
Springer Nature 2021 LATEX template

A Compositional Framework for Algebraic Quantitative

Online Monitoring over Continuous-time Signals

Konstantinos Mamouras1*, Agnishom Chattopadhyay1 and Zhifu Wang1

1*Department of Computer Science, Rice University, 6100 Main Street, Houston, 77005,
TX, USA.

*Corresponding author(s). E-mail(s): mamouras@rice.edu;
Contributing authors: agnishom@rice.edu; zfwang@rice.edu;

Abstract

We investigate online monitoring algorithms over dense-time and continuous-time signals for prop-
erties written in metric temporal logic (MTL). We consider an abstract algebraic semantics based
on complete lattices. This semantics includes as special cases the standard Boolean (qualita-
tive) semantics and the widely-used real-valued robustness (quantitative) semantics. Our semantics
also extends to truth values that are partially ordered and allows the modeling of uncertainty
in satisfaction. We propose a compositional approach for the construction of online monitors
that transform exact representations of piecewise constant (dense-time and continuous-time) sig-
nals. These monitors are based on a class of infinite-state deterministic signal transducers that
(1) are allowed to produce the output signal with some bounded delay relative to the input
signal, and (2) do not introduce unbounded variability in the output signal. A key ingredi-
ent of our monitoring framework is an efficient algorithm for sliding-window aggregation over
dense-time signals. We have implemented and experimentally evaluated our monitoring frame-
work by comparing it to the recently proposed online monitoring tools Reelay and RTAMT.

Keywords: Online monitoring, Signal temporal logic (STL), Quantitative semantics, Cyber-physical systems
(CPS), Transducers.

1 Introduction

Metric temporal logic (MTL) [37] and signal
temporal logic (STL) [40] are extensions of lin-
ear temporal logic (LTL) that have been widely
used for specifying properties over the execution
traces of cyber-physical systems (CPS). These
traces are commonly represented as dense-time
or continuous-time signals. Both MTL and STL
have been extensively used as specification for-
malisms in the context of monitoring, where a
system trace of finite duration is examined to

determine whether it satisfies the desired temporal
specification.

Monitoring is considered in an offline or an
online fashion. Our focus here is on online moni-
toring, where the system trace is presented incre-
mentally, i.e., in a streaming fashion. This con-
trasts to the setting of offline monitoring, where
the system trace is available in its entirety at
the beginning of the computation. We choose
MTL as the specification formalism, and we con-
sider its interpretation over signals whose domain
is the set of rational numbers (dense time) or
the real numbers (continuous time). Our goal is

1

Springer Nature 2021 LATEX template

to provide a unifying semantic and algorithmic
framework that encompasses (1) the traditional
Boolean semantics and the associated monitoring
with qualitative (i.e., Boolean) verdicts and (2)
the real-valued quantitative semantics for MTL
[26] (also called robustness semantics) and the
corresponding quantitative online monitors.

There is a wealth of proposals for quanti-
tative semantics for MTL, such as [3, 21, 26].
We consider here the spatial robustness seman-
tics of Fainekos and Pappas [25, 26]. This uses
the set of the extended real numbers, denoted by
R±∞ = R ∪ {−∞,∞}, as the domain of truth
values. A positive number indicates truth/satis-
faction, a negative number indicates falsity, and
zero is ambiguous (i.e., the property can be true
or false). Disjunction (resp., existential quantifi-
cation) is interpreted as max (resp., supremum),
and conjunction (resp., universal quantification)
is interpreted as min (resp., infimum). Two quan-
titative semantic notions are considered in [26].
The first one is the robustness degree degree(ϕ,x)
of a signal x w.r.t. a formula ϕ, which is defined
in a global way using distances between signals.
This is the primary quantitative semantics, as it
captures the intuitive idea of the degree of satis-
faction using distances. The second notion is the
robustness estimate ρ(ϕ,x) of a formula ϕ w.r.t. a
trace x, which is defined by induction on the struc-
ture of ϕ. As the name suggests, the robustness
estimate approximates the robustness degree; it
is, in fact, an under-approximation (see Theorem
13 in page 4268 of [26] for more details on this).
The robustness estimate of [26] has been used in
prior work on online monitoring [19, 20], as it is
amenable to efficient evaluation. For this reason,
we will be using here the robustness estimate, not
the robustness degree.

The robustness semantics of [26] can be gen-
eralized to other notions of quantitative truth
values, as has already been done in [17] using an
algebraic semantics based on bounded distribu-
tive lattices (where “join”/sup/t generalizes max
and “meet”/inf/u generalizes min). The algebraic
framework of [17] was developed for discrete-time
signals only, since the considered class of lattices
supports only finitary suprema and infima. For
this reason, it is not appropriate for interpreting
temporal formulas over dense-time or continuous-
time signals. The semantics of [17] has been

generalized further in [46] by considering semir-
ings as truth domains, again in the context of
discrete-time signals.

In this paper, we consider the class of com-

plete lattices, infinitary algebraic structures of the
form (V,

⊔
,
d
), where

⊔
is an arbitrary join/-

supremum operation (which models disjunction,
existential quantification) and

d
is an arbitrary

meet/infimum operation (which models conjunc-
tion, universal quantification). The class of com-
plete lattices contains B = {⊥,>} (the Boolean
values) and the lattice (R±∞, sup, inf) of extended
real numbers. The lattice of intervals with join
given by

⊔
i[ai, bi] = [supi ai, supi bi] and meet

given by
d

i[ai, bi] = [infi ai, infi bi] is an espe-
cially interesting example, as it can be used to
model uncertainty in the truth value: an element
[a, b] indicates that the truth value lies somewhere
within this interval. For example, suppose we have
a sensor measurement m̂ of a physical quantity,
for which we know that the measurement error is
bounded above by ε > 0. Then, the true value m
of the quantity satisfies

m̂− ε ≤ m ≤ m̂+ ε.

If the formal variable x is interpreted as the
aforementioned uncertain measurement, then the
truth value of the formula “x ≥ c” would be the
“uncertain” truth value [m̂−c−ε, m̂−c+ε] because

m̂− c− ε ≤ m− c ≤ m̂− c+ ε.

The interval [m̂− c− ε, m̂− c+ ε] is the range of
possible (quantitative) truth values within which
the real truth value lies.

Using the algebraic quantitative semantics
described in the previous paragraph, we introduce
a compositional framework for online monitor-
ing over dense-time and continuous-time signals.
In order to ensure compositionality, we consider
monitors that are infinite-state deterministic sig-
nal transducers. A key difference from other
approaches is that our monitors do not require
the input and output to be perfectly synchro-
nized, but they can compute with some delay (or
negative delay). That is, it is possible that the out-
put signal falls behind the input signal (positive
delay) or that the output signal is ahead of the
input signal (negative delay). We distinguish those
monitors where the delay is bounded and fixed

Springer Nature 2021 LATEX template

Title 3

throughput the computation. More specifically, we
introduce a typing judgment f : delay = d, where
d ∈ R, which says that the monitor f has a fixed
bounded delay d during the entire course of the
computation. This concept has been explored in
[44] for discrete-time signal transducers. Another
key feature of our approach is that we distin-
guish monitors that do not introduce unbounded
variability. More specifically, we use a typing judg-
ment {ivar = k}f{ovar = `} to indicate that if
the monitor f receives an input signal whose vari-
ability (number of value changes per time unit)
is bounded above by k, then the variability of its
output signal is bounded above by `. The two
properties of bounded delay and bounded signal

variability are essential for constructing efficient
monitors.

The monitoring of temporal formulas written
in MTL (with unbounded past-time and bounded
future-time connectives) can be reduced to a small
number of computational primitives. An impor-
tant fact is that we need two distributivity laws
for lattices. Using the distributivity of finite meets
over arbitrary joins (resp., finite joins over arbi-
trary meets), we show that the monitoring of the
connective S[a,b] (resp., the dual connective S̄[a,b])
can be reduced to an online aggregation over a
sliding window. For every MTL formula, we con-
struct an online monitor by composing the follow-
ing basic monitors: (1) map(op), which applies the
function op pointwise, (2) aggr(init , op), which
performs a running aggregation, (3) emit(v, dt),
which emits an initial signal prefix with value v
and duration dt , (4) ignore(dt), which removes an
initial prefix of duration dt from the input signal,
and (5) wnd(dt , 1⊗,⊗), which performs an associa-
tive aggregation ⊗ over a sliding window of dura-
tion dt . Monitors are composed using two dataflow
combinators: (1) serial composition f >> g and
(2) parallel composition par(f, g). The space effi-
ciency of the monitors hinges on the preservation
of bounded delay and bounded variability. The
time efficiency relies on a novel sliding-window
aggregation algorithm with O(1) amortized time-
per-item. The algorithm achieves this efficiency by
maintaining partial aggregates of the window and
reusing them as much as possible as the window
slides forward.

We provide an implementation of our monitor-
ing framework in the Rust programming language.

Our experiments show that our monitors scale rea-
sonably well and they compare favorably against
the monitoring tools Reelay [52] and RTAMT
[48]. We chose Reelay and RTAMT for compar-
ison because (1) they support dense-time traces
as input, (2) they use a temporal semantics for
specifications that is consistent with ours. Finally,
Reelay is implemented in a low-overhead compiled
language (C++), which facilitates a more direct
comparison. We have also included a more limited
comparison with TLTk, as this tool has a different
syntax and semantics than our tool.

Contributions:

The main contributions of the paper are summa-
rized below:
− We propose an algebraic semantic frame-

work for quantitative temporal properties that
encompasses existing semantics (Boolean and
real-valued) and opens up the possibility of
modeling uncertainty in satisfaction in a more
general way by considering intervals and other
truth domains that are not linearly ordered.

− We develop a compositional framework for
monitor construction that relies on a small
number of expressive combinators and basic
monitors. A key basic monitor is given by a gen-
eral sliding-window aggregation algorithm for
dense-time signals that can be applied to truth
domains that are not necessarily linear orders.

Differences from conference version:

This paper is an extended version of the confer-
ence paper [47]. The main differences compared
to the conference version are (1) the inclusion of
detailed proofs for the main mathematical claims
about our algebraic semantic framework and (2)
the extension of the experimental results by con-
sidering the tools RTAMT [48] and TLTk [18] in
addition to Reelay.

2 Algebraic Semantics with
Complete Lattices

In this section, we present a quantitative seman-
tics for MTL that uses complete lattices for the
truth values. Using algebraic reasoning, we show
that the temporal connectives of MTL can be
rewritten into equivalent forms that suggest a

Springer Nature 2021 LATEX template

simple approach for online monitoring. In partic-
ular, we show later in Proposition 10 that some
distributivity laws are needed to deal with the
“Since” temporal connective and its dual. Using
the distributivity of finite meets over arbitrary
joins (resp., finite joins over arbitrary meets) we
can reduce the monitoring of S[a,b] (resp., its dual

S̄[a,b]) to a sliding-window join (resp., meet). This
suggests the class of infinitely bi-distributive com-
plete lattices as an appropriate algebraic general-
ization of the Boolean and real-valued semantic
domains.

A lattice is a partial order in which every two
elements have a least upper bound and a greatest
lower bound. We will use an equivalent algebraic
definition.

Definition 1 A lattice (V,t,u) is a set V together
with associative and commutative binary operations t
and u, called join and meet respectively, that satisfy
the absorption laws, i.e, xt(xuy) = x and xu(xty) =
x for all x, y ∈ V .

Let V be a lattice. Using the absorption laws
it can be shown that t is idempotent: x t x =
x t (x u (x t x)) = x for every x ∈ A. Similarly,
it can also be shown that u is idempotent. Define
the relation ≤ as follows: x ≤ y iff xty = y for all
x, y ∈ A. The relation ≤ is a partial order. It also
holds that x ≤ y iff xuy = x. For all x, y ∈ V , the
element xty is the supremum (least upper bound)
of {x, y}, and the element x u y is the infimum
(greatest lower bound) of {x, y} w.r.t. the order ≤.

Definition 2 A lattice V is said to be bounded if there
exist a bottom element ⊥ ∈ V and a top element > ∈
V such that ⊥ t x = x and x u > = x (equivalently,
⊥ ≤ x ≤ >) for every x ∈ V .

Let V be a bounded lattice. It is easy to check
that x t > = > and x u ⊥ = ⊥ for every x ∈ V .

For a finite subset X = {x1, x2, . . . xn} of a
bounded lattice, we write

⊔
X for x1tx2t· · ·txn

and similarly
d
X for x1ux2u· · ·uxn. Moreover,

we define
⊔

∅ to be ⊥ and
d

∅ to be >. So,
⊔
X is

the supremum of X, and
d
X is the infimum of X.

Definition 3 A lattice V is said to be distributive

if x u (y t z) = (x u y) t (x u z) and x t (y u z) =
(x t y) u (x t z) for all x, y, z ∈ V .

Example 4 Consider the two-element set B = {>,⊥}
of Boolean values, where > represents truth and ⊥
represents falsity. The set B, together with disjunction
as join and conjunction as meet, is a bounded and
distributive lattice.

Example 5 The set T = {⊥, ?,>} can be endowed
with bounded lattice structure in a unique way so that
⊥ ≤ ? ≤ >. It can be easily verified that T is distribu-
tive. The structure T is used to give a three-valued

interpretation of formulas (? is inconclusive).

Example 6 The set R of real numbers, together with
min as meet and max as join, is a distributive lattice.
However, (R,max,min) is not a bounded lattice. It is
commonplace to adjoin the elements ∞ and −∞ to
R so that they serve as the top and bottom element
respectively. The structure (R±∞,max,min,−∞,∞)
is a bounded distributive lattice.

We interpret the max-min lattice R
±∞ as degrees

of truth, where positive means true and negative
means false. The value 0 is ambiguous.

For this reason, we also consider a variant of R±∞,
where the value 0 is refined into a positive +0 (true)
and a negative−0 (false). We thus obtain the following
linearly ordered max-min lattice:

R
±∞
±0 =

(

R
±∞ \ {0}

)

∪ {−0,+0}.

Note that the lattice R
±∞
±0 is isomorphic to B× R

∞
≥0,

where R
∞
≥0 = {x ∈ R | x ≥ 0} ∪ {∞}.

Definition 7 A complete lattice is a partially ordered
set V in which all subsets have both a supremum (join)
and an infimum (meet). For a subset S ⊆ V , the join
is denoted by

⊔

S and the meet is denoted by
d
S.

Notice that
⊔

∅ is the bottom element of V and
d

∅
is the top element of V . We say that V is infinitely

distributive if

x u
(
⊔

i∈Iyi
)

=
⊔

i∈I(x u yi)

for every index set I. In other words, infinite distribu-
tivity means that finite meets distribute over arbitrary
joins. We say that V is co-infinitely distributive if

x t
(d

i∈Iyi
)

=
d

i∈I(x t yi)

for every index set I (that is, finite joins distribute
over arbitrary meets). We will say that V is infinitely
bi-distributive if it is both infinitely and co-infinitely
distributive.

Springer Nature 2021 LATEX template

Title 5

The lattices B and R±∞ are complete and
infinitely bi-distributive.

Example 8 (Uncertainty) We will consider now an
example of quantitative semantics that goes beyond
linear orders, and therefore it cannot be directly han-
dled by prior monitoring frameworks based on truth
values from B or R±∞.

Suppose we want to identify a notion of quanti-
tative truth values in situations where we interpret
formulas over a signal x(t) that is not known with
perfect accuracy, but we can put an upper and lower
bound on each sample, i.e., a ≤ x(t) ≤ b. For example,
suppose that we know that 99.9 ≤ x(0) ≤ 100.1 and
we want to evaluate the atomic predicate p = “x ≥ 99”
at time 0. The truth value can be taken to be the inter-
val [0.9, 1.1] in this case, since there is uncertainty in
the distance of signal value from the threshold.

In order to model this kind of uncertainty, we con-
sider the set I(R±∞) of intervals of the form [a, b] with
a ≤ b and a, b ∈ R

±∞. An interval [a, b] ⊆ R
±∞ can

be thought of as an uncertain truth value (it can be
any one of those contained in [a, b]). For an arbitrary
family of intervals [ai, bi] we define

⊔

i[ai, bi] = [supiai, supibi] andd
i[ai, bi] = [infiai, infibi].

The structure (I(R±∞),
⊔

,
d
) is a infinitely bi-

distributive complete lattice. The rationale behind the
definition of the meet and the join can be understood
by considering the “unknown” values xi that have
known lower bounds ai and upper bounds bi. That is,
ai ≤ xi ≤ bi for every i. Then,

supiai ≤ supixi ≤ supibi.

So, the “unknown” join supi xi is bounded below by
supi ai and bounded above by supi bi. This is why we
choose the interval [supi ai, supi bi] to represent the
join of the intervals [ai, bi].

The lattice I(R±∞) is a partial order and there-
fore does not fit in existing monitoring frameworks
that consider only linear orders (e.g., the max-min lat-
tice R

±∞ of the extended reals and the associated
sliding-max/min algorithms).

We also consider a variant of the lattice I(R±∞),
denoted IML(R

±∞), which contains triples of the form
〈a,m, b〉 with a ≤ m ≤ b. The interpretation is that
an element represents a quantity of uncertain value,
where m is the most likely value and [a, b] is the inter-
val within which the true value lies. Join and meet are
defined componentwise:

⊔

i〈ai,mi, bi〉 = 〈supiai, supimi, supibi〉 andd
i〈ai,mi, bi〉 = 〈infiai, infimi, infibi〉.

For example, suppose that m̂ is a sensor measurement
with a known bound ε > 0 on the measurement error.

Then, we can consider m̂ to be the “most likely” value
for the measured physical quantity. The real valuem of
the quantity (which is unknown to us) satisfies m̂−ε ≤
m ≤ m̂ + ε. If we interpret the formal variable x as
this measurement, then the “most likely” quantitative
truth value for the formula “x ≥ c” is m̂−c. Moreover,
the real truth value is m− c and satisfies

m̂− c− ε ≤ m− c ≤ m̂− c+ ε.

We do not know the real truth valuem−c. Instead, we
represent the uncertain quantitative truth value with
the element 〈m̂− c− ε, m̂− c, m̂− c+ ε〉 of the lattice
IML(R

±∞).

Let T be the time domain. This can be
chosen to be either Q≥0, the set of nonnegative
rational numbers, or R≥0, the set of nonnegative
real numbers.

An A-valued infinite signal is a function x :
T → A. We write ISig(A) to denote the set of all
A-valued infinite signals. An A-valued finite signal

is a function x : [0, t) → A or x : [0, t] → A, where
t ∈ T . We denote the set of all A-valued finite
signals by FSig(A). We write Sig(A) = FSig(A) ∪
ISig(A). The duration of a finite signal x : [0, t) →
A or x : [0, t] → A is dur(x) = t. The duration of
an infinite signal x : T → A is dur(x) = ∞. The
empty signal is ε : ∅ → A.

We will consider formulas of metric temporal
logic (MTL) interpreted over signals with domain
T . We consider a setD of signal values, a complete
lattice V whose elements represent quantitative
truth values, and unary quantitative predicates

p : D → V . We write 1, 0 : D → V for the
predicates given by 1(d) = > and 0(d) = ⊥
for every d ∈ D. The set MTL(D,V) of tempo-
ral formulas is built from the atomic predicates
p : D → V using the Boolean connectives ∨ and
∧, the unary temporal connectives PI , HI , FI , GI ,
and the binary temporal connectives SI , S̄I , UI ,
ŪI , where I is an interval of the form [s, t] or
[t,∞) with s, t ∈ T . For every temporal connec-
tive X ∈ {P,H, S, S̄,F,G,U, Ū}, we write Xt as an
abbreviation for X[t,t] and X as an abbreviation
for X[0,∞).

We interpret the formulas in MTL(D,V) over
traces from Sig(D) and at specific time points.
For the interpretation function ρ : MTL(D,V) ×
Sig(D) × T → V , the value ρ(ϕ,x, t) is defined
when t ∈ dom(x). Fig. 1 gives the definition of ρ.

We say that the formulas ϕ and ψ are equiva-

lent, and we write ϕ ≡ ψ, if ρ(ϕ,x, t) = ρ(ψ,x, t)

Springer Nature 2021 LATEX template

ρ(p,x, t) = p(x(t))

ρ(ϕ ∨ ψ,x, t) = ρ(ϕ,x, t) t ρ(ψ,x, t)

ρ(ϕ ∧ ψ,x, t) = ρ(ϕ,x, t) u ρ(ψ,x, t)

ρ(PIϕ,x, t) =
⊔

u∈t−I, u∈dom(x) ρ(ϕ,x, u)

ρ(HIϕ,x, t) =
d

u∈t−I, u∈dom(x) ρ(ϕ,x, u)

ρ(FIϕ,x, t) =
⊔

u∈t+I, u∈dom(x) ρ(ϕ,x, u)

ρ(GIϕ,x, t) =
d

u∈t+I, u∈dom(x) ρ(ϕ,x, u)

ρ(ϕ SI ψ,x, t) =
⊔

u∈t−I, u∈dom(x)

(

ρ(ψ,x, u) u
d

v∈(u,t]ρ(ϕ,x, v)
)

ρ(ϕ S̄I ψ,x, t) =
d

u∈t−I, u∈dom(x)

(

ρ(ψ,x, u) t
⊔

v∈(u,t]ρ(ϕ,x, v)
)

ρ(ϕ UI ψ,x, t) =
⊔

u∈t+I, u∈dom(x)

(d
v∈[t,u)ρ(ϕ,x, v) u ρ(ψ,x, u)

)

ρ(ϕ ŪI ψ,x, t) =
d

u∈t+I, u∈dom(x)

(

⊔

v∈[t,u)ρ(ϕ,x, v) t ρ(ψ,x, u)
)

Fig. 1 Quantitative semantics for MTL based on complete lattices.

for every infinite signal x ∈ ISig(D) and t ∈
dom(x). For every formula ϕ and every interval
I, it holds that PIϕ ≡ 1 SI ϕ, HIϕ ≡ 0 S̄I ϕ,
FIϕ ≡ 1 UI ϕ, and GIϕ ≡ 0 ŪI ϕ. So, the tem-
poral connectives PI ,HI ,FI ,GI can be defined as
abbreviations in terms of SI , S̄I ,UI , ŪI .

Lemma 9 Let D be a set of data items and V be a
complete lattice. The identities of Fig. 2 hold for all
formulas ϕ,ψ ∈ MTL(D,V).

Proof We consider the identity P[a,b]ϕ ≡ PaP[0,b−a]ϕ.
Let x be an arbitrary signal and t ∈ dom(x). We define
the following sets of time points:

I = (t− [a, b]) ∩ dom(x),

J = (t− [a, a]) ∩ dom(x) = {t− a} ∩ dom(x), and

Ku = (u− [0, b− a]) ∩ dom(x) for every u ∈ J.

Moreover, we define K =
⋃

u∈J Ku and we observe
that K = I. Now, we have that

ρ(PaP[0,b−a]ϕ,x, t) =
⊔

u∈J ρ(P[0,b−a]ϕ,x, u)

=
⊔

u∈J

⊔

v∈Ku
ρ(ϕ,x, v)

=
⊔

v∈K ρ(ϕ,x, v),

which is equal to ρ(P[a,b]ϕ,x, t). Notice that we have
used above the axioms of complete lattices for

⊔

. The
rest of the identities of Fig. 2 are handled with similar
arguments. �

The identities of Fig. 2 are shown using the
axioms of complete lattices. The following iden-
tities can reduce the monitoring of S[a,b]/S̄[a,b] to

P[a,b]/H[a,b]:

ϕ S[0,b] ψ ≡ P[0,b]ψ ∧ (ϕ S ψ), (1)

ϕ S[a,b] ψ ≡ P[a,b]ψ ∧ (ϕ S[a,∞) ψ), (2)

ϕ S̄[0,b] ψ ≡ H[0,b]ψ ∨ (ϕ S̄ ψ), (3)

ϕ S̄[a,b] ψ ≡ H[a,b]ψ ∨ (ϕ S̄[a,∞) ψ). (4)

Earlier occurrences of this idea are found in
[24] (for the Boolean semantics) and in [22] (for
the real-valued quantitative semantics), where the
authors consider the future-time form

ϕ U[a,b] ψ ≡ F[a,b]ψ ∧ (ϕ U[a,∞) ψ).

Prior work on efficient monitoring [19] uses an
algorithm based on it. Specifically, [19] uses a
sliding-max algorithm [38], which can be applied
to the lattice R±∞ and other similar linear orders,
but is not applicable to partial orders.

Proposition 10 Let D be a set and V be a complete
lattice. Then, we have:
(1) If V is infinitely distributive, then identities (1)

and (2) hold.
(2) If V is co-infinitely distributive, then identities (3)

and (4) hold.

Proof We will start by proving identity (2). Let x be
an arbitrary signal and t ∈ dom(x). We will use the
abbreviations σu = ρ(ϕ,x, u) and τu = ρ(ψ,x, u) for

Springer Nature 2021 LATEX template

Title 7

P[a,∞)ϕ ≡ PaP[0,∞)ϕ H[a,∞)ϕ ≡ HaH[0,∞)ϕ ϕ S[a,∞) ψ ≡ Pa(ϕ S[0,∞) ψ) ∧ H[0,a)ϕ

P[a,b]ϕ ≡ PaP[0,b−a]ϕ H[a,b]ϕ ≡ HaH[0,b−a]ϕ ϕ S[a,b] ψ ≡ Pa(ϕ S[0,b−a] ψ) ∧ H[0,a)ϕ

F[a,b]ϕ ≡ FbP[0,b−a]ϕ G[a,b]ϕ ≡ GbH[0,b−a]ϕ ϕ U[a,b] ψ ≡ G[0,a)ϕ ∧ Fa(ϕ U[0,b−a] ψ)

Fig. 2 Equivalences between temporal formulas.

every u ∈ dom(x). We define

I = (t− [a, b]) ∩ dom(x),

J = (t− [a,∞)) ∩ dom(x),

L = ρ(ϕ S[a,b] ψ,x, t) =
⊔

u∈I

(

τu u
l

v∈(u,t]

σv

)

,

R = ρ(ϕ S[a,∞) ψ,x, t) =
⊔

u∈J

(

τu u
l

v∈(u,t]

σv

)

, and

Q = ρ(P[a,b]ψ,x, t) =
⊔

u∈I

τu.

We have to prove that L = R u Q. From I ⊆ J we
obtain that L ≤ R. It also holds that L ≤ Q, because
τu u

d
v∈(u,t] σv ≤ τu for every u ∈ I. It follows that

L ≤ RuQ. Therefore, it remains to show that RuQ ≤
L. First, we observe that

R =
⊔

u∈J

(

τu u
l

v∈(u,t]

σv

)

=
⊔

u∈I

(

τu u
l

v∈(u,t]

σv

)

t
⊔

u∈J\I

(

τu u
l

v∈(u,t]

σv

)

= L t
⊔

u∈J\I

(

τu u
l

v∈(u,t]

σv

)

.

Using the above equality, we obtain that

R uQ =
(

L t
⊔

u∈J\I

(

τu u
l

v∈(u,t]

σv

))

uQ

= (L uQ) t
⊔

u∈J\I

(

τu u
l

v∈(u,t]

σv uQ
)

= (L uQ) t
⊔

u∈J\I

⊔

w∈I

(

τu u τw u
l

v∈(u,t]

σv

)

.

Notice that we used the laws of infinite distributiv-
ity above (finite meets distribute over arbitrary joins).
Since L ∩Q ≤ L, it remains to establish that

τu u τw u
d

v∈(u,t]σv ≤ L

for every u ∈ J \ I and w ∈ I. From u ∈ J \ I and
w ∈ I we get that u < w and hence (w, t] ⊆ (u, t].
So, τu u τw u

d
v∈(u,t]σv ≤ τw u

d
v∈(u,t]σv ≤ τw ud

v∈(w,t]σv ≤ L. This concludes the proof of identity

(2). Identity (1) is a special case of (2) for a = 0.
The given proof can be dualized in order to deal

with (3) and (4). We would have to use the laws of
co-infinite distributivity in this case. �

Proposition 10 suggests the class of infinitely
bi-distributive complete lattices as an appropriate

algebraic generalization of R±∞ for efficient quan-
titative online monitoring, as the monitoring of
S[a,b] and S̄[a,b] can be reduced to sliding aggrega-
tions (for which we present an efficient algorithm
later in Fig. 7).

3 Monitors

In this section, we define the class of transducers
that we will use for online monitoring. We consider
infinite-state deterministic signal transducers. The
transducers that we use operate on representa-
tions of piecewise constant signals, which are alter-
nating sequences of points and open (left-open and
right-open) segments. Our transducers are allowed
to have output that is not perfectly synchronized
with the input, that is, the output can either fall
behind or run ahead of the input. We distinguish
those transducers that have a bounded and fixed
delay and we use a typing judgment f : delay = d
to indicate that the transducer f has fixed delay d.
We also distinguish those transducers that do not
introduce unbounded variability into the output
signal. More specifically, we use a typing judgment
of the form {ivar = k}f{ovar = `} to indicate
that if the monitor f receives input with variabil-
ity at most k, then it will produce output with
variability at most `.

Let A be a set. We define the set Item(A) =
{Pt(a) | a ∈ A} ∪ {Seg(a, dt) | a ∈ A and dt ∈ T}
of data items. A data item is either a point of the
form Pt(a), where a ∈ A, or an open segment of
the form Seg(a, dt), where a ∈ A and dt ∈ T is
a time delta. When no confusion arises we write
a instead of Pt(a) and adt instead of Seg(a, dt).
We also consider PCSig(A) = Pt(A) · (Seg(A, T) ·
Pt(A))∗ · ({ε} ∪ Seg(A, T)) ⊆ Item(A)∗, the set of
alternating point-segment sequences of data items
that start with a point. An element of PCSig(A)
represents a finite piecewise constant signal. We
will use the term trace to refer to elements of
Item(A)∗ in order to differentiate them from the
signals that they represent. For a trace x, we write
|x| ∈ N to denote its length, that is, the number
of items that is contains. We write dur(x) ∈ T

Springer Nature 2021 LATEX template

to denote its duration, that is, the total amount
of time that it spans. More formally, dur(ε) = 0,
dur(xa) = dur(x) and dur(xadt) = dur(x) + dt for
every x ∈ Item(A)∗, a ∈ A and dt ∈ T .

We define the variability of a trace x ∈
Item(A)∗ as the maximum number of items that
fall within any one time interval of unit duration.
For example, the variability of the trace ab1 cd1 is
3, and the variability of the trace ab0.5 cd0.5ef0.5

is 5. Intuitively, the variability is the maximum
number of times that the value of the signal can
change within any one unit interval.

Definition 11 (Monitor) Let A and B be sets. A
monitor of type M(A,B) is a state machine f =
(St, init, o, next, out), where St is a set of states, init ∈
St is the initial state, o ∈ Item(B)∗ is the initial

output, next : St × Item(A) → St is the transition

function, and out : St× Item(A) → Item(B) is the out-

put function. The monitor denotes the transduction
JfK : Item(A)∗ → Item(B)∗. We require additionally
that a monitor respects the representation of piecewise
constant signals, that is, JfK(x) ∈ PCSig(B) for every
x ∈ PCSig(A). In other words, if the input stream is
an alternating sequence of points and segments, then
so is the output stream.

In Fig. 3, we give several examples of simple
monitors that can be used as building blocks. The
monitor map(op) applies the function op : A→ B
elementwise. The monitor aggr(b, op) applies a
running aggregation to the input trace that is
specified by the initial aggregate b ∈ B and the
aggregation function op : B × A → B (similar to
the fold combinator used in functional program-
ming). The monitor emit(v, t) emits a (left-closed,
right-open) segment with duration t ∈ T and value
v ∈ A upon initialization and then echoes the
input trace. The monitor ignore(t) discards the
initial (left-closed, right-open) signal segment of
duration t ∈ T and proceeds to echo the rest of
the signal. The monitor wnd(∆, 1⊗,⊗) (described
later in Fig. 6 and Fig. 7 with pseudocode) per-
forms an aggregation, given by the associative
function ⊗ : A × A → A, over a sliding window
of time duration ∆. The value 1⊗ is a left and
right identity for ⊗. We combine monitors using
the operations (combinators) serial composition >>

and parallel composition par. The type rules for

map(op) : M(A,B)

St = Unit

init = u

o = ε

next(s, a) = s

next(s, a
dt
) = s

out(s, a) = op(a)

out(s, a
dt
) = op(a)

dt

aggr(b, op) : M(A,B)

St = B

init = b

o = ε

next(s, a) = op(s, a)

next(s, a
dt
) = op(s, a)

out(s, a) = op(s, a)

out(s, a
dt
) = op(s, a)

dt

aggrV(b, op) : M(A,B)

St = B

init = b

o = ε

next(s, a) = op(s, a)

next(s, a
dt
) = op(s, a)

out(s, a) = s

out(s, a
dt
) = op(s, a)

dt

emit(v, t) : M(A,A)

St = Unit

init = u

o = 〈v, v
t
〉

next(s, x) = s

out(s, x) = x

ignore(t) : M(A,A)

St = T out(s, a) = ε, if s < t

init = 0 out(s, a) = a, if t ≤ s

o = ε out(s, a
dt
) = ε, if s + dt ≤ t

next(s, a) = s out(s, a
dt
) = a

dt−(t−s)
, if s < t < s + dt

next(s, a
dt
) = s + dt out(s, a

dt
) = a

dt
, if t ≤ s

Fig. 3 Basic building blocks for constructing temporal
quantitative monitors.

these combinators are as follows:

f : M(A,B) g : M(B,C)

f >> g : M(A,C)

f : M(A,B) g : M(A,C)

par(f, g) : M(A,B × C)

In the serial composition f >> g the output sig-
nal of f is propagated as input signal to g. In the
parallel composition par(f, g) the input signal is
copied to two concurrently executing monitors f

and g and their output signals are combined. Both
combinators >> and par are given by variants of
the product construction on state machines. In the
case of par the output traces of f and g may not
be synchronized (one may be ahead of the other),
which requires buffering in order to properly align
them. This amount of buffering is bounded when
the input signal and the monitors satisfy the con-
ditions that ensure bounded variability of their
outputs. A construction similar to the one for par
is described in [44] (in a discrete-time setting).
Some of the basic monitors of Fig. 3 are similar
to queries of the StreamQL language [36], which

Springer Nature 2021 LATEX template

Title 9

has been proposed for the processing of streaming
time series.

Monitors and Delay.

Let f : M(A,B) be a monitor. We define the delay
of the monitor f at x ∈ PCSig(A) to be the signed
time duration delay(f)(x) = dur(x) − dur(f(x)).
We say that f has a fixed (positive) delay d
if delay(f)(x) = dur(x) when dur(x) ≤ d and
delay(f)(x) = d when dur(x) > d. We indicate this
by writing f : delay = d. Similarly, we say that f
has a fixed (negative) delay−d if delay(f)(x) = −d
for every x. We indicate this by writing f : delay =
−d.

All the monitors defined in Fig. 3 have a
fixed (positive or negative) delay. Moreover, the
combinators >> and par preserve this property.

map(op) : delay = 0 aggr(b, op) : delay = 0

ignore(t) : delay = t emit(v, t) : delay = −t

wnd(∆, 1⊗,⊗) : delay = 0

f : delay = s g : delay = t

f >> g : delay = s+ t

f : delay = s g : delay = t

par(f, g) : delay = max(s, t)

More specifically, the monitors map(op),
aggr(b, op) and wnd(∆, 1⊗,⊗) have perfectly syn-
chronized input and output (i.e., the delay is 0).
The monitor ignore(t) has positive delay t, and
the monitor emit(v, t) has negative delay −t.

A consequence of this is that any monitor built
from the basic ones (monitors of Fig. 3 and Fig. 7)
using serial and/or parallel composition has fixed
delay.

Monitors and Input/Output Variability.

We are especially interested in monitors that do
not introduce unbounded variability in their out-
put. For a monitor f : M(A,B), we write the
typing judgment {ivar = k}f{ovar = `} to indi-
cate that for every input trace x ∈ PCSig(A) with
variability at most k, the output trace f(x) of the
monitor has variability at most `. In other words,
this says that the monitor does not introduce
unbounded variability.

Lemma 12 The typing judgments of Fig. 4 hold.

{ivar = k}map(op){ovar = k}

{ivar = k}aggr(b, op){ovar = k}

{ivar = k}emit(v, t){ovar = k + 1}

{ivar = k}ignore(t){ovar = k}

{ivar = k}wnd(∆, 1⊗,⊗){ovar = 2k}

{ivar = k}f{ovar = `} {ivar = `}g{ovar = m}

{ivar = k}f >> g{ovar = m}

{ivar = k}f{ovar = `} {ivar = k}g{ovar = m}

{ivar = k}par(f, g){ovar = `+m}

Fig. 4 Typing judgments for the preservation of finite
variability.

Proof For the map(op) monitor, we observe that it
only changes the values of data items, not their kind
(point/segment) or the duration of segments. For this
reason, it preserves the variability of the input trace.
The rest of the cases can be handled with analogous
observations. �

None of the monitors of Fig. 3 introduces
unbounded variability. Moreover, the combinators
>> and par preserve this property. The typing
judgments of Fig. 4 imply that every monitor
built from the basic ones (Fig. 3) using >> and
par preserves the bounded variability of the input
signal.

Bounded memory footprint.

Notice that map(op) and emit(v, t) are state-
less, which means that they need no memory.
The monitor aggr(b, op) needs one memory loca-
tion to store the running aggregate. The monitor
ignore(t) needs one memory location for a clock
that records the amount of time that has passed
since the start of the computation. The sliding-
window monitor wnd(∆, 1⊗,⊗) needs 2 · ∆ · Var
memory locations, where Var is the variability
of the input trace, for the buffers bufL, bufR,
bufL agg used by the sliding window algorithm
(see Fig. 6 and Fig. 7 later). The combinator >>

does not require additional memory. The combi-
nator par, on the other hand, needs buffers that
can store pending input from either input channel.
Consider the monitoring par(f1, f2) with

f1 : delay = d1 {ivar = k}f1{ovar = `1}

f2 : delay = d2 {ivar = k}f2{ovar = `2}.

Springer Nature 2021 LATEX template

If d2 ≥ d1 (the second channel is behind the first
channel), then we need a buffer of size dd2−d1e·`1
for buffering the first channel. If d1 ≥ d2 (the first
channel is behind the second channel), then we
need a buffer of size dd1− d2e · `2 for buffering the
second channel.

Notice that both bounded delay and bounded
variability are crucial for putting a bound of the
size of buffers used by par and wnd.

4 MTL Monitoring

In this section, we will see how temporal formulas
are translated into monitors using the combinators
of Sect. 3. Since we focus in this paper on online
monitoring, we restrict attention to the future-
bounded fragment of MTL, where the future-time
temporal connectives are bounded. That is, every
UI connective is of the form U[a,b] for a ≤ b < ∞

(and similarly for FI , GI , ŪI).
For an infinite input signal x, the output of the

monitor for the time instant t should be ρ(ϕ,x, t),
but the monitor has to compute it by observing
only a finite prefix of x. In order for the output
value of the monitor to agree with the standard
temporal semantics over infinite traces we may
need to delay an output item until some part of
the future input is seen. For example, in the case of
F1p we need to wait for one time unit: the output
at time t is given after the input item at time t+1
is seen. In other words, the monitor for F1p has a
delay (the output is falling behind the input) of
one time unit. Symmetrically, we can allow moni-
tors to emit output early when the correct value is
known. For example, the output value for P1p is ⊥
in the beginning and the value at time t is already
known from time t − 1. So, we also allow moni-
tors to have negative delay (the output is running
ahead of the input). The function dl : MTL → T
gives the amount of delay required to monitor a
formula. It is defined by dl(p) = 0 and

dl(ϕ ∧ ψ) = max(dl(ϕ), dl(ψ))

dl(ϕ S[a,b] ψ) = max(dl(ϕ), dl(ψ))− a

dl(ϕ S[a,∞) ψ) = max(dl(ϕ), dl(ψ))− a

dl(ϕ U[a,b] ψ) = max(dl(ϕ), dl(ψ)) + b.

The monitor TL(ϕ) for a formula ϕ is a signal
transducer. If dl(ϕ) = 0, then TL(ϕ) is a trans-
ducer where the input and output signals are

TL(p) = map(p)

TL(ϕ ∨ ψ) = par(TL(ϕ), TL(ψ)) >> map(t)

TL(ϕ ∧ ψ) = par(TL(ϕ), TL(ψ)) >> map(u)

TL(P[0,∞)ϕ) = TL(ϕ) >> aggr(⊥,t)

TL(H[0,∞)ϕ) = TL(ϕ) >> aggr(>,u)

TL(P(0,∞)ϕ) = TL(ϕ) >> aggrV(⊥,t)

TL(H(0,∞)ϕ) = TL(ϕ) >> aggrV(>,u)

TL(Paϕ) = TL(ϕ) >> emit(⊥, a)

TL(Haϕ) = TL(ϕ) >> emit(>, a)

TL(P[a,∞)ϕ) = TL(PaP[0,∞)ϕ)

TL(H[a,∞)ϕ) = TL(HaH[0,∞)ϕ)

TL(P[0,b]ϕ) = wnd(b,⊥,t)

TL(H[0,b]ϕ) = wnd(b,>,u)

TL(P[a,b]ϕ) = TL(PaP[0,b−a]ϕ)

TL(H[a,b]ϕ) = TL(HaH[0,b−a]ϕ)

TL(ϕ S ψ) = par(TL(ϕ), TL(ψ)) >> aggr(⊥, opS)

opS : V × (V × V) → V , where

opS(s, 〈x, y〉) = (s u x) t y

TL(ϕ S[a,∞) ψ) = TL(Pa(ϕ S ψ) ∧ H[0,a)ϕ)

TL(ϕ S[0,b] ψ) = TL(P[0,b]ψ ∧ (ϕ S ψ))

TL(ϕ S[a,b] ψ) = TL(Pa(ϕ S[0,b−a] ψ) ∧ H[0,a)ϕ)

TL(Faϕ) = TL(ϕ) >> ignore(a)

TL(Gaϕ) = TL(ϕ) >> ignore(a)

TL(F[a,b]ϕ) = TL(FbP[0,b−a]ϕ)

TL(G[a,b]ϕ) = TL(GbH[0,b−a]ϕ)

TL(ϕ U[0,b] ψ) = par(TL(ϕ), TL(ψ)) >>

wnd(b, 1⊗U
,⊗U) >>

map(π2) >> ignore(b)

TL(ϕ U[a,b] ψ) = TL(Fa(ϕ U[0,b−a] ψ) ∧ G[0,a)ϕ)

Fig. 5 Monitors for bounded-future MTL formulas.

perfectly synchronized. If dl(ϕ) > 0, then TL(ϕ)
emits no output for the first dl(ϕ) time units and
then behaves like a synchronized transducer. If
dl(ϕ) < 0, then TL(ϕ) emits a signal prefix of
duration dl(ϕ) upon initialization and continues
to behave like a synchronized transducer.

The identities of Fig. 2 suggest that MTL
monitoring can be reduced to a small set of com-
putational primitives. The primitives of Sect. 3
are sufficient to specify the monitors, as shown in
Fig. 5. We write π1 : A × B → A for the left
projection and π2 : A × B → B for the right

Springer Nature 2021 LATEX template

Title 11

projection. Observe that the temporal connectives
X[0,∞) are encoded with aggr (running aggrega-
tion), whereas the temporal connectives X(0,∞)

are encoded with aggrV (a slight variant of run-
ning aggregation). The connectives Pa and Ha are
encoded using emit. The connective P[0,a] (resp.,
H[0,a]) is encoded using the sliding-window mon-
itor wnd of Fig. 7, where the sliding aggregation
is t (resp., u). Similarly, the connectives X[0,a),
X(0,a], X(0,a) can be encoded with a sliding aggre-
gation that is a minor variant of the algorithm
of Fig. 7 (the only difference is how the leftmost
and rightmost points of the window are handled).
Each connective of the form X〈a,b〉 is reduced to
the connectives Xa and X〈0,b−a〉. The “since” con-
nectives S[a,∞), S[0,b], S[a,b] are reduced to other
simpler temporal connectives. The future connec-
tives Fa and Ga are encoded using ignore. The
connective F[a,b] is encoded using Fb and P[0,b−a],
and similarly for G[a,b]. Finally, the “until” con-
nective U[a,b] is reduced to U[0,b−a], which in turn
is monitored using a sliding-window aggregation
that we describe below. The connectives U[0,b),
U(0,b], U(0,b) are handled similarly.

Let x ∈ Sig(D). If dur(x) ≥ t+a, then ρ(ϕU[0,a]

ψ,x, t) = ρ(ϕ U ψ,x|[t,t+a], 0), where x|[t,t+a] is
the restriction of x to the interval [t, t + a] (also
translated so that the left endpoint is at 0). So, we
can implement a monitor for the connective U[0,a]

by computing U over a window of duration exactly
a time units.

Proposition 13 (Aggregation for Until) Let V be
an infinitely bi-distributive complete lattice. For every
piecewise constant trace x ∈ PCSig(V × V), the value
ρ(π1 U π2,x, 0) can be written as an aggregate of the
form π2(〈x0, y0〉 ⊗ 〈x1, y1〉 ⊗ · · · ⊗ 〈xn, yn〉).

Proof We will consider traces that start with a point.
Notice that x is a trace but it represents a signal, so
we can also use it as a signal. Define

always(x) = ρ(Gπ1,x, 0) =
l

t∈dom(x)

ρ(π1,x, t), and

until(x) = ρ(π1 U π2,x, 0)

=
⊔

t∈dom(x)

(l

u∈[0,t)

ρ(π1,x, u) u ρ(π2,x, t)
)

.

If the trace x = 〈x, y〉 consists of a single point, then
we have always(〈x, y〉) = x and until(〈x, y〉) = y. If the

trace x = 〈x0, y0〉〈x1, y1〉
dt consists of a point followed

by a segment, then we have that

always(x) = x0 u x1 and

until(x) = y0 t (x0 u x1 u y1).

Now, let us assume that x is a trace that starts with a
point and ends with a segment, and that y is a trace
that starts with a point. We have

always(xy) = always(x) u always(y) and (5)

until(xy) = until(x) t (always(x) u until(y)) (6)

by virtue of the definition of always and until.
For a point 〈x, y〉, we define f(〈x, y〉) = 〈x, y〉. For

a segment 〈x, y〉dt , we define f(〈x, y〉dt) = 〈x, x u y〉.
We define the binary operation ⊗ : (V × V) × (V ×
V) → (V × V) by

〈x1, y1〉 ⊗ 〈x2, y2〉 = 〈x1 u x2, y1 t (x1 u y2)〉.

The operation ⊗ is associative with (left and right)
identity 1⊗ = 〈>,⊥〉. So, there is a unique extension
of f to all traces that satisfies f(xy) = f(x)⊗ f(y).

We claim now that f(x) = 〈always(x), until(x)〉 for
every trace x that starts with a point. The case where
x is a point is immediate from the definitions. For the
case where x = 〈x0, y0〉〈x1, y1〉

dt , we have

f(x) = f(〈x0, y0〉)⊗ f(〈x1, y1〉
dt)

= 〈x0, y0〉 ⊗ 〈x1, x1 u y1〉

= 〈x0 u x1, y0 t (x0 u x1 u y1)〉

= 〈always(x), until(x)〉.

If x has at least two data items, then x = yz for some
traces y and z (both of which start with a point). It
follows that

f(x) = f(yz) = f(y)⊗ f(z)

= 〈always(y), until(y)〉 ⊗ 〈always(z), until(z)〉

= 〈always(yz), until(yz)〉

from the induction hypothesis, the definition of ⊗, and
equations (5) and (6).

We conclude that ρ(π1 U π2,x, 0) is equal to
π2(f(x)), which is the desired form involving the asso-
ciative aggregation ⊗. �

Proposition 13 justifies the translation of U[0,b]

into the monitor shown in Fig. 5.
Now, we will describe the data structure that

performs the sliding aggregation, which is used in
the monitor wnd(∆, 1⊗,⊗). The implementation
is shown in Fig. 6 and Fig. 7. More specifically,
Fig. 6 shows the state that the monitor maintains
(i.e., the variables and data structures), the ini-
tialization of the monitor, and describes several
auxiliary funtions (Reverse, AddRight, AddLeft,
and Remove). Figure 7 shows the definition of the

Springer Nature 2021 LATEX template

// size = size(bufL) + size(bufR)

// Invariant: if size > 0 then size(bufL) > 0.

bufL← [] // empty left buffer (items)

bufL agg ← [] // empty left buffer (aggregates)

bufR ← [Pt(1⊗), Seg(1⊗,∆)] // right buffer (items)

aggR ← 1⊗ // aggregate of right buffer

agg ← 1⊗ // initial overall aggregate

dur ← ∆ // time duration of window

Reverse() // restore the invariant

Function Reverse():

// Called when size(bufL) = 0 and size(bufR) > 0.

// This function restores the window invariant.

bufL← bufR // move right buffer to left

bufR ← [] // empty right buffer

aggR ← 1⊗ // identity value

tmp agg ← 1⊗ // running aggregate

bufL agg ← [] // empty left buffer of aggregates

for i← size(bufL)− 1 to 0 do // calculate partial aggregates

tmp agg ← bufL[i].value ⊗ tmp agg // new aggregate

bufL agg ← [tmp agg] · bufL agg // prepend partial aggregate

agg ← bufL agg [0] // update overall aggregate

Function AddRight(x):

// item x is either a point or a segment

bufR ← bufR · [x] // add new item to the right

aggR ← aggR ⊗ x.value // update right aggregate

agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur + x.duration // update window duration

// dur does not change when adding a point: Pt(a).duration = 0

Function AddLeft(x):

tmp agg ← x.value ⊗ bufL agg [0] // new partial aggregate

bufL← [x] · bufL // add new item to the left

bufL agg ← [tmp agg] · bufL agg // prepend partial aggregate

agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur + x.duration // update window duration

Function Remove():

// remove oldest item from window

old ← bufL[0] // the oldest item

bufL← tail(bufL) // remove oldest item from bufL

bufL agg ← tail(bufL agg) // remove corresponding aggregate

if size(bufL) = 0 then

Reverse() // restore the invariant

else // size(bufL) > 0
agg ← bufL agg [0]⊗ aggR // update overall aggregate

dur ← dur − old .duration // update window duration

Fig. 6 Auxiliary functions for the sliding-window aggregation algorithm of Fig. 7.

Springer Nature 2021 LATEX template

Title 13

Function NextP(a):

AddRight(Pt(a)) // add new point to the right

Emit(Pt(agg)) // emit an output point

Remove() // remove oldest item (it should be a point)

Function NextS(a, dt):

AddRight(Seg(a, dt)) // add new segment to the right

over ← dur −∆ // calculate extra duration

while over > 0 do

old ← bufL[0] // the oldest item

if old = Pt(a′) then
Emit(Pt(agg)) // emit an output point

Remove() // remove oldest item (it should be a point)

else if old = Seg(a′
, dt ′) then

if dt ′ ≤ over then

Emit(Seg(agg , dt ′)) // emit output segment

Remove() // remove old segment

else // dt ′ > over

Emit(Seg(agg , over)) // emit output segment

// modify oldest segment to reduce its duration by over

bufL[0]← Seg(a′
, dt ′ − over) // update

dur ← dur − over // update duration

AddLeft(Pt(a′)) // add a point back to the left

over ← dur −∆ // recalculate extra duration

Fig. 7 Sliding aggregation over a continuous-time signal with wnd(∆, 1⊗,⊗). It uses the auxiliary functions of Fig. 6.

functions NextP and NextS, which describe the
monitor transition when a point or a segment is
received respectively.

Suppose that the current window (of dura-
tion ∆) is given by the concatenation bufL ·
bufR, where bufL = [x1, x2, . . . , xm] and bufR =
[xm+1, . . . , xm+n]. That is, the window is split into
two buffers: bufL (left buffer) contains older ele-
ments, and bufR (right buffer) contains newer ele-
ments. We maintain a buffer of partial aggregates
for the older elements: bufL agg = [y1, y2, . . . , ym],
where yi = xi ⊗ · · · ⊗ xm. We also maintain the
aggregate aggR = xm+1 ⊗ · · · ⊗ xm+n of the right
buffer. So, the overall aggregate (for the entire
window) is agg = y1 ⊗ aggR.
− When a new point Pt(a) arrives, the function

NextP (Fig. 7) says we add it to the right buffer,
we update aggR and agg , and finally we evict
the oldest point from the window.

− When a new open segment Seg(a, dt) arrives,
the function NextS (Fig. 7) says that we add it
to the right buffer, update aggR, agg and the
current duration of the window, and then we
evict as many old items as necessary in order to
bring the window back to its desired duration
∆. The eviction of old items is seen in the while
loop of NextS, where the loop guard “over >

0” checks whether enough evictions have been
performed.

Every eviction is performed using the function
Remove (Fig. 6). An eviction could result in the
left buffer becoming empty, which is not consistent
with the data invariant that we want to maintain.
For this reason, whenever the left buffer becomes
empty, we convert the entire right buffer into a
left buffer by performing all partial aggregations
from right to left. We call this a “reversal” and
it requires O(n) applications of ⊗, where n is the
size of window (number of items that it contains).
This procedure is defined in the function Reverse

of Fig. 6. Observe that it involves a right-to-left
traversal of the buffer bufL in order to calculate
all partial aggregates. Another subtle observation
about the algorithm concerns the eviction of part
of a segment (see the conditional branch “dt ′ >
over” in Fig. 7). After this part (open segment) is
removed we have to add back to the left a missing
point. This is done with the function AddLeft of
Fig. 6.

Theorem 14 Let D be a set of signal values, V be
a infinitely bi-distributive complete lattice, and ϕ :
MTL(D,V) be a bounded-future formula. Assuming
that the input signal has variability that is bounded by

Springer Nature 2021 LATEX template

a constant, the monitor TL(ϕ) : M(D,V) uses memory
that is exponential in |ϕ|.

Proof The algorithm needs memory that is exponen-
tial in the size of ϕ because of the connectives of the
form X[a,∞) and X[a,b]. The monitor uses buffers of
size proportional to a or b−a (there is a multiplicative
factor corresponding to variability). Since the con-
stants a, b are written in succinct (binary or decimal)
notation, we need space that is exponential in the size.

The basic monitors (i.e., except for wnd) all need a
constant number of memory locations (aggr, ignore)
or no memory at all (map, emit). �

Every temporal connective is implemented in
TL(ϕ) as a sub-algorithm that uses constant amor-
tized time-per-item. This hinges on the algorithm
of Fig. 7, which is used for X[0,b] where X ∈
{P,H, S,U}. The sliding-window algorithm needs
O(1) amortized time-per-item. In order to see why
this is the case, notice that if the variability of
the input signal is bounded by a constant, then
a reversal occurs only once every Θ(n) items. So,
the high cost of a reversal is amortized over Θ(n)
steps, and therefore the algorithm needs O(1)
amortized time-per-item.

5 Experiments

We have implemented the monitoring framework
of Sect. 4 as a library using the Rust programming
language. We have compared our implementation
with the monitoring tools Reelay [52] and RTAMT
[48]. We chose Reelay and RTAMT for the com-
parison because they support dense-time traces
and use a semantics for temporal formulas that
is consistent with ours. Reelay is implemented
as a C++ library, which makes the comparison
with our Rust library more fair because both Rust
and C++ are low-overhead compiled languages.
RTAMT is implemented in Python, which makes
it difficult to measure memory usage precisely.

In our Rust implementation, we represent the
values from the truth domain R±∞ using 64-
bit floating-point numbers. In Fig. 8, we show
the performance of our tool when four different
truth domains are used. We consider the lattice of
Boolean values, the lattice R±∞ of the extended
real numbers, and the lattice I(R±∞) of inter-
vals from Example 8. We also consider the lattice

IML(R
±∞) from Example 8, labeled as “most-

likely” in Fig. 8. Recall that IML(R
±∞) contains

triples of the form 〈a,m, b〉 with a ≤ m ≤ b.
In Fig. 9, we show the time performance of

the monitors with respect to the variability of
the monitored signal (number of samples per time
unit). We consider the formulas X[0,1], X1, X[1,2],
X[1,∞), where X ∈ {P, S}. The time performance
of our tool is independent of the specific signal
being monitored, so we show the performance for
only one kind of input signal (sinusoidal). The per-
formance of Reelay, on the other hand, depends
on the input signal. We therefore consider three
different input signals: monotonically increasing,
monotonically decreasing, and sinusoidal. It is
desirable to have a monitoring algorithm that pro-
cesses items at a fixed rate regardless of variability.
We observe this behavior with our tool, and with
Reelay in the case of sinusoidal input.

We have used the profiling tool Valgrind [51]
to analyze the memory consumption of the mon-
itors. In Fig. 9, we show the peak memory usage
of the monitors as a function of the variability of
the input signal. For Reelay, we report the perfor-
mance for three different input signals (ascending,
descending, and sinusoidal). The memory con-
sumption of our monitor is independent of the
values of the input signal (but is dependent on
the sampling), so we have only reported the per-
formance for the sinusoidal input signal. For our
monitor, we see that the memory consumption
for P[0,1],P[1,2], S[0,1], S1, S[1,2], S[1,∞) increases lin-
early with variability. This is what we expect to
observe because a larger signal variability leads
to a larger number of elements for a window of
fixed time duration, all of which need to be stored.
For our monitor, the amount of memory allocated
for P1 and P[1,∞) is roughly constant. This is
because the corresponding monitors do not allo-
cate buffers. In the case of Reelay, we observe an
increase in memory consumption for certain input
signals. We also notice that Reelay uses at least
100 KB of memory, even for signals of low variabil-
ity. We believe that this can be attributed to the
complex interval-map data structures that Reelay
uses from the Boost libraries [27].

We have also compared our tool with
TLTk [18] over a set of safety properties.
TLTk interprets the formula from time zero and
only supports future-time temporal connectives.
Because of the syntactic and semantic differences

Springer Nature 2021 LATEX template

inductive definition of pastification is detailed in
[43].

It was observed in [22] that the key ingre-
dient for efficiently monitoring STL is an online
algorithm for calculating the maximum/minimum
over a sliding window. The commonly used algo-
rithm [38] maintains a so-called monotonic wedge
of values. In contrast, we use a more general
algorithm, which applies to any associative aggre-
gation (not only max/min) and does not require
the domain of values to be totally ordered.

7 Conclusion

We have presented a new efficient algorithm for
the online monitoring of MTL properties over
dense-time and continuous-time signals. We have
used an abstract algebraic semantics based on
complete lattices satisfying certain infinitary dis-
tributivity laws. Our semantics can be instanti-
ated to the widely used Boolean (qualitative) and
robustness (quantitative) semantics, as well as to
other partially ordered truth values. Our mon-
itoring framework is compositional in the sense
that we construct monitors from formulas using
a set of combinators on monitors. A key fea-
ture that enables compositionality and efficiency
in our framework is the use of monitors that
are deterministic signal transducers with associ-
ated typing judgments for ensuring that: (1) each
monitor has a bounded and fixed delay, and (2)
each monitor produces output of bounded vari-
ability given input of bounded variability. We
have provided an implementation of our algebraic
monitoring framework, and we have shown exper-
imentally that our monitors scale reasonably well
and are competitive against the tools Reelay [52]
and RTAMT [48].

Acknowledgments. This research was sup-
ported in part by US National Science Foundation
award 2008096.

References

[1] Abbas H, Alur R, Mamouras K, et al (2018)
Real-time decision policies with predictable
performance. Proceedings of the IEEE, Spe-
cial Issue on Design Automation for Cyber-
Physical Systems 106(9):1593–1615. https://
doi.org/10.1109/JPROC.2018.2853608

[2] Abbas H, Rodionova A, Mamouras K, et al
(2019) Quantitative regular expressions for
arrhythmia detection. IEEE/ACM Transac-
tions on Computational Biology and Bioin-
formatics 16(5):1586–1597. https://doi.org/
10.1109/TCBB.2018.2885274

[3] Akazaki T, Hasuo I (2015) Time robustness
in MTL and expressivity in hybrid system
falsification. In: Kroening D, Păsăreanu CS
(eds) CAV 2015, LNCS, vol 9207. Springer,
Cham, pp 356–374, https://doi.org/10.1007/
978-3-319-21668-3 21

[4] Alur R, Dill DL (1994) A theory of
timed automata. Theoretical Com-
puter Science 126(2):183–235. https:
//doi.org/10.1016/0304-3975(94)90010-8

[5] Alur R, Mamouras K (2017) An introduction
to the StreamQRE language. Dependable
Software Systems Engineering 50:1–24. https:
//doi.org/10.3233/978-1-61499-810-5-1

[6] Alur R, Feder T, Henzinger TA (1996) The
benefits of relaxing punctuality. Journal of
the ACM 43(1):116–146. https://doi.org/10.
1145/227595.227602

[7] Alur R, Mamouras K, Stanford C (2017)
Automata-based stream processing. In:
ICALP 2017, Leibniz International Proceed-
ings in Informatics (LIPIcs), vol 80. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp 112:1–112:15, https:
//doi.org/10.4230/LIPIcs.ICALP.2017.112

[8] Alur R, Mamouras K, Ulus D (2017) Deriva-
tives of quantitative regular expressions. In:
Aceto L, Bacci G, Bacci G, et al (eds) Mod-
els, Algorithms, Logics and Tools: Essays
Dedicated to Kim Guldstrand Larsen on the
Occasion of His 60th Birthday, LNCS, vol
10460. Springer, Cham, p 75–95, https://doi.
org/10.1007/978-3-319-63121-9 4

[9] Alur R, Mamouras K, Stanford C (2019)
Modular quantitative monitoring. Proceed-
ings of the ACM on Programming Lan-
guages 3(POPL):50:1–50:31. https://doi.org/
10.1145/3290363

Springer Nature 2021 LATEX template

Title 19

[10] Alur R, Fisman D, Mamouras K, et al (2020)
Streamable regular transductions. Theoreti-
cal Computer Science 807:15–41. https://doi.
org/10.1016/j.tcs.2019.11.018

[11] Bakhirkin A, Ferrère T, Maler O (2018)
Efficient parametric identification for STL.
In: HSCC 2018. ACM, New York, NY,
USA, pp 177–186, https://doi.org/10.1145/
3178126.3178132

[12] Bauer A, Leucker M, Schallhart C (2010)
Comparing LTL semantics for runtime ver-
ification. Journal of Logic and Computa-
tion 20(3):651–674. https://doi.org/10.1093/
logcom/exn075

[13] Benveniste A, Le Guernic P, Jacquemot
C (1991) Synchronous programming with
events and relations: The SIGNAL language
and its semantics. Science of Computer Pro-
gramming 16(2):103–149. https://doi.org/10.
1016/0167-6423(91)90001-E

[14] Berry G, Gonthier G (1992) The Esterel
synchronous programming language: Design,
semantics, implementation. Science of Com-
puter Programming 19(2):87–152. https://
doi.org/10.1016/0167-6423(92)90005-V

[15] Bonakdarpour B, Fraigniaud P, Rajsbaum
S, et al (2016) Decentralized asynchronous
crash-resilient runtime verification. In:
Desharnais J, Jagadeesan R (eds) CONCUR
2016, Leibniz International Proceedings
in Informatics (LIPIcs), vol 59. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp 16:1–16:15, https:
//doi.org/10.4230/LIPIcs.CONCUR.2016.16

[16] Caspi P, Pilaud D, Halbwachs N, et al (1987)
LUSTRE: A declarative language for real-
time programming. In: POPL 1987. ACM,
New York, NY, USA, pp 178–188, https://
doi.org/10.1145/41625.41641

[17] Chattopadhyay A, Mamouras K (2020) A
verified online monitor for metric temporal
logic with quantitative semantics. In: Desh-
mukh J, Ničković D (eds) RV 2020, LNCS, vol
12399. Springer, Cham, pp 383–403, https:
//doi.org/10.1007/978-3-030-60508-7 21

[18] Cralley J, Spantidi O, Hoxha B, et al
(2020) TLTk: A toolbox for parallel robust-
ness computation of temporal logic spec-
ifications. In: Deshmukh J, Ničković D
(eds) RV 2020, LNCS, vol 12399. Springer,
Cham, pp 404–416, https://doi.org/10.1007/
978-3-030-60508-7 22

[19] Deshmukh JV, Donzé A, Ghosh S, et al
(2017) Robust online monitoring of signal
temporal logic. Formal Methods in System
Design 51(1):5–30. https://doi.org/10.1007/
s10703-017-0286-7

[20] Dokhanchi A, Hoxha B, Fainekos G (2014)
On-line monitoring for temporal logic robust-
ness. In: Bonakdarpour B, Smolka SA
(eds) RV 2014, LNCS, vol 8734. Springer,
Cham, pp 231–246, https://doi.org/10.1007/
978-3-319-11164-3 19

[21] Donzé A, Maler O (2010) Robust satisfac-
tion of temporal logic over real-valued signals.
In: Chatterjee K, Henzinger TA (eds) FOR-
MATS 2010, LNCS, vol 6246. Springer, Hei-
delberg, pp 92–106, https://doi.org/10.1007/
978-3-642-15297-9 9

[22] Donzé A, Ferrère T, Maler O (2013) Efficient
robust monitoring for STL. In: Sharygina N,
Veith H (eds) CAV 2013, LNCS, vol 8044.
Springer, Heidelberg, pp 264–279

[23] Dreossi T, Dang T, Donzé A, et al (2015)
Efficient guiding strategies for testing of
temporal properties of hybrid systems. In:
Havelund K, Holzmann G, Joshi R (eds)
NFM 2015, LNCS, vol 9058. Springer,
Cham, pp 127–142, https://doi.org/10.1007/
978-3-319-17524-9 10

[24] D’Souza D, Tabareau N (2004) On timed
automata with input-determined guards. In:
Lakhnech Y, Yovine S (eds) FTRTFT 2004,
FORMATS 2004, LNCS, vol 3253. Springer,
Heidelberg, pp 68–83, https://doi.org/10.
1007/978-3-540-30206-3 7

[25] Fainekos GE, Pappas GJ (2006) Robustness
of temporal logic specifications. In: Havelund
K, Núñez M, Roşu G, et al (eds) FATES 2006,

Springer Nature 2021 LATEX template

RV 2006, LNCS, vol 4262. Springer, Heidel-
berg, pp 178–192, https://doi.org/10.1007/
11940197 12

[26] Fainekos GE, Pappas GJ (2009) Robust-
ness of temporal logic specifications for
continuous-time signals. Theoretical Com-
puter Science 410(42):4262–4291. https://
doi.org/10.1016/j.tcs.2009.06.021

[27] Faulhaber J (2021) Boost library doc-
umentation: Interval container library.
https://www.boost.org/doc/libs/1 76 0/
libs/icl/doc/html/index.html, [Online;
accessed August 20, 2021]

[28] Faymonville P, Finkbeiner B, Schwenger M,
et al (2017) Real-time stream-based moni-
toring. CoRR abs/1711.03829. URL http://
arxiv.org/abs/1711.03829

[29] Faymonville P, Finkbeiner B, Schledjewski
M, et al (2019) StreamLAB: Stream-based
monitoring of cyber-physical systems. In: Dil-
lig I, Tasiran S (eds) CAV 2019, LNCS, vol
11561. Springer, Cham, pp 421–431, https:
//doi.org/10.1007/978-3-030-25540-4 24

[30] Ferrère T, Maler O, Ničković D, et al (2019)
From real-time logic to timed automata.
Journal of the ACM 66(3):19:1–19:31. https:
//doi.org/10.1145/3286976

[31] Gorostiaga F, Sánchez C (2018) Striver:
Stream runtime verification for real-time
event-streams. In: Colombo C, Leucker M
(eds) RV 2018, LNCS, vol 11237. Springer,
Cham, pp 282–298, https://doi.org/10.1007/
978-3-030-03769-7 16

[32] Hoxha B, Abbas H, Fainekos GE (2014)
Benchmarks for temporal logic requirements
for automotive systems. In: Frehse G, Althoff
M (eds) ARCH@CPSWeek 2014, 2015, EPiC
Series in Computing, vol 34. EasyChair, pp
25–30, https://doi.org/10.29007/xwrs

[33] Hoxha B, Bach H, Abbas H, et al (2014)
Towards formal specification visualization for
testing and monitoring of cyber-physical sys-
tems. In: International Workshop on Design
and Implementation of Formal Tools and

Systems, DIFTS 2014

[34] Jakšić S, Bartocci E, Grosu R, et al (2018)
An algebraic framework for runtime veri-
fication. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Sys-
tems 37(11):2233–2243. https://doi.org/10.
1109/TCAD.2018.2858460

[35] Kahn G (1974) The semantics of a simple lan-
guage for parallel programming. Information
Processing 74:471–475

[36] Kong L, Mamouras K (2020) StreamQL: A
query language for processing streaming time
series. Proceedings of the ACM on Program-
ming Languages 4(OOPSLA):183:1–183:32.
https://doi.org/10.1145/3428251

[37] Koymans R (1990) Specifying real-time prop-
erties with metric temporal logic. Real-
Time Systems 2(4):255–299. https://doi.org/
10.1007/BF01995674

[38] Lemire D (2006) Streaming maximum-
minimum filter using no more
than three comparisons per ele-
ment. CoRR abs/cs/0610046. URL
http://arxiv.org/abs/cs/0610046, https:
//arxiv.org/abs/cs/0610046

[39] Li J, Maier D, Tufte K, et al (2005) No
pane, no gain: Efficient evaluation of sliding-
window aggregates over data streams. SIG-
MOD Record 34(1):39–44. https://doi.org/
10.1145/1058150.1058158

[40] Maler O, Nickovic D (2004) Monitoring tem-
poral properties of continuous signals. In:
Lakhnech Y, Yovine S (eds) FTRTFT 2004,
FORMATS 2004, LNCS, vol 3253. Springer,
Heidelberg, pp 152–166, https://doi.org/10.
1007/978-3-540-30206-3 12

[41] Maler O, Nickovic D, Pnueli A (2005) Real
time temporal logic: Past, present, future. In:
Pettersson P, Yi W (eds) FORMATS 2005,
LNCS, vol 3829. Springer, Heidelberg, pp 2–
16, https://doi.org/10.1007/11603009 2

[42] Maler O, Nickovic D, Pnueli A (2006) From
MITL to timed automata. In: Asarin E,

Springer Nature 2021 LATEX template

Title 21

Bouyer P (eds) FORMATS 2006, LNCS,
vol 4202. Springer, Heidelberg, pp 274–289,
https://doi.org/10.1007/11867340 20

[43] Maler O, Ničković D, Pnueli A (2007) On syn-
thesizing controllers from bounded-response
properties. In: Damm W, Hermanns H (eds)
CAV 2007, LNCS, vol 4590. Springer, Hei-
delberg, pp 95–107, https://doi.org/10.1007/
978-3-540-73368-3 12

[44] Mamouras K, Wang Z (2020) Online signal
monitoring with bounded lag. IEEE Trans-
actions on Computer-Aided Design of Inte-
grated Circuits and Systems https://doi.org/
10.1109/TCAD.2020.3013053

[45] Mamouras K, Raghothaman M, Alur R,
et al (2017) StreamQRE: Modular specifica-
tion and efficient evaluation of quantitative
queries over streaming data. In: PLDI 2017.
ACM, New York, NY, USA, pp 693–708,
https://doi.org/10.1145/3062341.3062369

[46] Mamouras K, Chattopadhyay A, Wang
Z (2021) Algebraic quantitative seman-
tics for efficient online temporal moni-
toring. In: Groote JF, Larsen KG (eds)
TACAS 2021, LNCS, vol 12651. Springer,
Cham, pp 330–348, https://doi.org/10.1007/
978-3-030-72016-2 18

[47] Mamouras K, Chattopadhyay A, Wang Z
(2021) A compositional framework for quan-
titative online monitoring over continuous-
time signals. In: Feng L, Fisman D (eds)
RV 2021, LNCS, vol 12974. Springer,
Cham, pp 142–163, https://doi.org/10.1007/
978-3-030-60508-7 22

[48] Ničković D, Yamaguchi T (2020)
RTAMT: Online robustness monitors
from STL. In: Hung DV, Sokolsky O
(eds) ATVA 2020, LNCS, vol 12302.
Springer, Cham, pp 564–571, https:
//doi.org/10.1007/978-3-030-59152-6 34

[49] Pnueli A, Zaks A (2008) On the Merits of
Temporal Testers, LNCS, vol 5000, Springer,
Heidelberg, pp 172–195. https://doi.org/10.
1007/978-3-540-69850-0 11

[50] Sánchez C (2018) Online and offline stream
runtime verification of synchronous sys-
tems. In: Colombo C, Leucker M (eds)
RV 2018, LNCS, vol 11237. Springer,
Cham, pp 138–163, https://doi.org/10.1007/
978-3-030-03769-7 9

[51] The Valgrind Developers (2021) Valgrind:
An instrumentation framework for build-
ing dynamic analysis tools. https://valgrind.
org/, [Online; accessed August 20, 2021]

[52] Ulus D (2020) The Reelay monitoring tool.
https://doganulus.github.io/reelay/, [Online;
accessed August 20, 2020]

[53] Waga M (2019) Online quantitative timed
pattern matching with semiring-valued
weighted automata. In: André É, Stoelinga
M (eds) FORMATS 2019, LNCS, vol
11750. Springer, Cham, pp 3–22, https:
//doi.org/10.1007/978-3-030-29662-9 1

	Introduction
	Contributions:
	Differences from conference version:

	Algebraic Semantics with Complete Lattices
	Monitors
	Monitors and Delay.
	Monitors and Input/Output Variability.
	Bounded memory footprint.

	MTL Monitoring
	Experiments
	Experimental setup:

	Related Work
	Conclusion
	Acknowledgments

