, v
t
i))+

δ(α∥et1 + vt1 − pt − ut∥2 + (1− α)∥et2 + vt2 − pt − ut∥2).

Since the determinant of the FIM is not a function of the pursuer’s control, it
follows that the pursuer’s strategy remains the same as deőned in (6). Observe
that det(F (ŝ1, . . . , ŝN , eti, v

t
i)) is a polynomial function of vtx,i and vty,i for all

i ∈ {1, 2}. Therefore, following similar steps as in Section 3 and from the fact
that any polynomial can be expressed into the standard QCQP form [15], it
follows that the optimization problem obtained for the trackers after substitut-
ing ut∗(vt1, v

t
2) can also be converted into a QCQP of the same form as deőned

in Lemma 1. Finally, given that the pair of strategies (ut∗ , {vt
∗

1 , vt
∗

2 }) are best
responses to each other, it follows that the pair of strategies forms a Nash equi-
librium.

5.2 Multiple trackers

We now consider the scenario with a single target, M > 2 trackers and a single
mobile pursuer.

Let at time instant t < tf , α ≜
[

α1 . . . αM

]′
∈ R

M such that
∑M

j=1 αj = 1

and αj ∈ {0, 1}, ∀j ∈ {1, . . . ,M}. Let D ∈ R
M denote a vector consisting of the

distance between the pursuer and the trackers, i.e.,
[

∥pt − et1∥ . . . ∥p− etM∥
]′

.
Then, the payoff is given by

J(ŝ, et1, . . . , e
t
M , vt1, . . . , v

t
M , pt) = det(f(ŝ, et1, . . . , e

t
M , vt1, . . . , v

t
M )) + δα′

tD,

where

det(f(ŝ, et1, . . . , e
t
M , vt1, . . . , v

t
M )) =

1

σ2
ν

M
∑

j=1

M
∑

l=j+1

1

Ŝ2
j Ŝ

2
l

(

(X̂t
j − vtx,j)(Ŷ

t
l − vty,l)−

(Ŷ t
j − vty,j)(X̂

t
l − vtx,l)

)2

.

For a given vector α at the őrst time instant, the strategy of the pursuer is
the same as deőned in Section 3 and thus, following similar steps, the payoff
for the trackers can be expressed as a polynomial function in the optimization
variables vtx,i and vty,i for all i ∈ {1, . . . ,M}. Hence, following similar steps as
in Section 3 and given the fact that any polynomial can be expressed into the
standard QCQP form [15], it follows that the optimization problem obtained for



16 S. Bajaj and S.D. Bopardikar

the trackers after substituting ut∗(vt1, v
t
2) can also be converted into a QCQP of

the same form as deőned in Lemma 1.
Finally, given that the pair of strategies (ut∗ , {vt

∗

1 , . . . , vt
∗

M}) are best re-
sponses to each other, it follows that the pair of strategies forms a Nash equilib-
rium.

6 Conclusion and Future Directions

This paper introduced a tracking-evasion game consisting of a single pursuer,
two trackers and a single target. The pursuer seeks to deter the tracking per-
formance of the trackers by minimizing the square of the distance to the closest
tracker, whereas, the trackers aim to jointly maximize a weighted combination
of the determinant of the Fisher Information Matrix and the square of the dis-
tance between the pursuer to the tracker being pursued. We determined optimal
strategies of the pursuer and and showed that the optimal strategies of the track-
ers can be obtained by solving a Quadratically Constrained Quadratic Program.
We then established that the pair of strategies form a Nash equilibrium and pro-
vided several numerical observations highlighting the trajectories and the payoff.
Finally, we discussed the extension of this work to multiple trackers and multiple
targets.

Apart from leveraging the sparse-structure of the matrices for the optimiza-
tion problem, a key future direction includes a generalized setup with multiple
pursuers and trackers with motion and energy constraints. Further, we conjec-
ture that by relaxing Assumption 1, an ϵ̄-Nash Equilibrium may exist. This
conjecture will also be explored in the subsequent works.

Acknowledgements: We thank Dr. Xiaobo Tan at Michigan State University
for his valuable comments and feedback.
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7 Appendix

In this section, we provide the expression for the matrices P,Qj ,M and L,

respectively. For ease of notation, denote ai = X̂t
i , bi = Ŷ t

i . Further, let In×p

(resp. 0n×p) denote the identity (resp. zero) matrix of dimension n× p. Then,

P =
1

σ2
ν

×













06×6 06×1 06×1 06×8 06×1

01×6 δσ2
ν − δσ2

ν 01×8 0
01×6 − δσ2

ν δσ2
ν 01×8 0

08×6 08×1 08×1 08×8 08×1

01×6 0 0 01×8 1













, F =

[

F1 08×9

09×8 F2

]

,

where F1 =





















b22 −a2b2 −b1b2 2a1b2 − a2b1 −b2 b2 0 a2b1b2 − a1b
2

2

−a2b2 a2

2 2a2b1 − a1b2 −a1a2 a2 −a2 0 a1a2b2 − b1a
2

2

−b1b2 2a2b1 − a1b2 b21 −a1b1 b1 −b1 0 a1b1b2 − a2b
2

1

2a1b2 − a2b1 −a1a2 −a1b1 a2

1 −a1 a1 0 a1a2b1 − b2a
2

1

−b2 a2 b1 −a1 1 −1 0 0
b2 −a2 −b1 a1 −1 1 0 0
0 0 0 0 0 0 0 0

a2b1b2 − a1b
2

2 a1a2b2 − b1a
2

2 a1b1b2 − a2b
2

1 a1a2b1 − b2a
2

1 0 0 0 (a1b2 − a2b1)
2




















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and F2 =
























−(a2

2 + b22) 0 −2a1a2 −2a1b2 b2 0 a2 0 a1(a
2

2 + b22)
0 −(a2

2 + b22) −2a2b1 −2b1b2 0 a2 0 b2 b1(a
2

2 + b22)
−2a1a2 −2a2b1 −(a2

1 + b21) 0 0 b1 a1 0 a2(a
2

1 + b21)
−2a1b2 −2b1b2 0 −(a2

1 + b21) a1 0 0 b1 b2(a
2

1 + b21)
b2 0 0 a1 1 0 0 0 0
0 a2 b1 0 0 1 0 0 0
a2 0 a1 0 0 0 1 0 0
0 b2 0 b1 0 0 0 1 0

a1(a
2

2 + b22) b1(a
2

2 + b22) a2(a
2

1 + b21) b2(a
2

1 + b21) 0 0 0 0 −(a2

1 + b21)(a
2

2 + b22)

























.

Moreover,

Q1 =









I2×2 02×6 02×9

05×4 05×4 05×9

01×7 − µ2
1 01×9

09×4 09×4 09×9









, Q2 =













02×2 02×2 02×4 02×9

02×2 I2×2 02×4 02×9

03×2 03×2 03×4 03×9

01×2 01×5 − µ2
2 01×9

09×2 09×5 09×1 09×9













,

M1 =













I2×2 02×5 [et1 − pt] 02×9

04×2 04×4 04×2 04×9

01×6 −1 0 01×9

[et1 − pt]′ 01×5 ∥et1 − pt∥2 01×9

09×2 09×2 09×2 09×11













,

M0 =

















02×2 02×2 02×2 02×2 02×9

02×2 I2×2 02×3 [et2 − pt] 02×9

02×2 02×2 02×2 02×2 02×9

01×2 01×4 −1 0 01×9

01×2 [et2 − pt]′ 01×3 ∥et2 − pt∥2 01×9

09×2 09×2 09×2 09×2 09×9

















.

We now deőne the matrices Lg ∈ R
17×17, ∀g ∈ {1, . . . , 10}. Let Lg(k, l) denote

an element at the kth row and the lth column of the matrix Lg, g ∈ {1, . . . , 10}.
Then,

L1(k, l) =































0.5, if k = 1, l = 4,

0.5, if k = 4, l = 1,

−0.5, if k = 5, l = 8,

−0.5, if k = 8, l = 5,

0 otherwise

, L2(k, l) =































0.5, if k = 2, l = 3,

0.5, if k = 3, l = 2,

−0.5, if k = 6, l = 8,

−0.5, if k = 8, l = 6,

0 otherwise

,

L3(k, l) =































0.5, if k = 1, l = 17,

0.5, if k = 17, l = 1,

−0.5, if k = 9, l = 8,

−0.5, if k = 8, l = 9,

0 otherwise

, L4(k, l) =































0.5, if k = 2, l = 17,

0.5, if k = 17, l = 2,

−0.5, if k = 10, l = 8,

−0.5, if k = 8, l = 10,

0 otherwise

,
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L5(k, l) =































0.5, if k = 3, l = 17,

0.5, if k = 17, l = 3,

−0.5, if k = 11, l = 8,

−0.5, if k = 8, l = 11,

0 otherwise

, L6(k, l) =































0.5, if k = 4, l = 17,

0.5, if k = 17, l = 4,

−0.5, if k = 12, l = 8,

−0.5, if k = 8, l = 12,

0 otherwise

,

L7(k, l) =































0.5, if k = 5, l = 17,

0.5, if k = 17, l = 5,

−0.5, if k = 13, l = 8,

−0.5, if k = 8, l = 13,

0 otherwise

, L8(k, l) =































0.5, if k = 6, l = 17,

0.5, if k = 17, l = 6,

−0.5, if k = 14, l = 8,

−0.5, if k = 8, l = 14,

0 otherwise

,

L9(k, l) =































0.5, if k = 3, l = 9,

0.5, if k = 9, l = 3,

−0.5, if k = 15, l = 8,

−0.5, if k = 8, l = 15,

0 otherwise

, L10(k, l) =































0.5, if k = 4, l = 10,

0.5, if k = 10, l = 4,

−0.5, if k = 16, l = 8,

−0.5, if k = 8, l = 16,

0 otherwise

,
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