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TOPOLOGY OF REAL MULTI-AFFINE HYPERSURFACES AND
A HOMOLOGICAL STABILITY PROPERTY

SAUGATA BASU AND DANIEL PERRUCCI

ABSTRACT. Let R be a real closed field. We prove that the number of semi-
algebraically connected components of a real hypersurface in R™ defined by a
multi-affine polynomial of degree d is bounded by 2¢=1. This bound is sharp
and is independent of n (as opposed to the classical bound of d(2d — 1)"~! on
the Betti numbers of hypersurfaces defined by arbitrary polynomials of degree
d in R™ due to Petrovskil and Oleinik, Thom and Milnor). Moreover, we show
there exists ¢ > 1, such that given a sequence (By)n>0 where By, is a closed
ball in R™ of positive radious, there exist hypersurfaces (Vi,)n. o defined by
symmetric multi-affine polynomials of degree 4, such that >}, 5 b;(V, n Bn) >
c™, where b;(-) denotes the i-th Betti number with rational coeffcients. Finally,
as an application of the main result of the paper we verify a representational
stability conjecture due to Basu and Riener on the cohomology modules of
symmetric real algebraic sets for a new and much larger class of symmetric
real algebraic sets than known before.

1. INTRODUCTION

We fix a real closed field R. For any closed semi-algebraic set S < R™, we denote
by b;(S) the dimension of the i-th homology group H;(.S) with rational coefficients
(the i-th Betti number of S)'. We will denote

b(S) = > bi(S).
i=0
In particular, by(S) equals the number of semi-algebraically connected components
of S.

The problem of proving upper bounds on the Betti numbers of a real algebraic
variety V' < R"™ in terms of the degrees of polynomials defining V' is a very well-
studied problem in real algebraic geometry. Before stating the classical result in
this direction it is useful to first introduce some notation that we are also going to
use later in the paper.

Notation 1.1. For P a finite subset of R[Xy,..., X,], B a semi-algebraic subset
of R", we denote by Z(P, B) the set of common zeros of P in B. If P = {P},
will denote Z(P, B) by Z(P, B). If ¢ is a quantifier-free formula in the first order
theory of the reals (i.e. a Boolean combination of atoms of the form P > 0,P €
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1Since we only consider homology and cohomology groups of semi-algebraic sets with rational
coeffcients we have H;(S) =~ H?(S) for any closed semi-algebraic set S by the universal coefficients
theorem [25, page 243].
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R[X1,...,X,]), then we will denote by R(¢, B) the semi-algebraic subset of B
defined by ¢.

An upper bound on the sum of the Betti numbers of a real algebraic set in R"™
in terms of the degrees of its defining polynomials was proved by Petrovskii and
Olemik [24], Thom [26], and Milnor [22]. However, the proof of this result actually
proves an a priori stronger result, namely a bound on the Betti numbers of the
intersection of the real algebraic set with any closed Euclidean ball in R™ (see for
example proof of Proposition 7.28 in [6]). In order to make explicit this distinction
we introduce the following notation.

Definition 1.1. Let B = (B),),>0 be a sequence of closed semi-algebraic subsets
of R, and F = (F,)n=0, a sequence where F,, < R[X1,...,X,] for each n > 0.
We define for each p = 0,

BF,BaP(n) = gé%?}i <Z bz(Z(P7 Bn))) y

i<p

Brp(n) = Br,@®")p0p(),

and also define,

pfr.B(n) = PBrBnn),
Br(n) = 5F,n(n)

We next observe that under certain conditions on B and F, Br 5 ,(n) (respec-

tively, Sr,B(n)) is an upper bound on Sg ,(n) (respectively, fr(n)).
Following the notation in Definition 1.1:

Proposition 1.1. Suppose that for each n > 0, B,, is a closed and bounded convex
semi-algebraic set having dimension n, and F, is closed under translations X —
X —x,x € R", and scalings X — A- X, A e R. Then,

Brp(n) < PrBpn), forp=0, and

Br(n) < Pr(N).

Proof. Since F, is stable under translations and dim B,, = n, one can assume
that B, contains the origin in its interior. As B, is convex, this implies that for
A > 0, A B, is an increasing family of semi-algebraic sets (increasing with M),
R*=J >0 - B, and each X\ - B, is a closed and bounded semi-algebraic set. It
follows from the conic structure theorem at infinity of semi-algebraic sets (see for
instance [6, Proposition 5.49]) that there exists Ag > 0, such that Z(P,A- B,) is a
semi-algebraic deformation retract of Z(P,R™).

Now let Py = P(A\g- X1,..., 0 Xy) € Fpn. Then, Z(Py, B,,) is semi-algebraically
homeomorphic to Z(P, A\ - B,,). Hence,

bP(P07B’rL) = bP(Z(P7 Rn))7 for p > 0,
This proves both inequalities in the proposition. 0

Remark 1.1. The inequalities in Proposition 1.1 can be strict. Take for example,

F = (R[X1,.... Xu]<2), -0
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(where R[ X}, ..., X, ]<a denotes the subset polynomials of degree at most d), and
B = ([-1,1]")n>o0.
Then for n > 2,

Bro(n) = 2,
BrBo(n) = 2"

The first equation is obvious. For the second inequality, consider

Po=) X7 —n.
i=1
Then, Z(P,, B,) = {—1,1}", and thus by(Z(P,, By)) = 2".

The theorem of Petrovskii and Oleinik [24], Thom [26], and Milnor [22] can now
be restated as follows.

Theorem 1 (Petrovskii and Oleinik [24], Thom [26], and Milnor [22]). For each
n >0, let B, be a closed Fuclidean ball in R™ of positive radius, and

Fd = (R[X17 s 7X"]gd)n>0 ’
Then,
5Fd,B(n) < d(2d* 1)71—1,

Using Proposition 1.1 one immediately obtains from Theorem 1 the following
corollary.

Corollary 1.
(1) Br,(n) <d(2d —1)" %

Note that the upper bound in (1) grows exponentially in n for d fixed. Another
point to note is that the proofs of the upper bounds on the sum of the Betti numbers
in (1) ultimately rely on bounding the number of critical points of certain Morse
functions. As such it does not give any additional information on a specific Betti
number (say the zero-th Betti number). In fact the problem of proving bounds on
individual Betti numbers which are better than the bounds on the sum of all Betti
numbers is of great interest in real algebraic geometry. One of the main results in
this paper (Theorem 2 below) furnishes such a bound (on the zero-th Betti number)
for a special class of real algebraic hypersurfaces in R™ that we define below.

1.1. Multi-affine polynomials. We consider real algebraic varieties in R™ defined
by polynomials of a special shape.

Definition 1.2. We call P € R[ X}, ..., X, ] a multi-affine polynomial if for every
i,1 < i < n, degy, P < 1. We denote the subset of multi-affine polnomials in
R[X1,...,Xn]<d by Agn, and the sequence (Agn)n>0 by Aqg.

Real multi-affine polynomials occur in several applications. For example, multi-
affine polynomials appear in computational complexity theory, since every element
of the coordinate ring,

R[B,] = R[X1,..., Xn]/(X1 (X1 = 1),..., X (X, — 1)),

of the Boolean hypercube, B,, = {0,1}", can be represented by a multi-affine poly-
nomial. The smallest degree of the unique multi-affine polynomial representing a
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Boolean function f : B,, — {0,1} is called the degree of f, and is used as a measure
of complexity of f [23].
The multi-affine polynomial

Pyv= > X" eR[X),...,X,],
1

where for I < [1,n], X denotes the monomial [ [,.; X;, and where I varies over the
bases of a matroid M, is called the basis generating polynomial of M. Its properties
(such as real stability) play an important role in the study of matroids, for instance
in the spectacular recent works by Anari et al. [4] and Brandén and Huh [13].
However, the topology of the real hypersurfaces they define has not been studied
much to the best of our knowledge. In this paper we prove quantitative results
on certain topological invariants (Betti numbers) of real hypersurfaces defined by
multi-affine polynomials of any fixed degree.

Finally, elementary symmetric polynomials, as well as linear combinations of
them, furnish examples of multi-affine polynomials. This last class of polynomials,
which are multi-affine as well as symmetric, will appear again later in the paper.

2. MAIN RESULTS

We now state the main results proved in this paper in the following three sub-
sections.

2.1. Bound on the zero-th Betti number. Our first result is a bound on the
number of semi-algebraically connected components of hypersurfaces in R™ defined
by multi-affine polynomials which is independent of n. More precisely, we prove
the following theorem.

Theorem 2.
ﬁAmO(n) < 2d71'

Example 2.1 (Sharpness). The bound in Theorem 2 is sharp: for d,n € N, let
P=X,...Xy—1¢€ Ag,. Then, by(Z(P,R")) = 2¢-1.

Remark 2.1. Unlike the proof of Corollary 1 above, we will prove Theorem 2
directly without first proving a bounded version.

2.2. Varieties defined by more than one polynomials and higher Betti
numbers. A remarkable property of the bound in Theorem 2 is that it is indepen-
dent of n (unlike the bound in (1)). However, there are two restrictive features of
the bound in Theorem 2 that are worth pointing out.

(a) The bound applies only to varieties defined by a single multi-affine polynomial.
Note that the usual trick in real algebraic geometry of reducing the number of
polynomials defining a variety to one by taking a sum of squares does not work
well with the class of multi-affine polynomials. The square of a multi-affine
polynomial is no longer necessarily multi-affine.

(b) The bound in Theorem 2 applies only to the zero-th Betti number (as opposed
to the sum of all the Betti numbers).

It is natural to ask whether one could improve Theorem 2 by removing the
restrictions (a) and (b). We show that this is not possible if we want to have an
upper bound that is independent of n (in the case of restriction (b) our result only
applies to the bounded version — see Theorem 3).



TOPOLOGY OF REAL MULTI-AFFINE HYPERSURFACES 5

We first address (a). We construct below a sequence of examples each involving
three multi-affine polynomials in R[X7, ..., X,,] of degree at most 4, such that the
number of connected components of the real variety they define grows with n. In
order to construct these polynomials we need to introduce some notation.

Notation 2.1. Forn € Ny and £ € Z with ¢ > —1, we denote by oy, € R[X1,..., X,]

the ¢-th elementary symmetric polynomial in X1, ..., X,, defined as follows:
® 0_1,n = 07
® Oon = 1,
°® oyp = lei1<m<”s” X .. X, for 1<l <mn,
o opp =0forf>n.

It is clear that for n € N and ¢ € Z with ¢ > —1, oy, is multi-affine. Also, for
0<l<n,

O¢on = Xna-é—l,n—l + O¢n—1-
Notation 2.2. For /,n € N, we denote by Ny, the /-th power sum polynomial,
Ne,n :Xf+"'+X7l;'

When the value of n is clear from the context, we will simply write o, to denote
o¢,n and Ny to denote Ny y,.

Example 2.2. Consider any fixed value of k € N. For n > k, consider P;, P», P3 €
R[X,...,X,] of degree bounded by d = 4:

Pl(X) = Ul(X)—]C,
Py(X) = o02(X) - gk(k - 1),
Py(X) = (4k —6)o3(X) — dou(X) — Lk(k — 1)2(k — 2).

Using the Newton identities

N, = oy,

Ny = Nyoy — 209,

N3 = Nso1 — Niog + 303,

Ny = Ns3o1 — Noog + Nyog — 40y,

for x € Z({Py, P2, P3},R™) we have

Nl(fE) = ]{37
NQ(x) = k?
and
Z 3 (x; —1)* = Ny(x) —2N3(x) + Na(z)

= (4k —6)o3(x) — doy(x) — %k(k —1)%(k—2)
= 0.
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This implies that Z({Py, P, P3},R™) is a finite set with (}}) points: each point is
an element of {0,1}" with exactly k coordinates equal to 1 and n — k coordinates
equal to 0. Therefore

(2P, P PR = ()

cannot be bounded only in terms of d = 4 (independently from n).

Example 2.2 shows that it is impossible to obtain a bound on the number of
semi-algebraically connected components of a real variety in R™ defined by three
multi-affine polynomials which is independent of n. We do not know if such a bound
exists for a real variety defined by two multi-affine polynomials of degree at most
d.

We now address (b). We first introduce a notation.

Notation 2.3. For 0 < d < n we denote

Edm:{PeR[Xl,...,Xn]gd | P= Z aicrim,aieR,Ogigd}.

o<i<d
Moreover, we denote 33 = (X4,n)n>0-

It is natural to wonder whether one can obtain a bound on fSa,(n) that is inde-
pendent of n. We prove the following theorem which rules out a bound independent
of n for the intersection of these hypersurfaces with bounded closed balls.

Theorem 3. There exists a constant ¢ > 1 having the following property. Let B =
(Bn)n>0, where each B, is a symmetric, closed, convex, bounded semi-algebraic
subset of R™ with dim B,, = n. Then for n > 1,

Bs.B5(n) > "

In particular, since for each d,n >0, ¥4, < Agn, we also have for n > 1,

Pasms(n) >

Remark 2.2. The proof of Theorem 3 uses two different ingredients and will
be given in Section 3.2. First, it uses representation theory of the symmetric
group. Second, it uses a certain spectral sequence argument originally used by
Agrachev [3, 2], and later by other authors [10, 1, 20] for proving upper bounds
on the Betti numbers of semi-algebraic sets defined by quadratic inequalities (in
the non-symmetric situation). We use it in this paper for proving lower bounds
on the maximum Betti numbers occurring in a family symmetric real varieties (i.e.
for proving existence of symmetric real varieties with large Betti numbers). This
technique of proof might be of independent interest for proving lower bounds on
the maximum possible Betti number of real varieties defined by other families of
(symmetric) polynomials than those we consider in this paper.

Remark 2.3. Also, note that proving existence of real varieties with maximum

possible Betti numbers is a well studied problem in real algebraic geometry (see

[17, 12]). Theorem 3 is distinguished from these results because of several reasons.

(a) The results in the papers cited above are about real projective or more generally
toric varieties, while we study real affine varieties in this paper.

(b) The asymptotics in the above cited papers are for fixed n, with the degree of
the polynomial tending to infinity. In this paper, we consider the degree to be
fixed and let n be large.
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(¢) Finally, it is not clear if the method of “combinatorial patchworking” used in
[17, 12] can be used to construct real symmetric varieties having large Betti
numbers.

2.3. Stability conjecture. We now describe a connection between the results
stated above with the study of the cohomology groups of symmetric semi-algebraic
sets as modules over the symmetric group.

2.3.1. Some background. The symmetric group &,, acts on R™ by permuting coordi-
nates. We say that a semi-algebraic subset S < R"™ is symmetric if it is stable under
this action. The action of &,, on a closed symmetric semi-algebraic set S < R"
induces an an action on the cohomology H*(S), giving H*(S) the structure of a
finite dimensional &,,-module.

Remark 2.4. Note that if H is a finite-dimensional &,, module (over Q), Hom(H, Q)
has a canonically defined induced &,,-module structure, and is isomorphic to H as
an &,,-module. 2

Also, using the universal coefficient theorem, we have that for any closed semi-
algebraic set S < R", H(S) =~ Hom(H;(S),Q). If S is additionally symmetric,
then we have that H'(S) ~g, H;(S).

General facts from group representation theory then tell us that the &,-module
H*(S) admits a canonically defined isotypic decomposition as a direct sum of sub-
&,,-submodules, each of which is a multiple of a certain irreducible &,,-module.
The irreducible &,,-modules are well studied, and they are in bijection with the
finite set of partitions of the number n — the module corresponding to the partition
A = n will be denoted by S* in what follows, and is called the Specht-module
corresponding to A (see the book [19] for the precise definitions of these objects).
We will use the following notation.

Notation 2.4. For any finite dimensional &,,-module H, ® and A = (A1,..., ) -

n, we will denote by H ), the isotypic component corresponding to the Specht module
S* in H. Thus, the isotypic decomposition of H is the direct sum decomposition

H =, @ HA,
AN
and each H) =g, m)S*, where my > 0. We will denote multy(H) = m.

Thus the isotypic decomposition of H*(S) gives a canonically defined direct sum
decomposition (direct sum in the category of &,-modules)
(2) H'(S) =s, P mia(S)S*,

An
where _
m; A (S) = multy (H*(S)).

The dimension of the Specht module S*, has a simple expression (see for example

[19, Theorem 2.3.21]
n!

(3) dim$* = T h;’j oy

2This is a consequence of the fact that the group &, is ambivalent; every element is conjugate
to its inverse.

3The choice of H to denote the representation is deliberate since all the &,-modules considered
in this paper will be of the form H* (V') or Hy (V) for some symmetric real algebraic set V.
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where

hi,j(/\) =)\i+>\;‘*i*j+1,
and ) is the transpose of A. * Note that these dimensions can be exponentially big
even for relatively simple partitions (say the partition (n/2,n/2) for even n). For
a symmetric semi-algebraic set S  R™, knowing the multiplicities m; (S), A - n,
allows one to compute the dimension of H*(S), and thus the i-th Betti number of
S (using Eqn. (3)).

The partition (n) - n having length one plays a special role. The corresponding
Specht-module S is the one dimensional trivial representation of &,, and the
isotypic component of H*(S) corresponding to the partition (n) is thus isomorphic
to the fixed part H(S)®» of H'(S), which in turn is isomorphic to H*(S/&,,) (see
[7] for details and subtleties regarding these isomorphisms). We will use this last
fact later in the paper (in the proof of Proposition 3.3).

The decomposition of the cohomology modules of a closed semi-algebraic set
S < R" defined by symmetric polynomials having degrees at most d into isotypic
components was studied in [7] and [11] where several results are proved. One
important result is a severe restriction on the partitions that are allowed to appear
in the isotypic decomposition of the cohomology — which cuts down the possibilities
for the allowed partitions from exponential to polynomial (for fixed d). The following
theorem is a slightly simplified version of Theorem 4 in [11] and will be used in the
proof of our new stability result (Theorem 5 below).

Theorem 4. [11] Let d = 2, and V < R™ be a real variety defined by symmetric
polynomials of degree bounded by d. Then, for all A -+ mn, if m; x(V) > 0, then

length(A) <@+ 2d — 1.

Independent of the above results, the phenomenon of representational and ho-
mological stability (see for example [15]) is an active topic of research in algebraic
topology. One basic phenomenon of (homological) stability that motivates this
study is the fact that for any fixed p, and any manifold X, b,(C,(X)), where
Cp(X) is the ordered n-th configuration space of X, is eventually given by a poly-
nomial in n. The space C,(X) admits an &,, action which induces an &,,-module
structure on H,(C,,(X)). The homological stability is then a consequence of the
stability of the multiplicities of certain Specht modules in H,(C,, (X)) for large n.
All the above can be put in a much broader context of the category of FI-modules.
However, we do not need this generality for the application that we discuss below.

Inspired by the representational stability phenomenon, the following conjecture
was made in [7] about the growth rate of the multiplicities of the Specht modules in
the cohomology modules of certain natural sequences of symmetric semi-algebraic
sets. We state this conjecture below. But in order to do so we first need to introduce
some definitions.

We let

A, =R[X1,...,X,]%"
denote the graded ring of invariant polynomials, with natural graded homomor-
phisms A, ., — A, obtained by setting X,,1m,..., X 11 to 0. We denote by

A = projlim A,

4Since hi,j(A) in the above formula is equal to the length of the hook with corner in the box
(¢,7) in the Young diagram of A, the formula (3) is often called the hook length formula.
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(where the limit is taken in the category of graded rings), and denote by
On: N> A,

the graded homomorphisms induced by the limit (see [21, pages 18-19]).

By a standard abuse of notation, after dropping n from the subscript, we will
consider the symmetric polynomials gy, Ny (see Notation 2.1 and Notation 2.2) as
elements of the ring A.

More precisely, for every ¢,n > 0, we have

(bn(o-é) = O¢n,
an(Ng) = Nf,n-

Now, suppose I = (f1,..., fr) is a finitely generated ideal of A. Then, I defines
in a natural way symmetric real algebraic sets

Vio(I) = Zer(édn(f1), -, &n(f)) € R™,n > 0.
For any fixed partition A = (A1,...,A¢) F d, we denote for n = A\ +d
{Mn=Mm—-d,\,..., \).
(Note that the above definition of the sequence of partitions

({A = ()‘17 e ) = d}n)n>>\1+d

is standard in the asymptotic study of representations of &,, as n — o (see for
example [16, Eqn. (6.3.1)]).)
We are now in a position to state the the conjecture made in [7].

Conjecture 1. [7] For any fized p = 0, my, (xy, (Va(I)) (see (2) for definition) is
eventually given by a polynomial in n.

The evidence in favor of Conjecture 1 is a little sparse. It was verified in the
following very special case in [7].

Let A = (A1,...,A¢) b d, and I < A the ideal generated by the symmetric
function Ny—2N3+ Ns € A. In this case, for which for each n > 0, the corresponding
real algebraic set V,,(I) equals B, = {0,1}"”. We have for all large enough n (see
[7, Remark 5.3]),

| mn=2A 41, ifi=0andlength(\) <1,
(4) M), (Vall)) = { 0 otherwise.

Notice that the right hand side of Eqn. (4) is a polynomial in n for any fixed .

In this paper we verify Conjecture 1 for an infinite class of ideals. Instead
of considering just the ideal generated by a very particular linear combination of
Newton symmetric functions as above, we are able to handle all principal ideals in A
which are generated by arbitrary linear combinations of the elementary symmetric
functions.

We prove the following theorem.

Theorem 5. Let f = Z?:o a;o; € A be a linear combination of the elementary
symmetric functions o; € A,0 < i < d, and let I = (f). Then, for any partition
A and n large enough, mg (xy, (Va(I)) equals O if length(A) > 0, and stablizes to a
(possibly non-zero) constant if length(A\) = 0 (i.e when X is the empty partition).
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Remark 2.5. Theorem 5 verifies Conjecture 1 for ideals generated by one linear
combination of elementary symmetric functions, with p = 0. Note that in compari-
son to the special case of Conjecture 1 proved in [7], the family of ideals that we are
able to handle (while still being principal) is considerably larger. It should also be
noted that Theorem 5 proves a strong form of Conjecture 1 for the principal ideals
that we consider in this paper — in that the multiplicities of the Specht modules
corresponding to {A}, actually stabilize to a constant (not just a polynomial in n).
In general such a strong version of Conjecture 1 cannot hold as exhibited in Eqn.

(4).
Remark 2.6. Note that the limit
nh_I,lgC mov{A}n (V'ﬂ(]))

which exists by Theorem 5 can be strictly bigger than 1. For instance, we will show
at the end of Section 3.3 that if f =092 — 1,9 =03 —01, I = (f),J = (9),A = (),
then

Jﬂomo,{A}n(Wz(I)) = 2
Jiigomo,{x}n(vn(J)) = 3.

The rest of the paper is devoted to the proofs of the theorems stated above.

3. PROOFS OF THE MAIN RESULTS

Even though theorems that we have stated in the previous section were for-
mulated over an arbitrary real closed field R, using a standard application of the
Tarski-Seidenberg transfer principle (see for example [6, Theorem 2.80]) it suffices
to prove them for R = R. In the rest of the paper we will assume R = R so that we
are free to use certain basic results (such as existence of Leray spectral sequence,
proper base change theorem etc.) without having to formulate these over arbitrary
real closed fields.

3.1. Proof of Theorem 2. The idea of the proofis as follows. Let P € R[X1, ..., X,]
be a multi-affine polynomial of degree d € N. Suppose

P(Xl, . 7Xn) = XnQ(Xh . 7Xn71) + R(Xl, - ,anl)

with @, R multi-affine, Q # 0 and deg@ = d — 1. The main point of the proof is
to show that there is no semi-algebraic connected component of Z(P,R™) included
in Z(Q,R™). Once this is done, bg(Z(P,R")) is bounded by the number of semi-
algebraic connected components of the set Z(P,R™) n (R"\Z(Q,R")). Finally, we
bound this last number using Theorem 6, which we prove first and might be of
independent interest.

Theorem 6. Let P € R[X1,...,X,] be a multi-affine polynomial of degree d € Ny.
The number of semi-algebraically connected components of R"\Z(P,R") is bounded
by 2¢.

Proof. The proof is by induction on d. The result is clear for d = 0 and d = 1.
Suppose now d > 2 and

P(X1,.., Xn) = XaQ(X1, .o, Xut) + R(X1, ., Xo)
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with @, R multi-affine. Without loss of generality we suppose @ # 0 and deg @ =
d — 1. Since every semi-algebraically connected component of R™\Z(P,R") in-
tersects R™\Z(Q,R™), the number of semi-algebraically connected components of

R™Z(P,R™) is bounded by the number of semi-algebraically connected components
of

(RMZ(P,R")) n (RMZ(Q,R"))) =

*R(Z‘l, e ,l‘n_l)
e R™ ey T 0
[ o) € R Qars o) 20,y it
which is twice the number of semi-algebraically connected components of R"\Z(Q, R™),
or equivalently, of R"~1\Z(Q,R""!). We conclude using the inductive hypothe-
sis. O

Proof of Theorem 2. We will denote by ey, ..., e, the elements of the standard basis
of R™, and denote by {e;) the span of e;.

We consider first the case of P reducible in R[X1,...,X,]. Suppose without
loss of generality P = P, P, with P, and P, non-constant multi-affine polynomials,
P1 € R[Xl,,Xm] and P2 € R[Xerl,...,Xn]. If Cl,...,Cg and Dl,...,Dg/
are the semi-algebraic connected components of the non-empty sets Z(P;,R™) and
Z(Py, R™"™™) respectivelly, then

Z(PLR") = (C; xR"™)u---u(CexR"™™)U(R™ x D) u---u (R™ x Dy),
which is semi-algebraically connected. Therefore, bo(Z(P,R")) = 1.
Now we consider the case of P irreducible in R[ X}, ..., X,]. Suppose
P(Xy,...,X,) =X,Q(Xy,...,. X1)+ R(Xy,..., Xpn1)

with @, R multi-affine. Without loss of generality suppose @@ # 0 and deg@ =
d—1. We will prove that there is no connected component of Z(P,R") included in
Z(Q,R"). If n = 1 then Z(Q,R"™) = ¢J and we are done. From now on we consider
n=2.

For every x = (x1,...,7,) € R® we denote z = (z1,...,7,-1) € R"! and
T = (.231, . ,Z‘n_g) e R"2,

Suppose that C' is a connected component of Z(P,R"™) included in Z(Q,R™) and
take z = (#1,...,2n) € C. Since P(z) = Q(z) = 0, then R(Z) = 0 and P(z,%') =0
for every 2z’ € R. Since the line z + (e, ) is semi-algebraically connected, C' includes
the line z + {e,). Take & # I < {1,...n} of maximum cardinality such that

z2+{e; |ielycC.
Notice that #I <n — 1 since P # 0, and n € I since
CcZ(P,R")n Z(Q,R").
Without loss of generality suppose n — 1 ¢ I and
Q(X1,.. .., Xn-1) =Xpn 15Xy, o, Xn2) + T(X1,..., Xn—2)
R(Xla s 7Xn—1> = Xn—lU(Xla e 7Xn—2) + V(Xh CIE aXn—Q)
with S, T, U,V multi-affine. We consider the following cases:
o Forevery ye z+<e; | i€, S(§) =U(g) =0: We will prove that
z+{e; lielu{n—1})cC,

which is impossible since this contradicts the maximality of 1.

9
)



12

SAUGATA BASU AND DANIEL PERRUCCI

Since
z4+{ei|ielu{n—1}) = Uyeice, | ieny(y + (en-1)),
it is enough to prove that y + {e,—1) < C for every y € z + {e; | i € I).
Moreover, for any such y, since y + {e,_1) is semi-algebraically connected,
it is enough to prove that y + {e,—1)» < Z(P,R™). Since P(y) = Q(y) = 0,
then R() = 0. Since in addition S(g) = U(y) =0, T(y) = V(g) = 0. Take
any w € y + {e,_1), then Q(w) = R(w) = 0 and P(w) = 0.

e There exists

yez+<{e|iel)
such that S(g) # 0 and U(g) = 0: We will prove that the line (g, 0)+{e,—1)
is included in C' and intersects (R™\Z(Q,R™)), which is impossible since
this contradicts the fact that C < Z(Q,R™).

To prove that (g,0)+{e,—1) < C, since (7, 0)+{e,—1 ) is semi-algebraically
connected, it is enough to prove that (7,0) + {e,—1) < Z(P,R™). Since
P(y) = Q(7) = 0, then R(y) = 0. Since in addition U(§) = 0, V(§) = 0.
Take any w € (§,0)+{ep—1). Then R(w) = 0 and P(w) = 0-Q(w)+ R(w) =
0.

For w € (4,0) + {en_1), Q(w) = w,_15(g) + T(g) = 0 if and only if
wp—1 = —=T(7)/S(9). It follows that (7, 0)+{e,—1) intersects (R™\Z(Q,R™)).

e There exists y € z +{e; | ¢ € I) such that U(g) # 0: We will prove that the
polynomial P is reducible, contradicting our assumption.

If (,0) is in the closure of Z(P,R") n (R™\Z(Q,R™)), then it is in
Z(P,R™)\C; which is impossible since (7,0) € C. Hence there exists e > 0
such that

(B(9,€) X (yn-1 = &, yn—1 +€) x (=&,€)) n (Z(P,R") n (R"\Z(Q,R")))

is empty. Moreover we can also suppose that U does not vanish on B(7, ¢).
Since P(y) = Q(§) = 0, R(g) = 0, and since U(y) # 0, yn—1 =
—V(9)/U(g). This implies that

TV ()/U(w) = 1,
and that there exists 0 < ¢ < e such that —V(w)/U(w) € (Yn—1—¢, Yn—1+€)

for every w € B(g, ).
For each w € B(y,0),

(wa —V(w)/U(w),O) € B(gad) X (ynfl —&,Yn—1+ 5) X (_575)~

Since P(w, =V (w)/U(w),0) = 0, we have that Q(w,—V(w)/U(w)) = 0,
and we get

S(w) +T(w) =0,
and
U(w)T(w) = V(w)S(w).
Since this equality holds in the open set B(%,d), we have
UTr'=VSe R[Xl,. . .,ang].

Suppose U = U1 E and V = V1 E with E = ged(U,V) € R[X1,..., Xn—2].
Then S = U F and T = Vi F for some F € R[X1,...,X,_2], and

P = Xn(Xn_lUlF + VlF) + X,_1UE+ViE = (XnF + E)(Xn_lUl + Vl)
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After considering all the possible cases, we conclude that there is no semi-
algebraic connected component of Z(P,R"™) included in Z(Q,R"™). This implies
that bo(Z(P,R™)) is bounded by the number of semi-algebraic connected compo-
nents of the set

Z(P,R") n (R"\Z(Q,R")) =
{(xl, cxn) ER™M | Q1,0 xpm1) # 0,2, = —R(z1,. . 20) }

Qz1,. ., Tn-1)
which equals the number of semi-algebraically connected components of the set
(R™\Z(Q,R™)). This number is bounded by 2¢~! by Theorem 6. O

3.2. Proof of Theorem 3. For every n > 0, want to produce a symmetric multi-
affine polynomial P € R[Xy,...,X,] of small degree (in fact we will take the
degree to be 4) having large Betti number (growing super-polynomially with n).
As mentioned earlier the usual trick of taking sum of squares does not work well
with multi-affine polynomials. For example, the sequence of polynomials

Py= ) X2 (X;—1)°
i=1

has the property that each polynomial is symmetric, of degree 4, having sum of
Betti numbers equal to 2™ (and so growing exponentially with n), but P, is not
multi-affine.

Therefore, we take an indirect approach. We leverage the fact that the polyno-
mials Pj, P>, P3 in Example 2.2, being linear combinations of elementary symmetric
polynomials, are each symmetric and multi-affine. Moreover,

H°(Z({P1, P, P3},R"))

as a 6,,-module is easy to understand and has a Specht module occurring in it of
large dimension.

We prove (Proposition 3.2 below) using a spectral sequence argument that each
Specht module that appears in H?(Z({P;, P>, P3},R™)) must appear in at least
one of the cohomology modules H(Z(P,R")), ..., H?(Z(P,R")) for some P in the
linear span of P, Py, Ps.

Proposition 3.2 follows from a more general result (Proposition 3.1 below).
Proposition 3.1 relates the vanishing of the multiplicities of a Specht module in
the low dimensional (up to dimension 2p — 1 for some p > 0) cohomology modules
of the hypersurfaces defined by symmetric polynomials in any linear subspace of
symmetric polynomials, to the vanishing of the same Specht module in the zero-th
cohomology of the intersections of at most p of such hypersurfaces.

The key idea here is that if a finite group acts on the stalks of a constructible sheaf
and the isotypic component corresponding to a certain irreducible representation
is zero at all stalks, then the isotypic component of that irreducible occurs with
zero multiplicity in the cohomology of that sheaf (see Claim 3.5 in the proof of
Proposition 3.1 below).

Proposition 3.1. Let A - n,A\ # (n), p > 0, L < R[X4,...,X,]®" a linear
subspace of the vector space of symmetric polynomials, and B < R™ a symmetric,
closed and bounded semi-algebraic set.

Suppose that for all Pe L and 0 <i<2p—1,

(5) m; A(Z(P,B)) =0
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(cf. Eqn. (2)).
Then, for all g,1 < q<p, and P,,...,P;je L,

mo,)\(Z({Pl, ey Pq}, B)) =

We will use the following lemma in the proof of Proposition 3.1. It is an equi-
variant of a similar inequality that appears in [6, Proposition 7.33 (b)].

Lemma 3.1. Suppose that Vi,...,V,, be symmetric closed semi-algebraic subsets

of R™. For J c [1,m] denote
-Uvvi =V
jeJ jeJ
Then fori >0 and A+ n,

(6) M A V[1 m] Z Z mHj,l,)\(VJ).

J=1 Je[1,m] card(J)=j

Proof. The proof uses Schur’s lemma and an &,,-equivariant version of the proof
of a similar inequality in the non-symmetric case in [6, Proposition 7.33 (b)]. We
first observe that claim is obviously true when m = 1.

The claim is now proved by induction on m. Assume that the induction hypoth-
esis holds for all m — 1 closed, symmetric semi-algebraic subsets of R™, and for all
i>0and A # (n).

It follows from the standard Mayer-Vietoris sequence that there is an exact
sequence where each map is &,,-equivariant.

- —H (‘/[1 m— 1]) oH ( m) - Hl(‘/[l,m]) - Hi+1(‘/[l,mfl] Y ‘/m) -

Using Schur’s lemma and restricting to the isotypic component corresponding to

S* we obtain an exact sequence

o> H (Vi me)x @H (Vi)a = H (Vim)a = HT (Vi ety U Vi )a — -+
from which it follows that
(7) m@)\(V[Lm]) < mi,)\(‘/[l,m—l]) +miax(Vin) + mi+1,>\(v[17m—1] U Vin).

Applying the induction hypothesis to the closed symmetric semi-algebraic sets
Vi,...,Vim_1, we deduce that

(8) mi,A(V[l,mfl] Z_l Z mi.i,-j_l,A(VJ).

1 Jc[1,m—1],card(J)=j
Next, applying the induction hypothes1s to the closed symmetric semi-algebraic
sets, V1 UV, ..., Vin_1 UV, we obtain

9 miriaVMim—1 Y Vi) < Z Z mHj’/\(VJU{m}).
j=1 Jc[l,m—1],card(J)=j

We obtain from inequalities (7), (8), and (9) that

mi X Vv[l m] Z Z mi+j71,)\(VJ)7
Jj=1Jc[1,m],card(J)=j
which finishes the induction. O
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Proof of Proposition 3.1. We first prove a series of claims (Claims 3.1-3.5 below).

In these claims we will use the following notation. Let P = (Pi,...,P,;) € L? for
some ¢ > 1, and we denote
Q={w= (w1, --,wy) €ST | w =0,...,w, =0},

where S7~! denotes the unit sphere in RY.
Following a technique introduced by Agrachev [3, 2], for w € Q we denote

WP =wi P+ +wy Py,
and denote
S(P,B) = {(w,z) €2 x B|wP(z) <0}.
We denote by 71 : S(P,B) — Q and my : S(P,B) — B the restrictions to
S(P, B) of the projection maps  x B — Q and Q x B — B respectively.

Claim 3.1. .
ma(S(B.B) = {we BI \/(Py(a) < 0)}.

Proof of Claim 3.1. Suppose that P;(z) <0, with 1 < j < g. Let
w(j) = ((51,]‘, ey 5q7j) e Q.

Then clearly w@) P(z) < 0 and hence (w9, z) € S(P,B), proving that z €

Conversely, if z € mo(S(P, B)), then there exists w € 2, such that wP(x) < 0.
If Pj(x) > O for every j,1 < j < ¢, then wP(z) > 0, since w has at least one
coordinate not equal to 0 and hence strictly positive. This is a contradiction. So
there exists 7,1 < j < ¢, such that P;(x) <O0.

This completes the proof of the claim. (I

Claim 3.2. The map ms induces an isomorphism of &, -modules
H..(S(B, B)) — Hy(m2(S(2, B))).
Proof of Claim 3.2. The map 79 is clearly &,-equivariant. For z € mo(S(P, B)),

the fiber 73 1(x) is a non-empty intersection of the sphere S¢~! with the polyhedral
cone defined by the linear inequalities,

w1 =0,...,wq = 0,w1 Pr(z) + - - wePy(s) <0,

and hence is contractible. This implies that the induced map 73 : Hi(S(P, B)) —
H, (m2(S(P, B))) is an isomorphism by the Vietoris-Begle theorem [25, page 344].
]

Claim 3.3. Eqn. (5) implies that for all Pe L, 0 < i <2p—1,
miA(R(P <0, B)) = 0.

Proof of Claim 3.3. The Mayer-Vietoris exact sequence in homology yields the fol-
lowing exact sequence relating the homology groups of R(P < 0, B),R(P > 0,B),R(P =
0, B):

-+ > H;(R(P=0,B)) > H;(R(P<0,B)) ®H;(R(P>0,B)) > H;(B) — - -

Note that each arrow in the above sequence represents an homomorphism of &,,-
modules. Thus, by Schur’s lemma they restrict to give an exact sequence between
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the S*isotypic components. Noticing that A # (n), and hence mq x(B) = 0, we
obtain the inequality for each i > 0,
(10) miA(R(P = 0,B)) +m; x\(R(P < 0,B)) <m;x(R(P =0,B)).
This together with (5) implies that for 0 <@ < 2p—1,
(11) mi (R(P <0,B)) = 0.
The claim follows from (10) and (11). O

Claim 3.4. For eachweQ, and 0 <i<2p—1,
mix(m7 (W) = 0.

Proof of Claim 3.4. Follows immediately from Claim 3.3 noting that 7 '(w) is
equivariantly homeomorphic to R(wP < 0, B), and

wP espan(Py,...,P;) c L.

Claim 3.5. For 0 <i:<2p—1,
miA(S(P, B)) = 0.

Proof of Claim 3.5. Let S = S(P,B). There exists a first-quadrant spectral se-
quence, E! (the Leray spectral sequence of the map 1), converging to H*™(S),
whose Fs-term is given by

Ey' = H*(Q, R'm14(Qs)),

where Qg denotes the constant Q-sheaf on S. The sheaf Rimi4(Qg) is the sheaf
associated to the presheaf which associates to every open subset U < €, the Q-
vector space,

H' (r(U))
(see [18, Chapter II, Proposition 5.11]). The set 7, }(U) is stable under the action
of &, and so there exists an isotypic decomposition

H!(r7 () =s, @ (H'(r'(1))),,
p=n

(cf. Notation 2.4). Moreover, since the restriction homomorphisms of this presheaf
are all &,-equivariant, it follows from Schur’s Lemma and the definition of the
sheafification functor (see for instance [18, page 85]) that there is a direct sum de-
composition of the sheaf R'm4(Qg)) into its isotypic components R4 (Qs)),, p -
n.

Thus, we have

Rt'frl*(QS) = @ (Rt’ﬂ'l*(QS))u'
pEn

Since, m : S — € is a proper map, using the proper base change theorem (see

for example [18, §3, Theorem 6.2]) we obtain that for w € Q,

R'm14(Qs)w = H' (7! (w)),
and for p - n,
(12) (R'm14(Qs)) ) = H (17 (W)
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Using Claim 3.4 we have that for each w e Q, and 0 <i<2p—1,
mia(mr (@) = 0.
Taking g = A in Eqn. 12, we have 0 <t < 2p — 1,
(R'm14(Qs))a)w = H (mH(w)r = 0,
which in turn implies that
(13) R'mi,(Qs))x = 0.
Now,
Ey' =s, H(Q R'm(Qs))
s, H(Q @ RE'm(Qs))u)

pEn

=g, (—B HS(Q, (Rtﬂ'l*(@S))u)

pEn

= @(E;t)w

pEn

lle

where
(Eg’t)u =H’(Q, (Rtﬂl*(QS))u)~
The differentials d, : E3! — E3*tmt=m+1 in the spectral sequence E3! are &,,-
equivariant, and for each u - n using Schur’s lemma yet again, we have for r > 2,
(E2),, is a subquotient of (E3"),.

T

It follows from the above and Eqn. (13) that for 0 < ¢ < 2p—1, and all s > 0
and r > 2,
(EX)x = 0.
This implies that for all 7,0 <7 < 2p — 1,

(H'(S)x = D (BZ)r =0,

s+t=i
or equivalently,
mia(S) = Ofor0<i<2p—1.
O

Observe that Claims 3.2 and 3.5 together imply that for any P = (Py,...,FP,) €
Lig>1,and 0<i<2p—1

mi\(m2(S(2, R))) = 0.

Rewriting the above equation using Claim 3.1 we obtain that for 0 <i<2p—1
q

(14) miA(R(\/(P; <0,B))) = 0.

j=1
We are now in a position to finish the proof of Proposition 3.1.
We now fix P = (Pi,...,P,;) € L9, and assume that 1 < ¢ < p. Observe that

R(/q\ P;=0,B) = R(/q\((Pj <0) A (=P; <0)),B).
j=1 j=1
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Let
V; = R(P;<0,B), forj=1,...,q,
Vi = R(-Pj_¢<0,B), forj=q+1,...,2¢.
Now Eqn. (14) applied to the various sub-tuples of the tuple
(Pi,...,P,,—Py,...,—P,) e L*,

implies taking i = 0 that for all J < [1,2q], mj_1 (V) = 0, where j = card(J)
(noticing that j — 1 < 2p — 1, since j = card(J) < 2¢ < 2p). Inequality (6) in
Lemma 3.1 now implies that

mO,A(‘/[l,Qq]) = mO,A(Z({P17'~~,Pq}7B))
= 0.
This finishes the proof of Proposition 3.1. O

Proposition 3.2. Let B be a symmetric, closed, bounded symmetric semi-algebraic
set containing B,,. For k >0, and n = 2k, and each A = (n—4,5),0 < j < k, there
exists P € 3y 5, such that there exists 1,0 < i < 5,

mi(Z(P,B)) > 0.

Proof. Following Example 2.2 we let

Pl(X) = 0'17n(X)—]€,
Py(X) = o09,(X)— %k(k -1,
Py(X) = (4k —6)03,(X) — 404(X) — $k(k — 1)%(k — 2).

Then, Z({ Py, P», Ps},R™) is equal to the subset of B,, = {0, 1}" < B of cardinality
(:) consisting of points with exactly k& 1’s and n — k 0’s amongst its coordinates.

The &,-module structure of H*(Z({Py, P, P3}, B)) is well-studied. It is isomor-
phic to the Young module M™**) [14, page 139] (see also [7, Example 1.19]). °
The isotypic decomposition of the Young module M ("*~**) is given by

k
MO—kER) ~ o @ s
Jj=0

(see [14, page 141, Eqn. (3.72)]). Thus,
(15) m07,\(Z({P1,P2,P3},B)) =1 >O7

for A\=(n—4,7),0<j <k
Now suppose for the sake of contradiction that for all P € 34 ,,, and A = (n—3, j)

(16) mi\(Z(P, B)) =0,
for 0 <7 <5.

But Eqns. (16) and (15) together contradict Proposition 3.1 with L = X4 ,,, and
p=q=3. O

In the proof of Theorem 3 we will also need the following lemma which is a
straight-forward consequence of the hook formula.

Sn

5The Young module M™~*:¥ is isomorphic to the induced module Inde «&, gl Mls, -
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Lemma 3.2. For allneN, and A\ = (n — [n/2],|n/2]) - n

imS* = ; K if n is even
() W8 = Lo (o) ’
1

= ST ) T o

In particular, there exists ¢ > 1 such that for alln > 1,
dim S* > ¢".

Proof. Eqn. (17) follows immediately from Eqn. 3 (hook length formula). The last
statement is a consequence of the inequality

4m 2m
< )
2m + 1 m

which is valid for all m > 0. O

We are finally in a position to prove Theorem 3.

Proof of Theorem 3. Since the set 4, is invariant under scaling of variables, we
can assume without loss of generality that B,, o B,,. It follows from Proposition 3.2
that for n > 2k, and A = (n—k, k), there exists 4,0 < ¢ < 5 and P € ¥4, such that

m; A(Z(P, B,)) > 0.

It follows from Theorem 2 and Lemma 3.2 that for each k& > 0 and n large
enough, mo »(Z(P, B,,)) =0, for all P e X4, and A = (n — k, k).
So we get that that for each £ > 0 and n > 2k , there exists 7,1 < i < 5 and
P e Xy, such that
m;A(Z(P, By)) > 0,

with A = (n — k, k).
Now choose k = |n/2| and use Lemma 3.2. O

3.3. Proof of Theorem 5. The proof is in two steps.

We first prove (Proposition 3.3) that since the dimensions of the cohomology
modules H°((Z(¢,(f),R™)) do not increase with n (using Theorem 2), for n large
enough they cannot have Specht modules in their isotypic decomposition which
correspond to partitions that are not equal to the trivial partition (n) or its trans-
pose 1. We then use Theorem 4 to rule out the partition 1™. This enables us
to deduce that the H((Z(¢,(f),R")) is a multiple of the trivial representation
(i.e. HO((Z(on(f),R™)) = HO((Z(¢n(f),R™))®") or equivalently that each semi-
algeraically connected component of Z(¢,,(f), R™) is stable under the action of &,,.

We next prove (Proposition 3.4 below) using Proposition 3.3 that the sequence of
numbers (bo(Z(¢n(f),R™))n>0 is non-increasing and so ultimately constant. Propo-
sitions 3.3 and Proposition 3.4 together suffices to prove Theorem 5.

Proposition 3.3. Let d,n e N withd > 2,n > 2971 +1 and let P € R[X1,..., X,]
be a multi-affine symmetric polynomial with deg P = d. Fvery semi-algebraic con-
nected component of Z(P,R™) is stable under the action of &,,. This is to say, for
every semi-algebraic connected component C of Z(P,R™) and every a € &,

C = {(za(l),...,za(n)) | (21,...,2n) € C}
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Proof. Let V = Z(P,R™). First observe that H°(V)®» is isomorphic (as a vector
space) to the isotypic component of the trivial representation S in HO(V). Sec-
ond, each semi-algebraically connected component of V is stable under the action
of G,, if and only if

HO(V)®» = HY(V).
Thus, it suffices to prove that H°(V) is isomorphic as an &,,-module to a multiple
of trivial representation which is the same as proving that

moA(V) =0,
for XA # (n). Now it follows from Theorem 2 that
bo(V) = dimH(V)
= Z mo (V) dim S*
Abn
(18) < 2471
It is an easy consequence of hook formula that
1 if A= (n), 1"
(19) dim 5% = { =>n—1 otherwi(se.)

Since,
n>29"1 41,
we have that
n—1=271 41> bo(V).

It now follows from (18) and (19) that
(20) mox(V) = 0,if X # (n), 1™

However, since d > 2, and hence

length(1") =n > 21 +1>0+42d -1,

it follows from Theorem 4 that
(21) moA(V) =01 A =1".

The proposition now follows from (20) and (21). O
Lemma 3.3. Let d,n € N with n = 2971 + 1 and let P € R[Xy,...,X,] be a

multi-affine symmetric polynomial with deg P = d. Every semi-algebraic connected
component of Z(P,R™) intersects the hyperplane Z(X,,,R™).

Proof. Suppose
P<X17 s 7Xn) = XTLQ(Xh s 7Xn—1) + R(Xla s 7Xn—1)7

Q(Xl, ... >Xn71) = anls(Xh ey Xn,Q) + T(Xl, - ,ang),
with @, R, S,T multi-affine. Notice that @) and R are symmetric as elements in
R[X1,...,Xn—1] and S and T are symmetric as elements in R[X,..., X, —2]. Let
C be a semi-algebraic connected component of Z(P, R™). We consider the following
cases:

e There exists z = (21,...,2,) € C and 1 < i < n with z; = 0:
In this case, (21, .-, 2i—1, Zn, Zi+1,- - -, 2n—1,0) € CNZ(X,,, R™) by Propo-
sition 3.3.
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o There exists 1 < ¢ < j < nand z = (21,...,2,) € C with 2 and z; of
opposite non-zero sign:

Without loss of generality suppose z; > 0 and z; < 0. By Proposition

3.3, if we consider 2z’ which is obtained from z by swapping coordinates z;

and z;, then 2’ also lies in C. Since C' is semi-algebraically arc-connected,

there exists 2" = (2{,...,2/) in C with z = 0, and then we proceed as in
the first case.
e There exists z = (21,...,2,) € C and 1 < i < n with
Q21 s Ziyney2n)=0:
6 Since
0 = P(z)
= ziQ(z1,..., %, ..., zn) + R(z1,. ., 21y -y Zn),
we have that R(z1,...,2;,...,2n) = 0 and therefore the line z + {e;) is in-
cluded in C. In particular (z1,...,2;-1,0, Zi+1,...,2n) € C and we proceed
as in the first case.
e C c (0,+0)™ and for every z = (z1,...,2,) € C and 1 < i < n,

Q('Zla ce ey Ri—15R441y e - ,Zn) #* 0:
This assumption implies that for 1 < ¢ < n, the polynomial

QX1 Xic1, Xig1, .-, Xy)
has a constant sign on C. Let us consider a fixed value of 1 < ¢ < n and
see that for every 1 < j < n with j # ¢, the polynomial
S(X1, o Xic, Xigs oo X1, Xy, X))

never vanishes on C, and it has the same sign as Q(X1, ..., X;—1, Xix1,-- ., Xn)-
Notice that this implies that the sign of Q(X1,...,X;—1, Xi+1,...,Xp) on
C is independent of 1.

— If there exists z = (z1,...,2,) € C such that

S(21, oy Ziseey Zjyenesn) =0,
since
0#Q(21,.-, 21,y 2n) =
2iS(z1, oy i 2y ) ¥ T2, oo 2y By 20),
we have that T'(z1,...,%,...,%,...,%,) # 0 and therefore for every
teR,

Q(Zl,...721‘,...,Zj,l,t,ZjJrh...Zn) 7'50

This implies that for each ¢ € R the point

(Zl,...,Zi_17at72i+1,...,Zj_l,t,Zj+1,...,Zn)
where
a; = 7R(Zl,...,z/’\i,...,Zj_l,t,Zj+1,...Zn)
Q(zl,.-.,/Z//\i,...,Zj717t,zj+17...2n) ’

belongs to C, which contradicts the fact that C' < (0, 0)™.

6Here and elsewhere ~ denotes omission.
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— If there exists z = (21,...,25,) € C'suchthat S(z1,...,%;,...,%5,...,2n)
has opposite sign to Q(z1,..., %, ..., %), then for t < z; we have that
Q(Zla"'7'é\i7"'azj717tvzj+17"'7zn) =
(tiZj)S(Zla"'722'7"'az/\j?"'azn)+Q(Zh"'a'é\ia'"Zj—17zj7zj+17"'7zn)

is different from zero since it has the same sign as
Q21,55 Ziy e o Zj1, 255 2415+ -+ 5 Zn)-

As before, this implies that that for each t € (—0, z;], the point

(zlu ey Ri—1, 0ty B4l e 7zj717t72j+17 e 7Z'n)

where

—R(Zl, NN ,é\l‘, e 7Zj71,t7zj+17 .. Zn)
at = =

Q(Zl, e Ry ,Zj_l,t,Zj+1, e 7Zn)

belongs to C', which contradicts the fact that C' < (0, 00)™.

Now, let us prove that if z = (21,...,2,) € C and we take (2],...,2/,_;) €
R with 2] > 21,...,2/,_1 = 2,1, then Q(z2],...,2/,_;) # 0 and

—R(# 2l 1)
ey 2h 4
<z'1,...,z/ ”," e C.

n—b Q.- 2h_1)

We proceed by induction. Suppose that we know already that for some

- / /
1<i<n, Q2,212+, 2n-1) # 0 and
/ !
, , —R(Zy, . 21y Ziy ey Zn1) o
Zlgee 9 Ri_13Riy+++9”n—1; 7 7 e C.
Q2,2 %y Zne1)
Then, for t > z;,
/ /
Q(Zlv' . 'uZi717tazi+17 v 7Zn71) =
/ / / /
= (t - Zi)S(Zla sy B 15 Rid1y >Zn71) + Q(Zl7' s %1y Ry Ritls - - '7zn71)
is different from zero since it has the same sign as Q(z1, ..., 2/_1, 2i, Zit1, - -, Tn—1)-
This implies that for each t € [2;, 2], the point
! !
(Zl,...,Zi_l,t,2i+1,...7Zn_1,at)
where
/ !
_R(Zl,...72’2-71,15,22'4_1,...,2”_1)
ay = 7 7
Q2,2 t Zig1, -y Zne1)

belongs to C.
Finally, take any z = (21,...,2,) € C. For every t = 0, Q(z1 +
ty...,zn—1 +t) # 0 and

—R(Zl +t,... 201 +t)) cC
Q(Zl +t, ..., 201 +t)
This is impossible because since P is symmetric and n > 2971 +1 > d + 1,
it can be easily seen that deg R = d, deg@ = d — 1 and

. —R(z1+t,...,z2p—1+1)

lim

t—400 Q(Z1 +t,...,2n—1 + t)

which contradicts the assumption that C' < (0, +00)™.

<2’1 +t,...,2n-1 +1,

b



TOPOLOGY OF REAL MULTI-AFFINE HYPERSURFACES 23

e C c (—,0)" and for every z = (z1,...,2,) € C and 1 < i < n,
Q21,5+ Zi1, Zig 1y -+ 5 2n) # O
In this case we proceed as in the previous one.

O

From now on we consider fixed d € N and ay, ...,aq € R with ag # 0. For n > d,
let

Py= > awineR[Xy,..., Xn].

0</<d

Proposition 3.4. The sequence (bo(Z(Py,R"™))n>a is eventually decreasing, and
therefore eventually constant.

Proof. By Lemma 3.3, if n > 297! + 1, every semi-algebraic connected component
of Z(P,R™) intersects the hyperplane Z(X,,R"). Since P,(Xi,...,X,-1,0) =
P,_1(X1,...,X,—1), we have that

bo(Z(Pp_1,R"™1)) = bo(Z(P,,R™)).

Proof of Theorem 5. Theorem 5 follows from Propositions 3.3 and 3.4. (]
We finish this section by showing two examples of ideals I < A such that
Jiﬁn&omo’{,\}n(V,L(I)) > 1,
for A = (). First, we include an auxiliary lemma.
Lemma 3.4. Let n > 3. For x € R™ with Ni(x) = 0,
(n—2)°
n(n—1)

Proof. The inequality holds if 2 = 0. If 2 # 0, we take R?> = Ny(x) and then the
inequality can be checked using Lagrange Multipliers to find the extreme values of
N3(z) subject to the restrictions Ny(x) = 0, No(z) = R?. O

Ng(x)z < NQ(I’)S.

Now let f =02 —1,g =03 —01,1 = (f),J = (g9) and A = (). We will show that

T}L{Iolo m07{/\}n(vn(1)) = 27
Jim mo oy, (Va(J) = 3.

Indeed, using Theorem 5, it is enough to show that for n = 3, by(¢,(f),R™) = 2
and bo(én(g), R™) = 3.

We take a fixed value of € R™ with Nyi(z) = o1 ,(x) = 0 and consider the
polynomials

fa(t) = oon(x1+t,...;2p+1t) — 1= (Z)tQ - <;N2(x) + 1)

and
9o(t) = osn(@1 +1¢,...,2n +1) — 01 (1 +1,..., 2, +1) =

_ (g)tg _ (” - 2 No(z) + n) £+ éNg(x).
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It is clear that f, has a positive discriminant, and on the other hand, Disc(g,) is
also positive since it is a positive multiple of

—9 3 _9 3
4 (n S Na(x) + n) - 3(;‘)]\73(35)2 > 4 <”2N2(x)> - 3(2)]\[3(95)2 > 0
using Lemma 3.4.

Finally, we split R™ as
R'= | A{@i+t...,¢.+1)[teR}

z€R™,01(z)=0

and then the claim follows using the continuity of roots with respect to the coef-
ficients of a polynomial of fixed degree outside the region where the discriminant
vanishes.

4. CONCLUSION AND OPEN PROBLEMS

We have proved an upper bound of 24~1 on the number of semi-algebraically con-

nected components of a real hypersurface in R defined by a multi-affine polynomial
of degree d. Moreover, we have shown that no bound which grows only polynomi-
ally with n exists for the higher Betti numbers of such hypersurfaces inside a closed
ball.

Finally, we have proved a special case of a stability conjecture due to Basu and
Riener on the cohomology modules of symmetric real algebraic sets.

There are several open questions that are suggested by our results.

1. Does the upper bound in Theorem 2 extend to the bounded case ? More pre-
cisely, is there a bound on Sa, B,0(n) which is independent of n for some natural
sequence B, for example B = ([—1,1]™),>0 ? At the same time it would be in-
teresting to extend Theorem 3 to the unbounded case. More precisely, does there
exist ¢ > 1, such that Sa, ,(n) > ¢" for some d,p >0 7

2. Can one prove a bound on the number of connected components of a real al-
gebraic set in R™ defined by two multi-affine polynomials of degree at most d
which is independent of n 7 We have shown that no such bound exists for real
algebraic sets defined by three or more multi-affine polynomials. It would be
satisfactory to be able fill this gap.

3. Multi-affine polynomials that arise in practice (such as the basis generating poly-
nomial of a matroid) often have special properties such as real stability or being
Lorentzian [4, 13]). It would be interesting to study the topology of real hyper-
surfaces defined by such polynomials from a quantitative point of view.

4. The algorithmic problem of computing the number of semi-algebraically con-
nected components of a given real algebraic set in R™ has attracted wide at-
tention. The main tool for solving this problem is via computation of a one-
dimensional semi-algebraic subset (called a roadmap of V). While there has been
a steady improvement in the complexity of algorithms for computing roadmaps
of semi-algebraic sets [5, 9, 8], the complexities of all known algorithms are
exponential in n. This is not unexpected as the number of semi-algebraically
connected components of real algebraic sets in R™ defined by polynomials of
degree at most d, grows exponentially in n in the worst case for d > 2. However,
in this paper we have proved that the number of semi-algebraically connected
components of hypersurfaces defined by multi-affine polynomial is small. This
suggests the problem of finding a more efficient algorithm (say with polynomial
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complexity) for computing this number (maybe without resorting to a roadmap

algorithm). In the symmetric case such an algorithm (with polynomial complex-
ity with the degree being considered fixed) was shown to exist in [11].
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