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Abstract. Designing an algorithm with a singly exponential complexity for

computing semi-algebraic triangulations of a given semi-algebraic set has been
a holy grail in algorithmic semi-algebraic geometry. More precisely, given

a description of a semi-algebraic set S Ă Rk by a first order quantifier-free

formula in the language of the reals, the goal is to output a simplicial complex
∆, whose geometric realization, |∆|, is semi-algebraically homeomorphic to S.

In this paper we consider a weaker version of this question. We prove that

for any ` ě 0, there exists an algorithm which takes as input a description of
a semi-algebraic subset S Ă Rk given by a quantifier-free first order formula

φ in the language of the reals, and produces as output a simplicial complex

∆, whose geometric realization, |∆| is `-equivalent to S. The complexity of

our algorithm is bounded by psdqk
Op`q

, where s is the number of polynomials
appearing in the formula φ, and d a bound on their degrees. For fixed `, this

bound is singly exponential in k. In particular, since `-equivalence implies that

the homotopy groups up to dimension ` of |∆| are isomorphic to those of S,
we obtain a reduction (having singly exponential complexity) of the problem

of computing the first ` homotopy groups of S to the combinatorial problem

of computing the first ` homotopy groups of a finite simplicial complex of size

bounded by psdqk
Op`q

.
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1. Introduction

1.1. Background. Let R be a real closed field and D an ordered domain contained
in R.

The problem of effective computation of topological properties of semi-algebraic
subsets of Rk has a long history. Semi-algebraic subsets of Rk are subsets defined by
first-order formulas in the language of ordered fields (with parameters in R). Since
the first-order theory of real closed fields admits quantifier-elimination, we can
assume that each semi-algebraic subset S Ă Rk is defined by some quantifier-free
formula φ. A quantifier-free formula φpX1, . . . , Xkq in the language of ordered fields
with parameters in D, is a formula with atoms of the form P “ 0, P ą 0, P ă 0,
P P DrX1, . . . , Xks.

Semi-algebraic subsets of Rk have tame topology. In particular, closed and
bounded semi-algebraic subsets of Rk are semi-algebraically triangulable (see for
example [4, Chapter 5]). This means that there exists a finite simplicial complex
K, whose geometric realization, |K|, considered as a subset of RN for some N ą

0, is semi-algebraically homeomorphic to S. The semi-algebraic homeomorphism
|K| Ñ S is called a semi-algebraic triangulation of S. All topological properties of
S are then encoded in the finite data of the simplicial complex K.

For instance, taking R “ R, the (singular) homology groups, H˚pSq, of S are
isomorphic to the simplicial homology groups of the simplicial chain complex C‚pKq
of the simplicial complex K, and the latter is a complex of free Z-modules having
finite ranks (here and elsewhere in the paper, unless stated otherwise, all homology
and cohomology groups are with coefficients in Z).

The problem of designing an efficient algorithm for obtaining semi-algebraic tri-
angulations has attracted a lot of attention over the years. One reason behind this
is that once we have such a triangulation, we can then compute discrete topological
invariants, such as the ranks of the homology groups (i.e. the Betti numbers) of
the given semi-algebraic set with just some added linear algebra over Z.

There exists a classical algorithm which takes as input a quantifier-free formula
defining a semi-algebraic set S, and produces as output a semi-algebraic triangu-
lation of S (see for instance [4, Chapter 5]). However, this algorithm is based on
the technique of cylindrical algebraic decomposition, and hence the complexity of
this algorithm is prohibitively expensive, being doubly exponential in k. More pre-
cisely, given a description by a quantifier-free formula involving s polynomials of
degree at most d, of a closed and bounded semi-algebraic subset of S Ă Rk, there
exists an algorithm computing a semi-algebraic triangulation of h : |K| Ñ S, whose
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complexity is bounded by psdq2
Opkq

. Moreover, the size of the simplicial complex K

(measured by the number of simplices) is also bounded by psdq2
Opkq

.

1.1.1. Doubly exponential vs singly exponential. One can ask whether the doubly
exponential behavior for the semi-algebraic triangulation problem is intrinsic to
the problem. One reason to think that it is not so comes from the fact that the
ranks of the homology groups of S (following the same notation as in the previous
paragraph), and so in particular those of the simplicial complex K, is bounded by
pOpsdqqk (see for instance [4, Chapter 7]), which is singly exponential in k. So it is
natural to ask if this singly exponential upper bound on rankpH˚pSqq is “witnessed”
by an efficient semi-algebraic triangulation of small (i.e. singly exponential) size.
This is not known.

In fact, designing an algorithm with a singly exponential complexity for comput-
ing a semi-algebraic triangulation of a given semi-algebraic set has remained a holy
grail in the field of algorithmic real algebraic geometry and little progress has been
made over the last thirty years on this problem (at least for general semi-algebraic
sets). We note here that designing algorithms with singly exponential complex-
ity has being a leit motif in the research in algorithmic semi-algebraic geometry
over the past decades – starting from the so called “critical-point method” which
resulted in algorithms for testing emptiness, connectivity, computing the Euler-
Poincaré characteristic, as well as for the first few Betti numbers of semi-algebraic
sets (see [2] for a history of these developments and contributions of many authors).
More recently, such algorithms has also been developed in other (more numerical)
models of computations [10, 12, 11] (we discuss the connection of these works with
the results presented in this paper in Section 2.4).

1.1.2. Triangulation vs simplicial replacement. While the problem of designing an
algorithm with singly exponential complexity for the problem of semi-algebraic tri-
angulation is completely open, there has been some progress in designing efficient
algorithms for certain related problems. As mentioned above a semi-algebraic tri-
angulation of a closed and bounded semi-algebraic set S produces a finite simplicial
complex, which encodes all topological properties (i.e. which are homeomorphism
invariants) of S. It is well known that homeomorphism invariants are notoriously
difficult to compute (for instance, it is an undecidable problem to determine whether
two simplicial complexes are homeomorphic [18]). What is much more computable
are the homology groups of semi-algebraic sets. Homology groups are in fact homo-
topy (rather than homeomorphism) invariants. Homotopy equivalence is a much
weaker equivalence relation compared to homeomorphism. In the absence of a
singly exponential complexity triangulation of semi-algebraic sets, it is reasonable
to ask for an algorithm which given a semi-algebraic set S Ă Rk described by a
quantifier-free formula involving s polynomials of degrees bounded by d, computes
a simplicial complex K, such that its geometric realization |K| is homotopy equiv-

alent to S having complexity bounded by psdqk
Op1q

. We will call such a simplicial
complex a simplicial replacement of the semi-algebraic set S.

The main results of this paper can be summarized as follows. The precise state-
ments appear in the next section after the necessary definitions of various objects
some of which are a bit technical.

1.2. Summary of results. In the statements below ` P Zě0 is a fixed constant.
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Theorem (cf. Theorems 1 and 11 below). Given any closed semi-algebraic subset of
S Ă Rk, there exists a simplicial complex K homologically `-equivalent to S whose
size is bounded singly exponentially in k (as a function of the number and degrees of
polynomials appearing in the description of S). If R “ R, then K is `-equivalent to
S. Moreover, there exists an algorithm (Algorithm 3) which computes the complex
K given S, and whose complexity is bounded singly exponentially in k.

The problem of designing efficient (symbolic and exact) algorithms for com-
puting the Betti numbers of semi-algebraic sets have been considered before, and
algorithms with singly exponential complexity was given for computing the first
(resp. the first ` for any fixed `) Betti numbers in [5] (resp. [1]). The algorithm
given in the [5] (resp. [1]) computes a complex of vector spaces having isomorphic
homology (with coefficients in Q) up to dimension one (resp. `) as that of the
given semi-algebraic set. However, information with regards to homotopy is lost.
The algorithm implicit in the theorem stated above produces a simplicial complex
having the same homotopy type up to dimension ` as the given semi-algebraic set.
Thus the above theorem can be viewed as a homotopy-theoretic generalization of
the results in [5] and [1].

The above theorem can be used for the problem of computing the homotopy
groups of semi-algebraic sets. Homotopy groups are much finer invariants than
homology groups but are also more difficult to compute. In fact the problem of
deciding whether the first homotopy group (i.e. the fundamental group) of a semi-
algebraic set defined over R is trivial or not is an undecidable problem. Nevertheless,
using the above theorem we have the following corollary which gives an algorithmic
reduction having singly exponential complexity of the problem of computing the
first ` homotopy groups of a given closed semi-algebraic set to a purely combinatorial
problem.

Corollary (cf. Corollaries 1 and 2 below). Let R “ R, There exists a reduction
having singly exponential complexity, of the problem of computing the first ` homo-
topy groups of any given closed semi-algebraic subset S Ă Rk, to the problem of
computing the first ` homotopy groups of a finite simplicial complex. This implies
that there exists an algorithm with singly exponential complexity which given as in-
put a closed semi-algebraic set S Ă Rk guaranteed to be simply connected, outputs
the description of the first ` homotopy groups of S (in terms of generators and
relations).

The algorithmic results mentioned above are consequences of a topological con-
struction which can be interpreted as a generalization of the classical “nerve lemma”
in topology. We state it here informally.

Assume that there exists a “black-box” that given as input any closed semi-
algebraic set S Ă Rk, produces as output a cover of S by closed semi-algebraic
subsets of S which are homologically `-connected.

Theorem (cf. Theorem 2 below). Given a black-box as above, there exists for every
closed semi-algebraic set S a poset PpSq (see Definition 3.3 below) which depends
on the given black-box, of controlled complexity (both in terms of the description of
S and the complexity of the black-box), such that the geometric realization of the
order-complex of PpSq is homologically `-equivalent to S.

Remark 1.1. In the results stated above we make the assumption that the input
semi-algebraic sets are closed. Gabrielov and Vorobjov [15] gave a construction for
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replacing an arbitrary semi-algebraic subset of Rk by a closed and bounded one
having homology and homotopy groups isomorphic to the given semi-algebraic set.
Even though Gabrielov and Vorobjov proved their result over R, the construction
was extended to arbitrary real closed fields (with the approximating set defined
over a real closed extension of the ground field). It is proved in [4] (Theorem
7.45), that the approximating set is in fact semi-algebraically homotopy equivalent
to the (extension of the) given set. Using this latter result one could remove the
assumption of being closed and bounded in Theorems 1 and 11. We choose not to
do this in this paper in order not to add yet another layer of technical complication
involving a new set of infinitesimals.

The rest of the paper is organized as follows. In Section 2 we give precise
statements of the main results summarized above after introducing the necessary
definitions regarding the different notions of topological equivalence that we use
in the paper and also the definition of complexity of algorithms that we use. In
Section 3 we define the key mathematical object (namely, a poset that we asso-
ciate to any closed covering of a semi-algebraic set) and prove its main properties
(Theorems 2 and 21). In Section 4 we describe algorithms for computing efficient
simplicial replacements of semi-algebraic sets thereby proving Theorems 1 and 11.
Finally, in Section 5 we state some open questions and directions for future work
in this area.

2. Precise statements of the main results

In this section we will describe in full detail the main results summarized in the
previous section. We first introduce certain preliminary definitions and notation.

2.1. Definitions of topological equivalence and complexity. We begin with
the precise definitions of the two kinds of topological equivalence that we are going
to use in this paper.

2.1.1. Topological equivalences.

Definition 2.1 (`-equivalences). We say that a map f : X Ñ Y between two
topological spaces is an `-equivalence, if the induced homomorphisms between the
homotopy groups f˚ : πipXq Ñ πipY q are isomorphisms for 0 ď i ď ` [19, page 68].

Remark 2.1. Note that our definition of `-equivalence deviates a little from the
standard one which requires that homomorphisms between the homotopy groups
f˚ : πipXq Ñ πipY q are isomorphisms for 0 ď i ď `´ 1, and only an epimorphism
for i “ `. An `-equivalence in our sense is an `-equivalence in the traditional sense.

The relation of `-equivalence as defined above is not an equivalence relation since
it is not symmetric. In order to make it symmetric one needs to “formally invert”
`-equivalences.

Definition 2.2 (`-equivalent and homologically `-equivalent). We will say that X
is `-equivalent to Y (denoted X „` Y ), if and only if there exists spaces, X “

X0, X1, . . . , Xn “ Y and `-equivalences f1, . . . , fn as shown below:

X1

f1

}}

f2

!!

X3

f3

}}

f4

  

¨ ¨ ¨ ¨ ¨ ¨ Xn´1

fn´1

||

fn

""

X0 X2 ¨ ¨ ¨ ¨ ¨ ¨ Xn

.
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It is clear that „` is an equivalence relation.
By replacing the homotopy groups, πip¨q with homology groups Hip¨q (resp. co-

homology groups Hi
p¨q with arrows reversed) in Definitions 2.1 and 2.2, we get the

notion of two topological spaces X,Y being homologically `-equivalent (denoted

X
h
„` Y ) (resp. cohomologically `-equivalent (denoted X

ch
„` Y )).

This is a strictly weaker equivalence relation, since there are spaces X for which
H1pXq “ 0, but π1pXq ‰ 0.

We extend the above definitions to ` “ ´1 by using the convention that X „´1 Y

(resp. X
h
„´1 Y , X

ch
„´1 Y ), if and only if X,Y are both non-empty or both empty.

Definition 2.3 (`-connected and homologically `-connected). We say that a topo-
logical space X is `-connected, for ` ě 0, if X is connected and πipXq “ 0 for
0 ă i ď `. We will say that X is p´1)-connected if X is non-empty. We say that
X is homologically `-connected if X is connected and HipXq “ 0 for 0 ă i ď `.

Definition 2.4 (Diagrams of topological spaces). A diagram of topological spaces
is a functor, X : J Ñ Top, from a small category J to Top.

We extend Definition 2.1 to diagrams of topological spaces. We denote by Top
the category of topological spaces.

Definition 2.5 (`-equivalence between diagrams of topological spaces). Let J be
a small category, and X,Y : J Ñ Top be two functors. We say a natural transfor-
mation f : X Ñ Y is an ` equivalence, if the induced maps,

fpjq˚ : πipXpjqq Ñ πipY pjqq

are isomorphisms for all j P J and 0 ď i ď `.
We will say that a diagram X : J Ñ Top is `-equivalent to the diagram Y :

J Ñ Top (denoted as before by X „` Y ), if and only if there exists diagrams
X “ X0, X1, . . . , Xn “ Y : J Ñ Top and `-equivalences f1, . . . , fn as shown below:

X1

f1

}}

f2

!!

X3

f3

}}

f4

  

¨ ¨ ¨ ¨ ¨ ¨ Xn´1

fn´1

||

fn

""

X0 X2 ¨ ¨ ¨ ¨ ¨ ¨ Xn

.

It is clear that „` is an equivalence relation.
In the above definition, by replacing the homotopy groups with homology (resp.

cohomology) groups we obtain the notion of homological (resp. cohomological)

`-equivalence between diagrams, which we will denote as before by
h
„` (resp.

ch
„`).

One particular diagram will be important in what follows.

Notation 2.1 (Diagram of various unions of a finite number of subspaces). Let J
be a finite set, A a topological space, and A “ pAjqjPJ a tuple of subspaces of A
indexed by J .
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For any subset J 1 Ă J , 1 we denote

AJ 1 “
ď

j1PJ 1

Aj1 ,

AJ 1 “
č

j1PJ 1

Aj1 ,

We consider 2J as a category whose objects are elements of 2J , and whose only
morphisms are given by:

2JpJ 1, J2q “ H if J 1 Ć J2,

2JpJ 1, J2q “ tιJ 1,J2u if J 1 Ă J2.

We denote by SimpJpAq : 2J Ñ Top the functor (or the diagram) defined by

SimpJpAqpJ 1q “ AJ 1 , J 1 P 2J ,

and SimpJpAqpιJ 1,J2q is the inclusion map AJ 1 ãÑ AJ2 .

2.1.2. Definition of complexity of algorithms. We will use the following notion of
“complexity of an algorithm” in this paper. We follow the same definition as used
in the book [4].

Definition 2.6 (Complexity of algorithms). In our algorithms we will take as input
quantifier-free first order formulas whose terms are polynomials with coefficients
belonging to an ordered domain D contained in a real closed field R. By complexity
of an algorithm we will mean the number of arithmetic operations and comparisons
in the domain D. If D “ R, then the complexity of our algorithm will agree with
the Blum-Shub-Smale notion of real number complexity [9]. In case, D “ Z, then
we are able to deduce the bit-complexity of our algorithms in terms of the bit-sizes
of the coefficients of the input polynomials, and this will agree with the classical
(Turing) notion of complexity.

Remark 2.2 (Separation of complexity into algebraic and combinatorial parts 2

). In the definition of complexity given above we are counting only arithmetic
operations involving elements of the ring generated by the coefficients of the input
formulas. Many algorithms in semi-algebraic geometry have the following feature.
After a certain number of operations involving elements of the coefficient ring D, the
problem is reduced to solving a combinatorial or a linear algebra problem defined
over Z.

A typical example is an algorithm for computing the Betti numbers of a semi-
algebraic set via computing a semi-algebraic triangulation. Once a simplicial com-
plex whose geometric realization is semi-algebraically homeomorphic to the given
semi-algebraic set has been computed, the problem of computing the Betti numbers
of the given semi-algebraic set is reduced to linear algebra over Z. Usually, this sep-
aration of the cost of an algorithm into a part that involves arithmetic operations
over D, and a part that is independent of D, is not very important since often the

1In this paper A Ă B will mean AXB “ A allowing the possibility that A “ B. Also, when we

denote α ă β in a poset we allow the possibility α “ β, reserving α ň β to denote α ă β, α ‰ β.
2Note that this notion of separation of complexity into algebraic and combinatorial parts is

distinct from that used in [4], where “combinatorial part” refers to the part depending on the
number of polynomials, and the“algebraic part” refers to the dependence on the degrees of the

polynomials.
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complexity of the second part is subsumed by that of the first part. However, in this
paper the fact that we are only counting arithmetic operations in D is more signif-
icant. In one application that we discuss, namely that of computing the homotopy
groups of a given semi-algebraic set (see Corollary 1), we give a reduction (having
single exponential complexity) to a problem whose definition is independent of D,
namely computing the homotopy groups of a simplicial complex. Note that the
problem of deciding whether the first homotopy group of a simplicial complex is
trivial or not is an undecidable problem (this fact follows from the undecidability
of the word problem for groups [19]).

2.1.3. P-formulas and P-semi-algebraic sets.

Notation 2.2 (Realizations, P-, P-closed semi-algebraic sets). For any finite set
of polynomials P Ă RrX1, . . . , Xks, we call any quantifier-free first order formula
φ with atoms, P “ 0, P ă 0, P ą 0, P P P, to be a P-formula. Given any semi-
algebraic subset Z Ă Rk, we call the realization of φ in Z, namely the semi-algebraic
set

Rpφ,Zq :“ tx P Z | φpxqu

a P-semi-algebraic subset of Z.
If Z “ Rk, we often denote the realization of φ in Rk by Rpφq.
If Φ “ pφjqjPJ is a tuple of formulas indexed by a finite set J , Z Ă Rk a semi-

algebraic subset, we will denote by RpΦ, Zq the tuple pRpφj , ZqqjPJ , and call it the
realization of Φ in Z. For J Ă J 1, we will denote by Φ|J 1 the tuple pφjqjPJ 1 .

We say that a quantifier-free formula φ is closed if it is a formula in disjunctive
normal form with no negations, and with atoms of the form P ě 0, P ď 0 (resp.
P ą 0, P ă 0), where P P DrX1, . . . , Xks. If the set of polynomials appearing in a
closed (resp. open) formula is contained in a finite set P, we will call such a formula
a P-closed formula, and we call the realization, R pφq, a P-closed semi-algebraic set.
We say that a formula φ is a closed -formula if φ is a P-closed formula for some
finite set of polynomials P.

We will also use the following notation.

Notation 2.3. For n P Z we denote by rns “ t0, . . . , nu. In particular, r´1s “ H.

Finally, we are able to state the main results proved in this paper.

2.2. Efficient simplicial replacements of semi-algebraic sets.

Theorem 1. There exists an algorithm that takes as input

(A) a P-closed formula φ for some finite set P Ă DrX1, . . . , Xks;
(B) `, 0 ď ` ď k;

and produces as output a simplicial complex ∆`pφq such that |∆`pφq|
h
„` Rpφq.

The complexity of the algorithm is bounded by psdqk
Op`q

, where s “ cardpPq and
d “ maxPPP degpP q.

More generally, there exists an algorithm that takes as input

(A) a tuple Φ “ pφ0, . . . , φN q of P-closed formulas for some finite set P Ă

DrX1, . . . , Xks;
(B) `, 0 ď ` ď k;
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and produces as output a simplicial complex ∆`pΦq, and for each J Ă rN s a sub-
complex ∆`pΦ|Jq, such that

pJ ÞÑ |∆`pΦ|Jq|qJĂrNs
h
„` SimprNspRpΦqq.

The complexity of the algorithm is bounded by pNsdqk
Op`q

, where s “ cardpPq and
d “ maxPPP degpP q.

Theorem 1 is valid over arbitrary real closed fields. In the special case of R “ R,
we have the following stronger version of Theorem 1, where we are able to replace
homological `-equivalence by `-equivalence.

Theorem 11. Let R “ R. There exists an algorithm that takes as input

(A) a P-closed formula φ for some finite set P Ă DrX1, . . . , Xks;
(B) `, 0 ď ` ď k;

and produces as output a simplicial complex ∆`pφq such that |∆`pφq| „` Rpφq.
The complexity of the algorithm is bounded by psdqk

Op`q

, where s “ cardpPq and
d “ maxPPP degpP q.

More generally, there exists an algorithm that takes as input

(A) a tuple Φ “ pφ0, . . . , φN q of P-closed formulas for some finite set P Ă

DrX1, . . . , Xks;
(B) `, 0 ď ` ď k;

and produces as output a simplicial complex ∆`pΦq, and for each J Ă rN s a sub-
complex ∆`pΦ|Jq such that

pJ ÞÑ |∆`pΦ|Jq|qJĂrNs „` SimprNspRpΦqq.

The complexity of the algorithm is bounded by pNsdqk
Op`q

, where s “ cardpPq and
d “ maxPPP degpP q.

Remark 2.3. One main tool that we use is the Vietoris-Begle theorem (see proofs
of Claims 3.1, 3.2). Since, there are many versions of the Vietoris-Begle theorem
in the literature we make precise what we use below.

It follows from [20, Main Theorem] that if X Ă Rm, Y Ă Rn are compact
semi-algebraic subsets (and so are locally contractible), and f : X Ñ Y is a semi-
algebraic continuous map such that for every y P Y , f´1pyq is `-connected, then f
is an `-equivalence. We will refer to this version of the Vietoris-Begle theorem as
the homotopy version of the Vietoris-Begle theorem. Since, `-equivalence implies
homological `-equivalence (see for example [25, pp. 124, §4.1B]), f is a homological
`-equivalence as well.

Alternatively, if we assume that f´1pyq is only homologically `-connected for
each y P Y , then we can conclude that f is a homological `-equivalence (see for
example, the statement of the Vietoris-Begle theorem in [14]). This latter theorem
is also valid for semi-algebraic maps between closed and bounded semi-algebraic
sets over arbitrary real closed fields, once we know it for maps between compact
semi-algebraic subsets over R. This follows from a standard argument using the
Tarski-Seidenberg transfer principle and the fact that homology groups of closed
bounded semi-algebraic sets can be defined in terms of finite triangulations. We
will refer to this version of the Vietoris-Begle theorem as the homological version
of the Vietoris-Begle theorem.
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2.3. Application to computing homotopy groups of semi-algebraic sets.
One important new contribution of the current paper compared to previous algo-
rithms for computing topological invariants of semi-algebraic sets [5, 1] is that for
any given semi-algebraic subset S Ă Rk, our algorithms give information on not
just the homology groups but the homotopy groups of S as well.

Computing homotopy groups of semi-algebraic sets is a considerably harder prob-
lem than computing homology groups. There is no algorithm to decide whether
the fundamental group of a finite simplicial complex is trivial [19]. As such the
problem of deciding whether the fundamental group of any semi-algebraic subset
S Ă Rk is trivial or not is an undecidable problem.

On the other hand algorithms for computing topological invariants of a given
semi-algebraic set S Ă Rk, defined by a P-formula where P Ă DrX1, . . . , Xks,
usually involve two kinds of operations.

(a) Arithmetic operations and comparisons amongst elements of the ring D;
(b) Operations that do not involve elements of D.

In our complexity bounds we only count the first kind of operations (i.e. those
which involve elements of D).

From this point of view it makes sense to ask for any algorithmic problem involv-
ing formulas defined over D, if there is a reduction to another problem whose input
is independent of D. Theorem 11 gives precisely such a reduction for computing
the first ` homotopy groups of any given semi-algebraic set defined by a formula
involving coefficients from any fixed subring D Ă R.

Corollary 1. For every fixed `, and an ordered domain D Ă R, there exists a
a reduction of the problem of computing the first ` homotopy groups of a semi-
algebraic set defined by a quantifier-free formula with coefficients in D, to that of
the problem of computing the first ` homotopy groups of a finite simplicial complex.
The complexity of this reduction is bounded singly exponentially in the size of the
input.

While the problem of computing the fundamental group as well as the higher
homotopy groups of a finite simplicial complex is clearly an extremely challenging
problem, there has been recent breakthroughs. If a simplicial complex K is 1-
connected then Čadek et al. [24] has given an algorithm for computing a description
of the homotopy groups πip|K|q, 2 ď i ď `, which has complexity polynomially
bounded in the size of the simplicial complex K for every fixed `. This result
coupled with Theorem 11 gives the following corollary.

Corollary 2. Let R “ R,D Ă R and ` ě 2. There exists an algorithm that takes
as input

(A) a P-closed formula φ for some finite set P Ă DrX1, . . . , Xks;
(B) `, 0 ď ` ď k;

such that Rpφq is simply connected, and outputs descriptions of the abelian groups
πipRpφqq, 2 ď i ď ` in terms of generators and relations.

The complexity of the algorithm is bounded by psdqk
Op`q

, where s “ cardpPq and
d “ maxPPP degpP q.

Remark 2.4. Note that we do not have an effective algorithm for checking the
hypothesis that the given semi-algebraic set is simply connected.
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2.4. Comparison with prior and related results. As stated previously, there
is no algorithm known for computing the Betti numbers of semi-algebraic sets hav-
ing singly exponential complexity. However, algorithms with singly exponential
complexity are known for computing certain (small) Betti numbers. The zero-th
Betti number of a semi-algebraic set is just the number of its semi-algebraically
connected components. Counting the number of semi-algebraically connected com-
ponents of a given semi-algebraic set is a well-studied problem and algorithms with
singly exponential complexity are known for solving this problem [3, 16, 13]. In
[5] a singly exponential complexity algorithm is given for computing the first Betti
number of semi-algebraic sets, and this was extended to the first ` (for any fixed
constant `) Betti numbers in [1]. These algorithms do not produce a simplicial
complex homotopy equivalent (or `-equivalent) to the given semi-algebraic set.

In [10, 12, 11], the authors take a different approach. Working over R, and
given a well-conditioned semi-algebraic subset S Ă Rk, they compute a witness
complex whose geometric realization is k-equivalent to S. The size of this witness
complex is bounded singly exponentially in k. However, the complexity depends
on the condition number of the input (and so this bound is not uniform), and the
algorithm will fail for ill-conditioned input when the condition number becomes
infinite. This is unlike the kind of algorithms we consider in the current paper,
which are supposed to work for all inputs and with uniform complexity upper
bounds. So these approaches are not comparable.

While the approaches in [5, 1] and those in [10, 12, 11] are not comparable, since
the meaning of what constitutes an algorithm and the notion of complexity are
different, there is a common connection between the results of these papers and
those in the current paper which we elucidate below.

2.4.1. Covers. A standard method in algebraic topology for computing homol-
ogy/cohomology of a space X is by means of an appropriately chosen cover, pVα Ă
XqαPI , of X by open or closed subsets. Suppose that X Ă Rk is a closed or open
semi-algebraic set. Let V “ pVα Ă XqαPI be a finite cover of X by open or closed
semi-algebraic subsets, such that for each non-empty subset J Ă I, the intersection
VJ “

Ş

αPJ Vα is either empty or contractible. We will say that such covers have
the Leray property and refer to them as Leray covers. One can then associate to
the cover V, a simplicial complex, N pVq, the nerve of V defined as follows.

The set of p-simplices of N pVq is defined by

N pVqp “ ttα0, . . . , αpu Ă 2I | Vα0
X ¨ ¨ ¨ X Vαp ‰ Hu.

It follows from a classical result of algebraic topology that the geometric realization
|N pVq| is homotopy equivalent to X, and moreover for each ` ě 0, the geometric
realization of the p`` 1q-st skeleton of N pVq,

sk``1pN pVqq “ tσ P N pVq | cardpσq ď `` 2u.

is homologically `-equivalent (resp. `-equivalent) to X (resp. when R “ R).
The algorithms for computing the Betti numbers in [10, 12, 11] proceeds by com-

puting the k-skeleton of the nerve of a cover having the Leray property whose size is
bounded singly exponentially in k, and computing the simplicial homology groups
of this complex. However, the bound on the size of the cover is not uniform but
depends on a real valued parameter – namely the condition number of the input
– and hence the size of the cover can become infinite. In fact, computing a singly
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exponential sized cover by semi-algebraic subsets having the Leray property of an
arbitrary semi-algebraic sets is an open problem. If one solves this problem then
one would also solve immediately the problem of designing an algorithm for com-
puting all the Betti numbers of arbitrary semi-algebraic sets with singly exponential
complexity in full generality.

The algorithms in [5, 1] which are able to compute some of the Betti numbers in
dimensions ą 0 also depends on the existence of small covers having size bounded
singly exponentially, albeit satisfying a much weaker property than the Leray prop-
erty. The weaker property is that only the sets Vα, α P I (i.e. the elements of the
cover) are contractible. No assumption is made on the non-trivial finite intersec-
tions amongst the sets of the cover. Covers satisfying this weaker property can
indeed be computed with singly exponential complexity (this is one of the main
results of [5] but see Remark 3.1), and using this fact one is able to compute the
first ` Betti numbers of semi-algebraic subsets of Rk for every fixed ` with singly
exponential complexity. The algorithms in [5] and [1] do not construct a simpli-
cial complex homotopy equivalent or `-equivalent to the given semi-algebraic set S
unlike the algorithm in [10].

2.4.2. Main technical contribution. The main technical result that underlies the al-
gorithmic result of the current paper is the following. Fix 0 ď ` ď k. Suppose for
every closed and bounded semi-algebraic set S one has a covering of S by closed
and bounded semi-algebraic subsets which are `-connected (see Definition 2.3) and
which has singly exponentially bounded complexity (meaning that the number of
sets in the cover, the number of polynomials used in the quantifier-free formulas
defining these sets and their degrees are all bounded singly exponentially in k).
Moreover, since it is clear that contractible covers with singly exponential complex-
ity exists, this is not a vacuous assumption. Using `-connected covers repeatedly we
build a simplicial complex of size bounded singly exponentially which is `-equivalent
to the given semi-algebraic set. The definition of this simplicial complex is a bit in-
volved (much more involved than the nerve complex of a Leray cover) and appears
in Section 3. Its main properties are encapsulated in Theorem 2.

Two remarks are in order.

Remark 2.5. 1. Firstly, the Leray property can be weakened to require that for
every t-wise intersection, VJ , cardpJq “ t is either empty or p`´ t`1q-connected
[7]. We call this the `-Leray property. The nerve complex, N pVq is then `-
equivalent to X [7]. However, the property that we use is much weaker – namely
that only the elements of the cover are `-connected and we make no assumptions
on the connectivity of the intersections of two or more sets of the cover. This
is due to the fact that controlling the connectivity of the intersections is very
difficult and we do not know of any algorithm with singly exponential complexity
for computing covers having the `-Leray property for ` ě 1.

2. Secondly, note that to be `-connected is a weaker property than being con-
tractible. Unfortunately, at present we do not know of algorithms for computing
`-connected covers, for ` ą 0 that has much better complexity asymptotically
than the algorithm in [5] for computing covers by contractible semi-algebraic
sets. However, it is still possible that there could be algorithms with much bet-
ter complexity for computing `-connected covers (at least for small `) compared
to computing contractible covers.
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3. Simplicial replacement in an abstract setting

We now arrive at the technical core of the paper. Given a finite set J , a tuple,
Φ “ pφjqjPJ , of closed formulas with k free variables, and numbers i,m ě 0, we will
describe the construction of a poset, that we denote by Pm,ipΦq. We will assume
that the realizations, Rpφjq, j P J , of the formulas in the tuple are homologically
`-connected semi-algebraic subsets of Rk for some ` ě 0. In case R “ R, substitute
“`-connected” for “homologically `-connected”. The poset Pm,ipΦq will have the
property that the geometric realization of its order complex, ∆pPm,ipΦqq, is homo-
logically pm´1q-equivalent (pm´1q-equivalent if R “ R) to RpΦqJ . More generally,
for each J 1 Ă J , Pm,ipΦ|J 1q can be identified as a subposet of Pm,ipΦq, and the
diagram of inclusions of the corresponding geometric realizations is homologically
pm´ 1q-equivalent to the diagram SimpJpRpΦqq (pm´ 1q-equivalent if R “ R) (cf.
Theorems 2 and 21). The poset Pm,ipΦq will then encode in a finite combinatorial

way information which determines the first m homotopy groups of RpΦqJ 1 for all

J 1 Ă J , and the morphisms πhpRpΦqJ
1

q Ñ πhpRpΦqJ
2

q induced by inclusions, for
0 ď h ď m´1 and J 1 Ă J2 Ă J . (The significance of the subscript i in the notation
Pm,ipΦq will become clear later.)

3.1. Outline of the main idea. We begin with an outline explaining the main
ideas behind the construction. First observe that if the realizations of the sets in
the given tuple, in addition to being `-connected, satisfies the `-Leray property (i.e.
each t-wise intersections amongst them is p` ´ t ` 1q-connected), then it follows
from [7] that the poset of the non-empty intersections (with the poset relation
being canonical inclusions) satisfies the property that the geometric realization of
its order complex (see Definition 3.1) is `-equivalent to RpΦqJ . The same is true
for all the subposets obtained by restricting the intersections to only amongst those
indexed by some subset J 1 Ă J . However if the `-Leray property fails to hold then
the poset of canonical inclusions may fail to have the desired property.

Consider for example, the tuple

Φ “ pφ0, φ1q,

where

φ0 :“ pX2
1 `X

2
2 ´ 1 “ 0q ^ pX2 ě 0q,

φ1 :“ pX2
1 `X

2
2 ´ 1 “ 0q ^ pX2 ď 0q.

The realizations Rpφ0q,Rpφ1q are the upper and lower semi-circles covering the
unit circle in the plane.

The intersection Rpφ0qXRpφ1q “ Rpφ0^φ1q is the disjoint union of two points.
The Hasse diagram of the poset of canonical inclusions of the sets defined by φ0,
φ1, and φ0 ^ φ1 is:

φ0 φ1

φ0 ^ φ1

cc ;;

and the order complex of the poset is the simplicial complex shown in Figure 1.
The geometric realization of the order complex is clearly not homotopy equivalent



14 SAUGATA BASU AND NEGIN KARISANI

to the
RpΦqt0,1u “ Rpφ0q YRpφ1q

which is equal to the unit circle. This is not surprising since the cover of the circle
by the two closed semi-circle is not a Leray cover (and in fact not `-Leray for any
` ě 0).

φ0 φ1φ0 ∧ φ1

Figure 1. Order complex for non-Leray cover

One way of repairing this situation is to go one step further and choose a good (in
this case 8-connected) cover for the intersection Rpφ0q XRpφ1q defined by ψ0, ψ1,
where

ψ0 :“ pX1 ` 1 “ 0q ^ pX2 “ 0q,

ψ1 :“ pX1 ´ 1 “ 0q ^ pX2 “ 0q.

The Hasse diagram of the poset of canonical inclusions of the sets defined by φ0,
φ1, ψ0, and ψ1

φ0 φ1

ψ0

OO >>

ψ1

OO``

and the order complex of the poset is shown in Figure 2. It is easily seen to have
the same homotopy type (homeomorphism type even in this case) to the circle.

φ0 φ1

ψ0

ψ1

bb

b

b

b

Figure 2. Order complex for modified poset

The very simple example given above motivates the definition of the poset
Pm,ipΦq in general. We assume that we have available not just the given tuple
of sets, and the non-empty intersections amongst them, but also that we can cover
any given non-empty intersections that arise in our construction using `-connected
closed (resp. open) semi-algebraic sets (we do not assume that these covers sat-
isfy the stronger `-Leray property). The poset we define depends on the choice of
these covers and not just on the formulas in the tuple Φ (unlike the standard nerve
complex of the tuple RpΦq). The choices that we make are encapsulated in the
functions Ik,i and Ck,i below. In practice, they would correspond to some effective
algorithm for computing well-connected covers of semi-algebraic sets.
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Remark 3.1. There is one technical detail that serves to obscure a little the clarity
of the construction. It arises due to the fact that the only algorithm with single
exponential complexity that exists in the literature for computing well connected
(8-connected or equivalently contractible) covers is the one in [5]. However, the
algorithm requires that the polynomials describing the given set S be in strong
general position (see Definition 4.1). In order to satisfy this requirement one needs
to initially perturb the given polynomials and replace the given set by another
one, say S1, which is infinitesimally larger but has the same homotopy type as the
given set S (see Lemma 3.1). The algorithm then computes closed formulas whose
realizations cover S1 and moreover are each semi-algebraically contractible. While
there is a semi-algebraic retraction from S1 to S, this retraction is not guaranteed
to restrict to the elements of the cover. Our poset construction is designed to be
compatible with the fact that the covers we assume to exist actually are covers of
infinitesimally larger sets (i.e. that of S1 instead of S following the notation of the
previous sentence). This necessitates the use of iterated Puiseux extensions in what
follows.

Of course, the introduction of infinitesimals could be avoided by choosing suf-
ficiently small positive elements in the field R itself and thus avoid making ex-
tensions. This would be more difficult to visualize, and so we prefer to use the
language of infinitesimal extensions. In the special case when R “ R, we prefer
not to make non-archimedean extensions, since we discuss homotopy groups, so we
take the alternative approach. However, we believe that the infinitesimal language
is conceptually easier to grasp and so we use it in the general case.

Before giving the definition of the poset we first need to introduce some mathe-
matical preliminaries and notation.

3.2. Real closed extensions and Puiseux series. We will need some properties
of Puiseux series with coefficients in a real closed field. We refer the reader to [4]
for further details.

Notation 3.1. For R a real closed field we denote by R xεy the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R xε1, . . . , εmy
to denote the real closed field R xε1y xε2y ¨ ¨ ¨ xεmy. Note that in the unique ordering
of the field R xε1, . . . , εmy, 0 ă εm ! εm´1 ! ¨ ¨ ¨ ! ε1 ! 1.

If ε̄ denotes the (possibly infinite) sequence pε1, ε2, . . .q we will denote by Rxε̄y
the real closed field

Ť

mě0 Rxε1, . . . , εmy.
Finally, given a finite sequence pε̄1, . . . , ε̄mq we will denote by Rxε̄1, . . . , ε̄my the

real closed field R xε̄1y xε̄2y ¨ ¨ ¨ xε̄my.

Notation 3.2. For elements x P R xεy which are bounded over R we denote by
limε x to be the image in R under the usual map that sets ε to 0 in the Puiseux
series x.

Notation 3.3. If R1 is a real closed extension of a real closed field R, and S Ă Rk

is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by extpS,R1q Ă R1k the semi-algebraic subset of R1k defined by the
same formula. 3 It is well known that extpS,R1q does not depend on the choice of
the formula defining S [4, Proposition 2.87].

3Not to be confused with the homological functor Extp¨, ¨q which unfortunately also appears

in this paper.
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Notation 3.4. Suppose R is a real closed field, and let X Ă Rk be a closed

and bounded semi-algebraic subset, and X` Ă Rxεy
k

be a semi-algebraic subset

bounded over R. Let for t P R, t ą 0, rX`t Ă Rk denote the semi-algebraic subset
obtained by replacing ε in the formula defining X` by t, and it is clear that for

0 ă t ! 1, rX`t does not depend on the formula chosen. We say that X` is
monotonically decreasing to X, and denote X` Œ X if the following conditions are
satisfied.

(a) for all 0 ă t ă t1 ! 1, rX`t Ă rX`t1 ;
(b)

č

tą0

rX`t “ X;

or equivalently limεX
` “ X.

More generally, if X Ă Rk be a closed and bounded semi-algebraic subset, and

X` Ă Rxε1, . . . , εmy
k

a semi-algebraic subset bounded over R, we will say X` Œ X
if and only if

X`m`1 “ X` Œ X`m, X
`
m Œ X`m´1, . . . , X

`
2 Œ X`1 “ X,

where for i “ 1, . . . ,m, X`i “ limεi X
`
i`1.

Note that if ε̄ “ pε1, ε2, . . .q is an infinite sequence, and X` Ă Rxε̄y
k

is a semi-
algebraic subset bounded over R, then there exists m ě 1, and semi-algebraic subset

X`m Ă Rxε1, . . . , εmy
k

closed and bounded over R, such that X` “ extpX`m,Rxε̄yq.
In this case, if X Ă Rk be a closed and bounded semi-algebraic subset, we will

say X` Œ X if and only if

X`m`1 “ X` Œ X`m, X
`
m Œ X`m´1, . . . , X

`
2 Œ X`1 “ X,

where for i “ 1, . . . ,m, X`i “ limεi X
`
i`1.

Finally, if ε̄1, . . . , ε̄m are sequences (possibly infinite), X Ă Rk be a closed and

bounded semi-algebraic subset, and X` Ă Rxε̄1, . . . , ε̄my
k

a semi-algebraic subset
bounded over R, we will say X` Œ X if and only if

X`m`1 “ X` Œ X`m, X
`
m Œ X`m´1, . . . , X

`
2 Œ X`1 “ X,

where for i “ 1, . . . ,m, X`i “ limε̄i X
`
i`1.

The following lemma will be useful later.

Lemma 3.1. Let X Ă Rk be a closed and bounded semi-algebraic subset, and

X` Ă Rxε̄1, . . . , ε̄my
k

a semi-algebraic subset bounded over R, such that X` Œ X.
Then, extpX,Rxε̄1, . . . , ε̄myq is semi-algebraic deformation retract of X`.

Proof. See proof of Lemma 16.17 in [4]. �

Notation 3.5. For x P Rk and R P R, R ą 0, we will denote by Bkp0, Rq the open

Euclidean ball centered at 0 of radius R. We will denote by Bkp0, Rq the closed
Euclidean ball centered at 0 of radius R. If R1 is a real closed extension of the real
closed field R and when the context is clear, we will continue to denote by Bkp0, Rq

the extension extpBkp0, Rq,R
1q, and similarly for Bkp0, Rq. This should not cause

any confusion. Similarly, we will denote by Sk´1
p0, Rq the sphere of dimension k´1

in Rk centered at 0 of radius R.

We refer the reader to [4, Chapter 6] for the definitions of homology and coho-
mology groups of semi-algebraic sets over arbitrary real closed fields.
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3.3. Definition of the poset Pm,ipΦq.

3.3.1. Simplified view of the definition of the poset Pm,ipΦq. Before giving a precise
definition of the poset Pm,ipΦq, we first give a simplified version. We make the
following two simplifications in order to illustrate the key idea.

(a) We ignore the role of the index i in what follows. The necessity of the extra
parameter i is due to the fact that the hypothesis we assume (Hypothesis 3.1
in the following paragraph) is slightly stronger than we are able to assume for
designing effective algorithms for computing the poset (see Remark 3.1). The
actual hypothesis that we use is encapsulated in Property 3.2 below.

(b) Secondly, in order to keep a geometric view of the construction, we will talk
about tuples S “ pSjqjPJ of semi-algebraic sets, instead of tuples of formulas
Φ “ pφjqjPJ defining them. As above, in order to give an effective algorithms,
and analyzing its complexity, we need to describe the poset in terms of formulas
rather than sets, which we do in the precise definition that follows this simplified
version.

We make the following hypothesis.

Hypothesis 3.1 (Black-box hypothesis). There exists a black-box (or algorithm)
that given a closed and bounded semi-algebraic set S Ă Rk as input, produces a
cover pSαqαPCpSq of S by closed and bounded `-connected semi-algebraic sets.

Definition 3.1 (The order complex of a poset). Let pP,ĺq be a poset. We denote
by ∆pPq the simplicial complex whose simplices are chains of P.

Suppose S “ pSjqjPJ is a finite tuple of `-connected closed semi-algebraic subsets
of Rk.

Our goal is to define a poset PmpSq such that:

Property 3.1.

|∆pPmpSqq| ch„m SJ
(see Definition 3.1). We will say that the poset PmpSq satisfies Property 3.1 for
the pair pm,Sq.
Remark 3.2. We use cohomological m-equivalence in Property 3.1. In the final
construction we will lose a dimension while passing from cohomological equivalence
to (homological or homotopical) equivalence because of the use of the universal
coefficients theorem (see the proof of Claim 3.5 inside the proof of Theorem 2), and
we will end up with

|∆pPmpSqq|„m´1SJ .
The main idea is to approximate homotopically the diagram of sets

pSIqIĂJ,cardpIqďm`2

(see Notation 2.1), and the inclusion maps

SI1 ãÑ SI , I Ă I 1,

by a corresponding diagram of (the geometric realizations of the order complexes
of) posets

pPm´cardpIq`1,IqIĂJ,cardpIqďm`2

(where the poset Pm´cardpIq`1,I corresponds to SI), and poset inclusions

Pm´cardpI1q`1,I1 ãÑ Pm´cardpIq`1,I , I Ă I 1.
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The construction is by induction on m (we call this the global induction below).

1. (Base case of the global induction, m “ ´1.) Suppose S “ pSjqjPJ is a finite
tuple of `-connected closed and bounded semi-algebraic subsets of Rk. We define
the poset P´1pSq to be just the index set J , with no non-trivial order relations.
It is depicted in Figure 3(a). It is clear that P´1pSq satisfies Property 3.1 for
the pair p´1,Sq.

2. (Induction hypothesis of the global induction.) We assume that for each m1,´1 ď
m1 ă m, and each finite tuple S “ pSjqjPJ of `-connected closed and bounded
semi-algebraic subsets of Rk, we have defined a poset Pm1pSq satisfying Prop-
erty 3.1 for the pair pm1,Sq.

3. (Inductive step of the global induction, going from ă m to m.) Using the
inductive hypothesis, we now define a poset PmpSq satisfying Property 3.1 for
the pair pm,Sq, for any tuple S of `-connected closed and bounded semi-algebraic
subsets of Rk.

Fix a finite tuple S “ pSjqjPJ of `-connected closed and bounded semi-
algebraic subsets of Rk. We will define PmpSq below in steps. The poset
PmpSq as a set will be a disjoint union of the index set J , and certain sub-
posets Pm´cardpIq`1,I , where I where I Ă J, 2 ď cardpIq ď m`2. We define the
subposets Pm´cardpIq`1,I by downward induction (we call this the local induction
below) on cardpIq, starting from the base case, cardpIq “ m` 2.
(a) (Base case of the local induction, cardpIq “ m ` 2.) We first consider the

semi-algebraic sets SI , cardpIq “ m`2. Associated to each such I, we define
a poset, which we denoted by P´1,I as follows: Using Hypothesis 3.1 applied
to the semi-algebraic set SI we obtain a cover pSI,αqαPCpSIq of SI by closed
and bounded `-connected semi-algebraic sets. We define

P´1,I “ P´1ppSI,αqαPCpSIqq “ CpSIq

with no non-trivial order relation. It is depicted in Figure 3(a). It is clear
that P´1,I satisfies Property 3.1 for the pair p´1, pSI,αqαPCpSIqq.

(b) (Going from m`2 to m`1.) Next we consider subsets I of cardinality m`1.
For each such subset we construct a poset P0,I satisfying two conditions:

(i) For each set I 1, with cardpI 1q “ cardpIq ` 1, and I Ă I 1, the poset
P´1,I1 already defined is isomorphic to a sub-poset of P0,I ;

(ii) |∆pP0,Iq| is cohomologically 0-equivalent to SI .
We apply Hypothesis 3.1, to the semi-algebraic set SI as input and obtain a
cover pSI,αqαPCpSIq of SI by closed and bounded `-connected semi-algebraic
sets. We let

P´1,I “ P´1ppSI,αqαPCpSIqq.
Let JI be the union of the indexing set CpSIq, with the posets P´1,I1 for
each I 1 with I Ă I 1, cardpI 1q “ cardpIq ` 1. Notice that for each α P JI ,
there is an `-connected closed and bounded semi-algebraic set associated to
it. Denote this set by Dpαq.
For every pair α, β P JI , we again apply Hypothesis 3.1 to obtain a cover
of Dpαq X Dpβq by `-connected closed and bounded semi-algebraic sets,
pSI,α,β,γqγPIα,β where Iα,β “ CpDpαq XDpβqq. The poset P0,I is defined to
be the set JI Y

Ť

α,βPJI
Iα,β , and the non-trivial order relations are γ ň α, β

for each γ P Iα,β . It is depicted in Figure 3(b).
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(c) (Local induction hypothesis.) We assume that we have already defined the
posets Pm´cardpI1q`1,I1 , with cardpI 1q ą cardpIq.

(d) (Inductive step in general for the local induction.) We construct the poset
Pm´cardpIq`1,I as follows. We apply Hypothesis 3.1 with the semi-algebraic
set SI as input and obtain a cover pSI,αqαPCpSIq of SI by closed and bounded
`-connected semi-algebraic sets. Let JI be the union of the indexing set
CpSIq, with the posets Pm´cardpI1q`1,I1 for each I 1 with I Ă I 1, cardpI 1q “
cardpIq ` 1. Notice that for each α P JI , there is an `-connected closed and
bounded semi-algebraic set associated to it. Denote this set by Dpαq.
We define the poset Pm´cardpIq`1,I using the global induction hypothe-
sis. The global inductive hypothesis gives us that for any finite tuple of
`-connected closed and bounded semi-algebraic set (in particular, the tu-
ple of sets pDpαqqαPJI ) we have defined a poset Pm´cardpIq`1ppDpαqqαPJI q,
which satisfies Property 3.1 for the pair pm´ cardpIq`1, pDpαqqαPJI q (since
m´ cardpIq ` 1 ă m).
We define

Pm´cardpIq`1,I “ Pm´cardpIq`1ppDpαqqαPJI q.

This finishes the local induction and we have defined Pm´cardpIq`1,I , for
each I Ă J, 2 ď cardpIq ď m` 2.

Finally, we define

(3.1) PmpSq “ J Y
ď

IĂJ,2ďcardpIqďm`2

Pm´cardpIq`1,I .

The partial order in the poset PmpSq is specified as follows. By the local
induction, each of the poset Pm´cardpIq`1,I comes with a partial order. We
extend these orders as follows:
(a) For each I Ă I 1 Ă J , with 2 ď cardpIq ď cardpI 1q ď m`2, there is a subposet

of Pm´cardpIq`1,I canonically isomorphic to the poset Pm´cardpI1q`1,I1 . For
each element α of the former and the corresponding element α1 of the latter
we set α1 ň α.

(b) For each j P J , and α P Pm´cardpIq`1,I , j P I, we set the element α ň j.
This ends the definition of the poset PmpSq completing the global induction.
Figure 3(c) depicts PmpSq in terms of subposets Pm´cardpIq`1,I . In Claim 3.11
we will show that the height of the poset PmpSq is bounded by 2m` 2.

Notice that for any chain αk ň αk´1 ň . . . ň α0 of elements in PmpSq, we
have a sequence of inclusion maps of semi-algebraic sets Dpαkq ãÑ Dpαk´1q ãÑ

. . . ãÑ Dpα0q. It is depicted in Figure 4 for a hypothetical space with four
elements in the initial covering.

The following two examples are illustrative.

Example 3.1. Let ` “ 8,m ě 2, S “ pS1, S2q, where S1, S2 are the closed upper
and lower hemispheres of the unit sphere in R3 (see Figure 5(a)).

Using (3.1) we get

(3.2) PmpSq “ t1, 2u YPm´2`1,t1,2u.

Let CpSt1,2uq be the cover of St1,2u by two closed semi-circles T3, T4, and let
T “ pT3, T4q.
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α1 α2 αcard(C(SI))

(a) P´1,I “ P´1ppSI,αqαPCpSI qq:
The elements of the poset, i.e. JI ,

correspond to the elements of the
cover CpSIq, with no non-trivial or-

der relation.

α1 α2 αcard(C(SI))

P−1,I1 P−1,In

P−1((SI,α1,αk,γ)γ∈C(D(α1)∩D(αk))) P−1((SI,αk′ ,αt′ ,γ)γ∈C(D(αk′ )∩D(αt′ ))
)

αk αk′ αt αt′

(b) P0,I : At the top level, the elements of P0,I cor-

respond to the cover CpSIq and elements of the posets

P´1,Ii , where cardpIiq “ cardpIq ` 1 and I Ă Ii.
At the bottom level we have elements of the posets

P´1ppSI,αi,αj ,γqγPCpDpαiqXDpαjqqq—shown as a box—for

every pair αi and αj at the top level. The order relations
are between the pairs and the elements of their correspond-

ing posets at the bottom level.

1 2 card(J) = n

P−1,I
(m+2)
1

P−1,I
(m+2)
2

P−1,I
(m+2)

( n
m+2)

P
0,I

(m+1)
1

P
0,I

(m+1)
2

P
0,I

(m+1)

( n
m+1)

P
m−1,I

(2)
1

P
m−1,I

(2)
2

P
m−1,I

(2)

(n2)

(c) PmpSq “ J Y
Ť

IĂJ,2ďcardpIqďm`2 Pm´cardpIq`1,I : The top level of the poset corresponds to

the elements of J . Next, we have elements of the posets P
m´1,I

p2q
i

where I
p2q
i Ă J and cardpI

p2q
i q “

2—denoted by the superscript (2). Similarly at the lower levels, we have elements of the posets

corresponded to subsets I
pm1q
i Ă J with cardpI

pm1q
i q “ m1 and m1 ď m ` 2. The partial order

relations are defined between j P t1, . . . , nu at the top level and the elements of P
m´1,I

p2q
i

, if

j P I
p2q
i . Furthermore, in addition to the order relations within each poset, if I

pm1´1q
j Ă I

pm1q
i then

P
m´m1`1,I

pm1q
i

ãÑ P
m´m1`2,I

pm1´1q
j

, hence for each element α1 of the P
m´m1`1,I

pm1q
i

and the

corresponding element α of the P
m´m1`2,I

pm1´1q
j

we set α1 ň α.

Figure 3. A simple illustration of the simplified view of the poset.

Note that T3 X T4 is a set containing two points W5,W6 (say), and the only
possibility for CpT3 X T4q, is the tuple W “ pW5,W6q. Then,

(3.3) Pm´1pT q “ t3, 4u YPm´2,t3,4u
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1 2 3 4

(1,2) (1,3) (1,4) (2,3)

(1,2,3)(1,2,4) (1,3,2)(1,3,4) (1,4,2)(1,4,3) (2,3,1)(2,3,4)

(2,3,4)(1,3,4)(1,2,4)(1,2,3)

(1,2,3,4)

(2,4) (3,4)

(2,4,1)(2,4,3) (3,4,1)(3,4,2)

Figure 4. Poset PmpSq such that |∆pPmpSqq| is m-equivalent to
Ť

jPJ Sj with m “ 2, J “ t1, 2, 3, 4u.

and the subposet Pm´2,t3,4u is isomorphic to the poset

(3.4) Pm´2pWq “ t5, 6u.
Substituting (3.4) into (3.3) and (3.3) into (3.2) we finally obtain that the Hasse
diagram of the poset PmpSq is

1 2

3

OO 88

4

OOff

5

OO 88

6

OOff

The order complex of this poset is homotopy equivalent (in fact, in this case is
homeomorphic) to the sphere.

Example 3.2. Now let ` “ m “ 2, S “ pS1, S2q, where S1, S2 are the closed upper
and lower hemispheres of the unit sphere in Rk, k ą 5. That is S1 (resp. S2) is
the intersection of the unit sphere in Rk, with the set defined by Xk ě 0 (resp.
Xk ď 0).

Using (3.1) we get

PmpSq “ t1, 2u YPm´2`1,t1,2u.

Let CpSt1,2uq be the cover of St1,2u by two closed semi-spheres T3, T4, (i.e. T3

(resp. T4) is the intersection of St1,2u with Xk´1 ě 0 (resp. Xk´1 ď 0), and let
T “ pT3, T4q.

Note that W5 “ T3 X T4 is a pk ´ 3q-dimensional sphere, and since k ą 5, W5 is
2-connected and we can take CpW5q “ pW5q.
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P1pT q “ t3, 4u Y t5u
with Hasse diagram

3 4

5

^^ @@

Finally we obtain that the Hasse diagram of the poset P2pSq is

1 2

3

OO 77

4

OOgg

5

^^ @@

The order complex of this poset is contractible and is 2-equivalent (but in this case

not homotopy equivalent) to Sk´1 for k ą 5.

With the definition of the poset PmpSq it is possible to prove the following theo-
rem. We do not include a proof of this theorem since it is subsumed by Theorem 21.

Theorem. With the same notation as in the Definition of PmpSq defined above:

|∆pPmpSqq|„m´1

ď

jPJ

Sj .

More generally, we have the diagrammatic homological pm´ 1q-equivalence

pJ 1 ÞÑ |∆pPmpS|J 1q|qJ 1P2J h
„m´1 SimpJpSq,

where S|J 1 “ pSjqjPJ 1 .
We now return to the precise definition of the poset Pm,ipΦq that we are going

to the use.

3.3.2. Precise definition of Pm,ipΦq. We begin with a few useful notation that we
will use in the construction.

Notation 3.6. We will denote by FR,k the set of quantifier-free formulas with
coefficients in R and k variables, whose realizations are closed in Rk.

We also use the following convenient notation.

Notation 3.7 (The relation Ăďn). For any n P Zě0, and sets A,B, we will write
A Ăďn B to mean A Ă B and 0 ă cardpAq ď n.

We are now in a position to define a poset associated to a given finite tuple of
formulas that will play the key technical role in the rest of the paper.

We first fix the following.

(A) Let R “ R0 Ă R1 Ă R2 Ă ¨ ¨ ¨ be a sequence of extensions of real closed
fields.
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(B) We also fix two sequences of functions,

Ii,k : FRi,k Ñ Zě´1,

and

Ci,k : FRi,k Ñ
ď

pě0

pFRi`1,kq
rps,

Remark 3.3. The definition of the poset Pm,ip¨q given below does not depend on
any specific properties of the functions Ii,kp¨q and Ci,kp¨q. Later we will prove
key topological properties of Pm,ip¨q (see Theorems 2 and 21 below) under certain
assumptions on Ii,kp¨q and Ci,kp¨q (see Properties 3.2 and 3.21 below).

For each i ě 0, and ´1 ď m ď k, a non-empty finite set J , and Φ P pFRi,kq
J , we

define a poset pPm,ipΦq,ăq.
We first need an auxilliary definition which will be used in the definition of the

underlying set, Pm,ipΦq, of the poset pPm,ipΦq,ăq.

Definition 3.2. Let J be a non-empty finite set, and Φ P pFRi,kq
J . We first define

for each subset I Ăďm`2 J , a set Jm,i,I,Φ, and an element Φm,i,I,J P pFRi`1,kq
Jm,i,I,Φ

(using downward induction on cardpIq).
Base case (cardpIq “ m` 2): In this case we define,

(3.5) Jm,i,I,Φ “ tIu ˆ rIi,kp
ľ

jPI

Φpjqqs,

and for pI, pq P Jm,i,I,Φ,

Φm,i,I,J ppI, pqq “ Ci,kp
ľ

jPI

Φpjqqppq.

Inductive step: Suppose we have defined Jm,i,I1,Φ and Φm,i,I1,J for all I 1 with
cardpI 1q “ cardpIq ` 1. We define

(3.6) Jm,i,I,Φ “

˜

tIu ˆ rIi,kp
ľ

jPI

Φpjqs

¸

Y
ď

IĂI1ĂJ,cardpI1q“cardpIq`1

Jm,i,I1,Φ,

and

Φm,i,I,J pαq “ Ci,kp
ľ

jPI

Φpjqqppq, if α “ pI, pq P tIu ˆ rIi,kp
Ź

jPI Φpjqqs,

“ Φm,i,I1,Jpαq, if α P Jm,i,I1,Φ for some I 1 Ą I, with

cardpI 1q “ cardpIq ` 1.

The following properties of Jm,i,I,Φ and Φm,i,I,J are obvious from the above
definition. Using the same notation as in Definition 3.2:

Lemma 3.2. (a) cardpJm,i,I,Φq ă 8 for each I Ăďm`2 J ;
(b) For I, I 1 Ă J with cardpI Y I 1q ď m` 2,

Jm,i,IYI1,Φ Ă Jm,i,I,Φ X Jm,i,I1,Φ.

(c) If I 1 Ă I Ăďm`2 J Ă J 1, then Jm,i,I,Φ Ă J 1m,i,I1,Φ, and for α P Jm,i,I,Φ,

Φm,i,I,J pαq “ Φm,i,I1,J 1pαq.

Proof. Follows directly from Definition 3.2. �
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We now define the set Pm,ipΦq.

Definition 3.3 (The underlying set of the poset pPm,ipΦq,ăq). We define the set
Pm,ipΦq using induction on m.
Base case (m “ ´1): For each finite set J , and Φ P pFRi,kq

J we define

P´1,ipΦq “
ď

jPJ

ttjuu ˆ tHu.

Inductive step: Suppose we have defined the sets pPm1,i1pΦ
1q,ăq for all m1 with

´1 ď m1 ă m, i1 ě 0, for all non-empty finite sets J 1 and all Φ1 P pFRi1 ,kq
J 1 .

We complete the inductive step by defining:
(3.7)

Pm,ipΦq “
ď

jPJ

ttjuu ˆ tHu Y
ď

IĂJ,1ăcardpIqďm`2

tIu ˆPm´cardpIq`1,i`1pΦm,i,I,J q.

We now specify the partial order on Pm,ipΦq. For this it will be useful to have
the following alternative characterization of the elements of the poset Pm,ipΦq as
tuples of sets. This characterization follows simply by unravelling the inductive
definition of the set Pm,ipΦq given above.

3.3.3. Characterization of the elements of the poset Pm,ipΦq as tuples of sets. The
elements of Pm,ipΦq are all finite tuples of sets (of varying lengths)

pI0, . . . , Ir,Hq,

satisfying the following conditions.

1. I0 is a subset of J0 “ J , cardpI0q “ 1 if r “ 0, and 2 ď cardpI0q ď m ` 2
otherwise.

2. I1 is a subset of J1 “ pJ0qm0,i0,I0,Φ0
(see Eqn. (3.6), Definition 3.3) with

m0 “ m,

i0 “ i,

Φ0 “ Φ,

and

2 ď cardpI1q ď pm0 ´ cardpI0q ` 1q ` 2.

3. I2 is a subset of J2 “ pJ1qm1,i1,I1,Φ1
, where

m1 “ m0 ´ cardpI0q ` 1,

i1 “ i0 ` 1,

Φ1 “ pΦ0qm0,i0,I0,J0
,

and

2 ď cardpI2q ď pm1 ´ cardpI1q ` 1q ` 2.

4. Continuing in the above fashion,

(3.8) Ir´1 Ă Jr´1 “ pJr´2qmr´2,ir´2,Ir´2,Φr´2
,

where

mr´2 “ mr´3 ´ cardpIr´3q ` 1,

ir´2 “ ir´3 ` 1,

Φr´2 “ pΦr´3qmr´3,ir´3,Ir´3,Jr´3
,
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and

(3.9) 2 ď cardpIr´1q ď mr´2 ` 2 “ pm` r ´ 1´
r´2
ÿ

j“0

cardpIjqq ` 2.

5. Finally,

Ir Ă Jr “ pJr´1qmr´1,ir´1,Ir´1,Φr´1
,

where

Φr´1 “ pΦr´2qmr´2,ir´2,Ir´2,Jr´2
,

and

cardpIrq “ 1.

(We show later (see Claim 3.8) that for tuples pI0, . . . , Ir,Hq satisfying the above
conditions, r ď m` 1.)

Definition 3.4 (Partial order on Pm,ipΦq). The partial order ă on Pm,ipΦq is
defined as follows.

For α “ pIα0 , . . . , I
α
rα ,Hq, β “ pI

β
0 , . . . , I

β
rβ
,Hq P Pm,ipΦq,

(3.10) β ă αô prα ď rβq and Iαj Ă Iβj , 0 ď j ď rα.

3.4. Main properties of the poset Pm,ipΦq. We will now state and prove the
important properties of the poset Pm,ipΦq that motivates its definition.

Lemma 3.3. For each J 1 Ă J2 Ă J , and ´1 ď m1 ď m2 ď m, we have a poset
inclusion,

Pm1,ipΦ|J 1q ãÑ Pm2,ipΦ|J2q.

Proof. Follows from Definition 3.3 and Part (c) of Lemma 3.2. �

We now state a lemma which will be useful later, that states a key property of
the partial order relation in Pm,ipΦq. Using the same notation as in Definition 3.3:

Lemma 3.4. Suppose that I 1 Ă I Ă J .

(a) The poset Pm´cardpIq`1,i`1pΦm,i,I,J q is a subposet of Pm´cardpI1q`1,i`1pΦm,i,I1,Jq.
(b) For each α, α1 P Pm´cardpIq`1,i`1pΦm,i,I,J q,

α ăPm´cardpIq`1,i`1pΦm,i,I,J q α
1 ô pI, αq ăPm,ipΦq pI

1, α1q.

Proof. Part (a) follows from the fact that Jm,i,I,Φ Ă Jm,i,I1,Φ, m ´ cardpIq ` 1 ď
m´ cardpI 1q ` 1, and Lemma 3.3.

Part (b) follows immediately from the definition of the partial order on Pm,ipΦq
(see Definition 3.4). �

Let R be a real closed field and R P R, R ą 0. We say that the tuple

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological `-connectivity property over R if it satisfies the following
conditions.

Property 3.2. 1. For each i ě 0, Ri “ Rxε̄1, . . . , ε̄iy where for j “ 1, . . . , i, ε̄j
denotes the sequence εj,1, εj,2, . . ..

2. For each φ P FRi,k:

(a) If Rpφ,Bkp0, Rqq is empty then, Ii,kpφq “ ´1.
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(b)
¨

˝

ď

jPrIi,kpφqs

RpCi,kpφqpjq, Bkp0, Rqqq

˛

‚Œ

´

Rpφ,Bkp0, Rqq
¯

(see Notation 3.4). Notice that in the case Rpφ,Bkp0, Rqq is empty, Ii,kpφq “
´1, hence rIi,kpφqs “ H, and so

Ť

jPrIi,kpφqsRpCi,kpφqpjq, Bkp0, Rqq is an

empty union, and is thus empty as well.
(c) For j P rIi,kpφqs, RpCi,kpφqpjq, Bkp0, Rqqq is homologically `-connected.

Notation 3.8. Let φ be a quantifier-free formula with coefficients in Rrε̄s. Then φ
is defined over Rrε̄11, ε̄

1
2, . . . , ε̄

1
is where ε̄1j is a finite sub-sequence of the sequence ε̄j .

For t̄ “ pt̄1, . . . , t̄iq, where for 1 ď j ď i, t̄j is a tuple of elements of R of the same
length as ε̄1j , we will denote by φt̄ the formula defined over R obtained by replacing

ε̄1j by t̄j in the formula φ.

For any finite sequence t̄ “ pt1, . . . , tN q, by the phrase “for all sufficiently small
and positive t̄” we will mean “ for all sufficiently small t1 P Rą0, and having chosen
t1, for all sufficiently small t2 P Rą0, ... ”.

We will say that
ppRiqiě0, R, k, pIi,kqiě0, pCi,kqě0q

satisfies the `-connectivity property over R “ R if it satisfies the following conditions.

Property 3.21. 1. R0 “ R and for each , i ą 0, Ri “ Rxε̄1, . . . , ε̄iy.
2. For each φ P FRi,k:

(a) If Rpφ,Bkp0, Rqq is empty then, Ii,kpφq “ ´1.
(b)

¨

˝

ď

jPrIi,kpφqs

RpCi,kpφqpjq, Bkp0, Rqqq

˛

‚Œ

´

Rpφ,Bkp0, Rqq
¯

(c) For j P rIi,kpφqs, and all sufficiently small and positive t̄,

RpCi,kpφqpjqt̄, Bkp0, Rqqq
is `-connected.

The following two theorems give the important topological properties of the
posets defined above that will be useful for us.

Theorem 2. Suppose that the tuple

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological `-connectivity property over R (see Property 3.2). Then,
for ´1 ď m ď `, every finite set J , and Φ P pFk,RiqJ , such that for each j P J ,

RpΦpjq, Bkp0, Rqq is homologically `-connected,

(3.11) |∆pPm,ipΦqq|
h
„m´1 RpΦ, Bkp0, RqqJ .

More generally, we have the diagrammatic homological pm´ 1q-equivalence

(3.12) pJ 1 ÞÑ |∆pPm,ipΦ|J 1q|qJ 1P2J
h
„m´1 SimpJpRpΦ, Bkp0, Rqqq.

In the case R “ R we can derive a stronger conclusion from a stronger assump-
tion.
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Theorem 21. Suppose that

ppRiqiě0, R, k, pIi,kqiě0, pCi,kqiě0q

satisfies the `-connectivity property over R “ R (cf. Property 3.21).
Then, for ´1 ď m ď `, each finite set J , and Φ P pFR,kq

J , such that for each

j P J , RpΦpjq, Bkp0, Rqq is `-connected,

|∆pPm,ipΦqq| „m´1 RpΦ, Bkp0, RqqJ .
More generally, we have the diagrammatic pm´ 1q-equivalence:

(3.13) pJ 1 ÞÑ |∆pPm,ipΦ|J 1q|qJ 1P2J „m´1 SimpJpRpΦ, Bkp0, Rqqq.
Before proving Theorems 2 and 21 we discuss an example.

3.5. Example of the sphere S2 in R3. In order to illustrate the main ideas
behind the definition of the poset, Pm,ipΦq, defined above we discuss a very simple
example. Starting from a cover of the two dimensional unit sphere in R3 by two
closed hemispheres, we show how we construct the associated poset. We will assume
that there is an algorithm available as a black-box which given any closed formula
φ such that Rpφq is bounded, produces a tuple of quantifier-free closed formulas as
output, such that

(a) the realization of each formula in the tuple is contractible;
(b) the union of the realizations is a semi-algebraic set infinitesimally larger than

Rpφq, and such that Rpφq is a semi-algebraic deformation retract of the union.

↪→
↪→

. .

↪→

(a)

6↪→
6↪→

• •
D′

3,0(Φ)((I0, I1, {(I1, 0)}, ∅)) D′
3,0(Φ)((I0, I1, {(I1, 1)}, ∅))

D′
3,0(Φ)((I0, {(I0, 1)}, ∅))

D′
3,0(Φ)((I0, {(I0, 0)}, ∅))

D′
3,0(Φ)(({b}, ∅))

D′
3,0(Φ)(({a}, ∅))

6↪→

(b)

↪→
↪→

• •
D3,0(Φ)((I0, I1, {(I1, 0)}, ∅)) D3,0(Φ)((I0, I1, {(I1, 1)}, ∅))

D3,0(Φ)((I0, {(I0, 1)}, ∅))

D3,0(Φ)((I0, {(I0, 0)}, ∅))

D3,0(Φ)(({b}, ∅))

D3,0(Φ)(({a}, ∅))

↪→

•
••

•

••

• •

••

(c)

Figure 5. (a) The ideal situation, (b) D1m,ipΦqp.q, and (c) Dm,ipΦqp.q
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Therefore, at each step of our construction the cover by contractible sets that we
consider, is actually a cover of a semi-algebraic set which is infinitesimally larger
than that but with the same homotopy type as the original set. As a result, the
inclusion property – namely, that each element of the cover is included in the set
that it is part of a cover of – which is expected from the elements of a cover will
not hold.

We first describe the situation in the case when Part (b) above is replaced with:

(b1) the union of the realizations is equal to Rpφq.

We call this the ideal situation. Figure 5(a) displays three levels of the con-
struction in the ideal situation for the sphere. In the first step, we have two closed
contractible hemispheres that cover the whole sphere. The intersection of the two
hemispheres is a circle, and the next level shows the two closed semi-circles as its
cover. The bottom level consists of two points which is the intersection of these
semi-circles. Clearly, the inclusion property holds in this case.

Unfortunately, as mentioned before we cannot assume that we are in the ideal
situation. This is because the only algorithm with a singly exponential complexity
that is currently known for computing covers by contractible sets, satisfies Property
(b) rather than the ideal Property (b1). In the non-ideal situation we will obtain
in the first step a cover of an infinitesimally thickened sphere by two thickened
hemispheres where the thickening is in terms of some infinitesimal ε0, 0 ă ε0 ! 1.
The intersection of these two thickened hemispheres is a thickened circle, and which
is covered by two thickened semi-circles whose union is infinitesimally larger than
the thickened circle. The new infinitesimal is ε1 and 0 ă ε1 ! ε0 ! 1. Finally, in
the next level, the intersection of the two thickened semi-circles is covered by two
thickened points involving a third infinitesimal ε2, such that 0 ă ε2 ! ε1 ! ε0 ! 1.

We associate to each element α P Pm,ipΦq two semi-algebraic sets Dm,ipΦqpαq,
D1m,ipΦqpαq. The association Dm,ipΦqp¨q is functorial in the sense that if α, β P
Pm,ipΦq, then α ă β ô Dm,ipΦqpαq Ă Dm,ipΦqpβq. This functoriality is important
since it allows us to define the homotopy colimit of the functor Dm,ipΦq. The
association α ÞÑ D1m,ipΦqpαq does not have the functorial property. However, it

follows directly from its definition that D1m,ipΦq is contractible (or `-connected in

the more general setting). Finally, we are able to show that D1m,ipΦqpαq is homotopy
equivalent to Dm,ipΦqpαq for each α P Pm,ipΦq, and thus the functor Dm,ipΦq has
the advantage of being functorial as well as satisfying the connectivity property.

In this example, we display D1m,ipΦqpαq and Dm,ipΦqpαq for all different α P
Pm,ipΦq in Figures 5(b) and 5(c).

For the rest of this example we assume the covers of sphere are in the ideal
situation. This assumption will not change the poset Pm,ipΦq that we construct.

In order to reconcile with the notation used in the definition of the poset Pm,ipΦq,
we will assume that the different covers described above (which are not Leray but
8-connected) correspond to the values of the maps Ii,3 and Ci,3 evaluated at the
corresponding formulas which we describe more precisely below.
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Step 1. Let a, b denote the closed upper and lower hemispheres of the sphere S2
p0, 1q Ă

R3, defined by formulas

φa :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 ě 0q,

φb :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 ď 0q.

Let J “ J0 “ ta, bu, and Φ P FJ
R,3 be defined by Φpaq “ φa,Φpbq “ φb.

Moreover, since cardpJq “ 2,

P3,0pΦq “ tptau,Hq, ptbu,Hqu Y
ď

I0ĂJ,cardpI0q“2

tI0u ˆP2,1pΦ3,0,I0,J0q.

Following the notation used in Definition 3.3, let I0 “ J0 “ J “ ta, bu.

Step 2. We suppose that I0,3pφa ^ φbq “ 1, and C0,3pφa ^ φbqp0q “ φc, C0,3pφa ^
φbqp1q “ φd, where

φc :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 ě 0q,

φd :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 ď 0q,

denote the two semi-circles.

J1 “ J3,0,I0,Φ “ tI0u ˆ r1s “ tpI0, 0q, pI0, 1qu,

Φ1 “ Φ3,0,I0,J0
,

Φ1ppI0, 0qq “ φc,

Φ1ppI0, 1qq “ φd.

P2,1pΦ1q “ tptpI0, 0qu,Hq, ptpI0, 1qu,Hqu Y
ď

I1ĂJ1,cardpI1q“2

tI1u ˆP1,2ppΦ1q2,1,I1,J1q.

Now let I1 “ J1.

Step 3. Suppose that I1,3pφc ^ φdq “ 1, and C1,3pφc ^ φdqp0q “ φe,
C1,3pφc ^ φdqp1q “ φf , where

φe :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 “ 0q ^ pX1 ` 1 “ 0q,

φf :“ pX2
1 `X

2
2 `X

2
3 ´ 1 “ 0q ^ pX3 “ 0q ^ pX2 “ 0q ^ pX1 ´ 1 “ 0q.

J2 “ pJ1q2,1,I1,Φ1
“ tI1u ˆ r1s “ tpI1, 0q, pI1, 1qu,

Φ2 “ pΦ1q2,1,I1,J1

Φ2ppI1, 0qq “ φe,

Φ2ppI1, 1qq “ φf .

P1,2pΦ2q “ tptpI1, 0qu,Hq, ptpI1, 1qu,Hqu Y
ď

I2ĂJ2,cardpI2q“2

tI2u ˆP0,3ppΦ2q1,2,I2,J2q.
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Let I2 “ J2.

Step 4. Since I2,3pφe ^ φf q “ ´1, hence P0,3ppΦ2q1,2,I2,J2q “ H, and from Step 3

P1,2pΦ2q “ tptpI1, 0qu,Hq, ptpI1, 1qu,Hqu.

Step 5. With these choices of the values of I¨,3 and C¨,3 for the specific formulas
described above, and ` “ 8, from Step 2 and Step 4, the Hasse diagram of
the poset P2,1pΦ1q is as follows.

ptpI0, 0qu,Hq ptpI0, 1qu,Hq

pI1, tpI1, 0qu,Hq

OO 44

pI1, tpI1, 1qu,Hq

OOjj

Step 6. Finally, from Step 1 and Step 5, the Hasse diagram of the poset P3,0pΦq is
shown below.

ptau,Hq ptbu,Hq

pI0, tpI0, 0qu,Hq

OO 33

pI0, tpI0, 1qu,Hq

OOkk

pI0, I1, tpI1, 0qu,Hq

OO 33

pI0, I1, tpI1, 1qu,Hq

OOkk

The order complex, ∆pP3,0pΦqq is displayed below and clearly |∆pP3,0pΦqq| is

homeomorphic to S2
p0, 1q.

3.6. Proofs of Theorems 2 and 21. In this section we prove Theorem 2 as well
as Theorem 21. We first give an outline of the proof of Theorem 2.

3.6.1. Outline of the proof of Theorem 2. In order to prove that |∆pPm,ipΦqq| is
homologically pm ´ 1q-equivalent to RpΦqJ , we give two homological pm ´ 1q-
equivalences. The source of both these maps is a semi-algebraic set which is de-
fined as the homotopy colimit of a certain functor Dm,i from the poset category
Pm,ipΦq to Top taking its values in semi-algebraic subsets of Rk

i`m`1. The tar-

gets are |∆pPm,ipΦqq| and RpΦqJ . Taken together these two homological pm ´

1q-equivalences imply that |∆pPm,ipΦqq| and RpΦqJ are homologically pm ´ 1q-
equivalent.

In what follows, we first define the functor Dm,i as well as an associated map
D1m,i, also taking values in semi-algebraic sets, and prove the main properties of
these objects that we are going to need in the proof of Theorem 2.
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({a}, ∅)

({b}, ∅)

(I0, {(I0, 1)}, ∅)(I0, {(I0, 0)}, ∅)

(I0, I1, {(I1, 0)}, ∅)

(I0, I1, {(I1, 1)}, ∅)

Figure 6. The order complex, ∆pP3,0pΦqq

3.6.2. Definition of Dm,i, D
1
m,i. We now define for each α “ pI0, . . . , Ir,Hq P

Pm,ipΦq, a closed semi-algebraic subset Dm,ipαq Ă Bkp0, Rq Ă Rk
i`m`1, and also a

semi-algebraic set D1m,ipαq Ă Rk
i`r.

We define Dm,i, D
1
m,i by induction on m. For m “ ´1, we define for j P J ,

D´1,ipΦqpptju,Hqq “ D1´1,ipΦqpptju,Hqq “ RpΦpjq, Bkp0, Rqq Ă Rk
i .

We now define Dm,ipΦq, D
1
m,ipΦq : Pm,ipΦq Ñ Top, using the fact that they are

already defined for all ´1 ď m1 ă m. We define:

Dm,ipΦqpptju,Hqq “ extpRpΦpjq, Bkp0, Rqq,Ri`m`1q Y
ď

pI,αqPPm,ipΦq,jPI

extpDm´cardpIq`1,i`1pΦm,i,I,J qpαq,Ri`m`1q,

Dm,ipΦqppI, αqq “ extpDm´cardpIq`1,i`1pΦm,i,I,J qpαq,Ri`m`1q,

I Ăďm`2 J, cardpIq ą 1, α P Pm´cardpIq`1,i`1pΦm,i,I,J q,

D1m,ipΦqpptju,Hqq “ RpΦpjq, Bkp0, Rqq,(3.14)

and

D1m,ipΦqppI, αqq “ D1m´cardpIq`1,i`1pΦm,i,I,J qpαq,

for I Ăďm`2 J, cardpIq ą 1, α P Pm´cardpIq`1,i`1pΦm,i,I,J q.
The following lemma is obvious from the definition of Dm,ipαq given above.

Lemma 3.5. For each α, β P Pm,ipΦq with α ă β, the morphism Dm,ipΦqpα ă

βq : Dm,ipΦqpαq Ñ Dm,ipΦqpβq is an inclusion. So, Dm,ipΦq is a functor from the
poset category pPm,ipΦq,ăq to Top.

Remark 3.4. Unlike Dm,i, D
1
m,i is not necessarily a functor.
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Lemma 3.6. For each α P Pm,ipΦq,

Dm,ipΦqpαq Œ D1m,ipΦqpαq.

Proof. Let
α “ pIα0 , . . . , I

α
rα “ tjαu,Hq

with Iαh Ă Jαh , 0 ď h ď rα following the same notation as in Section 3.3.3 (with an
added superscript α).

First observe that

(3.15) Dm,ipΦqpαq “ extpD1m,ipΦqpαq,Ri`m`1q Y
ď

βňα

Dm,ipΦqpβq.

We now prove that for each α P Pm,ipΦq:

(3.16) Dm,ipΦqpαq Œ D1m,ipΦqpαq,

and

(3.17)
ď

βňα

Dm,ipΦqpβq Œ
ď

βňα

lim
ε̄i`rα`1

D1m,ipΦqpβq Ă D1m,ipΦqpαq.

The proof is by induction on the maximum length, lengthpαq, of any chain with
α as the maximal element.

We first note that if R1 “ Rxε̄y, and X Ă Rk is a semi-algebraic subset, then

lim
ε̄

extpX,R1q “ X.

This follows easily from the definition of extpX,R1q and standard properties of limε̄.
In particular, if X is a closed semi-algebraic set, then

lim
ε̄

extpX,R1q “ X.

Base case of the induction, lengthpαq “ 1: It follows from (3.15) and the fact that
that D1m,ipΦqpαq is a closed semi-algebraic set, that (3.16) holds if α is a minimal
element of the poset Pm,ipΦq (and so lengthpαq “ 1). In this case (3.17) is trivially
true.

Induction hypothesis: We assume now that (3.16) and (3.17) is true for all α P
Pm,ipΦq, with lengthpαq ă t.

Inductive step: Suppose that α P Pm,ipΦq, with lengthpαq “ t. The inductive
hypothesis implies that (3.16) and (3.17) both hold with α replaced by α1 for all
α1 ň α.

Using the fact that D1m,ipΦqpαq is closed, it is easy to check that (3.17) implies
(3.16). So we need to prove only (3.17). Using the induction hypothesis we have
for each β ň α

(3.18)
ď

βňα

Dm,ipΦqpβq Œ
ď

βňα

D1m,ipΦqpβq.

Now observe that for any β P Pm,ipΦq, β ň α if and only if there exist j1α P
Iαrα´1, j

1
α ‰ jα and j2α P pJ

α
rαqmαrα ,i

α
rα
,tjα,j1αu,Φrα

, such that

β ă γpj2αq “ pI
α
0 , . . . , I

α
rα´1, tjα, j

1
αu, tj

2
αu,Hq,

where we assume that Iα´1 “ J .
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Using the above observation we have that
(3.19)

ď

βňα

D1m,ipΦqpβq “
ď

j1αPI
α
rα´1,j

1
α‰jα

ď

j2αPpJ
α
rα
qmαrα,i

α
rα
,tjα,j1αu,Φrα

¨

˝

ď

βăγpj2αq

D1m,ipΦqpβq

˛

‚,

where

γpj2αq “ pI
α
0 , . . . , I

α
rα´1, tjα, j

1
αu, tj

2
αu,Hq.

Applying hypothesis (3.17) we have that

(3.20)

¨

˝

ď

βňγpj2αq

D1m,ipΦqpβq

˛

‚Œ lim
ε̄i`r`2

ď

βňγpj2αq

D1m,ipΦqpβq Ă D1m,ipΦqpγpj
2
αqq.

Also observe that,
(3.21)
¨

˝

ď

j2αPJm,i,tjα,j1αu,Φ

D1m,ipΦqpγpj
2
αqq

˛

‚Œ
`

D1m,ipΦqpαq XD
1
m,ipΦqpα

1q
˘

Ă D1m,ipΦqpαq,

where

α1 “ pIα0 , . . . , I
α
rα´1, tj

1
αu,Hq.

Finally, (3.17) now follows from (3.18), (3.19), (3.20), and (3.21).
�

Lemma 3.7.
¨

˝

ď

αPPm,ipΦq

Dm,ipΦqpαq

˛

‚Œ RpΦ, Bkp0, RqqJ .

In particular, extpRpΦ, Bkp0, RqqJ ,Riq is a semi-algebraic deformation retract of
Ť

αPPm,ipΦq
Dm,ipΦqpαq.

Proof. First note that for each j P J , ptju,Hq is a maximal element of the poset
Pm,ipΦq. It now follows from Lemma 3.5 that

ď

αPPm,ipΦq

Dm,ipΦqpαq “
ď

jPJ

Dm,ipΦqpptju,Hqq.

The lemma now follows from Lemma 3.6 and Eqn.(3.14). �

Notation 3.9. We will denote the deformation retraction
ď

αPPm,ipΦq

Dm,ipΦqpαq Ñ extpRpΦ, Bkp0, RqqJ ,Riq

in Lemma 3.7 by rm,ipΦq.

In the proof of Theorem 2 we need the notion of the homotopy colimit of a
functor which we define below.

We fix a real closed field R in the following definition.
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Definition 3.5 (The topological standard n-simplex). We denote by

|∆n| “ tpt0, . . . , tnq P Rn`1
ě0 |

n
ÿ

i“0

ti “ 1u

the standard n-simplex defined over R. For 0 ď i ď n, we define the face operators,

din : |∆n´1| Ñ |∆n|,

by

dinpt0, . . . , tn´1q “ pt0, . . . , ti´1, 0, ti, . . . , tn´1q.

Definition 3.6 (Homotopy colimit). Let pP,ăq be a poset category and

D : pP,ăq Ñ Top

a functor taking its values in closed and bounded semi-algebraic subsets of Rk, and
such that the morphisms Dpα ă βq are inclusion maps. The homotopy colimit of
D is the quotient space 4

hocolimpDq “

˜

ž

α0ň¨¨¨ňαp

|∆p| ˆDpα0q

¸

M

„ ,

where the equivalence relation „ is defined as follows.
For a chain σ “ pα0 ň ¨ ¨ ¨ ň αpq, t P |∆

p|, and x P Dpα0q, we denote by pt, xqσ,
the image of pt, xq under the canonical inclusion of |∆p| ˆDpα0q (corresponding to
the chain σ) in the disjoint union

š

α0ň¨¨¨ňαp
|∆p| ˆDpα0q.

Using the above notation the equivalence relation „ is defined by:

(3.22) pdipptq, xqσ „ pt, xqσ1 ,

for x P Dpα0q and t P |∆p´1|, where σ “ pα0 ň ¨ ¨ ¨ ň αpq and

σ1 “

$

&

%

pα1 ň ¨ ¨ ¨ ň αpq if i “ 0,
pα0 ň ¨ ¨ ¨αi´1 ň αi`1 ň ¨ ¨ ¨ ň αpq if 0 ă i ă p,
pα0 ň ¨ ¨ ¨ ň αp´1q if i “ p.

We denote by πD1 : hocolimpDq Ñ |∆pPq|, πD2 : hocolimpDq Ñ colimpDq the
canonical maps, where |∆pPq| is the geometric realization of the order complex of
P (see Definition 3.1). More precisely, πD1 is the map induced from the projection
map

ž

α0ň¨¨¨ňαp

|∆p| ˆDpα0q Ñ
ž

α0ň¨¨¨ňαp

|∆p|

after taking the quotient by „, and πD2 is the composition of the map induced by
the projection

ž

α0ň¨¨¨ňαp

|∆p| ˆDpα0q Ñ
ž

α0ň¨¨¨ňαp

Dpα0q,

and the canonical map to the colimit of the functor D, which in this case is simply
the union

Ť

αPPDpαq.

The following example illustrates the definition given above.

4which is a semi-algebraic set defined over R, being a quotient space of a proper semi-algebraic
equivalence relation, (see for example [23, page 166])
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Example 3.3. Consider the poset P “ ta, b, cu, with three elements with c ň

a, c ň b as the only non-trivial ordering relation (Hasse diagram shown below).

a b

c

@@__

Let D : P Ñ Top be the functor, with

Dpaq “ RppX2
1 `X

2
2 ´ 4 “ 0q ^ pX2 ě 0qq,

Dpbq “ RppX2
1 `X

2
2 ´ 4 “ 0q ^ pX2 ď 0qq,

Dpcq “ Dpaq XDpbq

“ tp´2, 0q, p2, 0qu.

The homotopy colimit of the functor D is then the quotient of the disjoint union
of the spaces

∆0 ˆDpaq,∆0 ˆDpbq,∆0 ˆDpcq,

∆1 ˆDpcq,∆1 ˆDpcq

corresponding to the chains paq, pbq, pcq, pc ň aq, pc ň bq by the equivalence relation
defined in Eqn. (3.22). The non-trivial identifications induced by the quotienting
are given by (following the notation introduced in Definition 3.6)

pp0, 1q, p´2, 0qqpcňaq „ pp1q, p´2, 0qqpcq,

pp0, 1q, p2, 0qqpcňaq „ pp1q, p2, 0qqpcq,

pp1, 0q, p´2, 0qqpcňaq „ pp1q, p´2, 0qqpaq,

pp1, 0q, p2, 0qqpcňaq „ pp1q, p2, 0qqpaq,

pp0, 1q, p´2, 0qqpcňbq „ pp1q, p´2, 0qqpcq,

pp0, 1q, p2, 0qqpcňbq „ pp1q, p2, 0qqpcq,

pp1, 0q, p´2, 0qqpcňbq „ pp1q, p´2, 0qqpbq,

pp1, 0q, p2, 0qqpcňbq „ pp1q, p2, 0qqpbq.

The quotient space (as a semi-algebraic set) is shown below in Figure 7.

D(a)

D(b)

D(c)D(c)

Figure 7. Homotopy colimit of the functor D in Example 3.3.

Proof of Theorem 2. The theorem will follow from the following two claims.

Claim 3.1. The map π
Dm,ipΦq
1 : hocolimpDm,ipΦqq Ñ |∆pPm,ipΦqq| is a homologi-

cal `-equivalence (and so a homological pm´ 1q-equivalence).
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Claim 3.2. The map

Fm,ipΦq “ rm,ipΦq ˝ π
Dm,ipΦq
2 : hocolimpDm,ipΦqq Ñ extpRpΦ, Bkp0, RqqJ ,Riq

is a homological pm´ 1q-equivalence.

We first deduce the proof of the theorem from these two claims. The homological
pm´ 1q-equivalence in (3.11) now follows from Claims 3.1, 3.2 and Lemma 3.7.

The diagrammatic homological pm ´ 1q-equivalence in (3.12) follows from the
commutativity of the following diagrams of maps.

For each pair J 1, J2 Ă J , with J 1 Ă J2 we have the following commutative
diagram, where the vertical arrows are inclusions, and the slanted arrows induce
isomorphisms in the homology groups up to dimension m´ 1.

hocolimpDm,ipΦ|J 1qq

π
Dm,ipΦ|J1

q

1uu
Fm,ipΦ|J1 q **

��

|∆pPm,ipΦ|J 1qq|

��

extpRpΦ, Bkp0, RqqJ
1

,Riq

��

hocolimpDm,ipΦ|J2qq

π
Dm,ipΦ|J2

q

1uu
Fm,ipΦ|J2 q **

|∆pPm,ipΦ|J2qq| extpRpΦ, Bkp0, RqqJ
2

,Riq

.

This implies that we have the following diagram of morphisms where both arrows
are homological pm´ 1q-equivalences:

pJ 1 ÞÑ hocolimpDm,ipΦ|J 1qqqJ 1P2J

ss ))

pJ 1 ÞÑ |∆pPm,ipΦ|J 1qq|qJ 1P2J SimpJpRpΦ, Bkp0, Rqqq.
This proves that the diagrams

pJ 1 ÞÑ |∆pPm,ipΦ|J 1qq|qJ 1P2J

and
SimpJpRpΦ, Bkp0, Rqqq

are homologically pm´ 1q-equivalent.
We now proceed to prove Claims 3.1 and 3.2.

Proof of Claim 3.1. Let t P |∆pPm,ipΦqq|. Then there exists a unique simplex σ
of the simplicial complex ∆pPm,ipΦqq of the smallest possible dimension such that
t P |σ|. Let α0 ň ¨ ¨ ¨ ň αp be the chain in Pm,ipΦq corresponding to σ. Then,

pπ
Dm,ipΦq
1 q´1ptq “ ttu ˆDm,ipΦqpα0q.

It is clear from its definition that D1m,ipΦqpαq is homologically `-connected. From
Lemma 3.6 it follows that so is Dm,ipΦqpαq. It now follows from the homological

version of the Vietoris-Begle theorem (see Remark 2.3) that π
Dm,ipΦq
1 is a homolog-

ical `-equivalence. �
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Proof of Claim 3.2. The claim will follow from the following claims. Let

x P extpRpΦ, Bkp0, RqqJ ,Riq.

We will prove that the fiber pFm,ipΦqq
´1pxq is homologically pm ´ 1q-connected

which will suffice to prove that Fm,ipΦq is a homological pm´1q-equivalence by the
homological version of Vietoris-Begle theorem (see Remark 2.3).

In order to study the fiber pFm,ipΦqq
´1pxq we define for each I Ăďm`2 J the

following posets of Pm,ipΦq.
We define

PIpxq “ tpI, αq P tIu ˆPm´cardpIq`1,i`1pΦm,i,I,J q |

x P lim
ε̄
Dm´cardpIq`1,i`1pΦm,i,I,J qpαqu Ă Pm,ipΦq,

and

QIpxq “
ď

IĂI1Ăďm`2J

PI1pxq.

The motivation behind the definition of the posets PIpxq,QIpxq is as follows.
First observe that

(3.23) pFm,ipΦqq
´1pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

,

and

(3.24)
č

jPI

Qtjupxq “ QIpxq.

Our strategy for proving the homological pm´1q-connectedness of pFm,ipΦqq
´1pxq

is to use the closed covering provided by (3.23) and then use the cohomological
Mayer-Vietoris spectral sequence to reduce the problem to studying the connectiv-
ity of the various |∆pQIpxqq| using (3.24). Finally, we prove (see Claim 3.5) that
for each I, |∆pPIpxqq| is homologically equivalent to |∆pQIpxqq|. This last fact
allows us to use induction on the cardinality of I to prove the required connectivity
statement for the corresponding |∆pQIpxqq|.

We now return to the proof of Claim 3.2. Since, for each I 1, with I Ă I 1 Ăďm`2 J ,

Pm´cardpI1q`1,i`1pΦm,i,I1,Jq Ă Pm´cardpIq`1,i`1pΦm,i,I,J q,

there is an injective map,

PI1pxq Ñ PIpxq, pI
1, αq ÞÑ pI, αq.

Thus there is a map

θIpxq : QIpxq Ñ PIpxq,

defined by

θIpxqppI
1, αqq “ pI, αq,

for each pI 1, αq P QIpxq, where I Ă I 1 Ăďm`2 J .
It is obvious from the above definition and the definition of the partial order in

Pm,ipΦq, that the map θIpxq is a map of posets (i.e. a map respecting the partial
orders of the two posets).

Claim 3.3. The map θIpxq induces a simplicial map ΘIpxq : ∆pQIpxqq Ñ ∆pPIpxqq.
Moreover, the corresponding map |ΘIpxq| : |∆pQIpxqq| Ñ |∆pPIpxqq|, between the
geometric realizations, is a homological equivalence.
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Proof. Since the map θipxq is a poset map, it carries a chain of QIpxq to a chain
of PIpxq. This implies that θIpxq induces a simplicial map ΘIpxq : ∆pQIpxqq Ñ
∆pPIpxqq.

We now prove the second half of the claim. We are going to use the poset fiber
theorem proved in [22, Lemma 3.2] (also [8, Corollary 3.4]).

For n ě 0, we denote by Bn the complete Boolean lattice on a set with n elements.
It is a well known fact (see for example [26]) that |∆pBnq| is homeomorphic to r0, 1sn,
and is thus contractible.

Let pI, αq P PIpxq, and I 1 Ăďm`2 J be the unique maximal subset of J such
that pI 1, αq P PI1pxq (see the schematic diagram in Figure 8 which depicts subposet
of the poset shown in Figure 4).

(1,2)

(1,2,3)(1,2,4)

({1,2,4}, α)({1,2,3}, α)

({1,2,3,4}, α)

({1,2}, α)

Figure 8. θIpxq´1
ppI, αqq with I “ t1, 2u, and I 1 “ t1, 2, 3, 4u

Then,

θIpxq
´1ppI, αqq “ tpI2, αq | I Ă I2 Ă I 1u.

Hence, the poset θIpxq
´1ppI, αqq is isomorphic as a poset to BcardpI1q´cardpIq.

Thus, |∆pθIpxq
´1ppI, αqqq| is contractible.

Moreover, for each pI2, αq P θIpxq
´1ppI, αqq,

θIpxq
´1ppI, αqqąpI2,αq “ tpI

3, αq | I Ă I3 Ă I2u,

and hence θIpxq
´1ppI, αqqąpI2,αq is isomorphic to BcardpI2q´cardpIq. This proves that

|∆pθIpxq
´1ppI, αqqąpI2,αqq| is contractible for each pI2, αq P θIpxq

´1ppI, αqq.
It now follows from the poset fiber theorem [22, Lemma 3.2] (also [8, Corol-

lary 3.4]) that the poset map θIpxq induces a homological equivalence |ΘIpxq| :
|∆pQIpxqq| Ñ |∆pPIpxqq|. �

Observe that Claim 3.3 implies in particular that if cardpIq “ 1, then |QIpxq| is
contractible if non-empty.
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Claim 3.4. For x P extpRpΦ, Bkp0, RqqJ
2

,Riq “ limε̄

Ť

αPPm,ipΦq
Dm,ipΦqpαq,

Hj
ppFm,ipΦqq

´1pxqq – Z, for j “ 0,(3.25)

“ 0, for 0 ă j ď m.

Proof. The proof is by induction on m starting with the case m “ 0. The case
m “ ´1 is trivial.
Base case (m “ 0). We need to show that for

x P extpRpΦ, Bkp0, RqqJ ,Riq “ lim
ε̄

ď

αPP0,ipΦq

D0,ipΦqpαq,

pF0,ipΦqq
´1pxq is connected.

First note that

F0,ipΦq “ r0,ipΦq ˝ π
D0,ipΦq
2 ,

and r0,ipΦq is a semi-algebraic deformation retraction. Hence, r0,ipΦq
´1pxq is closed

and semi-algebraically connected (in fact contractible).
Let Jpxq “ tj P J | D0,ipΦqpptju,Hqq X r0,ipΦq

´1pxq ‰ Hu. Since, the sets
D0,ipΦqpptju,Hqq, j P Jpxq is a covering of the closed and semi-algebraically con-
nected set r0,ipΦq

´1pxq by closed sets, it follows that the union
ď

jPJpxq

D0,ipΦqpptju,Hqq

is semi-algebraically connected as well. It follows that given any j, j1 P Jpxq, there
exists a sequence j “ j0, j1, . . . , jN “ j1 such that for each h, 0 ď h ď N ´ 1,

D0,ipΦqpptjhu,Hqq XD0,ipΦqpptjh`1u,Hqq X r0,ipΦq
´1pxq ‰ H.

So there exists for each h, 0 ď h ď N ´ 1 j2 “ ptjh, jh`1u, pq P J0,i,tjh,jh`1u,Φ

such that

RpΦtjh,jh`1uppqq X rm,ipΦq
´1pxq ‰ H.

So there exists α “ ptj2u,Hq P P´1,i`1pΦtjh,h`1uq, such that

D0,ipΦqpptjh, jh`1u, αqq X r0,ipΦq
´1pxq ‰ H,

and so

ptjh, jh`1u, αq P pF0,ipΦqq
´1pxq.

Moreover,

ptjh, jh`1u, αq ň ptjhu,Hq, ptjh`1u,Hq

(using Lemma 3.4). This implies that ptjhu,Hq, ptjh`1u,Hq, and thus every pair
of the form ptju,Hq, ptj1u,Hq in pF0,ipΦqq

´1pxq belongs to the same connected
component of pF0,ipΦqq

´1pxq. Since, for every element of the form ptjh, jh`1u, αq P
pF0,ipΦqq

´1pxq we have

ptjh, jh`1u, αq ň ptjhu,Hq, ptjh`1u,Hq P pF0,ipΦqq
´1pxq,

ptjh, jh`1u, αq belong to the same connected component of pF0,ipΦqq
´1pxq as

ptjhu,Hq, ptjh`1u,Hq

as well. Together, these facts imply that pF0,ipΦqq
´1pxq is connected. This proves

the claim in the base case.
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Inductive step. Suppose we have proved the theorem for all m1, 0 ď m1 ă m, i ě 0,
all finite J 1, and Φ1 P pFk,RiqJ

1

. We now prove it for m, i, J,Φ.

x P extpRpΦ, Bkp0, RqqJ , Riq “ lim
ε̄

ď

αPPm,ipΦq

Dm,ipΦqpαq,

Recall from (3.23) that

pFm,ipΦqq
´1pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

Let

J 1 “ tj P J | Qtjupxq ‰ Hu.

So

pFm,ipΦqq
´1pxq “ |

ď

jPJ 1

∆pQtjupxqq|.

It follows from the Mayer-Vietoris exact sequence in cohomology for closed sub-
spaces (see for example, [17, page 148]) that there exists a spectral sequence

Ep,qr ñ Hp`q

˜ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

whose E1 term is given by

Ep,q1 “
à

IĂJ 1,cardpIq“p`1

Hq

˜
ˇ

ˇ

ˇ

ˇ

ˇ

č

jPI

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

Notice that
č

jPI

Qtjupxq “ QIpxq,

and it follows from Claim 3.3 that |∆pQIpxqq| is homotopy equivalent to |∆pPIpxqq|.
So we get,

Ep,q1 “
à

IĂJ 1,cardpIq“p`1

Hq
p|∆pPIpxqq|q.

Now for I, with cardpIq ą 1, we can apply the induction hypothesis to deduce
that

Hj
p|∆pPIpxqq|q – Z, for j “ 0,

“ 0, for 0 ă j ď m´ cardpIq ` 1.

We can deduce from this that

Ep,01 –
à

IĂJ 1,cardpIq“p`1

Z,

Ep,q1 – 0, for 0 ă q ď m´ p.

It follows that

E0,0
2 – Z,

Ep,02 – 0, p ą 0

Ep,q2 – 0, for p ě 0, 0 ă q ď m´ p.
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�

Note that it follows from Claim 3.5 and the Mayer-Vietoris spectral sequence
argument used in its proof that ror any

J 1 Ă tj P J | Qtjupxq ‰ Hu,

Hj

˜
ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

– Z, for j “ 0,(3.26)

“ 0, for 0 ă j ď m.

Claim 3.5. For

x P extpRpΦ, Bkp0, RqqJ ,Riq “ lim
ε̄

ď

αPPm,ipΦq

Dm,ipΦqpαq,

pFm,ipΦqq
´1pxq is homologically pm´ 1q-connected.

Proof. Let X “ Fm,ipΦq
´1pxq. It follows from [21, Theorem 12, page 248] that

there exists a short exact sequence:

0 Ñ ExtpHq`1
pXq,Zq Ñ HqpXq Ñ HompHq

pXq,Zq Ñ 0.

Thus, for each q ą 0

Hq`1
ppFm,ipΦqq

´1pxqq “ Hq
ppFm,ipΦqq

´1pxqq “ 0

implies that HqppFm,ipΦqq
´1pxqq “ 0.

The claim now follows from (3.25). �

Claim 3.2 now follows from Claim 3.5 and the homological version of the Vietoris-
Begle theorem (see Remark 2.3). �

This completes the proof of Theorem 2. �

Proof of Theorem 21. Since the proof closely mirrors that of the proof of Theorem 2
we only point out the places where it differs. For each α P Pm,ipΦq, we replace
the infinitesimals ε̄0, . . . , ε̄m, by sequences of appropriately small enough positive
elements t̄0, . . . , t̄m of R, in the formula defining the set Dm,ipΦqpαq, and denote
the set defined by the new formula (which are semi-algebraic subset of Rk) by
rDm,ipΦqpαq. Similarly, we will denote the retraction

ď

αPPm,ipΦq

rDm,ipΦqpαq Ñ RpΦ, Bkp0, RqqJ

by rrm,ipΦq, and the composition

rrm,ipΦq ˝ π
rDm,ipΦq
2 : hocolimp rDm,ipΦqq Ñ RpΦ, Bkp0, RqqJ

by rFm,ipΦq.
Claims 3.1 and 3.2 are replaced by:

Claim 3.11. The map π
rDm,ipΦq
1 : hocolimp rDm,ipΦqq Ñ |∆pPm,ipΦqq| is an `-

equivalence (and so an pm´ 1q-equivalence).
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Claim 3.21. The map

rFm,ipΦq “ rrm,ipΦq ˝ π
rDm,ipΦq
2 : hocolimp rDm,ipΦqq Ñ RpΦ, Bkp0, RqqJ

is an pm´ 1q-equivalence.

The proof of Claim 3.11 is the same as the proof of Claim 3.1 replacing homo-
logically `-connected by just `-connected, and using the homotopy version of the
Vietoris-Begle theorem (see Remark 2.3).

For the proof of Claim 3.21 we need an extra argument to deduce the pm ´ 1q-

connectivity of the fibers of the map rFm,ipΦq from the fact that they are homo-
logically pm ´ 1q-connected which is already proved in Claim 3.5. In order to do
this we apply Hurewicz’s isomorphism theorem which requires simple connectivity

of the fibers p rFm,ipΦqq
´1pxq, which is the content of the following claim.

Claim 3.6. For x P RpΦ, Bkp0, RqqJ , and m ě 1, p rFm,ipΦqq
´1pxq is simply con-

nected. In other words, p rFm,ipΦqq
´1pxq is connected, and

π1pp rFm,ipΦqq
´1pxqq – 0.

Proof. Let

J 1 “ tj P J | Qtjupxq ‰ Hu.

So

p rFm,ipΦqq
´1pxq “

ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ 1

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

.

We prove the stronger statement that for all non-empty subsets J2 Ă J 1,
ˇ

ˇ

ˇ

ˇ

ˇ

ď

jPJ2

∆pQtjupxqq

ˇ

ˇ

ˇ

ˇ

ˇ

is simply connected.
We argue using induction on cardpJ2q. If cardpJ2q “ 1, then ∆pQtjupxqq, where

J2 “ tju, is a cone and so |∆pQtjupxqq| is contractible and hence simply connected.
Suppose, we have already proved that the claim holds for all subsets of J 1 of

cardinality strictly smaller than that of J2. Let j2 P J2. Then, by the induction

hypothesis, we have that
ˇ

ˇ

ˇ

Ť

j1PJ2´tj2u∆pQtj1upxqq
ˇ

ˇ

ˇ
is simply connected.

We first show that

|∆pQtj2upxqq| X

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

j1PJ2´tj2u

∆pQtj1upxqq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

is connected, which is equivalent to proving that

H0
p|∆pQtj2upxqq| X

ď

j1PJ2´tj2u

|∆pQtj1upxqq|q – Z.

The Mayer-Vietoris exact sequence in cohomology gives the following exact se-
quence:
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H0
p
ď

j1PJ2

|∆pQtj1upxqq|q Ñ H0
p|∆pQtj2upxqq|q ‘ H0

p
ď

j1PJ2´tj2u

|∆pQtj1upxqq|q Ñ

H0
p|∆pQtj2upxqq| X

ď

j1PJ2´tj2u

|∆pQtj1upxqq|q Ñ H1
p
ď

j1PJ2

|∆pQtj1upxqq|q.

Applying (3.26) we have an exact sequence

ZÑ Z‘ ZÑ H0

¨

˝|∆pQtj2upxqq| X
ď

j1PJ2´tj2u

|∆pQtj1upxqq|

˛

‚Ñ 0,

where the first map is the diagonal embedding. This implies that

H0

¨

˝|∆pQtj2upxqq| X
ď

j1PJ2´tj2u

|∆pQtj1upxqq|

˛

‚– Z.

Finally, using the fact that |∆pQtj2upxqq| is simply connected, it follows from

the Seifert-van Kampen’s theorem [21, page 151] that
ˇ

ˇ

ˇ

Ť

jPJ2 ∆pQtjupxqq
ˇ

ˇ

ˇ
is simply

connected. �

We also have the obvious analog of Lemma 3.7.

Lemma 3.71. The semi-algebraic set RpΦ, Bkp0, RqqJ is a semi-algebraic deforma-
tion retract of

ď

αPPm,ipΦq

rDm,ipΦqpαq,

and hence RpΦ, Bkp0, RqqJ and
Ť

αPPm,ipΦq
rDm,ipΦqpαq are semi-algebraically ho-

motopy equivalent.

Proof. Similar to proof of Lemma 3.7 and omitted. �

Proof of Claim 3.21. It follows from Claim 3.5, Claim 3.6, and Hurewicz isomor-
phism theorem [21, Theorem 5, page 398], that for

x P RpΦ, Bkp0, RqqJ

and m ě 1, p rFm,ipΦqq
´1pxq is pm´ 1q-connected. Claim 3.21 now follows from the

previous statement and the homotopy version of the Vietoris-Begle theorem (see
Remark 2.3). �

Finally, Theorem 21 follows from Claims 3.11, 3.21 and Lemma 3.71. �

3.7. Upper bound on the size of the simplicial complex ∆pPm,ipΦqq. We
now prove an upper bound on the size of the simplicial complex ∆pPm,ipΦqq as-
suming a “singly exponential” upper bound on the function Ii,kp¨q and Ci,kp¨q.
Definition 3.7. For any closed formula φ with coefficients in a real closed field R,
let the size of φ, sizepφq be the product of the number of polynomials appearing
in the formula φ and the maximum amongst the degrees of these polynomials.
Similarly, if J is any finite set, and Φ P pFR,kq

J , we denote by sizepΦq the product
of the total number of polynomials appearing in the formulas Φpjq, j P J , and the
maximum amongst the degrees of these polynomials.
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Theorem 3. Suppose that there exists c ą 0 such that for each φ P FRi,k,

Ii,kpφq ď psizepφqq
kc
,

max
jPrIi,kpφqs

sizepCi,kpφqpjqq ď psizepφqq
kc
.(3.27)

Let J be a finite set and Φ P pFRi,kq
J

. Then the number of simplices in ∆pPm,ipΦqq
is bounded by

pcardpJqDqk
Opmq

,

where

D “ sizepΦq.

Proof. Recall that the elements of Pm,ipΦq are finite tuples

pI0, . . . , Ir,Hq,

where for each, h, 0 ď h ď r, Ih is a subset of a certain set Jh defined in Section 3.3.3.
We first bound the cardinalities of the various Jh’s occurring in the sequence

above.

Claim 3.7. For any i1 ě 0, m1 ě ´1, finite set J 1, I 1 Ăm1`2 J
1, and Φ1 P pFRi1 ,kq

J 1 ,

cardpJ 1m1,i1,I1,Φ1q ď pcardpJ 1qqm
1
`1psizepΦ1qqk

c

.

Proof of Claim 3.7. Let for each fixed i, k,

F pM 1, N 1,m1, D1q “ max
J 1,cardpJ 1q“N 1,

I1Ăm1`2J
1,cardpI1q“M 1,

Φ1PFRi,k
,sizepΦ1q“D1

cardpJ 1m1,i,I1,Φ1q.

Using Eqns. (3.5) and (3.6) and Eqn. (3.27), we obtain:

F pm1 ` 2, N 1, D1q ď D1k
c

,

F pM 1, N,D1q ď D1k
c

` pN 1 ´M 1qF pM 1 ` 1, N 1, D1q, for 1 ăM 1 ă m1 ` 2.

It follows that

F pM 1, N 1, D1q ď D1k
c

p1`N 1 `N 12 ` ¨ ¨ ¨ `N 1m
1
`2´M 1

q

ď D1k
c

N 1m
1
`1 for 1 ăM 1 ď m1 ` 2.

The claim follows from the above inequality. �

Claim 3.8. For pI0, . . . , Ir, φq P Pm,ipΦq, r ď m` 1.

Proof of Claim 3.8. The claim follows from the fact that cardpI0q, . . . , cardpIr´1q ě

2, and hence it follows from Eqn. (3.9) that

2r ď
ÿ

0ďjăr

cardpIjq ď m` pr ´ 1q ` 2.

It follows that

r ď m` 1.

�
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Claim 3.9. For every tuple pI0, . . . , Ir,Hq P Pm,ipΦq, 0 ď h ď r,

sizepΦhpαqq ď Dkch , for α P Jh,

cardpJhq ď N pm`1qhDpkpm`1qqch ,

where Jh,Φh, 0 ď j ď r are defined in Eqn. (3.8), and N “ cardpJq.

Proof of Claim 3.9. The claim is obviously true for h “ 0. Also, note that for each
h, 0 ď h ď r,

mh ď m.

The claim now follows by induction on h, using the inductive definitions of Jh,Φh
(see Eqn. (3.8)), Eqn. (3.27), and Claim 3.7. �

Claim 3.10.

cardpPm,ipΦqq ď pcardpJqDqk
Opmq

.

Proof of Claim 3.10. In order to bound the cardinality of Pm,ipΦq, we bound the
number of possible choices of I0, . . . , Ir for pI0, . . . , Ir,Hq P Pm,ipΦq.

It follows from Eqn. (3.9), that for each h, 0 ď h ď r,

cardpIhq ď m´
h´1
ÿ

t“0

cardpItq ` h` 2

ď m´ 2h` h` 2 psince cardpItq ě 2, 0 ď t ă rq

ď m´ h` 2

ď m` 2.

Since by Claim 3.9 for 0 ď h ď r,

cardpJhq ď N pm`1qhDpkpm`1qqch ,

the number of choices for Ih is clearly bounded by

m`2
ÿ

t“2

ˆ

N pm`1qhDpkpm`1qqch

h

˙

ď NmOphqDkOphq ,

noting that m ď k. The above inequality, together with the fact that r ď m ` 1
(by Claim 3.8), proves the claim. �

Claim 3.11. The length of any chain in Pm,ipΦq is bounded by 2m` 2.

Proof of Claim 3.11. Suppose that α “ pIα0 , . . . , I
α
rα ,Hq, β “ pIβ0 , . . . , I

β
rβ
,Hq P

Pm,ipΦq, β ň α and α ‰ β.
It follows from Eqn. (3.10) that

prα ď rβq and Iαh Ă Iβh , 0 ď h ď rα.

In particular, this implies that 0 ă
řrα
h“0 cardpIαh q ă

řrβ
h“0 cardpIβh q. Since for

any pI0, . . . , Ir,Hq P Pm,ipΦq, we have that
ÿ

0ďhăr

cardpIhq ď m` r ` 2,

cardpIrq “ 1,

and

r ď m` 1,
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it follows immediately that the length of a chain in Pm,ipΦq is bounded by 2m `
2. �

The theorem follows from Claims 3.8, 3.9, 3.10 and 3.11. �

4. Simplicial replacement: algorithm

We begin with some mathematical and algorithmic preliminaries.

4.1. Mathematical preliminaries.

4.1.1. Making closed. We need to take care of the following technical issue. The
output of Algorithm 1 (Covering by Contractible Sets) described below, consists of
a tuple of formulas whose realizations are closed and semi-algebraically contractible
semi-algebraic sets, but the formulas themselves need not be closed. However, in
the recursive Algorithm 2 (Computing the poset Pm,ipΦq) we need to assume that
the input formulas are closed. We get around this problem by a construction which
allows us to replace a formula (not necessarily closed) defining a closed and bounded
semi-algebraic set S by another closed formula defining a semi-algebraic set S1 such
that S1 Œ S. The construction is quite similar (but not identical) to the one by
Gabrielov and Vorobjov [15]. In the construction given in [15] the original set is not
necessarily a deformation retract of the new one. By using the extra property that
we assume, namely that the given set is closed (albeit without a closed description),
we are able to ensure that it is a retract of the new one defined by a closed formula.

We remark here that the algorithmic problem of obtaining a closed description
of a given closed semi-algebraic set (described by a not formula which is not neces-
sarily closed) is a difficult problem for which no algorithm with singly exponential
complexity is known in general. We do not solve this general problem, because the
closed description that we obtain does not describe the original set, but a closed
(infinitesimal) neighborhood of it.

The key result of this section is Lemma 4.1.
Let P “ tP1, . . . , Psu Ă RrX1, . . . , Xks be a finite set of polynomials, and let

B Ă Rk a closed euclidean ball.

Notation 4.1. For σ P t0, 1,´1uP , let

levelpσq “ cardptP P P | σpP q “ 0uq.

For c, d P R, 0 ă d ă c, and σ P t0, 1,´1uP , let σpc, dq denote the closed formula
ľ

σpP q“0

p´d ď P ď dq ^
ľ

σpP q“1

pP ě cq ^
ľ

σpP q“´1

pP ď ´cq.

Notation 4.2. For a P-formula φ we denote

Σφ “ tσ P t0, 1,´1uP |

˜

ľ

PPP
psignpP q “ σpP qq

¸

ñ φu,

where “ñ” denotes logical implication.

Let

R1 “ Rxµs, νs, ¨ ¨ ¨ , µ0, ν0y “ Rxη̄y,

denoting by η̄ the sequence µs, νs, . . . , µ0, ν0.
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Notation 4.3. We denote

P˚pµ̄, ν̄q “
ď

PPP

s
ď

j“0

tP ˘ µj , P ˘ νju Ă R1rX1, . . . , Xks.

Finally,

Notation 4.4. We denote by φ˚pµ̄, ν̄q the P˚pµ̄, ν̄q-closed formula
ł

σPΣφ

σpµlevelpσq, νlevelpσqq

(see Notation 4.2).

Following the notation introduced above.

Lemma 4.1. Let R ą 0, B “ Bkp0, Rq, and suppose that S “ Rpφ,Bq is closed.
Then,

S1 Œ S,

where S1 “ Rpφ˚pµ̄, ν̄q, extpB,R1qq. In particular, extpS,R1q is a semi-algebraic
deformation retract of S1.

Proof. See Appendix A. �

Remark 4.1. It is necessary to use multiple infinitesimals in the construction given
above. As a warning consider the following example.

Example 4.1. Let k “ 1, s “ 2, B “ r´2, 2s, and

P1 “ X2pX ´ 1q,

P2 “ X.

Let σ1, σ2 be defined by,

σ1pP1q “ 1, σ2pP2q “ 1,

σ1pP1q “ 0, σ2pP2q “ 1.

Let φ be the unique formula such that Σφ “ tσ1, σ2u. Then, Rpφ,Bq “ r1, 2s is a
closed semi-algebraic set, but φ is not a closed formula.

However, if we take the closed formula φ˚pµ0, . . . , µ0q (i.e. using only one infin-
itesimal) then

lim
µ0

Rpφ˚pµ0, . . . , µ0q, Bq “ t0u Y r1, 2s Ľ Rpφ,Bq.

However, it is easy to verify that

Rpφ˚pµ̄, ν̄q, Bq Œ Rpφ,Bq “ r1, 2s.
4.1.2. Strong general position. We need the following notion of “strong general
position” of a finite set of polynomials. It is a required property for the input to
Algorithm 1.

Definition 4.1. Let P Ă RrX1, . . . , Xks be a finite set. We say that P is in `-
general position, if no more than ` polynomials belonging to P have a common
zero in Rk. The set P is in strong `-general position if moreover any ` polynomials
belonging to P have at most a finite number of common zeros in Rk.

Using the same notation as in Lemma 4.1 we have:
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Lemma 4.2. The set
P˚pµ̄, ν̄q

is in strong k-general position.

Proof. The claim follows easily from the fact that µ0, . . . , µs, ν0, . . . , νs are al-
gebraically independent over R and semi-algebraic Sard’s theorem [4, Theorem
5.56]. �

We now describe some preliminary algorithms that we will need.

4.2. Algorithmic preliminaries. The following algorithm is described in [4]. We
briefly recall the input, output and complexity. We made a small and harmless
modification to the input by requiring that the closed semi-algebraic of which the
covering is being computed is contained in the closed ball of radius R centered at
the origin, rather than in the sphere of radius R. This is done to avoid compli-
cating notation down the road and is not significant since the algorithm can be
easily modified to accommodate this change without any change in the complexity
estimates.

Algorithm 1 (Covering by Contractible Sets)

Input:
(a) a finite set of s polynomials P Ă Drε̄srX1, . . . , Xks in strong k-general

position on Rk, with degpPiq ď d for 1 ď i ď s,

(b) a P-closed formula φ such that semi-algebraic set Rpφq Ă Bkp0, Rq, for
some R ą 0, R P R.

Output:
(a) a finite set of polynomials H Ă Drε̄, ζ̄srX1, . . . , Xks, where ζ̄ “

pζ1, . . . , ζ2cardpHqq;

(b) a tuple of H-formulas pθαqαPI such that each Rpθα,Rxε̄, ζ̄ykq, α P I is a
closed semi-algebraically contractible set, and

(c)
ď

αPI

Rpθα,Rxε̄, ζ̄ykq “ Rpψ,Rxε̄, ζ̄ykq.

Complexity: The complexity of the algorithm is bounded by

pcardpPqpk`1q2DkOp1q , where D “ maxPPP degX̄,ε̄pP q. Moreover,

cardpIq, cardpHq ď pcardpPqDqkOp1q ,
degȲ pHq, degε̄pHq, degζ̄pHq ď DkOp1q .

Suppose that ε̄ “ pε1, . . . , εtq, and that each polynomial in P depends on
at most m of the εi’s. Then, each polynomial appearing in H depends on at
most mpk ` 1q2 of εi’s, and on at most one of the ζi’s.

Remark 4.2. Note that the last claim in the complexity of Algorithm 1, namely that
each polynomial appearing in any of the formulas θα depends on at most mpk`1q2

of εi’s, and on at most one of the ζi’s, does not appear explicitly in [4], but is
evident on a close examination of the algorithm. It is also reflected in the fact that
the combinatorial part (i.e. the part depending on cardpPq) of the complexity of

Algorithm 16.14 in [4] is bounded by cardpPqpk`1q2 . This is because the Algorithm



EFFICIENT SIMPLICIAL REPLACEMENT OF SEMI-ALGEBRAIC SETS 49

16.14 in [4] has a “local property”, namely that all computations involve at most a
small number (in this case pk ` 1q2) polynomials in the input at a time.

4.3. Algorithm for computing simplicial replacement. We now describe an
algorithm that given a tuple of formula Φ and m, i ě 0, computes the corresponding
poset Pm,ipΦq, using Algorithm 1 to compute Ij,kpφq and Cj,kpφq for different j and
φ which arise in the course of the execution of the algorithm.

Algorithm 2 (Computing the poset Pm,ipΦqq

Input:
(a) `, 0 ď ` ď k, m,´1 ď m ď `, i, 0 ď i ď m` 2.
(b) A finite set of polynomials P Ă Drε̄0, . . . , ε̄isrX1, . . . , Xks, where D is an

ordered domain contained in a real closed field R.
(c) An element r P D, r ą 0.

(d) For each j, 0 ď j ď N , a P-formula φj , such that Rpφj , Bkp0, 1{rqq is
closed and homologically `-connected (and `-connected if R “ R).

Output:
The poset Pm,ipΦq (see Definition 3.3), where Φ is defined by Φpjq “ φj , j P
rN s, and the various I¨,kp¨q C¨,kp¨q are obtained by calls to Algorithm 1.

Procedure:
1: J Ð rN s.
2: if m “ ´1 then
3: Output

P´1,ipΦq “ tptju, φq | j P Ju,

and the order relation to be the trivial one – namely for j, j1 P J ,

ptju,Hq ă ptj1u,Hq ô j “ j1.

4: else
5:

P Ð P Y
#

r2
k
ÿ

i“1

X2
i ´ 1

+

.

6: for j P J do
7:

Φpjq Ð Φpjq ^

˜

r2
k
ÿ

i“0

X2
i ´ 1 ď 0

¸

.

8: end for
9: for each subset I Ăďm`2 J do

10: Use Definition 3.2 to compute Jm,i,I,Φ and Φm,i,I,J , using Algorithm 1
with input P˚pµ̄, ν̄q Ă Rrη̄srX1, . . . , Xks (where η̄ denotes the al-
ternating sequence of µi’s and νi’s appearing in Notation 4.3),
and the formula

Ź

jPI Φpjq‹pµ̄, ν̄q, (noting that RpŹjPI Φpjq‹pµ̄, ν̄qq

is contained in Bkp0, 2{rq), to compute Ii,kp
Ź

jPI Φpjqq and

Ci,kpp
Ź

jPI Φpjqqq.

The polynomials appearing in the formulas in Ci,kpp
Ź

jPI Φpjqqq have coef-

ficients in Drε̄0, . . . , ε̄i, ε̄i`1s, where ε̄i`1 “ p ¯eta, ζ̄q, and ζ̄ is a new
tuple of infinitesimals.

11: end for
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12: for I Ă J, 1 ă cardpIq ď m` 2 do
13: Use Algorithm 2 recursively with input `,m ´ cardpIq ` 1, i `

1,PI ,Φm,i,I,J , r, where PI Ă Drε̄0, . . . , ε̄i`1s is the set of polyno-
mials occurring in Φm,i,I,J .

14:

Pm,ipΦq Ð tptju, φq | j P Ju Y
ď

IĂJ,1ăcardpIqďm`2

tIu ˆPm´cardpIq`1,i`1pΦm,i,I,J q.

15: Define partial order ă on Pm,ipΦq as in Definition 3.3.
16: end for
17: end if
Complexity: The complexity of the algorithm, as well as cardpPm,ipΦqq, are

bounded by

pNsdqk
Opmq

,

where s “ cardpPq, and d “ maxPPP degpP q.

Proof of correctness. The algorithm follows Definition 3.3. The correctness of the
algorithm follows from Lemma 4.1, Lemma 4.2, and the correctness of Algorithm 1.

�

Complexity analysis. The bound on cardpPm,ipΦqq is a consequence of Theorem 3.
The complexity of the algorithm follows from the complexity of the Algorithm 1
and an argument as in the proof of Theorem 3.

There is one additional point to note that in the recursive calls algorithm the
arithmetic operations take place in a larger ring, namely - Drε̄0, . . . , ε̄m`2s.

It follows from the complexity of Algorithm 1 that the number of different in-
finitesimals occurring in each polynomial that is computed in the course of Algo-
rithm 2 is bounded by kOpmq, and these infinitesimals occur with degrees bounded

by dk
Opmq

. Hence each arithmetic operation involving the coefficients with these

polynomials costs
´

dk
Opmq

¯kOpmq

“ dk
Opmq

arithmetic operations in the ring D.

This does not affect the asymptotics of the complexity, where we measure arith-
metic operations in the ring D. �

Remark 4.3. Suppose we define (following the same notation as in Properties 3.2
and 3.21 and Algorithm 2) for φ P FRi,k,

Ii,kpφq “ cardpIq ´ 1,

Ci,kpφq “ pθαqαPI ,

where pθαqαPI is the output of Algorithm 1 with input the set of polynomials ap-
pearing in the definition of φ˚pµ̄, ν̄q (see Notation 4.4), the closed formula φ˚pµ̄, ν̄q,
and R set to 1{r (as in Line 10 of Algorithm 2).

Then it follows from the correctness of Algorithm 1, that (denoting by Ri “

Rxε̄0, . . . , ε̄iy as in Algorithm 2) the tuple

ppRiqiě0, 1{r, k, pIi,kqiě0, pCi,kqiě0q

satisfies the homological `-connectivity property over R (resp. `-connectivity prop-
erty if R “ R) for every ` ě 0 (see Property 3.2 and Property 3.21.
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Algorithm 3 (Simplicial replacement)

Input:
(a) A finite set of polynomials P Ă DrX1, . . . , Xks where D is an ordered

domain contained in a real closed field R.
(b) An integer N ě 0, and for each i P rN s, a P-closed formula φi.
(c) `, 0 ď ` ď k.

Output:
A simplicial complex ∆ and for each I Ă rN s a subcomplex ∆I Ă ∆ such that
there is a diagrammatic homological `-equivalence

pI ÞÑ ∆IqIĂrNs
h
„` SimprNspRpΦqq,

where Φpiq “ φi, i P rN s. In case R “ R, then the simplicial complex ∆ and
the subcomplexes ∆I satisfy the stronger property, namely:

pI ÞÑ ∆IqIĂrNs „` SimprNspRpΦqq,
where Φpiq “ φi, i P rN s.

Procedure:
1: Let 0 ă δ ă 1 be an infinitesimal.
2: P Ð P Y t4 ¨ δ2 ¨ pX2

1 ` ¨ ¨ ¨ `X
2
kq ´ 1u.

3: for 0 ď i ď N do
4: φi Ð φi ^ p4 ¨ δ

2 ¨ pX2
1 ` ¨ ¨ ¨ `X

2
kq ´ 1 ď 0q.

5: Call Algorithm 1 with input P˚pµ̄, ν̄q (see Notation 4.3) the formula φ‹i pµ̄, ν̄q
(see Notation 4.4) as input, and let Φi “ pφi,1, . . . , φi,Niq be the output.

6: Pi Ð the set of polynomials appearing in the formula Φi.
7: end for
8: P 1 Ð Ť

iPrNs Pi.
9: for 0 ď i ď n do

10: Ji Ð tpi, jq | 1 ď j ď Niu.
11: end for
12: J Ð

Ť

iPrNs Ji.

13: Let Ψ P pFRxδ,η̄,ζ̄y,kq
J be defined by Ψppi, jqq “ φi,j .

14: Call Algorithm 2 with input

p`` 1,m` 1, 0,P 1, J, δ,Ψq,
and let Pm,0pΨq denote the output.

15: Output the simplicial complex ∆pPm,0pΨqq, and for each subset I Ă rN s, the
subcomplex ∆pPm,0pΨ|Ť

iPI Ji
qq.

Complexity: The complexity of the algorithm is bounded by psdqk
Op`q

, where
s “ cardpPq and d “ maxPPP degpP q.

Proof of correctness. Observe that the image of the realization of each of the for-
mulas φi,j obtained in Line 5 under the limη̄ map is contained in Bkp0, 1{2δq. This

implies that the realization of each of the formulas φi,j is contained in Bkp0, δq.
Thus, in the call to Algorithm 2 in Line 14, the input satisfies property (d) of the
input specification of Algorithm 2 with r “ δ.

The correctness of the algorithm now follows from Lemma 4.1, Lemma 4.2, the
correctness of Algorithm 2, Remark 4.3, and Theorems 2 and 21. �



52 SAUGATA BASU AND NEGIN KARISANI

Complexity analysis. The complexity bound follows from the complexity bounds of
Algorithms 1 and 2. �

Proofs of Theorems 1 and 11. Both theorems now follows from the correctness and
the complexity analysis Algorithm 3. �

5. Future work and open problems

We conclude by stating some open problems and possible future directions of
research in this area.

1. It is an interesting problem to try to make the poset Pm,ipΦq in Theorem 2
smaller in size and more efficiently computable. For instance, in Theorem 3 one
should be able to improve the dependence on cardpJq.

2. There are some recent work in algorithmic semi-algebraic geometry where al-
gorithms have been developed for computing the first few Betti numbers of
semi-algebraic subsets of Rk having special properties. For example, in [6] the
authors give an algorithm to compute the first ` Betti numbers of semi-algebraic
subsets of Rk defined by symmetric polynomials of degrees bounded by some
constant d. The complexity of the algorithm is doubly exponential in both d
and ` (though polynomial in k for fixed d and `). This algorithm uses semi-
algebraic triangulations which leads to the doubly exponential complexity. It
is an interesting problem to investigate whether applying the efficient simplicial
replacement of the current paper the dependence on d and ` can be improved.
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Synthèses, vol. 51, Soc. Math. France, Paris, 2017, pp. 107–153. MR 3701212 3
3. S. Basu, R. Pollack, and M.-F. Roy, Computing roadmaps of semi-algebraic sets on a variety,

J. Amer. Math. Soc. 13 (2000), no. 1, 55–82. MR 1685780 (2000h:14048) 11
4. , Algorithms in real algebraic geometry, Algorithms and Computation in Mathematics,

vol. 10, Springer-Verlag, Berlin, 2006 (second edition). MR 1998147 (2004g:14064) 2, 3, 5, 7,
15, 16, 48, 49

5. , Computing the first Betti number of a semi-algebraic set, Found. Comput. Math. 8

(2008), no. 1, 97–136. 4, 10, 11, 12, 15
6. Saugata Basu and Cordian Riener, Vandermonde varieties, mirrored spaces, and the coho-

mology of symmetric semi-algebraic sets, Foundations of Computational Mathematics (2021).

52
7. A. Björner, Topological methods, Handbook of Combinatorics (R. Graham, M. Grotschel, and

L. Lovasz, eds.), vol. II, North-Holland/Elsevier, 1995, pp. 1819–1872. 12, 13
8. Anders Björner, Michelle L. Wachs, and Volkmar Welker, Poset fiber theorems, Trans. Amer.

Math. Soc. 357 (2005), no. 5, 1877–1899. MR 2115080 38

9. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-
Verlag, New York, 1998, With a foreword by Richard M. Karp. MR 1479636 (99a:68070)
7



EFFICIENT SIMPLICIAL REPLACEMENT OF SEMI-ALGEBRAIC SETS 53

10. Peter Bürgisser, Felipe Cucker, and Pierre Lairez, Computing the homology of basic semial-

gebraic sets in weak exponential time, J. ACM 66 (2019), no. 1, Art. 5, 30, [Publication date

initially given as 2018]. MR 3892564 3, 11, 12
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Appendix A. Proof of Lemma 4.1

Proof of Lemma 4.1. We will denote for 0 ď i ď s

R1i “ Rxµs, νs, . . . , µiy,

Ri “ Rxµs, νs, . . . , µi, νiy.

Note that

R1 “ R0 Ą R10 Ą ¨ ¨ ¨Rs Ą R1s Ą R.

For 0 ď i ď s we define inductively:

S0 “ S1,
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and for i ą 0,

S´i “ lim
νi
Si,

Si`1 “ lim
µi
Si p“ lim

µi
S´i q.

The lemma will follow from the following two claims.

Claim A.1. For each i, 0 ď i ď s,

Si Œ S´i .

Proof. Easy. �

Claim A.2. For each i, 0 ď i ď s,

S´i Œ Si`1.

Proof. We will prove that

extpSi`1,R
1
iq “ S´i ,

which suffices to prove the claim.
It is obvious that

extpSi`1,R
1
iq Ą S´i .

We now show that

extpSi`1,R
1
iq Ă S´i .

Define,

S
păiq
i`1 “

ď

σPΣφ,levelpσqăi

lim
µi

Rpσ, extpB,Ri`1qq,

S
p“iq
i`1 “

ď

σPΣφ,levelpσq“i

lim
µi

Rpσ, extpB,Ri`1qq,

S
pąiq
i`1 “

ď

σPΣφ,levelpσqąi

lim
µi

Rpσ, extpB,Ri`1qq.

It is easy to see that,

extpS
păiq
i`1 ,R

1
iq Ă S´i ,

extpS
pąiq
i`1 ,R

1
iq Ă S´i .

It remains to prove that

extpS
p“iq
i`1 ,R

1
iq Ă S´i .

Let σ P Σφ, levelpσq “ i, and x0 P limµi Rpσ, extpB,Ri`1qq.
Let P0 “ tP P P | limµi P px0q “ 0u. If cardpP0q “ i, then x0 P S

´
i and we are

done.
Otherwise, σ0 “ signpPpx0qq P Σφ (using the fact that S is closed). Let x1 “

limµlevelpσ0q
x0, σ1 “ signpPpx1qq. If σ1 ‰ σ0, then define x2 “ limµlevelpσ1q

x1. Con-
tinue in this way and define x0, x1, x2, . . ., till σj “ σj`1. Notice that σ0, . . . , σj P
Σφ. Consider the point xj . Then, xj “ limµlevelpσj´1q

x0, and

x0 P Rpσj , extpB,R1iqq Ă S´i ,

since σj P Σφ. This ends the proof of the claim. �
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It follows from Claims A.1 and A.2 that S1 Œ limµs S
1 “ Ss`1. Now it is obvious

from the definition of σ̄, that for each σ P Σφ,

Rpσ̄, extpB,R1qq X Rk “ Rpσ,Bq.
It follows that

S1 X Rk “ S.

Finally, since S1 Œ Ss`1 Ă Rk, it follows that S1 X Rk “ Ss`1, and hence
Ss`1 “ S. This implies that S1 Œ S.

Finally, it follows from Lemma 3.1 that extpS,R1q is a semi-algebraic deformation
retract of S1. �
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