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ABSTRACT. Designing an algorithm with a singly exponential complexity for
computing semi-algebraic triangulations of a given semi-algebraic set has been
a holy grail in algorithmic semi-algebraic geometry. More precisely, given
a description of a semi-algebraic set S — RF by a first order quantifier-free
formula in the language of the reals, the goal is to output a simplicial complex
A, whose geometric realization, |A|, is semi-algebraically homeomorphic to S.
In this paper we consider a weaker version of this question. We prove that
for any £ > 0, there exists an algorithm which takes as input a description of
a semi-algebraic subset S — RF given by a quantifier-free first order formula
¢ in the language of the reals, and produces as output a simplicial complex
A, whose geometric realization, |A| is f-equivalent to S. The complexity of
our algorithm is bounded by (sd)kow, where s is the number of polynomials
appearing in the formula ¢, and d a bound on their degrees. For fixed ¢, this
bound is singly exponential in k. In particular, since ¢-equivalence implies that
the homotopy groups up to dimension £ of |A| are isomorphic to those of S,
we obtain a reduction (having singly exponential complexity) of the problem
of computing the first £ homotopy groups of S to the combinatorial problem
of computing the first £ homotopy groups of a finite simplicial complex of size

bounded by (sd)*" .
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1. INTRODUCTION

1.1. Background. Let R be a real closed field and D an ordered domain contained
in R.

The problem of effective computation of topological properties of semi-algebraic
subsets of R* has a long history. Semi-algebraic subsets of R are subsets defined by
first-order formulas in the language of ordered fields (with parameters in R). Since
the first-order theory of real closed fields admits quantifier-elimination, we can
assume that each semi-algebraic subset S — R* is defined by some quantifier-free
formula ¢. A quantifier-free formula ¢(X7, ..., Xx) in the language of ordered fields
with parameters in D, is a formula with atoms of the form P = 0,P > 0, P < 0,
PeD[Xy,..., Xk

Semi-algebraic subsets of R* have tame topology. In particular, closed and
bounded semi-algebraic subsets of R* are semi-algebraically triangulable (see for
example [4, Chapter 5]). This means that there exists a finite simplicial complex
K, whose geometric realization, |K|, considered as a subset of RY for some N >
0, is semi-algebraically homeomorphic to S. The semi-algebraic homeomorphism
|K| — S is called a semi-algebraic triangulation of S. All topological properties of
S are then encoded in the finite data of the simplicial complex K.

For instance, taking R = R, the (singular) homology groups, H.(S), of S are
isomorphic to the simplicial homology groups of the simplicial chain complex C,(K)
of the simplicial complex K, and the latter is a complex of free Z-modules having
finite ranks (here and elsewhere in the paper, unless stated otherwise, all homology
and cohomology groups are with coefficients in Z).

The problem of designing an efficient algorithm for obtaining semi-algebraic tri-
angulations has attracted a lot of attention over the years. One reason behind this
is that once we have such a triangulation, we can then compute discrete topological
invariants, such as the ranks of the homology groups (i.e. the Betti numbers) of
the given semi-algebraic set with just some added linear algebra over Z.

There exists a classical algorithm which takes as input a quantifier-free formula
defining a semi-algebraic set .S, and produces as output a semi-algebraic triangu-
lation of S (see for instance [4, Chapter 5]). However, this algorithm is based on
the technique of cylindrical algebraic decomposition, and hence the complexity of
this algorithm is prohibitively expensive, being doubly exponential in k. More pre-
cisely, given a description by a quantifier-free formula involving s polynomials of
degree at most d, of a closed and bounded semi-algebraic subset of S = R¥, there
exists an algorithm computing a semi-algebraic triangulation of h : |[K| — S, whose
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o) . T
27" Moreover, the size of the simplicial complex K
90 (k)

complexity is bounded by (sd)
(measured by the number of simplices) is also bounded by (sd)

1.1.1. Doubly exponential vs singly exponential. One can ask whether the doubly
exponential behavior for the semi-algebraic triangulation problem is intrinsic to
the problem. One reason to think that it is not so comes from the fact that the
ranks of the homology groups of S (following the same notation as in the previous
paragraph), and so in particular those of the simplicial complex K, is bounded by
(O(sd))¥ (see for instance [4, Chapter 7]), which is singly exponential in k. So it is
natural to ask if this singly exponential upper bound on rank(H, (5)) is “witnessed”
by an efficient semi-algebraic triangulation of small (i.e. singly exponential) size.
This is not known.

In fact, designing an algorithm with a singly exponential complexity for comput-
ing a semi-algebraic triangulation of a given semi-algebraic set has remained a holy
grail in the field of algorithmic real algebraic geometry and little progress has been
made over the last thirty years on this problem (at least for general semi-algebraic
sets). We note here that designing algorithms with singly exponential complex-
ity has being a leit motif in the research in algorithmic semi-algebraic geometry
over the past decades — starting from the so called “critical-point method” which
resulted in algorithms for testing emptiness, connectivity, computing the Euler-
Poincaré characteristic, as well as for the first few Betti numbers of semi-algebraic
sets (see [2] for a history of these developments and contributions of many authors).
More recently, such algorithms has also been developed in other (more numerical)
models of computations [10, 12, 11] (we discuss the connection of these works with
the results presented in this paper in Section 2.4).

1.1.2. Triangulation vs simplicial replacement. While the problem of designing an
algorithm with singly exponential complexity for the problem of semi-algebraic tri-
angulation is completely open, there has been some progress in designing efficient
algorithms for certain related problems. As mentioned above a semi-algebraic tri-
angulation of a closed and bounded semi-algebraic set S produces a finite simplicial
complex, which encodes all topological properties (i.e. which are homeomorphism
invariants) of S. It is well known that homeomorphism invariants are notoriously
difficult to compute (for instance, it is an undecidable problem to determine whether
two simplicial complexes are homeomorphic [18]). What is much more computable
are the homology groups of semi-algebraic sets. Homology groups are in fact homo-
topy (rather than homeomorphism) invariants. Homotopy equivalence is a much
weaker equivalence relation compared to homeomorphism. In the absence of a
singly exponential complexity triangulation of semi-algebraic sets, it is reasonable
to ask for an algorithm which given a semi-algebraic set S — RF described by a
quantifier-free formula involving s polynomials of degrees bounded by d, computes
a simplicial complex K, such that its geometric realization |K| is homotopy equiv-
alent to S having complexity bounded by (sd)kom. We will call such a simplicial
complex a simplicial replacement of the semi-algebraic set S.

The main results of this paper can be summarized as follows. The precise state-
ments appear in the next section after the necessary definitions of various objects
some of which are a bit technical.

1.2. Summary of results. In the statements below ¢ € Z~ is a fixed constant.
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Theorem (cf. Theorems 1 and 1’ below). Given any closed semi-algebraic subset of
S < RF, there exists a simplicial complex K homologically (-equivalent to S whose
size is bounded singly exponentially in k (as a function of the number and degrees of
polynomials appearing in the description of S). If R = R, then K is (-equivalent to
S. Moreover, there exists an algorithm (Algorithm 3) which computes the complex
K given S, and whose complezity is bounded singly exponentially in k.

The problem of designing efficient (symbolic and exact) algorithms for com-
puting the Betti numbers of semi-algebraic sets have been considered before, and
algorithms with singly exponential complexity was given for computing the first
(resp. the first ¢ for any fixed £) Betti numbers in [5] (resp. [1]). The algorithm
given in the [5] (resp. [1]) computes a complex of vector spaces having isomorphic
homology (with coefficients in Q) up to dimension one (resp. ) as that of the
given semi-algebraic set. However, information with regards to homotopy is lost.
The algorithm implicit in the theorem stated above produces a simplicial complex
having the same homotopy type up to dimension ¢ as the given semi-algebraic set.
Thus the above theorem can be viewed as a homotopy-theoretic generalization of
the results in [5] and [1].

The above theorem can be used for the problem of computing the homotopy
groups of semi-algebraic sets. Homotopy groups are much finer invariants than
homology groups but are also more difficult to compute. In fact the problem of
deciding whether the first homotopy group (i.e. the fundamental group) of a semi-
algebraic set defined over R is trivial or not is an undecidable problem. Nevertheless,
using the above theorem we have the following corollary which gives an algorithmic
reduction having singly exponential complexity of the problem of computing the
first £ homotopy groups of a given closed semi-algebraic set to a purely combinatorial
problem.

Corollary (cf. Corollaries 1 and 2 below). Let R = R, There exists a reduction
having singly exponential complexity, of the problem of computing the first £ homo-
topy groups of any given closed semi-algebraic subset S < R¥, to the problem of
computing the first £ homotopy groups of a finite simplicial complex. This implies
that there exists an algorithm with singly exponential complezity which given as in-
put a closed semi-algebraic set S c RF guaranteed to be simply connected, outputs
the description of the first £ homotopy groups of S (in terms of generators and
relations).

The algorithmic results mentioned above are consequences of a topological con-
struction which can be interpreted as a generalization of the classical “nerve lemma”
in topology. We state it here informally.

Assume that there exists a “black-box” that given as input any closed semi-
algebraic set S < RF, produces as output a cover of S by closed semi-algebraic
subsets of S which are homologically ¢-connected.

Theorem (cf. Theorem 2 below). Given a black-box as above, there exists for every
closed semi-algebraic set S a poset P(S) (see Definition 3.3 below) which depends
on the given black-box, of controlled complexity (both in terms of the description of
S and the complexity of the black-box), such that the geometric realization of the
order-complex of P(S) is homologically £-equivalent to S.

Remark 1.1. In the results stated above we make the assumption that the input
semi-algebraic sets are closed. Gabrielov and Vorobjov [15] gave a construction for
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replacing an arbitrary semi-algebraic subset of R* by a closed and bounded one
having homology and homotopy groups isomorphic to the given semi-algebraic set.
Even though Gabrielov and Vorobjov proved their result over R, the construction
was extended to arbitrary real closed fields (with the approximating set defined
over a real closed extension of the ground field). It is proved in [4] (Theorem
7.45), that the approximating set is in fact semi-algebraically homotopy equivalent
to the (extension of the) given set. Using this latter result one could remove the
assumption of being closed and bounded in Theorems 1 and 1’. We choose not to
do this in this paper in order not to add yet another layer of technical complication
involving a new set of infinitesimals.

The rest of the paper is organized as follows. In Section 2 we give precise
statements of the main results summarized above after introducing the necessary
definitions regarding the different notions of topological equivalence that we use
in the paper and also the definition of complexity of algorithms that we use. In
Section 3 we define the key mathematical object (namely, a poset that we asso-
ciate to any closed covering of a semi-algebraic set) and prove its main properties
(Theorems 2 and 2'). In Section 4 we describe algorithms for computing efficient
simplicial replacements of semi-algebraic sets thereby proving Theorems 1 and 1’.
Finally, in Section 5 we state some open questions and directions for future work
in this area.

2. PRECISE STATEMENTS OF THE MAIN RESULTS

In this section we will describe in full detail the main results summarized in the
previous section. We first introduce certain preliminary definitions and notation.

2.1. Definitions of topological equivalence and complexity. We begin with
the precise definitions of the two kinds of topological equivalence that we are going
to use in this paper.

2.1.1. Topological equivalences.

Definition 2.1 ({-equivalences). We say that a map f : X — Y between two
topological spaces is an f-equivalence, if the induced homomorphisms between the
homotopy groups fy : m;(X) — m;(Y") are isomorphisms for 0 < i < ¢ [19, page 68].

Remark 2.1. Note that our definition of f-equivalence deviates a little from the
standard one which requires that homomorphisms between the homotopy groups
fx 2 mi(X) — m(Y) are isomorphisms for 0 < ¢ < £ — 1, and only an epimorphism
for i = . An f-equivalence in our sense is an f-equivalence in the traditional sense.

The relation of -equivalence as defined above is not an equivalence relation since

it is not symmetric. In order to make it symmetric one needs to “formally invert”
f-equivalences.

Definition 2.2 (¢-equivalent and homologically ¢-equivalent). We will say that X
is L-equivalent to Y (denoted X ~; Y), if and only if there exists spaces, X =
Xo0,X1,...,X, =Y and f-equivalences f1,..., f, as shown below:

X, X5 X1
YNNG TN
X, X, X,
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It is clear that ~, is an equivalence relation.

By replacing the homotopy groups, m;(-) with homology groups H;(-) (resp. co-
homology groups H*(+) with arrows reversed) in Definitions 2.1 and 2.2, we get the
notion of two topological spaces X,Y being homologically ¢-equivalent (denoted
XL, Y) (resp. cohomologically ¢-equivalent (denoted X <, Y)).

This is a strictly weaker equivalence relation, since there are spaces X for which
Hl(X) = 0, but 7T1(X) # 0.

We extend the above definitions to £ = —1 by using the convention that X ~_; Y
(resp. X L, Y, X E Y), if and only if X, Y are both non-empty or both empty.

Definition 2.3 (¢-connected and homologically ¢-connected). We say that a topo-
logical space X is £-connected, for £ = 0, if X is connected and m;(X) = 0 for
0 <i < £ We will say that X is (—1)-connected if X is non-empty. We say that
X is homologically £-connected if X is connected and H;(X) =0 for 0 < i < 4.

Definition 2.4 (Diagrams of topological spaces). A diagram of topological spaces
is a functor, X : J — Top, from a small category J to Top.

We extend Definition 2.1 to diagrams of topological spaces. We denote by Top
the category of topological spaces.

Definition 2.5 (¢-equivalence between diagrams of topological spaces). Let J be
a small category, and X,Y : J — Top be two functors. We say a natural transfor-
mation f: X — Y is an £ equivalence, if the induced maps,

F(G)s s mi(X(H)) = m(Y(5))

are isomorphisms for all j € J and 0 < i < /.

We will say that a diagram X : J — Top is £-equivalent to the diagram Y :
J — Top (denoted as before by X ~, Y), if and only if there exists diagrams
X =Xp, X4,...,X,, =Y : J > Top and l-equivalences f1,..., f, as shown below:

X, X5 X1
NN TN
Xo X, X,

It is clear that ~, is an equivalence relation.
In the above definition, by replacing the homotopy groups with homology (resp.
cohomology) groups we obtain the notion of homological (resp. cohomological)

f-equivalence between diagrams, which we will denote as before by ”}ig (resp. C~hg).
One particular diagram will be important in what follows.
Notation 2.1 (Diagram of various unions of a finite number of subspaces). Let J

be a finite set, A a topological space, and A = (A;);e; a tuple of subspaces of A
indexed by J.
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For any subset J' < J, ! we denote

AT = 4y,

jreJ’

M 4,

jled’

A

We consider 27 as a category whose objects are elements of 27, and whose only
morphisms are given by:

217, I = @it J & J",
21(J, I = fupe} it J < J".
We denote by Simp”(A) : 2/ — Top the functor (or the diagram) defined by
Simp”’ (A)(J') = A7, J' € 27,
and Simp” (A)(¢s ) is the inclusion map A7 — A7".

2.1.2. Definition of complexity of algorithms. We will use the following notion of
“complexity of an algorithm” in this paper. We follow the same definition as used
in the book [4].

Definition 2.6 (Complexity of algorithms). In our algorithms we will take as input
quantifier-free first order formulas whose terms are polynomials with coefficients
belonging to an ordered domain D contained in a real closed field R. By complexity
of an algorithm we will mean the number of arithmetic operations and comparisons
in the domain D. If D = R, then the complexity of our algorithm will agree with
the Blum-Shub-Smale notion of real number complexity [9]. In case, D = Z, then
we are able to deduce the bit-complexity of our algorithms in terms of the bit-sizes
of the coefficients of the input polynomials, and this will agree with the classical
(Turing) notion of complexity.

Remark 2.2 (Separation of complexity into algebraic and combinatorial parts >
). In the definition of complexity given above we are counting only arithmetic
operations involving elements of the ring generated by the coefficients of the input
formulas. Many algorithms in semi-algebraic geometry have the following feature.
After a certain number of operations involving elements of the coefficient ring D, the
problem is reduced to solving a combinatorial or a linear algebra problem defined
over Z.

A typical example is an algorithm for computing the Betti numbers of a semi-
algebraic set via computing a semi-algebraic triangulation. Once a simplicial com-
plex whose geometric realization is semi-algebraically homeomorphic to the given
semi-algebraic set has been computed, the problem of computing the Betti numbers
of the given semi-algebraic set is reduced to linear algebra over Z. Usually, this sep-
aration of the cost of an algorithm into a part that involves arithmetic operations
over D, and a part that is independent of D, is not very important since often the

n this paper A ¢ B will mean An B = A allowing the possibility that A = B. Also, when we
denote a < 8 in a poset we allow the possibility a = 3, reserving a < 8 to denote o < 8, @ # .

2Note that this notion of separation of complexity into algebraic and combinatorial parts is
distinct from that used in [4], where “combinatorial part” refers to the part depending on the
number of polynomials, and the“algebraic part” refers to the dependence on the degrees of the
polynomials.
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complexity of the second part is subsumed by that of the first part. However, in this
paper the fact that we are only counting arithmetic operations in D is more signif-
icant. In one application that we discuss, namely that of computing the homotopy
groups of a given semi-algebraic set (see Corollary 1), we give a reduction (having
single exponential complexity) to a problem whose definition is independent of D,
namely computing the homotopy groups of a simplicial complex. Note that the
problem of deciding whether the first homotopy group of a simplicial complex is
trivial or not is an undecidable problem (this fact follows from the undecidability
of the word problem for groups [19]).

2.1.3. P-formulas and P-semi-algebraic sets.

Notation 2.2 (Realizations, P-, P-closed semi-algebraic sets). For any finite set
of polynomials P < R[Xj,...,Xg], we call any quantifier-free first order formula
¢ with atoms, P = 0,P < 0,P > 0,P € P, to be a P-formula. Given any semi-
algebraic subset Z < R¥, we call the realization of ¢ in Z, namely the semi-algebraic
set

R(p,Z) = {xeZ|o(x)}

a P-semi-algebraic subset of Z.

If Z = R¥, we often denote the realization of ¢ in R* by R(¢).

If ® = (¢;)jes is a tuple of formulas indexed by a finite set J, Z = R¥ a semi-
algebraic subset, we will denote by R(®, Z) the tuple (R(¢;, Z)) ey, and call it the
realization of ® in Z. For J < J’, we will denote by ®| ;s the tuple (¢;) e -

We say that a quantifier-free formula ¢ is closed if it is a formula in disjunctive
normal form with no negations, and with atoms of the form P > 0, P < 0 (resp.
P > 0,P < 0), where P € D[Xy,...,X;]. If the set of polynomials appearing in a
closed (resp. open) formula is contained in a finite set P, we will call such a formula
a P-closed formula, and we call the realization, R (¢), a P-closed semi-algebraic set.
We say that a formula ¢ is a closed-formula if ¢ is a P-closed formula for some
finite set of polynomials P.

We will also use the following notation.
Notation 2.3. For n € Z we denote by [n] = {0,...,n}. In particular, [-1] = .

Finally, we are able to state the main results proved in this paper.

2.2. Efficient simplicial replacements of semi-algebraic sets.

Theorem 1. There exists an algorithm that takes as input

(A) a P-closed formula ¢ for some finite set P < D[X1,..., Xk];
(B) £,0 <l <k;

and produces as output a simplicial complex Ay(¢) such that |Ae(d)] 2, R(¢).

The complexity of the algorithm is bounded by (sd)ko(z), where s = card(P) and
d = maxpep deg(P).
More generally, there exists an algorithm that takes as input
(A) a tuple ® = (¢o,...,0n) of P-closed formulas for some finite set P <
D[Xy,..., Xk];
(B) 6,0 <<k
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and produces as output a simplicial complex Ag(®), and for each J < [N] a sub-
complex Ay(®|y), such that

(J = [A(@[)]) s L, simp™(R(®)).

The complexity of the algorithm is bounded by (Nsd)ko(e), where s = card(P) and
d = maxpep deg(P).

Theorem 1 is valid over arbitrary real closed fields. In the special case of R = R,
we have the following stronger version of Theorem 1, where we are able to replace
homological ¢-equivalence by ¢-equivalence.

Theorem 1’. Let R = R. There exists an algorithm that takes as input

(A) a P-closed formula ¢ for some finite set P < D[X,..., Xi];
(B) 6,0 <t <k;

and produces as output a simplicial complexr Ay(@) such that |Ae(P)| ~e¢ R().

KOO where s = card(P) and

The complexity of the algorithm is bounded by (sd)
d = maxpep deg(P).

More generally, there exists an algorithm that takes as input

(A) a tuple ® = (¢o,...,0n) of P-closed formulas for some finite set P <

D[Xy,..., Xk];

(B) 6,0 <l <k;
and produces as output a simplicial complex Ay(®), and for each J < [N] a sub-
complex Ay(®|y) such that

(J = |Ae(@]7)]) se[n) ~¢ Simp™(R()).

The complexity of the algorithm is bounded by (Nsd)ko(z), where s = card(P) and
d = maxpep deg(P).

Remark 2.3. One main tool that we use is the Vietoris-Begle theorem (see proofs
of Claims 3.1, 3.2). Since, there are many versions of the Vietoris-Begle theorem
in the literature we make precise what we use below.

It follows from [20, Main Theorem] that if X < R™ Y < R™ are compact
semi-algebraic subsets (and so are locally contractible), and f : X — Y is a semi-
algebraic continuous map such that for every y € Y, f~1(y) is f-connected, then f
is an f-equivalence. We will refer to this version of the Vietoris-Begle theorem as
the homotopy version of the Vietoris-Begle theorem. Since, f-equivalence implies
homological ¢-equivalence (see for example [25, pp. 124, §4.1B)), f is a homological
f-equivalence as well.

Alternatively, if we assume that f~!(y) is only homologically f-connected for
each y € Y, then we can conclude that f is a homological ¢-equivalence (see for
example, the statement of the Vietoris-Begle theorem in [14]). This latter theorem
is also valid for semi-algebraic maps between closed and bounded semi-algebraic
sets over arbitrary real closed fields, once we know it for maps between compact
semi-algebraic subsets over R. This follows from a standard argument using the
Tarski-Seidenberg transfer principle and the fact that homology groups of closed
bounded semi-algebraic sets can be defined in terms of finite triangulations. We
will refer to this version of the Vietoris-Begle theorem as the homological version
of the Vietoris-Begle theorem.
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2.3. Application to computing homotopy groups of semi-algebraic sets.
One important new contribution of the current paper compared to previous algo-
rithms for computing topological invariants of semi-algebraic sets [5, 1] is that for
any given semi-algebraic subset S — RF, our algorithms give information on not
just the homology groups but the homotopy groups of S as well.

Computing homotopy groups of semi-algebraic sets is a considerably harder prob-
lem than computing homology groups. There is no algorithm to decide whether
the fundamental group of a finite simplicial complex is trivial [19]. As such the
problem of deciding whether the fundamental group of any semi-algebraic subset
S < R is trivial or not is an undecidable problem.

On the other hand algorithms for computing topological invariants of a given
semi-algebraic set S < R, defined by a P-formula where P < D[X1,..., Xz],
usually involve two kinds of operations.

(a) Arithmetic operations and comparisons amongst elements of the ring D;
(b) Operations that do not involve elements of D.

In our complexity bounds we only count the first kind of operations (i.e. those
which involve elements of D).

From this point of view it makes sense to ask for any algorithmic problem involv-
ing formulas defined over D, if there is a reduction to another problem whose input
is independent of D. Theorem 1’ gives precisely such a reduction for computing
the first ¢ homotopy groups of any given semi-algebraic set defined by a formula
involving coefficients from any fixed subring D < R.

Corollary 1. For every fized £, and an ordered domain D < R, there exists a
a reduction of the problem of computing the first £ homotopy groups of a semi-
algebraic set defined by a quantifier-free formula with coefficients in D, to that of
the problem of computing the first £ homotopy groups of a finite simplicial complex.
The complexity of this reduction is bounded singly exponentially in the size of the
mput.

While the problem of computing the fundamental group as well as the higher
homotopy groups of a finite simplicial complex is clearly an extremely challenging
problem, there has been recent breakthroughs. If a simplicial complex K is 1-
connected then Cadek et al. [24] has given an algorithm for computing a description
of the homotopy groups m;(|K|), 2 < i < ¢, which has complexity polynomially
bounded in the size of the simplicial complex K for every fixed . This result
coupled with Theorem 1’ gives the following corollary.

Corollary 2. Let R = R,D € R and ¢ = 2. There exists an algorithm that takes
as input

(A) a P-closed formula ¢ for some finite set P < D[ X7, ..., Xx];

(B) £,0 <l <k;
such that R(¢) is simply connected, and outputs descriptions of the abelian groups
mi(R(9)), 2 < i < L in terms of generators and relations.

The complexity of the algorithm is bounded by (sd)kom, where s = card(P) and
d = maxpep deg(P).

Remark 2.4. Note that we do not have an effective algorithm for checking the
hypothesis that the given semi-algebraic set is simply connected.
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2.4. Comparison with prior and related results. As stated previously, there
is no algorithm known for computing the Betti numbers of semi-algebraic sets hav-
ing singly exponential complexity. However, algorithms with singly exponential
complexity are known for computing certain (small) Betti numbers. The zero-th
Betti number of a semi-algebraic set is just the number of its semi-algebraically
connected components. Counting the number of semi-algebraically connected com-
ponents of a given semi-algebraic set is a well-studied problem and algorithms with
singly exponential complexity are known for solving this problem [3, 16, 13]. In
[5] a singly exponential complexity algorithm is given for computing the first Betti
number of semi-algebraic sets, and this was extended to the first ¢ (for any fixed
constant ¢) Betti numbers in [1]. These algorithms do not produce a simplicial
complex homotopy equivalent (or ¢-equivalent) to the given semi-algebraic set.

In [10, 12, 11], the authors take a different approach. Working over R, and
given a well-conditioned semi-algebraic subset S — R, they compute a witness
complex whose geometric realization is k-equivalent to S. The size of this witness
complex is bounded singly exponentially in k. However, the complexity depends
on the condition number of the input (and so this bound is not uniform), and the
algorithm will fail for ill-conditioned input when the condition number becomes
infinite. This is unlike the kind of algorithms we consider in the current paper,
which are supposed to work for all inputs and with uniform complexity upper
bounds. So these approaches are not comparable.

While the approaches in [5, 1] and those in [10, 12, 11] are not comparable, since
the meaning of what constitutes an algorithm and the notion of complexity are
different, there is a common connection between the results of these papers and
those in the current paper which we elucidate below.

2.4.1. Covers. A standard method in algebraic topology for computing homol-
ogy/cohomology of a space X is by means of an appropriately chosen cover, (V,, <
X)aer, of X by open or closed subsets. Suppose that X < R” is a closed or open
semi-algebraic set. Let V = (V, € X),es be a finite cover of X by open or closed
semi-algebraic subsets, such that for each non-empty subset J < I, the intersection
Vs = (Naes Va is either empty or contractible. We will say that such covers have
the Leray property and refer to them as Leray covers. One can then associate to
the cover V, a simplicial complex, A(V), the nerve of V defined as follows.
The set of p-simplices of A(V) is defined by

NW)p ={ao,...,ap} <2 [Voy 00V, = O}

It follows from a classical result of algebraic topology that the geometric realization
IV (V)| is homotopy equivalent to X, and moreover for each £ > 0, the geometric
realization of the (¢ + 1)-st skeleton of N'(V),

sker1(NV(V)) = {o e N(V) | card(o) < £+ 2}.

is homologically f-equivalent (resp. f-equivalent) to X (resp. when R = R).

The algorithms for computing the Betti numbers in [10, 12, 11] proceeds by com-
puting the k-skeleton of the nerve of a cover having the Leray property whose size is
bounded singly exponentially in k, and computing the simplicial homology groups
of this complex. However, the bound on the size of the cover is not uniform but
depends on a real valued parameter — namely the condition number of the input
— and hence the size of the cover can become infinite. In fact, computing a singly
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exponential sized cover by semi-algebraic subsets having the Leray property of an
arbitrary semi-algebraic sets is an open problem. If one solves this problem then
one would also solve immediately the problem of designing an algorithm for com-
puting all the Betti numbers of arbitrary semi-algebraic sets with singly exponential
complexity in full generality.

The algorithms in [5, 1] which are able to compute some of the Betti numbers in
dimensions > 0 also depends on the existence of small covers having size bounded
singly exponentially, albeit satisfying a much weaker property than the Leray prop-
erty. The weaker property is that only the sets V,,,« € I (i.e. the elements of the
cover) are contractible. No assumption is made on the non-trivial finite intersec-
tions amongst the sets of the cover. Covers satisfying this weaker property can
indeed be computed with singly exponential complexity (this is one of the main
results of [5] but see Remark 3.1), and using this fact one is able to compute the
first ¢ Betti numbers of semi-algebraic subsets of R* for every fixed ¢ with singly
exponential complexity. The algorithms in [5] and [1] do not construct a simpli-
cial complex homotopy equivalent or /-equivalent to the given semi-algebraic set .S
unlike the algorithm in [10].

2.4.2. Main technical contribution. The main technical result that underlies the al-
gorithmic result of the current paper is the following. Fix 0 < ¢ < k. Suppose for
every closed and bounded semi-algebraic set S one has a covering of S by closed
and bounded semi-algebraic subsets which are ¢-connected (see Definition 2.3) and
which has singly exponentially bounded complexity (meaning that the number of
sets in the cover, the number of polynomials used in the quantifier-free formulas
defining these sets and their degrees are all bounded singly exponentially in k).
Moreover, since it is clear that contractible covers with singly exponential complex-
ity exists, this is not a vacuous assumption. Using ¢-connected covers repeatedly we
build a simplicial complex of size bounded singly exponentially which is ¢-equivalent
to the given semi-algebraic set. The definition of this simplicial complex is a bit in-
volved (much more involved than the nerve complex of a Leray cover) and appears
in Section 3. Its main properties are encapsulated in Theorem 2.
Two remarks are in order.

Remark 2.5. 1. Firstly, the Leray property can be weakened to require that for
every t-wise intersection, Vy, card(J) = t is either empty or (£ —t+ 1)-connected
[7]. We call this the ¢-Leray property. The nerve complex, N (V) is then ¢-
equivalent to X [7]. However, the property that we use is much weaker — namely
that only the elements of the cover are /-connected and we make no assumptions
on the connectivity of the intersections of two or more sets of the cover. This
is due to the fact that controlling the connectivity of the intersections is very
difficult and we do not know of any algorithm with singly exponential complexity
for computing covers having the ¢-Leray property for ¢ > 1.

2. Secondly, note that to be f-connected is a weaker property than being con-
tractible. Unfortunately, at present we do not know of algorithms for computing
f-connected covers, for ¢ > 0 that has much better complexity asymptotically
than the algorithm in [5] for computing covers by contractible semi-algebraic
sets. However, it is still possible that there could be algorithms with much bet-
ter complexity for computing ¢-connected covers (at least for small ¢) compared
to computing contractible covers.
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3. SIMPLICIAL REPLACEMENT IN AN ABSTRACT SETTING

We now arrive at the technical core of the paper. Given a finite set J, a tuple,
® = (¢;)je, of closed formulas with k free variables, and numbers ¢, m > 0, we will
describe the construction of a poset, that we denote by P, ;(®). We will assume
that the realizations, R(¢;),j € J, of the formulas in the tuple are homologically
(-connected semi-algebraic subsets of R* for some ¢ > 0. In case R = R, substitute
“¢-connected” for “homologically ¢-connected”. The poset Py, ;(®) will have the
property that the geometric realization of its order complex, A(P,, ;(®)), is homo-
logically (m—1)-equivalent ((m—1)-equivalent if R = R) to R(®)’. More generally,
for each J' < J, Py, ;(®|;7) can be identified as a subposet of P,, ;(®), and the
diagram of inclusions of the corresponding geometric realizations is homologically
(m — 1)-equivalent to the diagram Simp” (R(®)) ((m — 1)-equivalent if R = R) (cf.
Theorems 2 and 2'). The poset P, ;(®) will then encode in a finite combinatorial
way information which determines the first m homotopy groups of R(®)” " for all
J’ < J, and the morphisms 7, (R(®)”") — m,(R(®)7") induced by inclusions, for
0<h<m—1and J < J” c J. (The significance of the subscript ¢ in the notation
P,,i(®) will become clear later.)

3.1. Outline of the main idea. We begin with an outline explaining the main
ideas behind the construction. First observe that if the realizations of the sets in
the given tuple, in addition to being ¢-connected, satisfies the ¢-Leray property (i.e.
each t-wise intersections amongst them is (¢ — ¢ + 1)-connected), then it follows
from [7] that the poset of the non-empty intersections (with the poset relation
being canonical inclusions) satisfies the property that the geometric realization of
its order complex (see Definition 3.1) is f-equivalent to R(®)”. The same is true
for all the subposets obtained by restricting the intersections to only amongst those
indexed by some subset J' < J. However if the ¢-Leray property fails to hold then
the poset of canonical inclusions may fail to have the desired property.
Consider for example, the tuple

d = (¢07¢1)7
where
do = (X?+X2-1=0)A(X220),
¢1 = (XP+X3—-1=0)A(X2<0).

The realizations R(¢o), R(¢1) are the upper and lower semi-circles covering the
unit circle in the plane.

The intersection R(¢pg) "R (p1) = R(¢o A ¢1) is the disjoint union of two points.
The Hasse diagram of the poset of canonical inclusions of the sets defined by ¢y,
¢1, and ¢0 A d)l is:

ol o1

~N

b0 A P1

and the order complex of the poset is the simplicial complex shown in Figure 1.
The geometric realization of the order complex is clearly not homotopy equivalent
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to the

R(®) = R(g0) U R(¢1)
which is equal to the unit circle. This is not surprising since the cover of the circle
by the two closed semi-circle is not a Leray cover (and in fact not ¢-Leray for any
0= 0).

%o o A\ 1 o1

FIGURE 1. Order complex for non-Leray cover

One way of repairing this situation is to go one step further and choose a good (in
this case co-connected) cover for the intersection R(¢g) N R(¢1) defined by 1o, 1,
where

’l/)g = (X1+1:O)A(X2=O),
1p1 = (X1—1:0)/\(X2:O)
The Hasse diagram of the poset of canonical inclusions of the sets defined by ¢y,

¢17 ¢0> and ¢1

]

and the order complex of the poset is shown in Figure 2. It is easily seen to have
the same homotopy type (homeomorphism type even in this case) to the circle.

Yo

%o o1

Y1

FIGURE 2. Order complex for modified poset

The very simple example given above motivates the definition of the poset
P,,;(®) in general. We assume that we have available not just the given tuple
of sets, and the non-empty intersections amongst them, but also that we can cover
any given non-empty intersections that arise in our construction using ¢-connected
closed (resp. open) semi-algebraic sets (we do not assume that these covers sat-
isfy the stronger ¢-Leray property). The poset we define depends on the choice of
these covers and not just on the formulas in the tuple ® (unlike the standard nerve
complex of the tuple R(®)). The choices that we make are encapsulated in the
functions Z ; and Cy ; below. In practice, they would correspond to some effective
algorithm for computing well-connected covers of semi-algebraic sets.
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Remark 3.1. There is one technical detail that serves to obscure a little the clarity
of the construction. It arises due to the fact that the only algorithm with single
exponential complexity that exists in the literature for computing well connected
(co-connected or equivalently contractible) covers is the one in [5]. However, the
algorithm requires that the polynomials describing the given set S be in strong
general position (see Definition 4.1). In order to satisfy this requirement one needs
to initially perturb the given polynomials and replace the given set by another
one, say S’, which is infinitesimally larger but has the same homotopy type as the
given set S (see Lemma 3.1). The algorithm then computes closed formulas whose
realizations cover S’ and moreover are each semi-algebraically contractible. While
there is a semi-algebraic retraction from S’ to S, this retraction is not guaranteed
to restrict to the elements of the cover. Our poset construction is designed to be
compatible with the fact that the covers we assume to exist actually are covers of
infinitesimally larger sets (i.e. that of S’ instead of S following the notation of the
previous sentence). This necessitates the use of iterated Puiseux extensions in what
follows.

Of course, the introduction of infinitesimals could be avoided by choosing suf-
ficiently small positive elements in the field R itself and thus avoid making ex-
tensions. This would be more difficult to visualize, and so we prefer to use the
language of infinitesimal extensions. In the special case when R = R, we prefer
not to make non-archimedean extensions, since we discuss homotopy groups, so we
take the alternative approach. However, we believe that the infinitesimal language
is conceptually easier to grasp and so we use it in the general case.

Before giving the definition of the poset we first need to introduce some mathe-
matical preliminaries and notation.

3.2. Real closed extensions and Puiseux series. We will need some properties
of Puiseux series with coefficients in a real closed field. We refer the reader to [4]
for further details.

Notation 3.1. For R areal closed field we denote by R {(¢) the real closed field of al-

gebraic Puiseux series in € with coeflicients in R. We use the notation R (e, ..., e
to denote the real closed field R (g1){g3) - - - (e ). Note that in the unique ordering
of the field R{e1,...,em), 0 <é&pm K g1 € -+ K1 K 1.

If £ denotes the (possibly infinite) sequence (g1,ée3,...) we will denote by R{(&)
the real closed field | J,,>o R{e1, .-+, &m)-

Finally, given a finite sequence (&1, ...,&,) we will denote by R{&y, ..., &) the
real closed field R{&1){&a) - {&m).

Notation 3.2. For elements z € R{eg) which are bounded over R we denote by
lim, z to be the image in R under the usual map that sets € to 0 in the Puiseux
series x.

Notation 3.3. If R is a real closed extension of a real closed field R, and S < R¥
is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by ext(S,R’) = R’* the semi-algebraic subset of R’* defined by the
same formula. ® Tt is well known that ext(S,R’) does not depend on the choice of
the formula defining S [4, Proposition 2.87].

3Not to be confused with the homological functor Ext(-,-) which unfortunately also appears
in this paper.



16 SAUGATA BASU AND NEGIN KARISANI

Notation 3.4. Suppose R is a real closed field, and let X < R* be a closed
and bounded semi-algebraic subset, and X+ < R<<€>lg be a semi-algebraic subset
bounded over R. Let for t € R, ¢ > 0, )N(t* — R¥ denote the semi-algebraic subset
obtained by replacing € in the formula defining X+ by ¢, and it is clear that for
0 <t«xl, )?;” does not depend on the formula chosen. We say that X is
monotonically decreasing to X, and denote X N\, X if the following conditions are
satisfied.

(a) fora110<t<t’<<1,)~(fc)~(:f;

(b)

or equivalently lim, Xt = X.
More generally, if X < R* be a closed and bounded semi-algebraic subset, and

X1t < Rey,. .. ,6m>k a semi-algebraic subset bounded over R, we will say X \, X
if and only if

X;rH_l = X" \X:,r” XTJE\X;I_D...,X; X = X,
where for i = 1,...,m, X;" = lim,, X;7,.

Note that if £ = (¢1,€2,...) is an infinite sequence, and X+ < R<é>k is a semi-
algebraic subset bounded over R, then there exists m > 1, and semi-algebraic subset
X5 c Rey,. .. ,em)¥ closed and bounded over R, such that X+ = ext(XF, R(E)).

In this case, if X < R* be a closed and bounded semi-algebraic subset, we will
say X1t \, X if and only if

XTJrrL+1 =X+ \X:rru X’;:L \X;L—la""X; \X+ = X,
where for i = 1,...,m, X;" = lim., X;7,.

Finally, if &y,..., &, are sequences (possibly infinite), X = R* be a closed and
bounded semi-algebraic subset, and X < R{zy,... ,e_m)k a semi-algebraic subset
bounded over R, we will say X+ N\, X if and only if

X;H-l =X \X;;, XrJ;rm \X;L—lv""X; \X+ = X,
where for i = 1,...,m, X;" = lims, X;7,.

The following lemma will be useful later.

Lemma 3.1. Let X < R* be a closed and bounded semi-algebraic subset, and
Xt cR{Ey,. .. ,5m>k a semi-algebraic subset bounded over R, such that X+ N\, X.
Then, ext(X,R(&1,...,&Em)) is semi-algebraic deformation retract of X+.

Proof. See proof of Lemma 16.17 in [4]. O
Notation 3.5. For x € R¥ and Re R, R > 0, we will denote by By (0, R) the open

Euclidean ball centered at 0 of radius R. We will denote by By (0, R) the closed
Euclidean ball centered at 0 of radius R. If R’ is a real closed extension of the real
closed field R and when the context is clear, we will continue to denote by By (0, R)
the extension ext(B (0, R),R’), and similarly for Bj(0, R). This should not cause
any confusion. Similarly, we will denote by S*~! (0, R) the sphere of dimension k—1

in R* centered at 0 of radius R.

We refer the reader to [4, Chapter 6] for the definitions of homology and coho-
mology groups of semi-algebraic sets over arbitrary real closed fields.
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3.3. Definition of the poset P,, ;(®).

3.3.1. Simplified view of the definition of the poset P, ;(®). Before giving a precise
definition of the poset P, ;(®), we first give a simplified version. We make the
following two simplifications in order to illustrate the key idea.

(a) We ignore the role of the index 4 in what follows. The necessity of the extra
parameter ¢ is due to the fact that the hypothesis we assume (Hypothesis 3.1
in the following paragraph) is slightly stronger than we are able to assume for
designing effective algorithms for computing the poset (see Remark 3.1). The
actual hypothesis that we use is encapsulated in Property 3.2 below.

(b) Secondly, in order to keep a geometric view of the construction, we will talk
about tuples S = (5;);es of semi-algebraic sets, instead of tuples of formulas
® = (¢;)jes defining them. As above, in order to give an effective algorithms,
and analyzing its complexity, we need to describe the poset in terms of formulas
rather than sets, which we do in the precise definition that follows this simplified
version.

We make the following hypothesis.
Hypothesis 3.1 (Black-box hypothesis). There exists a black-box (or algorithm)

that given a closed and bounded semi-algebraic set S = RF as input, produces a
cover (Sa)acc(s) of S by closed and bounded (-connected semi-algebraic sets.

Definition 3.1 (The order complex of a poset). Let (P, <) be a poset. We denote
by A(P) the simplicial complex whose simplices are chains of P.

Suppose S = (S;) jes is a finite tuple of ¢-connected closed semi-algebraic subsets
of R,

Our goal is to define a poset P,,(S) such that:
Property 3.1.

ch
[APL(S))| ~m S7

(see Definition 3.1). We will say that the poset P, (S) satisfies Property 3.1 for
the pair (m,S).

Remark 3.2. We use cohomological m-equivalence in Property 3.1. In the final
construction we will lose a dimension while passing from cohomological equivalence
to (homological or homotopical) equivalence because of the use of the universal
coefficients theorem (see the proof of Claim 3.5 inside the proof of Theorem 2), and

we will end up with
AP (S)~ 1S,

The main idea is to approximate homotopically the diagram of sets
(SI)ICJ7card(I)<m+2
(see Notation 2.1), and the inclusion maps
S]/ — S[,I c I/,

by a corresponding diagram of (the geometric realizations of the order complexes
of) posets

(Por—card(1)+1,1) I J,card(I) <m+2
(where the poset Py, _card(r)+1,1 corresponds to Sy), and poset inclusions

!
Pm—card([’)+1,]’ - Pm—card([)-‘rLIa Icr.
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The construction is by induction on m (we call this the global induction below).

. (Base case of the global induction, m = —1.) Suppose § = (5;),cs is a finite
3 )3

tuple of /-connected closed and bounded semi-algebraic subsets of R¥. We define
the poset P_1(S) to be just the index set J, with no non-trivial order relations.
It is depicted in Figure 3(a). It is clear that P_;(S) satisfies Property 3.1 for
the pair (—1,S).

(Induction hypothesis of the global induction.) We assume that for each m’, —1 <
m’ < m, and each finite tuple S = (S;);jes of f-connected closed and bounded
semi-algebraic subsets of R*, we have defined a poset P, (S) satisfying Prop-
erty 3.1 for the pair (m/,S).

(Inductive step of the global induction, going from < m to m.) Using the
inductive hypothesis, we now define a poset P,,(S) satisfying Property 3.1 for
the pair (m, S), for any tuple S of /-connected closed and bounded semi-algebraic
subsets of R¥.

Fix a finite tuple S = (5;);es of f-connected closed and bounded semi-
algebraic subsets of R¥. We will define P,,(S) below in steps. The poset
P.,.(S) as a set will be a disjoint union of the index set J, and certain sub-
posets P, _cava(ry+1,1, where I where I < J,2 < card(I) < m + 2. We define the
subposets Py, _cara(r)+1,7 by downward induction (we call this the local induction
below) on card([), starting from the base case, card(I) = m + 2.

(a) (Base case of the local induction, card(I) = m + 2.) We first consider the
semi-algebraic sets Sy, card(l) = m+2. Associated to each such I, we define
a poset, which we denoted by P_; r as follows: Using Hypothesis 3.1 applied
to the semi-algebraic set S; we obtain a cover (S1,a)aec(s,) of Sr by closed
and bounded ¢-connected semi-algebraic sets. We define

P_1 1 =P_1((Sr,a)acc(s))) = C(S1)

with no non-trivial order relation. It is depicted in Figure 3(a). It is clear
that P_; r satisfies Property 3.1 for the pair (1, (S1,a)aec(s;))-
(b) (Going from m+2 to m+1.) Next we consider subsets I of cardinality m+1.
For each such subset we construct a poset Py ; satisfying two conditions:
(i) For each set I’, with card(I’) = card(I) + 1, and I < I’, the poset
P_,  already defined is isomorphic to a sub-poset of Py r;
(ii) |A(Po,r)| is cohomologically 0-equivalent to Sj.
We apply Hypothesis 3.1, to the semi-algebraic set S; as input and obtain a
cover (S1.a)aec(s;) of St by closed and bounded f-connected semi-algebraic
sets. We let

P—l,] = P—l((SI,(X)OLGC(SI))'

Let J; be the union of the indexing set C(Sy), with the posets P_; o for
each I' with I < I'’,card(I') = card(I) + 1. Notice that for each « € Jy,
there is an ¢-connected closed and bounded semi-algebraic set associated to
it. Denote this set by D(c).

For every pair «, 8 € J;, we again apply Hypothesis 3.1 to obtain a cover
of D(a) n D(B) by f-connected closed and bounded semi-algebraic sets,
(S1,a,8.v)vela. s Where Iy g = C(D(a) n D(f3)). The poset Py ; is defined to
be the set Jr U, ges, La,s, and the non-trivial order relations are v < , 3
for each v € I, g. It is depicted in Figure 3(b).
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(¢) (Local induction hypothesis.) We assume that we have already defined the
posets P, _cara(ry+1,17, With card(I’) > card(I).

(d) (Inductive step in general for the local induction.) We construct the poset
P, —card(r)+1,1 as follows. We apply Hypothesis 3.1 with the semi-algebraic
set St as input and obtain a cover (SLQ)O(E@(SI) of S; by closed and bounded
{-connected semi-algebraic sets. Let J; be the union of the indexing set
C(Sr), with the posets P, _carq(r7)+1,7 for each I with I < I',card(I") =
card(I) + 1. Notice that for each « € Jy, there is an ¢-connected closed and
bounded semi-algebraic set associated to it. Denote this set by D(«).

We define the poset P, _cara(r)4+1,r using the global induction hypothe-
sis. The global inductive hypothesis gives us that for any finite tuple of
£-connected closed and bounded semi-algebraic set (in particular, the tu-
ple of sets (D(a))acs;) we have defined a poset P, _cara(r)+1((D(@))ae; ),
which satisfies Property 3.1 for the pair (m — card(I) + 1, (D(«))aeJ;) (since
m — card(I) + 1 < m).

We define

mecard(I)Jrl,I = mecard(I)Jﬁl((D(a))aeJI)'

This finishes the local induction and we have defined P,_cara(r)+1,7, for
each I < J,2 < card(I) < m + 2.
Finally, we define

(31) Pm(S) =Ju U mecard(1)+1,1~
IcJ,2<card(I)<m+2

The partial order in the poset P,,(S) is specified as follows. By the local
induction, each of the poset P,,_cara(r)4+1,7 comes with a partial order. We
extend these orders as follows:

(a) Foreach I c I' c J, with 2 < card(I) < card(I’) < m+2, there is a subposet
of P, _card(r)+1,1 canonically isomorphic to the poset P, _carda(ry4+1,1- For
each element « of the former and the corresponding element o of the latter
we set o < a.

(b) For each j e J, and a € Pp,_cara(n)+1,1,J € I, we set the element o < j.

This ends the definition of the poset P,,(S) completing the global induction.

Figure 3(c) depicts P,,(S) in terms of subposets P, _cara(r)+1,7- In Claim 3.11

we will show that the height of the poset P,,(S) is bounded by 2m + 2.

Notice that for any chain o < ax—1 < ... < ag of elements in P,,(S), we
have a sequence of inclusion maps of semi-algebraic sets D(ay) < D(ag—1) —

. = D(ap). It is depicted in Figure 4 for a hypothetical space with four
elements in the initial covering.

The following two examples are illustrative.

Example 3.1. Let £ = oo,m > 2, S = (51,52), where Sy, S, are the closed upper
and lower hemispheres of the unit sphere in R? (see Figure 5(a)).
Using (3.1) we get

(3.2) P, (S) ={1,2} v Pm72+1,{1,2}'

Let C(Sy1,2;) be the cover of Syy 2y by two closed semi-circles T3, Ty, and let
T = (TS, T4).
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ap Q2 Qcard(C(Sr))
ee L]

ap a2 Qcard(C(Sr))
3 . . °

I
I
IP_1((Stararn)recnannne)) - \B=1(8Lay oy v)vecanna))
I

|
|
L ____ L _____ |

(@) Po1,1 = P_1((S1,0)acc(s;)):  (b) Poy: At the top level, the elements of Pq; cor-
The elements of the poset, i.e. J;, respond to the cover C(S;) and elements of the posets

correspond to the elements of the P_; 1, where card(f;) = card(l) + 1 and I < I.
cover C(Sy), with no non-trivial or- At the bottom level we have elements of the posets
der relation. P_1((81,a,i7aj77),YEC(D(QI.)QD<Q].)))—shown as a box—for

every pair a; and «; at the top level. The order relations
are between the pairs and the elements of their correspond-
ing posets at the bottom level.

1 2 card(J) =n

L] L] L]
Bttt I Bttt I Bttt I
| | | o | | o |
| Pm—l,I() | | Pm—l,léz) | | Pm—l,lun> |
| | | | | (2) |
Bttt I Bttt I Bttt I
| | | | | |
‘ P(]’[E'm«#l) ‘ ‘ PO’]£1n+1) ‘ ‘ POJ(m:l) ‘
| | | | | (m+l) |
Bttt I Bttt I Bttt I
| | | | | |
‘ P 171£m+2) i ‘ P7171£h1+2) ‘ ‘P 11('”:2) ‘
| | | | | m+2) |

() Pm(S)=Ju UIcJ,Qgcard(I)strz P _card(1)+1,7° The top level of the poset corresponds to
the elements of J. Next, we have elements of the posets Pm—l @ where Ii(Q) c J and card(Ii(Q)) =

2—denoted by the superscript (2). Similarly at the lower levels, we have elements of the posets

’ ’
corresponded to subsets Ii(m) c J with caurd([qfm )) = m’ and m’ < m + 2. The partial order

relations are defined between j € {1,...,n} at the top level and the elements of Pmi1 1) if

c IZ.(m/) then
sy and the

’
JE Ii(Q). Furthermore, in addition to the order relations within each poset, if I](.m b

(m/—1), hence for each element o’ of the P
H m
J

’ — P
m—m/+1,1{™") m—m/ 42,1 —m/41,1{™

corresponding element « of the P , (m/—1) We set o < a.
m—m +2,Ij
FIGURE 3. A simple illustration of the simplified view of the poset.

Note that T3 n T is a set containing two points Wy, Ws (say), and the only
possibility for C(T3 n Ty), is the tuple W = (W5, Wg). Then,

(3.3) Ppa(T) = {34 UP 5 (3.4
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(1,2,3,4)

FIGURE 4. Poset P,,(S) such that |A(P,,(S))| is m-equivalent to
Uye, S; with m =2, J = {1,2,3,4}.

and the subposet P, 5 (3 4y is isomorphic to the poset
(3.4) Pp2(W) = {5,6}.

Substituting (3.4) into (3.3) and (3.3) into (3.2) we finally obtain that the Hasse
diagram of the poset P,,(S) is

T— S w——

>
<]

The order complex of this poset is homotopy equivalent (in fact, in this case is
homeomorphic) to the sphere.

Example 3.2. Now let £ = m =2, § = (51, 52), where Sy, Sy are the closed upper
and lower hemispheres of the unit sphere in R¥, k > 5. That is S; (resp. Ss) is
the intersection of the unit sphere in R¥, with the set defined by X3 > 0 (resp.
X < O)

Using (3.1) we get

P,(S)={1,2}u Pm—2+1,{1,2}-

Let C(Sq1,2y) be the cover of Syy 9y by two closed semi-spheres T3, T}, (i.e. T3
(resp. Tj) is the intersection of Sgy 9y with Xp ;1 > 0 (resp. Xp—1 < 0), and let
T = (T3,Ty).

Note that W5 = T5 n T is a (k — 3)-dimensional sphere, and since k > 5, W is
2-connected and we can take C(W5) = (Ws).
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P.(T) = {3,4} u {5}

3\5/4

Finally we obtain that the Hasse diagram of the poset Py(S) is

with Hasse diagram

1 2

3 >< !
5
The order complex of this poset is contractible and is 2-equivalent (but in this case

not homotopy equivalent) to S* L for k > 5.

With the definition of the poset P,,(S) it is possible to prove the following theo-
rem. We do not include a proof of this theorem since it is subsumed by Theorem 2'.

Theorem. With the same notation as in the Definition of P, (S) defined above:
AP (S)~m | S5

jeJ
More generally, we have the diagrammatic homological (m — 1)-equivalence
h .
(J' = |APw(S])]) yeas Y1 Simp”(S),
where S|y = (55) e
We now return to the precise definition of the poset P, ;(®) that we are going

to the use.

3.3.2. Precise definition of P, ;(®). We begin with a few useful notation that we
will use in the construction.

Notation 3.6. We will denote by Fr the set of quantifier-free formulas with
coefficients in R and k variables, whose realizations are closed in R¥.

We also use the following convenient notation.

Notation 3.7 (The relation c,). For any n € Z>o, and sets A, B, we will write
Acg, Btomean A c B and 0 < card(A) < n.

We are now in a position to define a poset associated to a given finite tuple of
formulas that will play the key technical role in the rest of the paper.
We first fix the following.

(A) Let R = Ry € R; © Ry © -+ be a sequence of extensions of real closed
fields.
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(B) We also fix two sequences of functions,
ik : Frie = Lz,

and
Cik : Frok = [ (Fropr ),

p=0

Remark 3.3. The definition of the poset Py, ;(-) given below does not depend on
any specific properties of the functions Z; x(-) and C,; x(-). Later we will prove
key topological properties of Py, ;(-) (see Theorems 2 and 2’ below) under certain
assumptions on Z; () and C; x(-) (see Properties 3.2 and 3.2’ below).

For each i > 0, and —1 < m < k, a non-empty finite set .J, and ® € (Fg, 1)’ we
define a poset (P, ;(®), <).

We first need an auxilliary definition which will be used in the definition of the
underlying set, P, ;(®), of the poset (P, (), <).

Definition 3.2. Let J be a non-empty finite set, and ® € (Fg, x)”. We first define
for each subset I C<ypi2 J, aset Jn i1.6, and an element ®,,, ; 1,7 € (Fr )mig.e
(using downward induction on card([)).

Base case (card(I) = m + 2): In this case we define,

(3.5) Tmire = {I} x [Zin(/\ ©())],

jel

i+1,k

and for (I,p) € Jumi1,0,
i1, ((1,0)) = Ci(/\ 2()) ().
jeI
Inductive step: Suppose we have defined J,,; e and ®,,; p y for all I’ with
card(I’) = card(I) + 1. We define

(3.6)  Jmire = <{I} X [Ii,k(/\ ‘NJ)]) v U i 1@
Icl’'cJ,card

jel (I")=card(I)+1

and

Cpira(@) = Cin(/\®G)P), if a = (I,p) e {I} x [Zix(Ae; 2],
jel
= B, (@), if €€ Jpip e for some I' o I, with
card(I") = card(I) + 1.
The following properties of J,, ;¢ and ®,, ;7 s are obvious from the above
definition. Using the same notation as in Definition 3.2:

Lemma 3.2. (o) card(Jp, i 1,6) < 0 for each I Cpmya J;
(b) For I,I' c J with card(I U I') < m + 2,

Imitor,e © Imi e O Imi e
(¢c) If I' € I Camua J < T, then Jpmire < J) 1o, and for o € Jumirs,
P10 (@) = Prn i1, (@)

Proof. Follows directly from Definition 3.2. (]
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We now define the set P, ; ().

Definition 3.3 (The underlying set of the poset (P, ;(®), <)). We define the set
P,,,i(®) using induction on m.

Base case (m = —1): For each finite set J, and ® € (Fg, )’ we define
P_i(®) = [ < (2}
jedJ

Inductive step: Suppose we have defined the sets (P, (@), <) for all m’ with
—1<m' <m, i >0, for all non-empty finite sets J’ and all ®' € (fRi,,k)J/.

We complete the inductive step by defining:
(3.7)

Pm,i(q)) = U{{j}} X {@} Y U {I} X mecard(I)Jrl,iJrl((bm,i,I,J)-

JjeJ IcJl<card(I)<m+2

We now specify the partial order on Py, ;(®). For this it will be useful to have
the following alternative characterization of the elements of the poset P, ;(®) as
tuples of sets. This characterization follows simply by unravelling the inductive
definition of the set P, ;(®) given above.

3.3.3. Characterization of the elements of the poset P, ;(®) as tuples of sets. The
elements of P, ;(®) are all finite tuples of sets (of varying lengths)

(107 (RN IT‘7 @)7
satisfying the following conditions.
1. Iy is a subset of Jy = J, card(lp) = 1 if r = 0, and 2 < card(lp) < m + 2
otherwise.

2. I is a subset of J; = (Jp) Io.a, (see Equ. (3.6), Definition 3.3) with

moio,
mg = m,
o = 1,
o, — o,
and
2 < card(l) < (mg — card(lp) + 1) + 2.
3. I is a subset of Jy = (Jl)ml,i1,11,<1>17 where
my = mo—card(lp) + 1,
i = Qg+ 1,
Q1 = (P0)mo.io,To,Jos

and
2 < card(I) < (my —card(ly) + 1) + 2.

4. Continuing in the above fashion,

(3.8) Lvcdroa = (Jr2) i i ooy
where
Mp—2 = mMyp_3— card(l,_3) + 1,
ir—g = dp_3+1,

O, = (‘pr—S)mr_s yir—3,0r—3,Jr—3)
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and
r—2
(3.9) 2<card(l,—1) <Kmp_2+2=m+r—1— Z card(l;)) + 2.
=0
5. Finally,
I < J, = (Jril)m'r—l7i7‘—lyIr—17¢7‘—1 ’
where
(Pr—l = ((I)r—Q)mT_Q,iT_Q,IT_z,JT_2a
and

card(l,) = 1.

(We show later (see Claim 3.8) that for tuples (Io,...,I., &) satisfying the above
conditions, 7 < m + 1.)

Definition 3.4 (Partial order on P, ;(®)). The partial order < on P, ;(®) is
defined as follows.

For a = (I§,...,I¢ &), 8 = (Iﬁ,...,]ﬁﬂ,@) eP,, i (P),
(3.10) B<a<:>(ra<r5)ande‘-"cIf,Oéjéra.

3.4. Main properties of the poset P,, ;(®). We will now state and prove the
important properties of the poset P,, ;(®) that motivates its definition.

Lemma 3.3. For each J' < J”" < J, and =1 < m’ < m” < m, we have a poset
inclusion,

Py i(®]y) = Pryr i (D] gn).
Proof. Follows from Definition 3.3 and Part (c¢) of Lemma 3.2. O

We now state a lemma which will be useful later, that states a key property of
the partial order relation in P, ;(®). Using the same notation as in Definition 3.3:

Lemma 3.4. Suppose that I' c I c J.

(a) The poset P, _cara(r)+1,i+1(Pm,i,1,5) is a subposet of P, _cara(ry+1,i+1(Pm,i,1r,7)-
(b) For each «a, o e mecard(1)+1,i+l((I)m,i,I,J)’

/ o
o <Pm—card(1)+l,i+1(¢77L,1',I,J) o = (Iv a) <P,..:(®) (I , & )

Proof. Part (a) follows from the fact that Ju, ;1,6 € Jmir e, m —card(I) + 1 <
m — card(I’") + 1, and Lemma 3.3.

Part (b) follows immediately from the definition of the partial order on P,, ;(®)
(see Definition 3.4). O

Let R be a real closed field and R € R, R > 0. We say that the tuple
(Ri)iz0, R, K, (Zi k)i=0, (Cisk)iz0)

satisfies the homological -connectivity property over R if it satisfies the following
conditions.

Property 3.2. 1. For each i > 0, R; = R{&1,...,&;) where for j = 1,...,1, &
denotes the sequence €5 1,€52,. . ..
2. For each ¢ € Fr, k-

(a) IfR(6, Bal0, R)) is empty then, T, 1(6) = —1.
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(b)

R(Cix(@)(), Be0, 1) | N (R(6, B0, )
JE[Zi k(9]

(see Notation 3.4). Notice that in the case R(¢p, By (0, R)) is empty, I; x(¢) =

—1, hence [L;1(9)] = &, and so Uz, , ()] R(Cik(#)(J), Be(0, R)) is an
empty union, and is thus empty as well.

(c) For je [Z;k(¢)], R(Cirk(¢)(4), Bx(0, R))) is homologically (-connected.
Notation 3.8. Let ¢ be a quantifier-free formula with coefficients in R[£]. Then ¢
is defined over R[&},&5,...,&;] where £/ is a finite sub-sequence of the sequence &;.
For ¢ = (t1,...,t;), where for 1 < j <1, ¢; is a tuple of elements of R of the same
length as E;., we will denote by ¢z the formula defined over R obtained by replacing
g by t; in the formula ¢.

For any finite sequence t = (t1,...,tx), by the phrase “for all sufficiently small
and positive ” we will mean “ for all sufficiently small ¢; € R~ ¢, and having chosen
tq, for all sufficiently small 5 € Rog, ... ”

We will say that

((Ri)iz0: B, k, (Zi i )iz0, (Cik)=0)
satisfies the ¢-connectivity property over R = R if it satisfies the following conditions.
Property 3.2". 1. Ry =R and for each , i > 0, R; = R{(&1,...,&).
2. For each ¢ € FR, k-
(a) If R(¢, Bi(0, R)) is empty then, I, 1(¢) = —1.
(b)

R(Cix(6)(7). Bu(0.B)) | \. (R(6, B0, R))
JE[Zik(#)]
(¢c) For j € [Z; x(¢)], and all sufficiently small and positive ¢,

R(Cik(#)(4)s, Br(0, R)))

s {-connected.

The following two theorems give the important topological properties of the
posets defined above that will be useful for us.

Theorem 2. Suppose that the tuple

((Ri)izo0: B, K, (Zi k)iz0, (Cik)iz0)
satisfies the homological £-connectivity property over R (see Property 3.2). Then,
for =1 < m < {, every finite set J, and ® € (Fyrr,)”, such that for each j € J,

R(®(j), Bx(0, R)) is homologically ¢-connected,
(3.11) AP i(®))] 21 R(P, Bi(0, B))

More generally, we have the diagrammatic homological (m — 1)-equivalence
(3.12) (J = | AP i (@] 7)) yrezs ~n—1 Simp” (R(@, By (0, R))).

In the case R = R we can derive a stronger conclusion from a stronger assump-
tion.
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Theorem 2'. Suppose that

((Ri)izo0, R, k, (Zi k)iz0, (Cik)iz0)

satisfies the (-connectivity property over R = R (c¢f. Property 3.2').
Then, for —1 < m < {, each finite set J, and ® € (Fri)’, such that for each

jeJ, R(®(j), Bx(0,R)) is £-connected,
(AP i (®))] ~m-1 R(®, Br(0, R))”.
More generally, we have the diagrammatic (m — 1)-equivalence:
(3.13) (J' = |APw,i(®[1)]) re2s ~m—1 Simp” (R(®, Bx(0, R))).
Before proving Theorems 2 and 2" we discuss an example.

3.5. Example of the sphere S? in R3. In order to illustrate the main ideas
behind the definition of the poset, P, ;(®), defined above we discuss a very simple
example. Starting from a cover of the two dimensional unit sphere in R3 by two
closed hemispheres, we show how we construct the associated poset. We will assume
that there is an algorithm available as a black-box which given any closed formula
¢ such that R(¢) is bounded, produces a tuple of quantifier-free closed formulas as
output, such that

(a) the realization of each formula in the tuple is contractible;
(b) the union of the realizations is a semi-algebraic set infinitesimally larger than
R(), and such that R(¢) is a semi-algebraic deformation retract of the union.

(1
@

D5 0(®)(({a},0)) D3 o(®)(({a}, 1))

-()-AD-O
(- AD
DD

Dy o(®)(({5).0) Dyo(®)(({1,0)

D4 (@) (o, {10, 1}, ) Dao(®)((o {10, )},0)

N~ L

D4 (@) (I {10, 0}, ) Dao(®)((0{(10.0)},)

° L] [ ] ]
Di () (oI {10 0010) D) (o o, { (12, D). 0) Daa(@(Uo. 11 (10} 0)  Dag(@)((Io. 11 (111}, 0)

() (b) (c)
FIGURE 5. (a) The ideal situation, (b) Dy, ;(®)(.), and (¢) Dpm.,:(®)(.)
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Therefore, at each step of our construction the cover by contractible sets that we
consider, is actually a cover of a semi-algebraic set which is infinitesimally larger
than that but with the same homotopy type as the original set. As a result, the
inclusion property — namely, that each element of the cover is included in the set
that it is part of a cover of — which is expected from the elements of a cover will
not hold.

We first describe the situation in the case when Part (b) above is replaced with:

(b’) the union of the realizations is equal to R(¢).

We call this the ideal situation. Figure 5(a) displays three levels of the con-
struction in the ideal situation for the sphere. In the first step, we have two closed
contractible hemispheres that cover the whole sphere. The intersection of the two
hemispheres is a circle, and the next level shows the two closed semi-circles as its
cover. The bottom level consists of two points which is the intersection of these
semi-circles. Clearly, the inclusion property holds in this case.

Unfortunately, as mentioned before we cannot assume that we are in the ideal
situation. This is because the only algorithm with a singly exponential complexity
that is currently known for computing covers by contractible sets, satisfies Property
(b) rather than the ideal Property (b’). In the non-ideal situation we will obtain
in the first step a cover of an infinitesimally thickened sphere by two thickened
hemispheres where the thickening is in terms of some infinitesimal £¢,0 < g¢ « 1.
The intersection of these two thickened hemispheres is a thickened circle, and which
is covered by two thickened semi-circles whose union is infinitesimally larger than
the thickened circle. The new infinitesimal is €1 and 0 < €7 € €9 < 1. Finally, in
the next level, the intersection of the two thickened semi-circles is covered by two
thickened points involving a third infinitesimal €5, such that 0 < e « 1 € gg « 1.

We associate to each element o € P, ;(®) two semi-algebraic sets Dy, ;(P)(«),
Dy, :(®)(a). The association D, ;(®)(-) is functorial in the sense that if o, 3 €
P, :(®), then a < 8 < Dy, ;(®) () < Dy, ;(®)(B). This functoriality is important
since it allows us to define the homotopy colimit of the functor D,, ;(®). The
association o +— Dy, ;(®)(a) does not have the functorial property. However, it
follows directly from its definition that D, ;(®) is contractible (or f-connected in
the more general setting). Finally, we are able to show that D], ;(®)(«) is homotopy
equivalent to D,, ;(®)(a) for each a € P,, ;(®), and thus the functor D,, ;(®) has
the advantage of being functorial as well as satisfying the connectivity property.

In this example, we display D;, ;(®)(a) and Dy, ;(®)(a) for all different o €
P, (®) in Figures 5(b) and 5(c).

For the rest of this example we assume the covers of sphere are in the ideal
situation. This assumption will not change the poset P, ;(®) that we construct.

In order to reconcile with the notation used in the definition of the poset P, ;(®),
we will assume that the different covers described above (which are not Leray but
oo-connected) correspond to the values of the maps Z; 3 and C; 3 evaluated at the
corresponding formulas which we describe more precisely below.
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Step 1. Let a, b denote the closed upper and lower hemispheres of the sphere SQ(O, 1) c
R3, defined by formulas

o = (Xi+XZ+X5—-1=0)n (X3
o = (XP+X3+X3-1=0)A(X3

Let J = Jo = {a,b}, and ® € .7-']1‘{73 be defined by ®(a) = ¢q, P(b) = Pp.
Moreover, since card(J) = 2,

> 0),
<0)

P3.0(®) = {({a}, &), ({0}, &)} v U {Io} x P2,1(®3,0,10,7)-

IpcJ,card(Ip)=2

Following the notation used in Definition 3.3, let Iy = Jo = J = {a, b}.

Step 2. We suppose that Zy 3(¢a A ¢p) = 1, and Co 3(¢q A ¢5)(0) = ¢c, Co,3(da A
op)(1) = ¢a, where

¢ = (XT+X5+X;—-1=0)A(X3=0)n(X>

g = (Xi+X5+X7—-1=0)A(X3=0)A(Xs

denote the two semi-circles.

)

0
0

AN\

b

Ji = J30.10,0 = {10} x [1] = {({0,0), (1o, 1)},
D1 = DP30.10,005
®1((1o,0)) = ¢e,
®1((Lo, 1)) = ¢

P2,1(®1) = {({(10,0)}, @), {({o, 1)}, &)} v U {11} x Pra((P1)2,1,11,1)-

I1cJy,card(I1)=2

Now let I = J;.

Step 3. Suppose that Z; 3(¢c A ¢q) = 1, and C1 3(¢c A $4)(0) = ¢,
C13(¢c A ¢q)(1) = ¢5, where

P = (XP+XF+X5-1=0)A(X3=0)A(X2=0) A (X1+1=0),
¢r = (XP+X5+X5-1=0)A(Xz3=0)A(X2=0)A (X1 -1=0).

J2 = (J1)2,n,0, = {11} x [1] = {(11,0), (11, 1)},
Py = (P1)2,1,1,,0,
P5((11,0)) = ¢,
Qo((11,1)) = Py

P12(®2) = {({(11,0)}, &), {11, D}, @)} v U {I2} x Po3((®2)1,2,15,5)-

IscJg,card(Ig)=2
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Let IQ = JQ.

Step 4. Since Ty 3(¢e A ¢5) = —1, hence Py 3((P2)1,2,1,,7,) = &, and from Step 3

P12(®2) = {({(11,0)}, &), {11, 1)}, D)}

Step 5. With these choices of the values of Z. 3 and C. 3 for the specific formulas
described above, and £ = oo, from Step 2 and Step 4, the Hasse diagram of
the poset P3 1(®q) is as follows.

({(Z0,0)}, @) ({(Zo, 1)}, @)

| = ]

(I1,{(11,0)}, &) (11, {(I, 1)}, &)

Step 6. Finally, from Step 1 and Step 5, the Hasse diagram of the poset P3 o(®) is
shown below.

({a}, &) ({6}, &)

| T ]

(IOa {(IOa O)}v ®)>‘<(IO’ {(IO, 1)}a @)
(IO’Ilv{(Ilvo)}’Q) (107113{(1131)}7®)

The order complex, A(P3o(®)) is displayed below and clearly |A(P3o(®))]| is
homeomorphic to $%(0,1).

3.6. Proofs of Theorems 2 and 2’. In this section we prove Theorem 2 as well
as Theorem 2. We first give an outline of the proof of Theorem 2.

3.6.1. Outline of the proof of Theorem 2. In order to prove that |A(P,, (®))| is
homologically (m — 1)-equivalent to R(®)”, we give two homological (m — 1)-
equivalences. The source of both these maps is a semi-algebraic set which is de-
fined as the homotopy colimit of a certain functor D,,; from the poset category
P, ;(®) to Top taking its values in semi-algebraic subsets of R¥, ;. The tar-
gets are |A(P,,(®))| and R(®)’. Taken together these two homological (m —
1)-equivalences imply that |A(P,, ;(®))| and R(®)’ are homologically (m — 1)-
equivalent.

In what follows, we first define the functor D,,; as well as an associated map
D;mi, also taking values in semi-algebraic sets, and prove the main properties of
these objects that we are going to need in the proof of Theorem 2.
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({a},0)

A1,0)},0)

(Z0,{(Z0,0)},0) (Lo, {(10, 1)}, 0)

(107111 {(Ilv 1)

({6}, 0)

FIGURE 6. The order complex, A(P3,(®))

3.6.2. Definition of D i, Dy, ;- We now define for each a = (lo,..., I, J) €
P,,i(®), a closed semi-algebraic subset Dy, ;(a) = Bx(0,R) = R, .., and also a
semi-algebraic set Dy, ;(a) < RE, .

We define Dy, ;, Dy, ; by induction on m. For m = —1, we define for j € J,

D_1i(®)(({j},2)) = DL1:(2)(({j}, ) = R(®(j), B(0, R)) = R}.

We now define D, ;(®), Dy, ;(®) : Py, i(®) — Top, using the fact that they are
already defined for all —1 < m’ < m. We define:

Dm,l(@)(({]}’ @)) = eXt(R(CD(j)v Bk(oa R))v Ri+m+1) o

eXt(Dm—card(I)+17i+1(q)m’i’l’(])(a)’ Ri+m+1),
(I7a)epm,i(¢’)7j61

Dm,z(q))((laa)) = eXt(Dm—card(I)+1,i+1((I)m,i,I,J>(a>7Ri+m+1)a
1 C<m+2 Ja Card(I) > la Q€ mecard(l)+1,i+1(‘I)m,i,l,.])a

(3.14) D, (@) ({7}, @) = R(®(), Br(0, R)),

and

D:n,i(q)) (L)) = D/m—card(l)+1,z‘+1 (Prn,i,1,0) (),

for I C<m+2 J7 card([) > 17 Q€ mecard(1)+1,i+1(®m7i,I7J)'
The following lemma is obvious from the definition of D,, ;(a) given above.

Lemma 3.5. For each o, € Py, ;(®) with o < 8, the morphism Dy, ;(®)(a <
B) : D i(®) () = Dy i(®)(B) is an inclusion. So, Dy, ;(®) is a functor from the
poset category (P, ;(®), <) to Top.

Remark 3.4. Unlike D, ;, Dy, ; is not necessarily a functor.
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Lemma 3.6. For each a € Py, ;(®),
Din,i(®)(@) N\ Dy (@) ()
Proof. Let
O‘:(I(()Iv"wm {Joc} Q)
with I}¥ < Ji*,0 < h < r, following the same notation as in Section 3.3.3 (with an

added superscript ¢).
First observe that

(315) Dm,l(q))(a) = eXt(D;n,i(q))(O‘)vRi+m+l) o U Dm,z(q))(ﬁ)

Bxa
We now prove that for each o € Py, ;(®):
(3.16) Drn i(®) (@) s D}, i(®)(),
and
3.17 Dy i( lim Dy, (® D, .(®)(«).
U] N U im0 8109) @ D) (@)(e)

The proof is by induction on the maximum length, length(«), of any chain with
a as the maximal element.

We first note that if R’ = R(&), and X = R¥ is a semi-algebraic subset, then
limext(X,R’) =

This follows easily from the definition of ext(X, R’) and standard properties of lim.
In particular, if X is a closed semi-algebraic set, then

limext(X,R) =
g

Base case of the induction, length(a) = 1: It follows from (3.15) and the fact that
that D], ;(®)(«) is a closed semi-algebraic set, that (3.16) holds if « is a minimal
element of the poset P, ;(®) (and so length(a) = 1). In this case (3.17) is trivially
true.

Induction hypothesis: We assume now that (3.16) and (3.17) is true for all a €
P, i(®), with length(a) <t

Inductive step: Suppose that o € P, ;(®), with length(a) = ¢. The inductive
hypothesis implies that (3.16) and (3.17) both hold with « replaced by o for all
ad < a.

Using the fact that D;, ;(®)(«) is closed, it is easy to check that (3.17) implies
(3.16). So we need to prove only (3.17). Using the induction hypothesis we have
for each 8 < «

(3.18) U Dmi(®)B) N\ | Drni(®)(8)
Bxa Bxa
Now observe that for any § € P,,;(®), 8 < « if and only if there exist j/, €
It 1,50 # Jo and ji € (J2 Jme io (ja . },@,., » such that

T Ta) Ta

B<vGa) =S I 1 {das ot Uat D),

where we assume that I¢; = J.
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Using the above observation we have that

(3.19)

U@ = | U U Dna@®) |,
Bxa j&elfaflvjéﬁ&jang(JﬁL)mga,iga,{ja,j&},q%a B=<~(3%)

where

’Y(]Zc) = (Ioaa v 717?;717 {javj(/x}a {jg}v @)
Applying hypothesis (3.17) we have that

(3.20) U Dy i(@)(8) | N\ _lim U Dy, (®)(B) < Dy, i((®)(v(ja))-
B=+(10) T B2

Also observe that,

(3.21)
U D:nz(q))(PY(]gz)) N (D:n,i(q))(a) N D:w,i((b)(a/)> - D;n,i(q))(a)7
J6a€Tm i (Gaily ) @
where

O/ = (I(?’ s 71';);717 {](/1}5 @)
Finally, (3.17) now follows from (3.18), (3.19), (3.20), and (3.21).

Lemma 3.7.

Dpi(®)(a) | s R(®, BL(0, R))”.
a€P,, i (P)

In particular, ext(R(®, Br(0,R))’,R;) is a semi-algebraic deformation retract of
Uaer,i(é) Dm,i(‘l))(a)~

Proof. First note that for each j € J, ({j}, ) is a maximal element of the poset
P, ;(®). It now follows from Lemma 3.5 that

U Dui®)(@) = | Duns(®)(({5}. 2)).

a€P,, i (P) jeJ

The lemma now follows from Lemma 3.6 and Eqn.(3.14). O

Notation 3.9. We will denote the deformation retraction

U Dumi(®)(@) = ext(R(®, B(0, R))”, Ry)
a€P i (D)

in Lemma 3.7 by 7, ;(®).

In the proof of Theorem 2 we need the notion of the homotopy colimit of a
functor which we define below.
We fix a real closed field R in the following definition.
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Definition 3.5 (The topological standard n-simplex). We denote by
‘An| = {(t(), e ,tn) (S Rggl‘ 2 ti = ]_}
i=0

the standard n-simplex defined over R. For 0 < i < n, we define the face operators,
dy, : [A"TH — |A",
by
d;(to, costn_1) = (to, -, tiz1,0,t, .. tn_1).
Definition 3.6 (Homotopy colimit). Let (P, <) be a poset category and
D: (P,<)— Top
a functor taking its values in closed and bounded semi-algebraic subsets of R¥, and

such that the morphisms D(a < ) are inclusion maps. The homotopy colimit of
D is the quotient space

hocolim(D) = < H |AP] x D(a0)> /“‘ ;

aox-xap

where the equivalence relation ~ is defined as follows.

For a chain 0 = (ap < -+ X ), t € |AP|, and = € D(ap), we denote by (¢, z),,
the image of (¢,«) under the canonical inclusion of |AP| x D(ag) (corresponding to
the chain o) in the disjoint union Ha0$~-~gap |AP| x D(ay).

Using the above notation the equivalence relation ~ is defined by:

(3.22) (d)(t),x)0 ~ (t, 7)o,

for € D(ay) and t € |AP~|, where 0 = (ap < -+ < o) and

(g £+ < ayp) if1 =0,
o = (g £ aim1 L1 - <) f0<i<p,
(g < < ap1) if i = p.

We denote by 7P : hocolim(D) — |A(P)|, 7 : hocolim(D) — colim(D) the
canonical maps, where |A(P)] is the geometric realization of the order complex of
P (see Definition 3.1). More precisely, 7’ is the map induced from the projection

map
[I 1a%1xDlao)— ] 147

R R

after taking the quotient by ~, and 74 is the composition of the map induced by
the projection

[[ 1A7xD(ao) > [] Dlaw),

Qo xap Qo xap
and the canonical map to the colimit of the functor D, which in this case is simply
the union (J,.p D(o).

The following example illustrates the definition given above.

4which is a semi-algebraic set defined over R, being a quotient space of a proper semi-algebraic
equivalence relation, (see for example [23, page 166])



EFFICIENT SIMPLICIAL REPLACEMENT OF SEMI-ALGEBRAIC SETS 35

Example 3.3. Consider the poset P = {a,b,c}, with three elements with ¢ <
a,c < b as the only non-trivial ordering relation (Hasse diagram shown below).

a\c/b

Let D : P — Top be the functor, with

D(a) = R(X?+XZ-4=0)A(Xy=0)),
D(b) = R((X{+X5—-4=0)(X2<0)),
D(¢) = D(a) nD(b)

{(_27 O)v (27 O)}
The homotopy colimit of the functor D is then the quotient of the disjoint union
of the spaces

A® x D(a), A% x D(b), A° x D(c),
A x D(e), A" x D(c)
corresponding to the chains (a), (b), (¢), (¢ < a), (¢ < b) by the equivalence relation

defined in Eqn. (3.22). The non-trivial identifications induced by the quotienting
are given by (following the notation introduced in Definition 3.6)

((0,1), (=2,0))exa) ~ ((1),(=2,0))(0),
(( )’( ) ))(c ((1)7(2’0))(C)7
(( )v( 270))( cxa ((1)3(7270))(11);
((1,0),(2,0))(cxa) ~ (1), (2,0)) (@),
(( ),< 270))(0$ ((1)’(_270))((')a
(( )7(2’0))(0,{ ((1)’(2a0))(c)7
(( )7( 2, ))( cxb) ™ ((1)a (7270))(b)7
((1,0),(2,0))exp) ~ ((1),(2,0))v)-
The quotient space (as a semi-algebraic set) is shown below in Figure 7

D(a)
D(c) D(c)
D)

FIGURE 7. Homotopy colimit of the functor D in Example 3.3.

Proof of Theorem 2. The theorem will follow from the following two claims.

Claim 3.1. The map 7rDm i), : hocolim(D,, i (®)) — |A(P,,i(P))| is a homologi-
cal L-equivalence (and so a homological (m — 1)-equivalence).
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Claim 3.2. The map
Fpi(®) = 1 i(P) 0 Wf’”’i(é) - hocolim(D,, ;(®)) — ext(R(®, Bx(0, R))’, R;)
is a homological (m — 1)-equivalence.
We first deduce the proof of the theorem from these two claims. The homological
(m — 1)-equivalence in (3.11) now follows from Claims 3.1, 3.2 and Lemma 3.7.
The diagrammatic homological (m — 1)-equivalence in (3.12) follows from the
commutativity of the following diagrams of maps.
For each pair J',J” < J, with J' < J” we have the following commutative

diagram, where the vertical arrows are inclusions, and the slanted arrows induce
isomorphisms in the homology groups up to dimension m — 1.

hocolim(D,y, ;i (®] 7))

% Fm,i(‘bh’

AP (®]))] ext(R(®, By (0, R))”", R;)

hocolim (D, ; (®|~))

‘% Fm,i(q)l‘]”

|A(P i (@) ext(R(®, B (0, R))”", Ry)

This implies that we have the following diagram of morphisms where both arrows
are homological (m — 1)-equivalences:

(J/ — hOCOhm(Dmﬂ;((I>|J/)))J162J

(" = [AP i (Pl)]).reas Simp” (R(®, Bi(0, R))).
This proves that the diagrams
(J" = [AP i (2] 5))]) e
and
Simp” (R(®, B (0, R)))

are homologically (m — 1)-equivalent.
We now proceed to prove Claims 3.1 and 3.2.

Proof of Claim 3.1. Let t € |[A(Py,+(P))|. Then there exists a unique simplex o
of the simplicial complex A(P,, ;(®)) of the smallest possible dimension such that
t € |o|]. Let ap < -+ < o be the chain in P, ;(®) corresponding to o. Then,

(my™ N 7L(E) = {t) x Dy i(@)(a0).

It is clear from its definition that D;, ;(®)(«) is homologically ¢-connected. From
Lemma 3.6 it follows that so is D,, ;(®)(a). It now follows from the homological
version of the Vietoris-Begle theorem (see Remark 2.3) that i) g a homolog-

ical f-equivalence. [
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Proof of Claim 3.2. The claim will follow from the following claims. Let
r € ext(R(®, Br(0, R))’, Ry).

We will prove that the fiber (F,;(®))~!(x) is homologically (m — 1)-connected
which will suffice to prove that F, ;(®) is a homological (m —1)-equivalence by the
homological version of Vietoris-Begle theorem (see Remark 2.3).

In order to study the fiber (F, ;(®))~!(x) we define for each I C¢pya J the
following posets of P, ;(P).

We define

P;(z) = {(I,a)e{l}x mecard(I)Jrl,iJrl((I)m,i,I,J) |
x € lign Doy —card(D)+1,i+1(Pm,i.1,7) (@)} < P i (D),

and
Q)= |J Pr@.
Icl’'C<myad

The motivation behind the definition of the posets P;(x), Q;(z) is as follows.
First observe that

(3.23) (Fri (@) () = | AQy (=),
jeJ
and
(3.24) ﬂ Quy(2) = Qr().
jel

Our strategy for proving the homological (m—1)-connectedness of (Fy, ;(®))~*(z)
is to use the closed covering provided by (3.23) and then use the cohomological
Mayer-Vietoris spectral sequence to reduce the problem to studying the connectiv-
ity of the various |A(Qy(x))| using (3.24). Finally, we prove (see Claim 3.5) that
for each I, |[A(P;(z))| is homologically equivalent to |A(Q(x))|. This last fact
allows us to use induction on the cardinality of I to prove the required connectivity
statement for the corresponding |A(Q;(z))|.

We now return to the proof of Claim 3.2. Since, for each I', with I ¢ I' c <12 J,

Pm—card(I/)+1,i+1 ((I)m7i,1’,J) < Pm—card([)-ﬂ—l,i-&-l ((I)m,iJ,J);
there is an injective map,
Py (z) — Pr(z),(I',a) — (I, ).
Thus there is a map
01(z) : Qi(z) — Pr(x),
defined by
01(2)((I',a)) = (1, ),
for each (I, ) € Qr(x), where [ € I' C¢ppyo J.

It is obvious from the above definition and the definition of the partial order in
P, ;(®), that the map 0;(x) is a map of posets (i.e. a map respecting the partial
orders of the two posets).

Claim 3.3. The map 0;(x) induces a simplicial map O (z) : A(Qr(z)) — A(Pr(z)).
Moreover, the corresponding map |©1(x)| : |A(Qr(z))] — |A(Py(x))|, between the
geometric realizations, is a homological equivalence.
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Proof. Since the map 6;(x) is a poset map, it carries a chain of Q;(x) to a chain
of Py(x). This implies that 67(x) induces a simplicial map O;(z) : A(Qs(z)) —
A(Py(z)).

We now prove the second half of the claim. We are going to use the poset fiber
theorem proved in [22, Lemma 3.2] (also [8, Corollary 3.4]).

For n = 0, we denote by B,, the complete Boolean lattice on a set with n elements.
It is a well known fact (see for example [26]) that |A(B,,)| is homeomorphic to [0, 1],
and is thus contractible.

Let (I,a) € Pr(x), and I' C¢ppy2 J be the unique maximal subset of J such
that (I’, @) € Pp/(x) (see the schematic diagram in Figure 8 which depicts subposet
of the poset shown in Figure 4).

({1,2,3,4}, @)

FIGURE 8. 0r(z) ' ((I,a)) with T = {1,2}, and I’ = {1,2, 3,4}

Then,
O1(x) (I, ) ={(I",a) | I <11}
Hence, the poset 67(x)~'((I,)) is isomorphic as a poset to Beard(1/)—card(I)-

Thus, |A(07(x)~((I,a)))| is contractible.
Moreover, for each (I”, ) € 0r(z)~1((I, a)),

01(3;)71((]’ a))>([”,a) = {(1/1/70[) | IcI”c IH}:

and hence 0;(2) 1 ((I, @)) s (17,4 is isomorphic t0 Beard(17)—card(r)- This proves that
|AO;(x) " (I, @) (17,4))| is contractible for each (I”,a) € 0;(x)~((1, @)).

It now follows from the poset fiber theorem [22, Lemma 3.2] (also [8, Corol-
lary 3.4]) that the poset map 6;(x) induces a homological equivalence |O(x)| :

[AQ1 ()] = [AP ()]

Observe that Claim 3.3 implies in particular that if card(I) = 1, then |Q ()] is
contractible if non-empty.
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Claim 3.4. For z € ext(R(®, Bx(0, R))”", R;) = limz Upep,, (@) Prm.i(®)(@),

(3.25) H ((Fna(®) " '(2) = Z, forj=0,
= 0, for0<j<m.
Proof. The proof is by induction on m starting with the case m = 0. The case
m = —1 is trivial.
Base case (m = 0). We need to show that for
v € ext(R(®, Bx(0,R)’,Ry) =lim [ |  Do:(®)(a),
° aePoi(®)
(Fu,:(®))~!(z) is connected.
First note that
Foi(®) = r0,4(®) o my 1),
and 1o ;(®) is a semi-algebraic deformation retraction. Hence, rq ;(®)~!(z) is closed
and semi-algebraically connected (in fact contractible).
Let J(x) = {j € J | Doi(®)(({5},D)) N ro:(®)" (x) # &}. Since, the sets
Do (®)(({4},)),j € J(x) is a covering of the closed and semi-algebraically con-
nected set 7 ;(®) 7! (x) by closed sets, it follows that the union

U Doa@)(({3}2))
jeJ(x)

is semi-algebraically connected as well. It follows that given any j,j’ € J(z), there
exists a sequence j = jo, j1,...,jn = j' such that for each h,0 < h < N —1,

Do,i(®)(({jn}, @) 0 Doi(@)({jn+1}, D)) 0 roi(@) " (2) # B

So there exists for each h,0 < h < N —1 3" = ({Jn, jn+1}:P) € Jo,i{jn.jnsi}.®
such that

R((b{jhvthrl}(p)) a Tm’i(@)_l(x) # .
So there exists o = ({j"}, &) € P_1i41(®yj,,,,,}), such that

Do i(®)(({jn, jni1}, @) nroi(®)H(z) # &,
and so
({ns dns1} @) € (Fou (@) (@).
Moreover,
({jh7jh+1}a Oé) = ({jh}a @)7 ({jh+1}7 @)
(using Lemma 3.4). This implies that ({j.}, @), {jr+1}, D), and thus every pair
of the form ({j}, &), {j'}, &) in (Fo:(®))~'(x) belongs to the same connected
component of (Fy;(®))~!(z). Since, for every element of the form ({jn,jn11},) €
(Fo,:(®))~(z) we have
({gn: dna1}0) < ({in} @), ({nsr}, D) € (Foi(2) ™ (),

({n, jn+1}, @) belong to the same connected component of (Fp ;(®))~!(x) as

({jh}v Q)a ({jh+1}v @)

as well. Together, these facts imply that (Fo;(®))~*(z) is connected. This proves
the claim in the base case.
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Inductive step. Suppose we have proved the theorem for all m’,0 < m’ <m, i > 0,
all finite J’, and &' € (Fr,)’ . We now prove it for m, 1, J, ®.

v e ext(R(®, Br(0,R)’, R) =lim ||  Dpi(®)(a),
a€P,, i (P)

Recall from (3.23) that

(Fii (@) () = [ AQ ()] -
jeJ
Let
J'={jeJ | Qux) # )}
So

(Fna(@) M) =1 [ AQ@Qp @)l

jelJ’
It follows from the Mayer-Vietoris exact sequence in cohomology for closed sub-
spaces (see for example, [17, page 148]) that there exists a spectral sequence

)

AQ; ()

jel

U A (@)

P,q p+q
EPT = H (
jeJ’

whose F; term is given by

e
)=p+1

IcJ’ card(l

Notice that
(Quy (@) = Qi(x),

jel
and it follows from Claim 3.3 that |A(Q;(z))| is homotopy equivalent to |A(P(z))|.
So we get,
EYY = @ HI(JAP(2))]).
IcJ’,card(l)=p+1

Now for I, with card(l) > 1, we can apply the induction hypothesis to deduce
that

H (|A(P(2))])

lle

Z, for j =0,
0, for 0 < j < m — card(I) + 1.
We can deduce from this that

0~
E? ~ (—D Z,
IcJ’,card(l)=p+1
EPT ~ 0, for 0 <g<m—p.
It follows that

EY°
By°
Eg’q

lle
N

I1e

0,p>0

lle

0, forp=>0,0<g<m-—p.
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d

Note that it follows from Claim 3.5 and the Mayer-Vietoris spectral sequence
argument used in its proof that ror any

Jefjed | Qux) # I},

Claim 3.5. For
v e ext(R(®,Br(0,R)’,Ry) =lim | | Dy i(®)(a),

lle

U Ay (@)

jeJ’

(3.26) H’ ( 7, for j =0,

= 0, for 0 <j<m.

(Fni(®)) " (x) is homologically (m — 1)-connected.

Proof. Let X = F,, ;(®)"(z). It follows from [21, Theorem 12, page 248] that
there exists a short exact sequence:

0 — Ext(H""!(X),Z) — H,(X) — Hom(HY(X),Z) — 0.
Thus, for each ¢ > 0
HH((Fi(@)) 7 (2)) = HI((Fni(@)) (@) = 0

implies that Hy((Fp, (@)~ (z)) = 0.
The claim now follows from (3.25). O
Claim 3.2 now follows from Claim 3.5 and the homological version of the Vietoris-
Begle theorem (see Remark 2.3). O
This completes the proof of Theorem 2. O

Proof of Theorem 2. Since the proof closely mirrors that of the proof of Theorem 2
we only point out the places where it differs. For each a € P, ;(®), we replace
the infinitesimals &, ..., &,,, by sequences of appropriately small enough positive
elements fo, ..., ¢, of R, in the formula defining the set D,, ;(®)(«), and denote
the set defined by the new formula (which are semi-algebraic subset of R¥) by
5m,i(<1>)(a). Similarly, we will denote the retraction

U Dwmi(®)(@) > R(®, Bi(0, R))’
P, i (D)

by 7n,i(®), and the composition

P (@) 0 ™ ) hocolim (D, (@) — R(D, By (0, R))’
by Fpi(®).
Claims 3.1 and 3.2 are replaced by:

Claim 3.1'. The map 7T'1Dm’i(¢)) : hocolim(f)m@(@)) — |AP(P))| is an L-

equivalence (and so an (m — 1)-equivalence).
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Claim 3.2'. The map
= o~ 5,n,i(<1>) . . N S A o J
Fr i (@) =7 i(P) 01y : hocolim(D,,, ;(®)) — R(®, Bx(0, R))
is an (m — 1)-equivalence.

The proof of Claim 3.1’ is the same as the proof of Claim 3.1 replacing homo-
logically ¢-connected by just ¢-connected, and using the homotopy version of the
Vietoris-Begle theorem (see Remark 2.3).

For the proof of Claim 3.2" we need an extra argument to deduce the (m — 1)-
connectivity of the fibers of the map f‘m,i(@) from the fact that they are homo-
logically (m — 1)-connected which is already proved in Claim 3.5. In order to do
this we apply Hurewicz’s isomorphism theorem which requires simple connectivity
of the fibers (EW(CD))_l(x), which is the content of the following claim.

Claim 3.6. For xz € R(®, Br(0,R))’, and m > 1, (ﬁ’myi(fl)))fl(x) is simply con-
nected. In other words, (ﬁm,¢(¢))_1(x) is connected, and

11 (Fn,i (@)} () = 0.
Proof. Let
J'=1{jeJ | Qux)# J}
So

~

(Fm,i (@)™ (@) =

U AaQu @)

jedJ’

We prove the stronger statement that for all non-empty subsets J” < J’,

U a@ @)

jeJ”

is simply connected.
We argue using induction on card(J”). If card(J”) = 1, then A(Qy;y(x)), where
J" ={j}, is a cone and so |A(Q;}(7))| is contractible and hence simply connected.
Suppose, we have already proved that the claim holds for all subsets of J' of
cardinality strictly smaller than that of J”. Let j” € J”. Then, by the induction
hypothesis, we have that ‘Uj/eju{j"} A(Qgjy(x))
We first show that

is simply connected.

AQur@)ln| | AQu)

j'EJ”—{j”}
is connected, which is equivalent to proving that
H(AQun @)~ | 1AQu,(@)) =Z
j/eJlI_{j//}

The Mayer-Vietoris exact sequence in cohomology gives the following exact se-
quence:
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H( U 18Quy(@)) = B (I1AQun @)) @B | 1AQgu ) —

qrelr qred={i")
H(IAQun @) n [ 1AQu@)) = H ([ 1AQg (@)D
Jed"={i"} e

Applying (3.26) we have an exact sequence

Z-72®Z—-H [|AQuy@)ln |  1AQu )| 0,
j/EJ//i{j//}
where the first map is the diagonal embedding. This implies that

H | 1AQun )l n | 1AQuy@)l | =2

j/EJ”—{j”}
Finally, using the fact that [A(Qq;~y(x))| is simply connected, it follows from
the Seifert-van Kampen’s theorem [21, page 151] that ’UjEJ” A(Qyjy())] is simply

connected.

We also have the obvious analog of Lemma 3.7.

Lemma 3.7'. The semi-algebraic set R(®, Br(0, R))” is a semi-algebraic deforma-
tion retract of
Do i(®) (),
OLEPin(‘:I))
and hence R(®, Bx(0, R))’ and Uaep,, . (@) ZNDm,i(q))(oz) are semi-algebraically ho-
motopy equivalent.

Proof. Similar to proof of Lemma 3.7 and omitted. O

Proof of Claim 3.2 . It follows from Claim 3.5, Claim 3.6, and Hurewicz isomor-
phism theorem [21, Theorem 5, page 398], that for

z e R(®, Br(0,R))’

and m > 1, (F,, ;(®))"'(z) is (m — 1)-connected. Claim 3.2’ now follows from the
previous statement and the homotopy version of the Vietoris-Begle theorem (see
Remark 2.3). O

Finally, Theorem 2’ follows from Claims 3.1’, 3.2" and Lemma 3.7". O

3.7. Upper bound on the size of the simplicial complex A(P,, ;(®)). We
now prove an upper bound on the size of the simplicial complex A(P,, ;(®)) as-
suming a “singly exponential” upper bound on the function Z; ;(-) and C; x(-).

Definition 3.7. For any closed formula ¢ with coefficients in a real closed field R,
let the size of ¢, size(¢) be the product of the number of polynomials appearing
in the formula ¢ and the maximum amongst the degrees of these polynomials.
Similarly, if J is any finite set, and ® € (Fg_x)’, we denote by size(®) the product
of the total number of polynomials appearing in the formulas ®(j),j € J, and the
maximum amongst the degrees of these polynomials.
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Theorem 3. Suppose that there exists ¢ > 0 such that for each ¢ € FRr, ,

c

Tin(9) < (size(9))" |
(3.27) ma>(<¢)]size(Ci7k(¢)(j)) < (Size(gb))kc.

JE[Zs,k

Let J be a finite set and ® € (}"Ri,k)‘], Then the number of simplices in A(P, ;(P))

is bounded by

(card(J)D)ko(m) ,

where
D = size(d).

Proof. Recall that the elements of P, ;(®) are finite tuples
(107 .- '7IT”7®)7

where for each, h,0 < h < r, I}, is a subset of a certain set J;, defined in Section 3.3.3.
We first bound the cardinalities of the various Jp,’s occurring in the sequence
above.

Claim 3.7. Foranyi >0, m’' > —1, finite set J', I' Cpprio J', and &' € (.FRi/,k)Jl,
card(J),s o prapr) < (card(J"))™ 1 (size(®'))*".
Proof of Claim 3.7. Let for each fixed i, k,
F(M',N',m/,D") = max card(J), ; 1 ar)-
J’card(J")=N", B
I'c i ypd card(I)=M",

‘i’/E]:Ri.k size(®’)=D’

Using Eqns. (3.5) and (3.6) and Eqn. (3.27), we obtain:

F(m' + 2,N/7D,) < D/}c“7
<

F(M',N,D') D* 4 (N’ — M)F(M' +1,N',D'), for 1 < M’ <m/ +2.
It follows that
F(M',N',D") < D* (14N +N?+...4 N™+2-M
< DMN™Hlfor 1 < M <m +2.
The claim follows from the above inequality. O

Claim 3.8. For (Io,..., I, ¢) € Py, i(®), r <m+ 1.

Proof of Claim 3.8. The claim follows from the fact that card(lp), ..., card(l,_1) =
2, and hence it follows from Eqn. (3.9) that

2r < Z card(l;) <m+ (r—1) + 2.
osj<r
It follows that
r<m+ 1.
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Claim 3.9. For every tuple (Ip,..., I, &) € Py (®), 0 < h <7,
size(®p(a)) < D*" for a e Jp,
card(Jh) < N(m+1)hD(k(m+1))ch,
where Jp, ®p,0 < j < r are defined in Eqn. (3.8), and N = card(J).

Proof of Claim 3.9. The claim is obviously true for A = 0. Also, note that for each
h,0<h<r,

mp < M.
The claim now follows by induction on h, using the inductive definitions of Jj, @y,
(see Eqn. (3.8)), Eqn. (3.27), and Claim 3.7. O
Claim 3.10.

card(P,, ;(®)) < (card(.J) D)™
Proof of Claim 3.10. In order to bound the cardinality of P, ;(®), we bound the
number of possible choices of Iy, ..., I, for (Io,..., I, &) € Pp (D).

It follows from Eqn. (3.9), that for each h,0 < h <,

h—1
card(lp) < m-— Z card(l;) + h + 2
t=0
< m—2h+h+2(since card(l;) > 2,0<t <r)
< m—h+2
< m+2

Since by Claim 3.9 for 0 < h < r,
Card(Jh) < N(m+1)hD(k(m+1))Ch’
the number of choices for I, is clearly bounded by
2 (N(m+1)hD(k(m+1))Ch
h

O(h) O(h)
) < N™TU DR
t=2
noting that m < k. The above inequality, together with the fact that r < m + 1
(by Claim 3.8), proves the claim. O

Claim 3.11. The length of any chain in P, ;(®) is bounded by 2m + 2.

Proof of Claim 3.11. Suppose that o = (I¢,..., I , &), = (Ig, .. .,IEB, ) €
Pi(®), f <o and o # 0.
It follows from Eqn. (3.10) that
(ra <rg)and I} I}f,O < h < rg.

In particular, this implies that 0 < 37 card(I) < 37 card(I}). Since for
any (Io, ..., I, &) € Py, ;(®), we have that
Z card(Ip) < m+r+ 2,
oh<r
card(I,) = 1,
and
r<m+1,
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it follows immediately that the length of a chain in P,, ;(®) is bounded by 2m +
2. O

The theorem follows from Claims 3.8, 3.9, 3.10 and 3.11. ]

4. SIMPLICIAL REPLACEMENT: ALGORITHM

We begin with some mathematical and algorithmic preliminaries.
4.1. Mathematical preliminaries.

4.1.1. Making closed. We need to take care of the following technical issue. The
output of Algorithm 1 (Covering by Contractible Sets) described below, consists of
a tuple of formulas whose realizations are closed and semi-algebraically contractible
semi-algebraic sets, but the formulas themselves need not be closed. However, in
the recursive Algorithm 2 (Computing the poset P, ;(®)) we need to assume that
the input formulas are closed. We get around this problem by a construction which
allows us to replace a formula (not necessarily closed) defining a closed and bounded
semi-algebraic set S by another closed formula defining a semi-algebraic set S’ such
that S’ N\, S. The construction is quite similar (but not identical) to the one by
Gabrielov and Vorobjov [15]. In the construction given in [15] the original set is not
necessarily a deformation retract of the new one. By using the extra property that
we assume, namely that the given set is closed (albeit without a closed description),
we are able to ensure that it is a retract of the new one defined by a closed formula.

We remark here that the algorithmic problem of obtaining a closed description
of a given closed semi-algebraic set (described by a not formula which is not neces-
sarily closed) is a difficult problem for which no algorithm with singly exponential
complexity is known in general. We do not solve this general problem, because the
closed description that we obtain does not describe the original set, but a closed
(infinitesimal) neighborhood of it.

The key result of this section is Lemma 4.1.

Let P = {Py,...,P;} < R[Xy,...,X,]| be a finite set of polynomials, and let
B c R* a closed euclidean ball.

Notation 4.1. For o € {0,1,—1}7 let
level(o) = card({P € P | o(P) = 0}).
For c,de R,0 <d < ¢, and o € {0,1,—1}7, let 5(c, d) denote the closed formula

A (~d<P<dr N Pzc)r N (P<—o).

o(P)=0 o(P)=1 o(P)=-1

Notation 4.2. For a P-formula ¢ we denote

So = (o€ {0,1,-1)7 | ( A\ (sign(P) = a<P>>> = o},

PeP
where “=" denotes logical implication.
Let
R’ = R<N’Sa Vgyr++ 5 Mo, V0> = R<ﬁ>7
denoting by 77 the sequence ps, vs, . . ., to, Vo.
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Notation 4.3. We denote
S
P*(nv) = | (J{P £, P v} c RI[Xy, .., Xy,
PeP j=0
Finally,
Notation 4.4. We denote by ¢* (i1, 7) the P*(fi, v)-closed formula

\/ E(;Ullcvcl(o‘) y Vlevel (o) )

Uezqs

(see Notation 4.2).

Following the notation introduced above.

Lemma 4.1. Let R > 0,B = B(0,R), and suppose that S = R(¢, B) is closed.
Then,

S'\ S,
where S" = R(¢p*(f, 7),ext(B,R")). In particular, ext(S,R') is a semi-algebraic
deformation retract of S’.
Proof. See Appendix A. O

Remark 4.1. Tt is necessary to use multiple infinitesimals in the construction given
above. As a warning consider the following example.
Ezample 4.1. Let k =1,s =2, B = [-2,2], and
P = X*(X-1),
P = X
Let 01,09 be defined by,
o1(P1) = 1,02(P2) =1,
o1(Py) =0,09(P) = 1.
Let ¢ be the unique formula such that ¥4 = {01,02}. Then, R(¢,B) = [1,2] is a
closed semi-algebraic set, but ¢ is not a closed formula.

However, if we take the closed formula ¢*(uo, ..., po) (i-e. using only one infin-
itesimal) then

hmR(¢*(MOa s 7//40)’B) = {O} Y [172] =2 R(¢7B)

Ho

However, it is easy to verify that
R(¢* (1, 7), B) \. R(¢, B) = [1,2].

4.1.2. Strong general position. We need the following notion of “strong general
position” of a finite set of polynomials. It is a required property for the input to
Algorithm 1.

Definition 4.1. Let P < R[Xy,..., X)] be a finite set. We say that P is in ¢-
general position, if no more than ¢ polynomials belonging to P have a common
zero in R¥. The set P is in strong (-general position if moreover any ¢ polynomials
belonging to P have at most a finite number of common zeros in R”.

Using the same notation as in Lemma 4.1 we have:



48 SAUGATA BASU AND NEGIN KARISANI

Lemma 4.2. The set

P, v)
is in strong k-general position.
Proof. The claim follows easily from the fact that ug,...,us,v0,...,vs are al-
gebraically independent over R and semi-algebraic Sard’s theorem [4, Theorem
5.56]. O

We now describe some preliminary algorithms that we will need.

4.2. Algorithmic preliminaries. The following algorithm is described in [4]. We
briefly recall the input, output and complexity. We made a small and harmless
modification to the input by requiring that the closed semi-algebraic of which the
covering is being computed is contained in the closed ball of radius R centered at
the origin, rather than in the sphere of radius R. This is done to avoid compli-
cating notation down the road and is not significant since the algorithm can be
easily modified to accommodate this change without any change in the complexity
estimates.

Algorithm 1 (Covering by Contractible Sets)

Input:
(a) a finite set of s polynomials P < D[E][X},..., X;] in strong k-general
position on R¥, with deg(P;) < d for 1 <i < s,
(b) a P-closed formula ¢ such that semi-algebraic set R(¢) < By (0, R), for
some R >0, ReR.
Output:
(a) a finite set of polynomials H < D[g(][X1,...,Xk], where ( =
(Cla ) C2card('H));
(b) a tuple of H-formulas (6a)acs such that each R(f4, R(GZ,OF),a e I is a
closed semi-algebraically contractible set, and

(c)

U R(0a, REE, OF) = R(4,RE,OF).
ael
Complexity: The complexity of the algorithm is bounded by
(caurd(’P)(k“)szo(l)7 where D = maxpep degx -(P). Moreover,

KO M)

card(l),card(#) < (card(P)D) ,
degy (H),deg(H),degz(H) < D"
Suppose that & = (e1,...,&¢), and that each polynomial in P depends on
at most m of the ¢;’s. Then, each polynomial appearing in H depends on at
most m(k + 1)? of €;’s, and on at most one of the (;’s.

Remark 4.2. Note that the last claim in the complexity of Algorithm 1, namely that
each polynomial appearing in any of the formulas 6, depends on at most m(k -+ 1)
of g;’s, and on at most one of the (;’s, does not appear explicitly in [4], but is
evident on a close examination of the algorithm. It is also reflected in the fact that
the combinatorial part (i.e. the part depending on card(P)) of the complexity of
Algorithm 16.14 in [4] is bounded by card(P)*+D*_ This is because the Algorithm
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16.14 in [4] has a “local property”, namely that all computations involve at most a
small number (in this case (k + 1)2) polynomials in the input at a time.

4.3. Algorithm for computing simplicial replacement. We now describe an
algorithm that given a tuple of formula ® and m, ¢ > 0, computes the corresponding
poset P, ;(®), using Algorithm 1 to compute Z; ;. (¢) and C; x(¢) for different j and
¢ which arise in the course of the execution of the algorithm.

Algorithm 2 (Computing the poset P, ;(®))

Input:
(a) £,0<l<k,m,—1<m</li0<i<m+2.
(b) A finite set of polynomials P < D[éy,...,&][X1,..., Xk], where D is an
ordered domain contained in a real closed field R.
(¢) An element r € D, r > 0.
(d) For each 7,0 < j < N, a P-formula ¢;, such that R(¢;, Bx(0,1/r)) is
closed and homologically ¢-connected (and ¢-connected if R = R).
Output:
The poset P,, ;(®) (see Definition 3.3), where ® is defined by ®(j) = ¢;,j €
[N], and the various Z. 1(-) C. x(-) are obtained by calls to Algorithm 1.
Procedure:

1. J <« [N]
2: if m = —1 then
3: Output

P_1i(®) ={({j}, ) [ e J},

and the order relation to be the trivial one — namely for 7,7’ € J,

{ih ) <{i"h @) =i=17"

4: else

k
P<—7)u{r2ZXi2—1}.
i=1

6: for je J do

k
B(j) « B(j) A <r22X31<0> .
i=0

8: end for
9: for each subset I c¢;p42 J do
10: Use Definition 3.2 to compute Jp, ; 1.6 and @, ; 1, s, using Algorithm 1

with input P*(i,7) < R[7][X1,...,Xk] (where 7 denotes the al-
ternating sequence of u;’s and v;’s appearing in Notation 4.3),
and the formula A ;; ®(5)* (&, 7), (noting that R(/ ;c; ®(5)* (&, 7))
is contained in By(0,2/r)), to compute Z;(A;c; ®(j)) and
Cik(Njer 2(7)))-

The polynomials appearing in the formulas in C;x((/\ ;c; (7)) have coef-
ficients in D[&o,...,&,&+1], where &1 = (efa,(), and ( is a new
tuple of infinitesimals.

11: end for
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12: for I < J,1 <card(l) <m+2do

13: Use Algorithm 2 recursively with input ¢,m — card(I) + 1,7 +
1,Pr,®m,i1.5,7, where Py < D[&,...,&+1] is the set of polyno-
mials occurring in ®,, ; 1,7.

14:
Pm,z(q)) - {({]}a(z)) ‘ JE€ J} Y U {I} X Pm—card([)+1,i+1((I)m,iJ,J)-
IcJ,l<card(I)Sm+2
15: Define partial order < on P, ;(®) as in Definition 3.3.
16: end for
17: end if
Complexity: The complexity of the algorithm, as well as card(P,, (®)), are
bounded by
(Nsd)*"™

where s = card(P), and d = maxpep deg(P).

Proof of correctness. The algorithm follows Definition 3.3. The correctness of the
algorithm follows from Lemma 4.1, Lemma 4.2, and the correctness of Algorithm 1.
O

Complezity analysis. The bound on card(P,, ;(®)) is a consequence of Theorem 3.
The complexity of the algorithm follows from the complexity of the Algorithm 1
and an argument as in the proof of Theorem 3.

There is one additional point to note that in the recursive calls algorithm the
arithmetic operations take place in a larger ring, namely - D[&o, ..., &n12].

It follows from the complexity of Algorithm 1 that the number of different in-
finitesimals occurring in each polynomial that is computed in the course of Algo-
rithm 2 is bounded by k(™) and these infinitesimals occur with degrees bounded

by d*°™ . Hence each arithmetic operation involving the coefficients with these
Oo(m)

dko(m) k _ dko(m)

polynomials costs ( arithmetic operations in the ring D.

This does not affect the asymptotics of the complexity, where we measure arith-
metic operations in the ring D. O

Remark 4.3. Suppose we define (following the same notation as in Properties 3.2
and 3.2" and Algorithm 2) for ¢ € Fg, x,

Zik(p) = card(I)—1,

Cz,k(¢) (ea)aela

where (0,)qer is the output of Algorithm 1 with input the set of polynomials ap-
pearing in the definition of ¢*(fi, 7) (see Notation 4.4), the closed formula ¢*(fi, 7),
and R set to 1/r (as in Line 10 of Algorithm 2).

Then it follows from the correctness of Algorithm 1, that (denoting by R, =
R{&p,...,&;y as in Algorithm 2) the tuple

((Ri)iz0,1/7,k, (Zi & )izo0, (Cik)i=0)

satisfies the homological ¢-connectivity property over R (resp. ¢-connectivity prop-
erty if R = R) for every ¢ > 0 (see Property 3.2 and Property 3.2'.
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Algorithm 3 (Simplicial replacement)

Input:
(a) A finite set of polynomials P < D[Xj,..., X] where D is an ordered
domain contained in a real closed field R.
(b) An integer N > 0, and for each i € [N], a P-closed formula ¢;.
(c) ,0<L<E.
Output:
A simplicial complex A and for each I < [N] a subcomplex A; — A such that
there is a diagrammatic homological ¢-equivalence

(I~ Ap) e ~e Simp™M(R(2)),

where ®(i) = ¢;,7 € [N]. In case R = R, then the simplicial complex A and
the subcomplexes A satisfy the stronger property, namely:
(I = Ap)reny ~¢ Simp™M(R(@)),
where ®(i) = ¢;,1 € [N].
Procedure:
Let 0 < § < 1 be an infinitesimal.
cPe—PuU{d-6 (XE+--+ X7 -1}
:for0<i< N do
i —pin(4-0% (XE+-+ X} —1<0).
Call Algorithm 1 with input P*(fi, 7) (see Notation 4.3) the formula ¢} (fi, 7)
(see Notation 4.4) as input, and let ®; = (¢; 1, .., ¢; n,) be the output.
P; — the set of polynomials appearing in the formula ®;.
end for
P = Uien Pi-
for 0<i<ndo
10: Jl<—{(’t,j) | 1<j<Ni}.
11: end for
12: J « Uie[N] J;.
13: Let U e (Fres;.6.%)7 be defined by W((i,5)) = ¢i ;.
14: Call Algorithm 2 with input

(t+1,m+1,0,P,J,5,V),
and let P,, o(¥) denote the output.

15: Output the simplicial complex A(P,, 0(¥)), and for each subset I < [N], the
subcomplex A(Py, 0(V],_, 7,))-

Complexity: The complexity of the algorithm is bounded by (sd)
s = card(P) and d = maxpep deg(P).

A

o)
7 where

Proof of correctness. Observe that the image of the realization of each of the for-
mulas ¢; ; obtained in Line 5 under the lim; map is contained in By (0,1/25). This
implies that the realization of each of the formulas ¢; ; is contained in By(0,9).
Thus, in the call to Algorithm 2 in Line 14, the input satisfies property (d) of the
input specification of Algorithm 2 with r = 4.

The correctness of the algorithm now follows from Lemma 4.1, Lemma 4.2, the
correctness of Algorithm 2, Remark 4.3, and Theorems 2 and 2'. (]
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Complezity analysis. The complexity bound follows from the complexity bounds of
Algorithms 1 and 2. O

Proofs of Theorems 1 and 1'. Both theorems now follows from the correctness and
the complexity analysis Algorithm 3. O

5. FUTURE WORK AND OPEN PROBLEMS

We conclude by stating some open problems and possible future directions of
research in this area.

1. It is an interesting problem to try to make the poset P,, ;(®) in Theorem 2
smaller in size and more efficiently computable. For instance, in Theorem 3 one
should be able to improve the dependence on card(.J).

2. There are some recent work in algorithmic semi-algebraic geometry where al-
gorithms have been developed for computing the first few Betti numbers of
semi-algebraic subsets of R* having special properties. For example, in [6] the
authors give an algorithm to compute the first ¢ Betti numbers of semi-algebraic
subsets of R* defined by symmetric polynomials of degrees bounded by some
constant d. The complexity of the algorithm is doubly exponential in both d
and ¢ (though polynomial in k for fixed d and ¢). This algorithm uses semi-
algebraic triangulations which leads to the doubly exponential complexity. It
is an interesting problem to investigate whether applying the efficient simplicial
replacement of the current paper the dependence on d and ¢ can be improved.
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APPENDIX A. PROOF OF LEMMA 4.1

Proof of Lemma 4.1. We will denote for 0 <1i < s

R; = R<,Us7 Vsyon nu’i>7
R; = R<M57V37 e ’Mi7yi>'

Note that
RI=RooRy>---Rs >R, >R.
For 0 < i < s we define inductively:

Sy = 9,
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and for 7 > 0,

S; = lim Si;
Six1 = limS; (= lim S;)
Hei Hi

The lemma will follow from the following two claims.
Claim A.1. For each i,0 <i < s,
Si S, .
Proof. Easy. |

Claim A.2. For each ¢,0 < i < s,
S; N\ Siq1-
Proof. We will prove that
ext(SiH,R;) = 51_7
which suffices to prove the claim.
It is obvious that
ext(S;+1,R;) © S .
We now show that
EXt(SZ‘Jth;) [ Sz_
Define,
S&ED = |  lmR(@ ext(B Ri)),

l[,,
oeXy,level(o)<i ‘

55D

il limR(E, ext(B,RHl)),

o€y, level(o)=1 Hi

I J  lmR@ext(B.Ris)).

o€Xg,level(o)>1

It is easy to see that,
ext(S151 R)) < 87,
ext(S{71, RY) = ;.
It remains to prove that
ext(S{;1 R]) < S; .
Let 0 € ¥4, level(o) = 4, and x¢ € lim,, R(7, ext(B,Ri11)).
Let Py = {P € P | lim,, P(zo) = 0}. If card(Py) = ¢, then zg € S; and we are
done.
Otherwise, og = sign(P(zo)) € ¥y (using the fact that S is closed). Let z; =
Hmy,, 000 0, 01 = sign(P(z1)). If o1 # o9, then define x5 = limy,, ., , z1. Con-

tinue in this way and define g, z1,x2,.. ., till 0; = 0;41. Notice that o9,...,0; €
4. Consider the point z;. Then, z; = limmeveIwFI) g, and
zo € R(o;,ext(B,R})) < S;,

since o € 3g. This ends the proof of the claim. (]
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It follows from Claims A.1 and A.2 that S” \ lim,,, S" = S,4+1. Now it is obvious
from the definition of &, that for each o € X,

R(3,ext(B, R')) n R* = R(0, B).
It follows that
S'ARF=5.
Finally, since S’ N\, Ss+1 < RF, it follows that S’ n R*¥ = S,,1, and hence
Ssr1 = S. This implies that S’ N\, S.

Finally, it follows from Lemma 3.1 that ext(.S, R’) is a semi-algebraic deformation
retract of 5. O
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