
PERSISTENT HOMOLOGY OF SEMI-ALGEBRAIC SETS

SAUGATA BASU AND NEGIN KARISANI

Abstract. We give an algorithm with singly exponential complexity for com-

puting the barcodes up to dimension ` (for any fixed ` ≥ 0) of the filtration of a

given semi-algebraic set by the sub-level sets of a given polynomial. Our algo-
rithm is the first algorithm for this problem with singly exponential complexity,

and generalizes the corresponding results for computing the Betti numbers up

to dimension ` of semi-algebraic sets with no filtration present.
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1. Introduction

1.1. Background. Let R be a real closed field and D an ordered domain contained
in R which we fix for the rest of the paper. The algorithmic problem of computing
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the ranks of the homology groups of a given semi-algebraic set described by a
quantifier-free formula, whose atoms are of the form P > 0, P ∈ D[X1, . . . , Xk],
as input has attracted a lot of attention over the years. 1 Closed and bounded
semi-algebraic subsets S ⊂ Rk are semi-algebraically triangulable – and moreover
given a description of the semi-algebraic set by a quantifier-free formula, such a
triangulation can be effectively computed with complexity (measured in terms of
the number of polynomials appearing in the description and their degrees) which is
doubly exponential in k. Together with standard algorithms of linear algebra, this
gives an algorithm for computing all the Betti numbers of a given semi-algebraic
set with doubly exponential complexity.

Classical bounds coming from Morse theory [37, 38, 36, 5, 26] gives singly ex-
ponential bounds on the Betti numbers of semi-algebraic sets. More precisely, if
S ⊂ Rk is a semi-algebraic set defined by a quantifier-free formula involving s poly-
nomials of degree at most d, then the sum of the Betti numbers of S is bounded
by (O(sd))k. Additionally, it is known that the problem of computing the zero-th
Betti number of S (i.e. the number of semi-algebraically components of S) (us-
ing “roadmap” algorithms [17, 29, 2]), as well as the problem of computing the
Euler-Poincaré characteristic of S (using Morse theory [5, 3]), both admit single
exponential complexity algorithms. This led to a search for singly exponential com-
plexity algorithm for computing the higher Betti numbers as well. The current state
of the art is that there exists singly exponential algorithm for computing the first
` Betti numbers of semi-algebraic sets for each fixed ` ≥ 0 [6, 4].

In this paper we study the algorithmic complexity of computing a finer topolog-
ical invariant of a given semi-algebraic set S than its Betti numbers – namely, the
barcode of a filtration of the given semi-algebraic set. This finer invariant (unlike
the Betti numbers) has both a discrete as well as a continuous part and is attached
to a filtration of a semi-algebraic set by the sub-level sets of a semi-algebraic func-
tion. The problem reduces to the problem of computing the Betti numbers in the
case when the given filtration is trivial.

1.2. Persistent Homology. One of the recent developments in the area of applied
topology is the introduction of the notion of persistent homology of filtrations. We
initiate in this paper the study of the algorithmic problem of computing the per-
sistent homology groups (cf. Definition 2.1) of filtrations of semi-algebraic sets by
polynomial functions. Persistent homology is a central object in the emerging field
of topological data analysis [22, 39, 27], but has also found applications in diverse
areas of mathematics and computations as well (see for example [25, 32]).

One can associate persistent homology groups to any filtration of topological
spaces, and they generalize ordinary homology groups of a space X – which corre-
sponds to the trivial (i.e. constant) filtration on X. To the best of our knowledge the
algorithmic problem of computing persistent homology groups of semi-algebraic sets
equipped with a filtration by the sub-level sets of a polynomial (or more generally
continuous semi-algebraic functions) have not been considered from an algorithmic
viewpoint. The output of a persistent homology computation is usually expressed
in the form of “barcodes” [27].

1Here and everywhere else in the paper all homology groups considered are with rational
coefficients.
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We will define barcodes for semi-algebraic filtrations precisely later (see Defini-
tion 2.5). A basic example which is a starting point of persistent homology theory
in the field of topological data analysis is the following one.

1.2.1. Čech complex of a finite set of points. Let X be a (finite) subset of Rk (with
its Euclidean metric). In practice, X may consist of a finite set of points (often
called “point-cloud data”) which approximates some subspace or sub-manifold M
of Rk. The topology (in particular, the homology groups) of the manifold M is
not reflected in the set of points X (which is a discrete topological space under
the subspace topology induced from that of Rk). Now for r ≥ 0, let Xr denote

the union of closed Euclidean balls, Bk(x, r), of radius r centered at the points
x ∈ X. Notice that each Xr is a semi-algebraic set indexed by r. In particular,
X0 = X. Also, for 0 ≤ r ≤ r′, we have that Xr ⊂ Xr′ . Thus, (Xr)r≥0 is an
increasing family of semi-algebraic sets indexed by r ≥ 0. Thus, this is an example
of a semi-algebraic filtration (see Remark 7). The main rationale for considering

this filtration is that nerve complex of the family of convex sets Bk(x, r), x ∈ X
approximates homotopically the underlying manifold M , and each homology class
of M would show up in the homology of Xr for some values of r. The barcode of
the filtration (Xr)r≥0 is a tool for filtering out spurious homology (noise) from that
which genuinely reflects the topology of M (see [27, 23]). The barcode of the above
filtration thus plays an important role in topological data analysis. In particular
they capture information about the homology of the underlying manifold M . It
also serves as a “signature” for topological data (such as point cloud data). In
the semi-algebraic world they play a similar role – for example, as a measure of
topological similarity of two given semi-algebraic sets which is much finer (because
of the presence of the continuous parameters) to just the sequence of Betti numbers.

As stated earlier, the main goal in this paper is to design an efficient (singly expo-
nential complexity algorithm) that takes as input a quantifier-free formula describ-
ing a closed semi-algebraic set S ⊂ Rk as well as a polynomial P ∈ R[X1, . . . , Xk],
and outputs the barcodes up to dimension ` for some fixed ` ≥ 0 of the filtration of
S by the sub-level sets of the function P on S, thereby generalizing the algorithm in
[6] for computing the first ` Betti numbers with a similar complexity. There are sev-
eral intermediate steps needed to achieve this goal. These intermediate steps have
been used recently in other applications (that we mention in Section 1.3 below) and
hence could be of independent interest. We outline them below.

1.3. Summary of the main contributions. We summarize the main contribu-
tions of the paper as follows.

1. We reformulate the definition of barcodes in order to treat continuous as well as
finite filtrations in a uniform manner. This is important in the current applica-
tion since we consider filtrations of semi-algebraic sets by polynomial functions
which are by nature examples of continuous filtrations (since they are indexed
by R). However, we show that the barcode of this continuous filtration is equal
to another finite one (see Propositions 3.1 and 3.3). In order for such an equality
to make sense it is important that persistent homology of a filtration should be
defined in a uniform way for arbitrary ordered index set. It is possible to have a
completely categorical description of persistent homology which applies to very
general filtration [13]. We avoid categorical language and give an elementary
definition of barcodes directly in terms of sub-quotients of homology groups (see
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Definition 2.5). We remark here that the basic theory of persistent homology
with real parameters in the multi-persistence setting was developed indepen-
dently (in different ways) in [31] and in [34, 35]. However, we prefer to give
a self-contained description which applies directly to the the one-dimensional
semi-algebraic setting and is suitable from our algorithmic view-point.

2. We give a definition of barcodes for semi-algebraic maps which are not neces-
sarily proper (Definition 2.8) generalizing the one for proper maps – and we
believe that this could form the basis of generalizing the results of the current
papers to arbitrary semi-algebraic sets and maps. Similar ideas appear in [33,
Examples 15.11 and 15.14], but our definition is adapted towards applications
in real algebraic geometry.

3. By an application of a standard theorem in real algebraic geometry (Hardt triv-
iality theorem [30]) we can deduce that the topological type of the sub-level sets
of a filtration of a semi-algebraic set by a semi-algebraic function changes at
only finitely many values of the function. This implies that the barcode of the
original filtration is equal to that of a finite filtration (after proper definition of
barcodes encompassing both the finite and the continuous case as mentioned ear-
lier). However, an algorithm based on Hardt triviality theorem would inevitably
lead to a doubly exponential sized filtration – since the proof of this theorem (see
for example proof of [9, Theorem 5.46]) depends on taking semi-algebraic tri-
angulations for which only a doubly exponential complexity algorithm is known
to exist. Another important contribution of the current paper is an algorithm
with singly exponential complexity (see Algorithm 3 below) for reducing a given
continuous filtration of a semi-algebraic set by a polynomial to a filtration of
simplicial complexes indexed by a finite subset of R, such that the barcode of
this finite filtration is equal to that of the continuous filtration in dimensions up
to `. The two main ingredients for this algorithms are:
(a) mathematical techniques introduced in [10] for bounding the number of ho-

motopy types of fibers of a semi-algebraic map;
(b) a recent algorithm for efficiently computing simplicial replacements of semi-

algebraic sets [7, Theorem 1].
We note that Algorithm 3 has other applications as well. For example, it plays
a key role in a recent work on computing a homology basis of the first homology
group of a given semi-algebraic set with singly exponential complexity [8].

4. The last (and perhaps the most important) contribution is an algorithm with
a singly exponential complexity that computes the barcodes of a semi-algebraic
filtration up to dimension ` for any fixed ` ≥ 0. After having reduced to the
case of finite semi-algebraic filtration using Algorithm 3, we then compute the
barcode of this finite filtration of finite simplicial complexes (cf. Algorithms 4
and 5) using Definition 2.5 and standard algorithms from linear algebra.

We remark that it is plausible that after ensuring the finiteness of the filtra-
tion, the last step of computing the barcode could be achieved by an appropriate
extension of the algorithm for computing the first few Betti numbers of semi-
algebraic sets described in [6]. However, this extension would be non-trivial and
we prefer to use directly Algorithm 3 in [7] for which no extension is needed.
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We prove the following theorem stated informally below. The formal state-
ment appears later in the paper.

Theorem (cf. Theorem 1). There exists an algorithm(Algorithm 5) that takes
as input a description of a closed and bounded semi-algebraic set S ⊂ Rk, and
a polynomial P ∈ R[X1, . . . , Xk], and outputs the “barcodes” (cf. Definition 2.5
below) in dimensions 0 to ` of the filtration of S by the sub-level sets of the
polynomial P . The complexity of this algorithm is bounded singly exponentially
in k (as a function of the number and degrees of polynomials appearing in the
description of S).

The importance of the assumption that the input semi-algebraic subset be
closed and bounded is discussed in Section 2.2.1.

1.4. Definition of complexity. We will use the following notion of “complexity”
in this paper. We follow the same definition as used in the book [9].

Definition 1.1 (Complexity of algorithms). In our algorithms we will usually
take as input quantifier-free first order formulas whose terms are polynomials with
coefficients belonging to an ordered domain D contained in a real closed field R. By
complexity of an algorithm we will mean the number of arithmetic operations and
comparisons in the domain D. If D = R, then the complexity of our algorithm will
agree with the Blum-Shub-Smale notion of real number complexity [11]. In case,
D = Z, then we are able to deduce the bit-complexity of our algorithms in terms
of the bit-sizes of the coefficients of the input polynomials, and this will agree with
the classical (Turing) notion of complexity.

1.5. Prior and Related Work. As mentioned earlier, designing algorithms with
singly exponential complexity for computing topological invariants of semi-algebraic
sets has been at the center of research in algorithmic semi-algebraic geometry over
the past decades. We refer the reader to the survey [1] for a history of these devel-
opments and contributions of many authors. These algorithms are exact algorithms
and work for all inputs. The complexity of an algorithm (see Definition 1.1) is mea-
sured in terms of the number of arithmetic operations in the ring D (and also in
terms of the bit sizes if D = Z).

More recently, algorithms for computing Betti numbers of semi-algebraic sets
have also been developed in other (more numerical) models of computations [14,
15, 16]. In these papers the authors take a different approach. Working over R,
and given a well-conditioned semi-algebraic subset S ⊂ Rk, they compute a witness
complex whose geometric realization is k-equivalent to S. The size of this witness
complex is bounded singly exponentially in k. However, the complexity depends
on the condition number of the input (and so this bound is not uniform), and the
algorithm will fail for ill-conditioned input when the condition number becomes in-
finite. This is unlike the kind of algorithms we consider in the current paper, which
are supposed to work for all inputs and with uniform complexity upper bounds. So
these approaches are not comparable. However, to the best of our knowledge there
has not been any attempt to extend the numerical algorithms mentioned above
for computing Betti numbers to computing persistent homology of semi-algebraic
filtrations.

The rest of the paper is organized as follows. In Section 2, we give the pre-
cise statements of the main result after introducing the necessary definitions. In
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Section 3, we prove the key proposition (Proposition 3.3) which allows us to effi-
ciently reduce to the case of finite filtrations starting with a continuous one. In
Section 4, after introducing certain necessary preliminaries, we describe our algo-
rithm for computing barcodes of semi-algebraic filtrations and analyze its complex-
ity (thereby proving Theorem 1). Finally, in Section 5 we state some open questions
and directions for future work in this area.

2. Precise definitions and statements of the main results

In this section, we define precisely persistent homology and barcodes of filtrations
in Section 2.1. Then in Section 2.2 we define semi-algebraic filtrations and state
the main algorithmic result of the paper (Theorem 1).

2.1. Persistent homology and barcodes. Let T be an ordered set, and F =
(Xt)t∈T , a tuple of subspaces of X, such that s ≤ t ⇒ Xs ⊂ Xt. We call F a
filtration of the topological space X.

We now recall the definition of the persistent homology groups associated to a
filtration [23, 39]. Since we only consider homology groups with rational coefficients,
all homology groups in what follows are finite dimensional Q-vector spaces.

Notation 1. For s, t ∈ T, s ≤ t, and p ≥ 0, we let is,tp : Hp(Xs) −→ Hp(Xt), denote
the homomorphism induced by the inclusion Xs ↪→ Xt.

Definition 2.1. [23] For each triple (p, s, t) ∈ Z≥0×T ×T with s ≤ t the persistent
homology group, Hs,t

p (F) is defined by

Hs,t
p (F) = Im(is,tp ).

Note that Hs,t
p (F) ⊂ Hp(Xt), and Hs,s

p (F) = Hp(Xs).

Notation 2. We denote by bs,tp (F) = dimQ(Hs,t
p (F)).

Persistent homology measures how long a homology class persists in the filtration,
in other words considering the homology classes as topological features, it gives an
insight about the time (thinking of the indexing set T of the filtration as time) that
a topological feature appears (or is born) and the time it disappears (or dies). This
is made precise as follows.

Definition 2.2. For s ≤ t ∈ T , and p ≥ 0,

• we say that a homology class γ ∈ Hp(Xs) is born at time s, if γ /∈ Hs′,s
p (F),

for any s′ < s;
• for a class γ ∈ Hp(Xs) born at time s, we say that γ dies at time t,

– if is,t
′

p (γ) /∈ Hs′,t′

p (F) for all s′, t′ such that s′ < s ≤ t′ < t,

– but is,tp (γ) ∈ Hs′′,t
p (F), for some s′′ < s.

Remark 1. Note that the homology classes that are born at time s, and those
that are born at time s and dies at time t, as defined above are not subspaces of
Hp(Xs). In order to be able to associate a “multiplicity” to the set of homology
classes which are born at time s and dies at time t we interpret them as classes in
certain subquotients of H∗(Xs) in what follows.

First observe that it follows from Definition 2.1 that for all s′ ≤ s ≤ t and p ≥ 0,

Hs′,t
p (F) is a subspace of Hs,t

p (F), and both are subspaces of Hp(Xt). This is be-

cause the homomorphism is
′,t
p = is,tp ◦ is

′,s
p , and so the image of is

′,t
p is contained
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in the image of is,tp . It follows that, for s ≤ t, the union of
⋃
s′<s Hs′,t

p (F) is an
increasing union of subspaces, and is itself a subspace of Hp(Xt). In particular,

setting t = s,
⋃
s′<s Hs′,s(F) is a subspace of Hp(Xs).

With the same notation as above:

Definition 2.3 (Subspaces of Hp(Xs)). For s ≤ t, and p ≥ 0, we define

Ms,t
p (F) =

⋃
s′<s

(is,tp )−1(Hs′,t
p (F)),

Ns,t
p (F) =

⋃
s′<s≤t′<t

(is,t
′

p )−1(Hs′,t′

p (F)),

Remark 2. The “meaning” of these subspaces are as follows.

(a) For every fixed s ∈ T , Ms,t
p (F) is a subspace of Hp(Xs) consisting of homology

classes in Hp(Xs) which are

“born before time s, or born at time s and dies at t or earlier”

(b) Similarly, for every fixed s ∈ T , Ns,t
p (F) is a subspace of Hp(Xs) consisting of

homology classes in Hp(Xs) which are

“born before time s, or born at time s and dies strictly earlier than t”

The dimensions of Ms,t
p (F) and Ns,t

p (F) are given in Eqn. (3.6) and (3.7) in
Proposition 3.4 below.

We now define certain subquotients of the homology groups of Hp(Xs), s ∈ T, p ≥
0, in terms of the subspaces defined above in Definition 2.3.

Definition 2.4 (Subquotients associated to a filtration). For s ≤ t, and p ≥ 0, we
define

P s,tp (F) = Ms,t
p (F)/Ns,t

p (F),

P s,∞p (F) = Hp(Xs)/
⋃
s≤t

Ms,t
p (F).

We will call

(a) P s,tp (F) the space of p-dimensional cycles born at time s and which dies at time
t; and

(b) P s,∞p (F) the space of p-dimensional cycles born at time s and which never die.

Remark 3. Notice that Ms,t
p (F) ⊂ Ms,t′

p (F) for t ≤ t′, and hence
⋃
s≤tM

s,t
p (F)

is a subspace of Hp(Xs), and Ns,t
p (F) is a subspace of Ms,t

p (F). Therefore, these
subquotients are vector spaces and have well defined dimensions.

Finally, we are able to achieve our goal of defining the multiplicity of a bar as
the dimension of an associated vector space and define the barcode of a filtration.

Definition 2.5 (Persistent multiplicity, barcode). We will denote for s ∈ T, t ∈
T ∪ {∞},
(2.1) µs,tp (F) = dimP s,tp (F),

and call µs,tp (F) the persistent multiplicity of p-dimensional cycles born at time s
and dying at time t if t 6=∞, or never dying in case t =∞.
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Finally, we will call the set

(2.2) Bp(F) = {(s, t, µs,tp (F)) | µs,tp (F) > 0}
the p-dimensional barcode associated to the filtration F .

We will call an element b = (s, t, µs,tp (F)) ∈ Bp(F) a bar of F of multiplicity

µs,tp (F).

Remark 4. We remark that the definition of multiplicity given up appears in an
abstract setting in [20, Corollary 7.3]. Note also that the notion of persistent
multiplicity has been defined previously in the context of finite filtrations (see [24]).
The definition of µs,tp (F) given in Eqn. (2.1) generalizes that given in loc.cit. in the
case of finite filtrations, who defined it using Eqn. (3.5) in Proposition 3.4 stated
below. Our definition gives a geometric meaning to this number as a dimension
of a certain vector space (a subquotient of Hp(Xs)), and we prove that it agrees
with that given in loc.cit. in Proposition 3.4. Also, it is important to note for
what follows that our definition of a barcode applies uniformly to all filtrations
with index coming from an ordered set, and we make no additional assumption on
the indexing set.

Remark 5 (Continuous vs finite filtrations). In most applications the filtration F
is assumed to be finite (i.e. the ordered set T is finite). Since we are considering
filtration of semi-algebraic sets by the sub-level sets of a polynomial function, our
filtration is indexed by R and is an example of a continuous (infinite) filtration.
Nevertheless, we will reduce to the finite filtration case by proving that the bar-
code of the given filtration is equal to that of a finite filtration. A general theory
encompassing both finite and infinite filtrations using a categorical view-point has
been developed (see [13, 18]). We avoid using the categorical definitions and the
module-theoretic language used in [18]. We will prove directly the equality of the
barcodes of the infinite and the corresponding finite filtration(cf. Proposition 3.3)
that is important in designing our algorithm, starting from the definition of persis-
tent multiplicities given above.

We now give a concrete example of a barcode associated to a (infinite) filtration.

Example 1. Let S be the two-dimensional torus (topologically S1×S1) embedded
in R3, and F be the filtration of the torus by the sub-level sets of the height function
(depicted in Figure 1(a)). We denote by S≤t the subset of the torus having “height”
≤ t.

We consider homology in dimensions 0, 1 and 2.
Informally, one observes that a 0-dimensional homology class is born at time t0

which never dies. There are two 1-dimensional homology classes, the horizontal
loop born at time t2 and the vertical loop born at time t4, which also never die.
Lastly, there is a 2-dimensional homology class born at time t5 which never dies.
Since there are no homology classes of the same dimension being born and dying
at the same time, multiplicities in all the cases are 1.

More formally, following Definitions 2.3, 2.4 and 2.5, we obtain:

(Case p = 0) If t0 ≤ t <∞ then (using Definition 2.3)

M t0,t
0 (F) = 0,

and hence (using Definitions 2.4 and 2.5)

P t0,t0 (F) = 0, and µt0,t0 (F) = 0.
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On the other hand,

P t0,∞0 (F) = H0(S≤t0),

implying

µt0,∞0 (F) = 1.

(Case p = 1) For t2 ≤ t <∞,

M t2,t
1 (F) = 0,

and hence

P t2,t1 (F) = 0, and µt2,t1 (F) = 0.

Moreover,

P t2,∞1 (F) = H1(S≤t2),

and therefore,

µt2,∞1 (F) = 1.

For t4 ≤ t <∞,

M t4,t
1 (F) = N t4,t

1 (F) = H1(S<t4),

and hence

P t4,t1 (F) = 0, and µt4,t1 (F) = 0.

Moreover,

P t4,∞1 (F) = H1(S≤t4)/H1(S<t4),

and therefore

µt4,∞1 (F) = 1.

(Case p = 2) For t5 ≤ t <∞,

M t5,t
2 (F) = 0,

and hence

P t5,t2 (F) = 0, and µt5,t2 (F) = 0.

Moreover,

P t5,∞2 (F) = H2(S),

and therefore

µt5,∞2 (F) = 1.

Therefore the barcodes are as follows (using Eqn. (2.2)).

B0(F) = {(t0,+∞, 1)},
B1(F) = {(t2,+∞, 1), (t4,+∞, 1)},
B2(F) = {(t5,+∞, 1)}.

Figure 1(b) illustrates the corresponding bars. Notice that even though the filtra-
tion F is an infinite filtration indexed by R, the barcodes, Bp(F), are finite.

The main type of filtration that we consider in this paper is filtration of semi-
algebraic sets by the sub-level sets of continuous semi-algebraic functions – which
we define below.
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t1
t2

t3

t4

t5

.t0

T

(a)

B0

B1

B2

t1 t2 t3 t4 t5t0

(b)

Figure 1. (a) Torus filtered by the sub-level sets of the height function,
(b) corresponding barcodes for homology classes of dimension 0, 1 and

2.

2.1.1. P-formulas and P-semi-algebraic sets.

Notation 3 (Realizations, P-, P-closed semi-algebraic sets). For any finite set
of polynomials P ⊂ R[X1, . . . , Xk], we call any quantifier-free first order formula
φ with atoms, P = 0, P < 0, P > 0, P ∈ P , to be a P-formula. Given any semi-
algebraic subset Z ⊂ Rk, we call the realization of φ in Z, namely the semi-algebraic
set

R(φ,Z) := {x ∈ Z | φ(x)}
a P-semi-algebraic subset of Z.

We say that a quantifier-free formula φ is closed if it is a formula in disjunctive
normal form with no negations, and with atoms of the form P ≥ 0, P ≤ 0 (resp.
P > 0, P < 0), where P ∈ D[X1, . . . , Xk]. If the set of polynomials appearing in a
closed (resp. open) formula is contained in a finite set P, we will call such a formula
a P-closed formula, and we call the realization, R (φ), a P-closed semi-algebraic set.

2.2. Semi-algebraic filtrations. We consider the algorithmic problem of com-
puting the dimensions of persistent homology groups and barcodes of the filtration
induced on a given semi-algebraic set by a polynomial function.

Definition 2.6. Let S ⊂ Rk be a semi-algebraic set and P : S → R a continuous
semi-algebraic map.

For t ∈ R ∪ {±∞}, let

SP≤t = {x ∈ S | P (x) ≤ t}.
Then, (SP≤t)t∈R∪{±∞} is a filtration of the semi-algebraic set S indexed by R ∪
{±∞}, and we will denote this filtration by F(S, P ).

Notation 4. For p ≥ 0, we will denote

Bp(S, P ) = Bp(F(S, P )).
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Remark 6. In the definition of Bp(F(S, P )) we need to specify the homology theory
we are using. For a semi-algebraic set X defined over an arbitrary real closed field
R we take homology groups H∗(X) = H∗(X,Q) as defined in [21, (3.6), page 141].
It agrees with singular homology in case R = R.

Remark 7. Note that many filtrations commonly used in computational topology
are examples of filtrations of semi-algebraic sets by polynomial functions as defined
above. One example of this is the well-known Čech-complex [22] which can be
described as follows.

Let {x(1), . . . ,x(n)} be a finite set of points in Rk, and let S ⊂ Rk+1, be the
semi-algebraic set defined by the formula

φ(X1, . . . , Xk, T ) :=
n∨
i=1

(
|X− x(i)|2 − T ≤ 0

)
,

where X = (X1, . . . , Xk). Let P = T . Then, the filtration F(S, P ) is homeomorphic
to the filtration obtained by taking unions of balls of growing radius centered at
{x(1), . . . ,x(n)}. This latter filtration plays a very important role in applications
(for example, in analyzing the topological structure of point-cloud data).

Remark 8. Note also that the barcode of a polynomial function restricted to a
semi-algebraic set S gives important topological information about the function P
on S. It allows one to define a p-dimensional distance between two such polynomial
functions restricted to S, by defining a notion of distance between two barcodes.
Various distances have been proposed but the most commonly used one is the so
called “bottle-neck distance” [24]. An algorithm with singly exponential complexity
for computing the barcode of a polynomial also gives an algorithm with singly
exponential complexity for computing such distances as well. To our knowledge
the algorithmic problem of computing barcodes of polynomial functions on semi-
algebraic sets have not been considered prior to our work.

We prove the following theorem.

Theorem 1. There exists an algorithm that takes as input:

1. a finite set of polynomials, P ⊂ D[X1, . . . , Xk];
2. a P-closed formula φ such that R(φ) is bounded;
3. a polynomial P ⊂ D[X1, . . . , Xk];
4. ` ≥ 0;

and computes Bp(R(φ), P ), for 0 ≤ p ≤ `. The complexity of the algorithm is

bounded by (sd)k
O(`)

, where s = card(P), and d is the maximum amongst the degrees
of P and the polynomials in P.

2.2.1. Barcodes of non-proper maps. Notice that in Theorem 1 we only consider
semi-algebraic sets S which are closed and bounded. In particular, this implies
that any continuous semi-algebraic function on S is a proper map S → R (i.e. the
inverse image of a closed and bounded semi-algebraic set is closed and bounded).

One reason to assume the properness is that for non-proper semi-algebraic maps
P : S → R, the barcode Bp(S, P ) may not reflect the topology of S as illustrated
in the following example (see also [33, Examples 15.11 and 15.14]).

Example 2. Let S ⊂ R2 be the (unbounded) semi-algebraic set defined by the
formula

φ := (0 < X1 < 1) ∧ (X1(X1 − 1)X2 − 1 = 0)
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(depicted in Figure 2), and let P = X1. Consider the semi-algebraic filtration
F(S, P ). Note that P restricted to S is not a proper semi-algebraic map (P−1([0, 1])
is not bounded).

-13-13 -12-12 -11-11 -10-10 -9-9 -8-8 -7-7 -6-6 -5-5 -4-4 -3-3 -2-2 -1-1 11

-8-8

-7-7

-6-6

-5-5

-4-4

-3-3

-2-2

-1-1

00aa

Figure 2. S = {(x1, x2) | 0 < x1 < 1, x1(x1 − 1)x2 − 1 = 0}

It is clear that for p > 0,
Bp(S, P ) = ∅.

We claim that even for p = 0 (contrary to the expectation)

Bp(S, P ) = ∅.
To see this observe that for all s ≤ 0, t ≥ s, we have that

Ms,t
0 (F(S, P )) =

⋃
s′<s

(is,tp )−1(Hs′,t
0 (S))

= 0,

H0(SP≤s) = 0,

since SP≤s = ∅ for s ≤ 0. This shows that

(2.3) µs,t0 (F(S, P )) = 0, s ≤ 0, t ≥ s.
For s > 0, and t ≥ s, it follows from Definition 2.5 that

Ms,t
0 (F(S, P )) = Ns,t

0 (F(S, P )) = H0(SP≤s),

proving that

(2.4) µs,t0 (F(S, P )) = 0, s > 0, t ≥ s.
Together Eqns. (2.3) and (2.4) imply that

B0(S, P ) = ∅.

In order to have a more reasonable definition of barcodes (and allow “bars” which
have open endpoints) we propose the following definition. We use two notions from
real algebraic geometry – that of the real spectrum and the real closed extension
of R by the field of Puiseux series.
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Let S ⊂ Rk be an arbitrary semi-algebraic set and P : S → R a continuous

semi-algebraic function. We define a new filtration F̃(S, P ) as follows.
The indexing set of the new filtration will the set

R̃ = {−∞,+∞} ∪
⋃
x∈R

{x−, x, x+},

on which a total order is specified by

−∞ < x− < x < x+ < y− < y < y+ <∞,

for all x < y in R. (The ordered set R̃ is the real spectrum of the ring R[X] – see
for example [12, page 134]).

We now define the filtration F̃(S, P ).

Definition 2.7 (Filtration for semi-algebraic maps not necessarily proper). For

t̃ ∈ R̃ define

S̃t̃ = ext(S,R〈ε〉)P=−1/ε, if t̃ = −∞,
= ext(S,R〈ε〉)P≤t−ε, if t̃ = t−, t ∈ R,

= ext(S,R〈ε〉)P≤t, if t̃ = t ∈ R,

= ext(S,R〈ε〉)P≤t+ε, if t̃ = t+, t ∈ R,

= ext(S,R〈ε〉)P=1/ε, if t̃ = +∞.
(where R〈ε〉 is the field of algebraic Puisuex series in ε, and ext(·,R〈ε〉) denotes the

extension of a semi-algebraic subset of Rk to R〈ε〉k – see Notation 5 and Notation 7).

Definition 2.8 (Barcode for filtration induced by a semi-algebraic map not nec-
essarily proper). For S ⊂ Rk an arbitrary semi-algebraic set and P : S → R a
continuous semi-algebraic function, we define

B̃p(S, P ) = Bp(F̃(S, P )).

It is easy now to verify that for the pair S, P in Example 2

B̃0(S, P ) = {(0+,+∞, 1)}.
Note that

B̃p(S, P ) ⊂ R̃× R̃× Z>0.

Using Hardt triviality theorem, one can deduce that B̃p(S, P ) is a finite set. We
will formally prove this statement later for proper semi-algebraic maps (see Propo-
sition 3.1).

The barcode for a proper semi-algebraic map takes its value in R × R × Z>0

which is properly contained in the R̃ × R̃ × Z>0. It is not difficult to prove that
in case P : S → R is a proper semi-algebraic map, the new definition of barcode
agrees with the previous one.

We record the above mentioned facts in the following proposition for future
reference and omit the proofs. We will not use it in this paper since we restrict
ourselves to the proper case.

Proposition 2.1. For any continuous semi-algebraic map P : S → R and for all

p ≥ 0, B̃(S, P ) is a finite set. Moreover, if P is a proper semi-algebraic map, then
for all p ≥ 0,

B̃p(S, P ) = Bp(S, P ).

Proof. Omitted. �
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3. Continuous to finite filtration

In this section we describe how to efficiently reduce the problem of computing
the barcode of a continuous semi-algebraic filtration to that of a finite filtration of
semi-algebraic sets. The mathematical results are encapsulated in Propositions 3.1
and 3.3 stated and proved in Section 3.1. Then in Section 3.2 we prove a formula
used to compute the barcode of a finite filtration (Proposition 3.4). This formula is
not new (see [24, page 152][24]), however, it is important to deduce that from our
new definition of barcodes.

Recall that we are interested in the persistent homology of filtrations of semi-
algebraic sets by the sub-level sets of a polynomial. Recall also (cf. Definition 2.6)
that for a closed and bounded semi-algebraic set S ⊂ Rk, P ∈ R[X1, . . . , Xk], and
t ∈ R ∪ {±∞}, we denote the filtration

(SP≤t = {x ∈ S | P (x) ≤ t})t∈R∪{±∞}

by F(S, P ).
Our first observation is that, even though the indexing set R ∪ {±∞} is infinite,

for each p ≥ 0, the barcode Bp(F(S, P )) is a finite set (cf. Example 1).

Proposition 3.1. For each p ≥ 0, the cardinality of Bp(F(S, P )) is finite.

3.1. Reduction to the case of a finite filtration. We will now prove a result
(cf. Proposition 3.3 below) from which Proposition 3.1 will follow. Our strategy
is to identify a finite set of values {s0, . . . , sM} ⊂ R, such that the semi-algebraic
homotopy type of the increasing family SP≤t (as t goes from −∞ to ∞), can
change only when t crosses one of the si’s. This would imply that the barcode,
Bp(F(S, P )), of the infinite filtration F(S, P ), is equal to the barcode of the finite
filtration ∅ ⊂ SP≤s0 ⊂ · · · ⊂ SP≤sM ⊂ S (cf. Proposition 3.3 below). In addition,
we will obtain a bound on the number M in terms of the number of polynomials
appearing in the definition of S and their degrees, as well as the degree of the
polynomial P . The technique used in the proofs of these results are adaptations of
the technique used in the proof of the main result (Theorem 2.1) in [10], which gives
a singly exponential bound on the number of distinct homotopy types amongst the
fibers of a semi-algebraic map in [10]. We need a slightly different statement than
that of Theorem 2.1 in [10]. However, our situation is simpler since we only need
the result for maps to R (rather than to Rn as is the case in [10, Theorem 2.1]).

3.1.1. Real closed extensions and Puiseux series. We will need some properties of
Puiseux series with coefficients in a real closed field. We refer the reader to [9] for
further details.

Notation 5. For R a real closed field we denote by R 〈ε〉 the real closed field of al-
gebraic Puiseux series in ε with coefficients in R. We use the notation R 〈ε1, . . . , εm〉
to denote the real closed field R 〈ε1〉 〈ε2〉 · · · 〈εm〉. Note that in the unique ordering
of the field R 〈ε1, . . . , εm〉, 0 < εm � εm−1 � · · · � ε1 � 1.

Notation 6. For elements x ∈ R 〈ε〉 which are bounded over R we denote by limε x
to be the image in R under the usual map that sets ε to 0 in the Puiseux series x.

Notation 7. If R′ is a real closed extension of a real closed field R, and S ⊂ Rk

is a semi-algebraic set defined by a first-order formula with coefficients in R, then
we will denote by ext(S,R′) ⊂ R′k the semi-algebraic subset of R′k defined by the
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same formula. It is well known that ext(S,R′) does not depend on the choice of
the formula defining S [9, Proposition 2.87].

Notation 8. Suppose R is a real closed field, and let X ⊂ Rk be a closed

and bounded semi-algebraic subset, and X+ ⊂ R〈ε〉k be a semi-algebraic sub-

set bounded over R. Let for t ∈ R, t > 0, X̃+
t ⊂ Rk denote the semi-algebraic

subset obtained by replacing ε in the formula defining X+ by t, and it is clear that

for 0 < t � 1, X̃+
t does not depend on the formula chosen. We say that X+ is

monotonically decreasing to X, and denote X+ ↘ X if the following conditions are
satisfied.

(a) for all 0 < t < t′ � 1, X̃+
t ⊂ X̃+

t′ ;
(b) ⋂

t>0

X̃+
t = X;

or equivalently limεX
+ = X.

More generally, if X ⊂ Rk be a closed and bounded semi-algebraic subset, and

X+ ⊂ R〈ε1, . . . , εm〉k a semi-algebraic subset bounded over R, we will say X+ ↘ X
if and only if

X+
m+1 = X+ ↘ X+

m, X
+
m ↘ X+

m−1, . . . , X
+
2 ↘ X+

1 = X,

where for i = 1, . . . ,m, X+
i = limεi X

+
i+1.

The following lemma will be useful later.

Lemma 3.1. Let X ⊂ Rk be a closed and bounded semi-algebraic subset, and

X+ ⊂ R〈ε̄1, . . . , ε̄m〉k a semi-algebraic subset bounded over R, such that X+ ↘ X.
Then, ext(X,R〈ε̄1, . . . , ε̄m〉) is semi-algebraic deformation retract of X+.

Proof. See proof of Lemma 16.17 in [9]. �

3.1.2. Outline of the reduction. Before delving into the detail we first give an out-
line of the main idea behind the reduction to the finite filtration case. The key
mathematical result that we need is the following. Given a semi-algebraic subset
X ⊂ Rk+1, obtain a semi-algebraic partition of R∪{±∞} into points −∞ = s−1 <
s0 < s1 < · · · < sM < sM+1 = ∞, and open intervals (si, si+1),−1 ≤ i ≤ M , such
that the homotopy type of Xt = X ∩ π−1

k+1 stays constant over each open interval
(si, si+1) (here πk+1 denotes the projection on the last coordinate). In our applica-
tion the fibers Xt will be a non-decreasing in t (in fact, Xt will be equal to SP≤t)
but we do not need this property to hold for obtaining the partition mentioned
above.

The following example is illustrative.
Suppose that X ⊂ R2 is a singular curve shown in blue in Figure 3. We define

a semi-algebraic tubular neighborhood X?(ε) of X using an infinitesimal ε (shown
in red), whose boundary has good algebraic properties – namely, in this case a
finite number of critical values t0 < t1 < · · · < t5 for the projection map onto
the chosen coordinate Xk+1 which is shown as X1 in the figure. The ti’s give a
partition of R〈ε〉 rather than that of R, and over each interval (ti, ti+1) the semi-
algebraic homeomorphism type of X?(ε) (but not necessarily the semi-algebraic
homotopy type of ext(X,R〈ε〉)) stay constant. Clearly this partition does not have
the homotopy invariance property with respect to the set ext(X,R〈ε〉). However,
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t0 t2 t4t1 t3 t5s0 s1 s2 X1

Figure 3. Homotopy types of fibers

the intervals (t1, t2) ∩ R = (s0, s1) and (t3, t4) ∩ R = (s1, s2) does have the require
property with respect to X, and the points s0, s1, s2 gives us the require partition.

In the general case the definition of the tube X?(ε) is more involved and uses
more than one infinitesimal (cf. Notation 10). The set of points corresponding
to the ti’s in the above example is defined precisely in Proposition 3.2 where the
important property of the partition of R〈ε̄〉 they induce is also proved. The pas-
sage from the ti’s to the si’s and the important property satisfied by the si’s is
described in Lemma 3.5. The finite set of values {s0, . . . , sM} ⊂ R is then used to
define a finite filtration of the given semi-algebraic set, and the fact that this finite
filtration has the same barcode as the infinite filtration we started with is proved
in Proposition 3.3. Proposition 3.3 immediately implies Proposition 3.1.

There are several further technicalities involved in converting the above construc-
tion into an efficient algorithm. These are explained in Section 4. The complexity
of the whole procedure is bounded singly exponentially.

3.1.3. Proof of Proposition 3.1. We begin by fixing some notation.

Notation 9. For Q ⊂ R[X1, . . . , Xk] we will denote by

Z(Q,Rk) = {x ∈ Rk|
∧
Q∈Q

Q(x) = 0}.

For Q ∈ R[X1, . . . , Xk], we will denote by Z(Q,Rk) = {x ∈ Rk | Q(x) = 0}.

Definition 3.1. Let Q be a finite subset of R[X1, . . . , Xk]. A sign condition on Q
is an element of {0, 1,−1}Q. We say that Q realizes the sign condition σ at x ∈ Rk

if ∧
Q∈Q

sign(Q(x)) = σ(Q).

The realization of the sign condition σ is

R(σ) = {x ∈ Rk |
∧
Q∈Q

sign(Q(x)) = σ(Q)}.

The sign condition σ is realizable if R(σ) is non-empty. We denote by Sign(Q) the
set of realizable sign conditions of Q.
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Let R ∈ R with R > 0, and let

P = {P0, P1, . . . , Ps} ⊂ R[X1, . . . , Xk],

with P0 = X2
1 + · · · + X2

k − R. Let P ∈ R[X1, . . . , Xk], and also let φ be a closed

(P−{P0})-formula, and φ̃ be φ∧(P0 ≤ 0)∧(P −Y ≤ 0), where Y is a new variable.
So φ is a (P ∪ {P − Y })-closed formula. Let Ps+1 = P − Y .

Notation 10. For ε̄ = (ε0, . . . , εs+1), we denote by φ?(ε̄), the P?(ε̄)-closed formula
obtained by replacing each occurrence of Pi ≥ 0 in φ by Pi + εi ≥ 0 (resp. Pi ≤ 0

in φ̃ by Pi − εi ≤ 0) for 0 ≤ i ≤ s+ 1, where

P?(ε̄) =
⋃

0≤i≤s+1

{Pi + εi, Pi − εi}.

Observe that

S?(ε̄) := R(φ?(ε̄)) ⊂ R〈ε̄〉k+1

is a P?(ε̄)-closed semi-algebraic set, and we define Σφ ⊂ {−1, 0, 1}P?(ε̄) by

(3.1) S?(ε̄) =
⋃

σ∈Σφ,R(σ)6=∅

R(σ).

Lemma 3.2. For each Q ⊂ P?(ε̄), Z(Q,R〈ε̄〉k+1
) is either empty or is a non-

singular (k+1−card(Q))-dimensional real variety such that at every point (x1, . . . , xk, y) ∈
Z(Q,R〈ε̄〉k+1

), the (card(Q)× (k + 1))-Jacobi matrix,(
∂P

∂Xi
,
∂P

∂Y

)
P∈Q 1≤i≤k

has the maximal rank card(Q).

Proof. See [10]. �

Now let πk+1 : R〈ε̄〉k+1 → R〈ε̄〉 denote the projection to the last (i.e. the Y )

coordinate, and π[1,k] : R〈ε̄〉k+1 → R〈ε̄〉k denote the projection to the first (i.e.
(X1, . . . , Xk)) k coordinates.

For any semi-algebraic subset S ⊂ R〈ε̄〉k+1
, and T ⊂ R〈ε̄〉, we denote by ST =

π[1,k](S ∩ π−1
k+1(T )). For t ∈ R〈ε〉, we will denote by S≤t = S(−∞,t], and St = S{t}.

Notation 11 (Critical points and critical values). For Q ⊂ P?(ε̄), we denote by

Crit(Q) the subset of Z(Q,R〈ε̄〉k+1
) at which the the Jacobian matrix,(
∂P

∂Xi

)
P∈Q,1≤i≤k

is not of the maximal possible rank. We denote crit(Q) = π(Crit(Q)).

Lemma 3.3. The set ⋃
Q⊂P?(ε̄)

crit(Q)

is finite.

Proof. Follows from Lemma 3.2 and the semi-algebraic Sard’s lemma (see for ex-
ample [9, Theorem 5.56]). �



18 SAUGATA BASU AND NEGIN KARISANI

Lemma 3.4. The partitions

Rk+1 =
⋃

σ∈Sign(P?(ε̄))

R(σ),

S?(ε̄) =
⋃
σ∈Σφ

R(σ),

are compatible Whitney stratifications of Rk+1 and S?(ε̄) respectively.

Proof. Follows directly from the definition of Whitney stratification (see [28, 19]),
and Lemma 3.2. �

We are now in a position to prove the key mathematical result that allows us to
reduce the filtration of a semi-algebraic set by the sub-level sets of a polynomial to
the case of a finite filtration.

Proposition 3.2. Suppose ⋃
Q⊂P?(ε̄)

crit(Q) = {t0, . . . , tN},

with t0 < t1 < · · · < tN (cf. Lemma 3.3). Then for 0 ≤ i < N , a, b ∈ R such that
(a, b) ⊂ (ti, ti+1) ∩ R, and for any c ∈ (a, b), the inclusion

R(φ(·, a)) ↪→ R(φ(·, c))

is a semi-algebraic homotopy equivalence,

Proof. The proof is an adaptation of a proof of a similar result in [10] (Lemma
3.8), though our situation is much simpler. It follows from Lemma 3.4 that the
semi-algebraic set

Ŝ?(ε̄) := S?(ε̄) \ π−1
k+1({t0, . . . , tN})

is a Whitney-stratified set. Moreover, πk+1|Ŝ?(ε̄)
is a proper stratified submersion.

By Thom’s first isotopy lemma (in the semi-algebraic version, over real closed fields
[19]) the map πk+1|Ŝ?(ε̄)

is a locally trivial fibration.

Now let 0 ≤ i < N . It follows that for a′, b′ ∈ R〈ε̄〉 with ti < a′ ≤ b′ < ti+1, that
there exists a semi-algebraic homeomorphism

θa′,b′ : S?(ε̄)[a′,b′] → S?(ε̄)a′ × [a′, b′]

such that the following diagram commutes.

S?(ε̄)[a′,b′]

θa′,b′
//

πk+1

%%

S?(ε̄)a′ × [a′, b′]

πk+1

xx

R〈ε̄〉

Let

ra′,b′ : S?(ε̄)b′ × [a′, b′]→ S?(ε̄)a′ ,

be the map defined by

ra′,b′(x, t) = π[1,k] ◦ θa′,b′(x, t) if t ≤ P (x),

= x, else.
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Notice, ra′,b′ is a semi-algebraic continuous map, and moreover for x ∈ S?(ε̄)a′ ,
ra′,b′(x, a

′) = x. Thus, ra′,b′ is a semi-algebraic deformation retraction of S?(ε̄)b′
to S?(ε̄)a′ .

This implies that the inclusion

(3.2) S?(ε̄)a′ ↪→ S?(ε̄)b′

is a semi-algebraic homotopy equivalence.
Now suppose that a, b ∈ R with ti < a ≤ b < ti+1. S?(ε̄)a and S?(ε̄)b are closed

and bounded over R, and that S?(ε̄)a ↘ R(φ(·, a)), S?(ε̄)b ↘ R(φ(·, b)).
Then, it follows from Lemma 3.1 that the inclusions,

(3.3) ext(R(φ(·, a)),R〈ε̄〉) ↪→ S?(ε̄)a,

and

(3.4) ext(R(φ(·, b)),R〈ε̄〉) ↪→ S?(ε̄)b,

are semi-algebraic homotopy equivalences.
Thus, we have the following commutative diagram of inclusions

S?(ε̄)a S?(ε̄)b

ext(R(φ(·, a)),R〈ε̄〉) ext(R(φ(·, b)),R〈ε̄〉)

in which all arrows other than the bottom inclusion are semi-algebraic homotopy
equivalences, and hence so is the bottom arrow. This implies that the inclusion
R(φ(·, a)) ↪→ R(φ(·, b)) is a semi-algebraic homotopy equivalence by an application
of the Tarski-Seidenberg transfer principle (see for example [9, Chapter 2]).

Now assume that a = ti. Using Lemma 3.1 we have that for all small enough
ε > 0, the inclusion R(φ(·, a)) ↪→ R(φ(·, a + ε)) is a semi-algebraic homotopy
equivalence. Moreover, from what has been already shown, the inclusion R(φ(·, a+
ε)) ↪→ R(φ(·, c)) is a semi-algebraic homotopy equivalence. It now follows that
R(φ(·, a)) ↪→ R(φ(·, c)) is a semi-algebraic homotopy equivalence. This completes
the proof. �

Lemma 3.5. Let G ⊂ R[ε̄][T ] be a finite set of non-zero polynomials and

{t0, . . . , tN} ⊂
⋃
G∈G

Z(G,R〈ε̄〉)

with t0 < · · · < tN . For G ∈ G, let G =
∑
αmG,αGα, with Gα ∈ R[T ],mG,α ∈ R[ε̄],

and let M(G) = {α | mG,α 6= 0}. Let H =
⋃
G∈G,α∈M(P ){Gα}, and let

{s0, . . . , sM} =
⋃
H∈H

Z(H,R)

with s0 < s1 < · · · < sM . Then, for each i, 0 ≤ i < M , there exists j, 0 ≤ j < N ,
such that (si, si+1) ⊂ R is contained in (tj , tj+1) ∩ R.

Proof. Notice that it follows from the definition of the set {s0, . . . , sM} that for any
i, 0 ≤ i < M , the sign condition (cf. Definition 3.1) realized by H at t stays fixed
for all t ∈ R, such that t ∈ (si, si+1).
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Since for any t ∈ R, the sign condition realized by H at t determines the sign
condition of G realized at t, it follows that the the sign condition (cf. Definition 3.1)
realized by G at t also stays fixed for all t ∈ R, such that t ∈ (si, si+1).

Suppose that t′ ∈ ext((si, si+1),R〈ε̄〉) such that G(t′) = 0 for some G ∈ G.
We claim that this implies that limε̄ t

′ ∈ {si, si+1}. Suppose not. Then, limε̄ t
′ ∈

(si, si+1), which contradicts the fact that the sign condition (cf. Definition 3.1)
realized by G at t stays fixed for all t ∈ R, such that t ∈ (si, si+1), since G is a
non-zero polynomial.

The lemma now follows from the hypothesis that {t0, . . . , tN} ⊂
⋃
G∈G Z(G,R〈ε̄〉).

�

Let S = R(Φ) and P, t0, . . . , tN as in Proposition 3.2, and let G,H, and s0 <
· · · < sM as in Lemma 3.5. Let s−1 = −∞, sM+1 = ∞. Let F denote the finite
filtration of semi-algebraic sets, indexed by the finite ordered set T = {si | −1 ≤
i ≤ M + 1}, with the element of F indexed by si equal to SP≤si . We have the
following proposition.

Proposition 3.3. For each p ≥ 0,

Bp(S, P ) = Bp(F).

Proof. It follows from Proposition 3.2 and Lemma 3.5 that for each i,−1 ≤ i ≤M
and s ∈ (si, si+1), the inclusion SP≤si ↪→ SP≤s is a semi-algebraic homotopy
equivalence.

The proposition will now follow from the following two claims.

Claim 3.1. Suppose that s, t ∈ [s−1, sM+1], s ≤ t. Then, µs,tp (F(S, P )) 6= 0 ⇒
s, t ∈ {s−1, . . . , sM+1}.

Proof. We consider the following two cases.

1. s 6∈ {s−1, . . . , sM+1}: Without loss of generality we can assume that s ∈
(si, si+1) for some i,−1 ≤ i ≤ M . Now the inclusion SP≤s′ ↪→ SP≤s, is a

semi-algebraic homotopy equivalence for all s′ ∈ [si, s), and hence is
′,s
p is an

isomorphism for all s′ ∈ [si, s).
It follows that for all s′ ∈ [si, s),

Hs′,t
p (F(S, P )) = Im(is

′,t
p ) = Im(is,tp ◦ is

′,s
p ) = Im(is,tp ) = Hs,t

p (F(S, P )),

which implies that

(is,tp )−1(Hs′,t
p (F(S, P ))) = (is,tp )−1(Hs,t

p (F(S, P ))) = Hp(SP≤s).

Noting that⋃
s′<s

(is,tp )−1(Hs′,t
p (F(S, P ))) =

⋃
s′∈[si,s)

(is,tp )−1(Hs′,t
p (F(S, P ))),



PERSISTENT HOMOLOGY OF SEMI-ALGEBRAIC SETS 21

it now follows that

Ms,t
p (F(S, P )) =

⋃
s′<s

(is,tp )−1(Hs′,t
p (F(S, P )))

= Hp(SP≤s),

Ns,t
p (F(S, P )) =

⋃
s′<s≤t′<t

(is,t
′

p )−1(Hs′,t′

p (F(S, P )))

=
⋃

s≤t′<t

(is,t
′

p )−1(Hs,t′

p (F(S, P )))

= Hp(SP≤s).

We have two sub-cases to consider.
(a) If t < sM+1:

P s,tp (F(S, P )) = Ms,t
p (F(S, P ))/Ns,t

p (F(S, P )) = 0.

(b) If t = sM+1 =∞:

P s,∞p (F(S, P )) = Hp(SP≤s)/
⋃
s≤t

Ms,t
p (F(S, P )) = 0.

since ⋃
s≤t

Ms,t
p (F(S, P )) =

⋃
s≤t

Hp(SP≤s) = Hp(SP≤s).

2. t 6∈ {s−1, . . . , sM+1}: Without loss of generality we can assume that t ∈ (si, si+1)
for some i,−1 ≤ i ≤ M . The inclusion SP≤t′ ↪→ SP≤t, is a semi-algebraic

homotopy equivalence for all t′ ∈ [si, t), and hence it
′,t
p is an isomorphism for

all t′ ∈ [si, t). This implies that for all t′ ∈ [si, t), and s′ < t′, Im(is
′,t′

p ) can be

identified with Im(is
′,t
p ) using the isomorphism it

′,t
p . Furthermore, it is easy to

verify that for every fixed s′ < s and s ≤ t′ ≤ t′′,

(is,t
′

p )−1(Hs′,t′

p (F(S, P ))) ⊂ (is,t
′

p )−1(Hs′,t′′

p (F(S, P ))),

and hence for each fixed s′ < s,⋃
s≤t′<t

(is,t
′

p )−1(Hs′,t′

p (F(S, P ))) =
⋃

si<t′<t

(is,t
′

p )−1(Hs′,t′

p (F(S, P ))).

It follows that for t ∈ (si, si+1)

Ns,t
p (F(S, P )) =

⋃
s′<s≤t′<t

(is,t
′

p )−1(Hs′,t′

p (F(S, P )))

=
⋃
s′<s

(is,tp )−1(Hs′,t
p (F(S, P )))

= Ms,t
p (F(S, P )).

We have

P s,tp (F(S, P )) = Ms,t
p (F(S, P ))/Ns,t

p (F(S, P )) = 0.

This completes the proof. �

Claim 3.2. For each i, j,−1 ≤ i ≤ j ≤M + 1, µ
si,sj
p (F(S, P )) = µ

si,sj
p (F).
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Proof. It suffices to prove that

Msi,sj
p (F(S, P )) = Msi,sj

p (F),

Nsi,sj
p (F(S, P )) = Nsi,sj

p (F).

To prove the first equality we use the fact that s′ ∈ [si−1, si), the inclusion
SP≤si−1 ↪→ SP≤s′ is a semi-algebraic homotopy equivalence.

Hence,

Msi,sj
p (F(S, P )) =

⋃
s′<si

(isi,sjp )−1(Hs′,sj
p (F(S, P )))

= (isi,sjp )−1(Hsi−1,sj
p (F(S, P )))

= Msi,sj
p (F).

Using additionally the fact that t′ ∈ [sj−1, sj), the inclusion SP≤sj−1
↪→ SP≤t′

is a semi-algebraic homotopy equivalence, we have:

Nsi,sj
p (F(S, P )) =

⋃
s′<si≤t′<sj

(isi,t
′

p )−1(Hs′,t′

p (F(S, P )))

= (isi,sj−1
p )−1(Hsi−1,sj−1

p (F(S, P )))

= Nsi,sj
p (F).

�

This concludes the proof of Proposition 3.3. �

Proof of Proposition 3.1. Follows immediately from Proposition 3.3. �

3.2. Persistent multiplicities for finite filtration. In this section, we prove a
formula for the persistent multiplicities associated to a finite filtration F , which
we later use in Algorithm 4 to obtain the barcodes of a finite filtration. We de-
duce the formula from our definition of persistent multiplicity (cf. Eqn. (2.1) in
Definition 2.5). 2

Proposition 3.4. Let F denote a finite filtration, given by X0 ⊂ · · · ⊂ XM =
XM+1 = · · · = X, such that rank of Hp(Xj) is finite for each p ≥ 0. Then for
0 < j < k,

(3.5) µj,kp (F) =


(bj,k−1
p (F)− bj,kp (F))− (bj−1,k−1

p (F)− bj−1,k
p (F)), k <∞,

bj,kp (F)− bj−1,k
p (F), k =∞.

Proof. We first prove the case where k is finite. By Definition 2.4,

µj,kp (F) = dimP j,kp (F)

= dimM j,k
p (F)− dimN j,k

p (F).

2This formula already appears in [24, page 152], but what is meant by “independent p-

dimensional classes that are born at Ki, and die entering Kj” loc. cit. is not totally transparent.

See also Remark 1.
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Since F is finite, we have

M j,k
p (F) = (ij,kp )−1(Hj−1,k

p (F)),

N j,k
p (F) = (ij,k−1

p )−1(Hj−1,k−1
p (F)).

Note that (ij,kp )−1(Hj−1,k
p (F)) is a subspace of Hp(Xj), and hence the linear map

ij,k : Hp(Xj)→ Hp(Xk) factors through a surjection f : Hp(Xj)→ Hj,k
p (F) followed

by an injection Hj,k
p (F) ↪→ Hp(Xk) as shown in the following diagram.

Hp(Xj) Hp(Xk)

Hj,k
p (F)

f

ij,kp

.

Now Hj−1,k
p (F) is a subspace of Hj,k

p (F), and let

m : Hj,k
p (F)→ Hj,k

p (F)/Hj−1,k
p (F)

be the canonical surjection. Let g = m ◦ f . Since f and m are both surjective, so
is g.

Hp(Xj) Hj,k
p (F) Hj,k

p (F) / Hj−1,k
p (F)

f

g = m◦f

m ,

Now notice that

M j,k
p (F) = (ij,kp )−1(Hj−1,k

p (F))

= f−1(Hj−1,k
p (F))

= ker(g).

Since g is surjective,

rank(g) = dim Hj−1,k
p (F)− dim Hj,k

p (F),

and using the rank-nullity theorem we obtain

(3.6) dimM j,k
p (F) = bp(Xj)− (bj,kp (F)− bj−1,k

p (F)).

Using a similar argument we obtain

(3.7) dimN j,k
p (F) = bp(Xj)− (bj,k−1

p (F)− bj−1,k−1
p (F)).

Finally,

µj,kp (F) = dimM j,k
p (F)− dimN j,k

p (F)

= bj−1,k
p (F)− bj,kp (F) + (bj,k−1

p (F)− bj−1,k−1
p (F))

= (bj,k−1
p (F)− bj,kp (F))− (bj−1,k−1

p (F)− bj−1,k
p (F)).

If k =∞, then by Definition 2.4,

µj,kp (F) = dimP j,kp (F)

= dim Hp(Kj)− dim
⋃
j≤t

M j,t
p (F).
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Since Ms,t
p (F) ⊂Ms,t′

p (F) for t ≤ t′, we have

M j,t
p (F) ⊂M j,t+1

p (F) ⊂ · · · ⊂M j,M
p (F) = M j,M+1

p (F) = · · · = M j,∞
p (F)

∞⋃
t

M j,t
p (F) = M j,M

p (F)

Therefore,

µj,kp (F) = dim Hp(Kj)− dimM j,M
p (F)

= bp(Xj)− (bp(Xj)− (bj,Mp (F)− bj−1,M
p (F)))

= bj,Mp (F)− bj−1,M
p (F)

�

4. Algorithms and proof of Theorem 1

In this section we describe our algorithmic results leading to the proof of Theo-
rem 1. We begin by stating some preliminary mathematical results in Section 4.1
that we will need for our algorithms. We describe two technical algorithms that we
will need in Section 4.2. In Section 4.4 we describe Algorithm 3 for reducing the
given continuous filtration to a finite one. The proof of correctness of this algorithm
relies on Proposition 3.3 proved earlier. Finally, in Section 4.4 we describe our algo-
rithm for computing the barcode of a semi-algebraic filtration (algorithm 5), prove
its correctness and analyze its complexity, thereby proving Theorem 1.

4.1. Preliminaries.

Notation 12 (Derivatives). Let P be a univariate polynomial of degree p in R[X].
We will denote by Der(P ) the tuple (P, P ′, . . . , P (p)) of derivatives of P .

The significance of Der(P ) is encapsulated in the following lemma which underlies
our representations of elements of R which are algebraic over D (cf. Definition 4.1).

Proposition 4.1 (Thom’s Lemma). Let f ∈ R[X] be a univariate polynomial, and,
let σ be a sign condition on Der(f) Then R(σ) is either empty, a point, or an open
interval.

Proof. See [9, Proposition 2.27]. �

Proposition 4.1 allows us to specify elements of R which are algebraic over D by
means of a pair (f, σ) where f ∈ D[X] and σ ∈ {0, 1,−1}Der(f).

Definition 4.1. We say that x ∈ R is associated to the pair (f, σ), if σ(f) = 0 and
if Der(f) realizes the sign condition σ at x. We call the pair (f, σ) to be a Thom
encoding specifying x.

We will also use the notion of a weak sign condition (cf. Definition 3.1).

Definition 4.2. A weak sign condition is an element of

{{0}, {0, 1}, {0,−1}}.
We say 

sign(x) ∈ {0} if and only if x = 0,

sign(x) ∈ {0, 1} if and only if x ≥ 0,

sign(x) ∈ {0,−1} if and only if x ≤ 0.
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A weak sign condition on Q is an element of {{0}, {0, 1}, {0,−1}}Q. If σ ∈
{0, 1,−1}Q, its relaxation σ is the weak sign condition on Q defined by σ(Q) =

σ(Q). The realization of the weak sign condition τ is

R(τ) = {x ∈ Rk |
∧
Q∈Q

sign(Q(x)) ∈ τ(Q)}.

Definition 4.3. We say that a set of polynomials F ⊂ R[X] is closed under dif-
ferentiation if 0 6∈ F and if for each f ∈ F then f ′ ∈ F or f ′ = 0.

Lemma 4.1. ([9, Lemma 5.33]) Let F ⊂ R[X] be a finite set of polynomials closed
under differentiation and let σ be a sign condition on the set F . Then

(a) R(σ) is either empty, a point, or an open interval.
(b) If R(σ) is empty, then R(σ) is either empty or a point.
(c) If R(σ) is a point, then R(σ) is the same point.
(d) If R(σ) is an open interval then R(σ) is the corresponding closed interval.

Remark 9. In what follows we will allow ourselves to use for P ∈ R[X1, . . . , Xk],
sign(P ) = 0 (resp. sign(P ) = 1, sign(P ) = −1) in place of the atoms P = 0 (resp.
P > 0, P < 0) in formulas. Similarly, we might write sign(P ) ∈ σ̄, where σ̄ is a
weak sign condition in place of the corresponding weak inequality P ≥ 0 or P ≤ 0.
It should be clear that this abuse of notation is harmless.

In addition to the mathematical preliminaries described above, we also need two
technical algorithmic results that we describe in the next section

4.2. Some preliminary algorithms. For technical reasons that will become clear
when we describe Algorithm 3, we will need to convert efficiently a given quantifier-
free formula defining a closed semi-algebraic set, into a closed formula defining the
same semi-algebraic set. This is a non-trivial problem, since the standard quantifier-
elimination algorithms in algorithmic semi-algebraic geometry does not guarantee
that the output will be a closed formula even if it is known in advance that the
semi-algebraic set that the formula is describing is closed. Luckily we only need to
deal with formulas in one variable, where the problem is somewhat simpler. Note
that even in this case, it is not possible to obtain the description of the given closed
semi-algebraic set as a closed formula by merely weakening the inequalities in the
original formula.

For example, consider the formula φ(X) := (X2(X − 1) > 0)∧ ((X ≥ 2)∨ (X ≤
0)). Then, R(φ) = [2,∞) is a closed semi-algebraic set, but the formula obtained
by weakening the inequality X2(X − 1) > 0, namely

φ̃ := (X2(X − 1) ≥ 0) ∧ ((X ≥ 2) ∨ (X ≤ 0)),

has as its realization the set {0} ∪ [2,∞) which is strictly bigger than R(φ).
Nevertheless, using Lemma 4.1 we have the following algorithm to achieve the

above mentioned task efficiently.



26 SAUGATA BASU AND NEGIN KARISANI

Algorithm 1 (Make closed)

Input:
A quantifier-free formula θ(Y ) with coefficients in D, in one free variable Y ,
such that R(θ) is closed.

Output:
A closed formula ψ(Y ) equivalent to θ(Y ).

Procedure:
1: Let θ(Y ) =

∨
1≤i≤M

∧
1≤j≤Ni(sign(Fi,j) = σi,j).

2: for each (i, j) such that σi,j 6= 0 do
3: Call Algorithm 13.1 (Computing realizable sign conditions) in [9] with in-

put Der(Fi,j), and obtain the set Σi,j of realizable sign conditions of
Der(Fi,j).

4: Σ′i,j ← {σ ∈ ΣF | σ(Fi,j) = σi,j}.
5: Σi,j ← {σ̄ | σ ∈ Σ′i,j}.
6: end for
7: return the formula

ψ(Y ) =
∨

1≤i≤M

(
∧

σi,j=0

(sign(Fi,j) = 0) ∧
∧

σi,j 6=0

∨
σ̄∈Σi,j

(sign(Fi,j) ∈ σ̄).

Complexity: The complexity of the algorithm is bounded by (sd)O(1) where s is
the number of polynomials appearing θ and d a bound on their degrees.

Proof of correctness. The correctness of the algorithm follows from the correctness
of Algorithm 13.1 (Computing realizable sign conditions) in [9], and Lemma 4.1. �

Complexity analysis. The complexity bound follows from the complexity of Algo-
rithm 13.1 (Computing realizable sign conditions) in [9]. �

We will also need an algorithm that takes as input a finite set of polynomials G
in one variable with coefficients in D[ε̄], and outputs a set of Thom encodings whose
set of associated points {s0, . . . , sM} satisfy the property stated in Lemma 3.5.

Algorithm 2 (Removal of infinitesimals)

Input:
A finite set G ⊂ D[ε̄][T ] such that each P ∈ G depends on at most k + 1 of the
εi’s.

Output:
A finite set of Thom encodings F = {(fi, σi) | 0 ≤ i ≤ N}, with fi ∈ D[T ]
with associated points s0 < · · · < sM , such that letting s−1 = −∞, sM+1 =∞,
for each i, 0 ≤ i < M , there exists j, 0 ≤ j < N , such that (si, si+1) ⊂ R is
contained in (tj , tj+1) ∩ R, where {t0, . . . , tN} =

⋃
G∈G Z(G,R〈ε̄〉), with t0 <

· · · < tN .
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Procedure:
1: for G ∈ G do
2: 0 ≤ i0 < · · · < ih ≤ s+ 1 be such that G ∈ D[εi0 , . . . , εih ][T ].
3: Write G =

∑
αmG,α(εi0 , . . . , εih)Gα, with Gα ∈ D[T ],mG,α ∈

D[εi0 , . . . , εih ].
4: Let M(G) = {α | mG,α 6= 0}.
5: end for
6: Let H =

⋃
G∈G,α∈M(G){Gα}.

7: Use Algorithm 10.17 from [9] with H as input to obtain an ordered list of
Thom encodings F .

8: return F .
Complexity: The complexity of the algorithm is bounded by sDO(k), where s =

card(G) and D is a bound on the degrees of the polynomials in G in ε̄ and
in T .

Proof of correctness. The correctness of the algorithm follows from Lemma 3.5 and
the correctness of Algorithm 10.17 from [9]. �

Complexity analysis. The complexity bound follows from the complexity bound of
Algorithm 10.17 from [9]. �

4.3. Algorithm for computing simplicial replacement. We recall the follow-
ing definition from [7].

Notation 13 (Diagram of various unions of a finite number of subspaces). Let J
be a finite set, A a topological space, and A = (Aj)j∈J a tuple of subspaces of A
indexed by J .

For any subset J ′ ⊂ J , we denote

AJ
′

=
⋃
j′∈J ′

Aj′ ,

AJ′ =
⋂
j′∈J ′

Aj′ ,

We consider 2J as a category whose objects are elements of 2J , and whose only
morphisms are given by:

2J(J ′, J ′′) = ∅ if J ′ 6⊂ J ′′,
2J(J ′, J ′′) = {ιJ′,J ′′} if J ′ ⊂ J ′′.

We denote by SimpJ(A) : 2J → Top the functor (or the diagram) defined by

SimpJ(A)(J ′) = AJ
′
, J ′ ∈ 2J ,

and SimpJ(A)(ιJ′,J ′′) is the inclusion map AJ′ ↪→ AJ′′ .

We will use an algorithm whose existence is proved in [7, Theorem 1], and which
we will refer to as Algorithm for computing simplicial replacement, that given a
tuple of closed-formulas Φ = (φ0, . . . , φN ), R > 0, and ` ≥ 0, produces as output a
simplicial complex K and subcomplexes Ki, 0 ≤ i ≤ N of K, such that the diagram

Simp[N ]
(

(R(φi, Bk(0, R)))i∈[N ]

)
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is homologically `-equivalent ([7, Section 2.1.1]) to the diagram

Simp[N ]
(
(|Ki|)i∈[N ]

)
(where |Ki| ⊂ |K| is the geometric realization of Ki and [N ] = {0, . . . , N}).

We refer the reader to [7] for the details.
The complexity of this algorithm, as well as the size of the output simplicial

complex ∆, are bounded by

(Nsd)k
O(m)

,

where s = card(P), and d = maxP∈P deg(P ).

4.4. Algorithm for reducing to a finite filtration. We are now in a position
to describe our algorithm for reducing the problem of computing the barcode of a
filtration of a semi-algebraic set S by the sub-level sets of a polynomial P , to the
problem of computing the barcode of a finite filtration.

Algorithm 3 computes a finite subset of R, as Thom encodings (cf. Defini-
tion 4.1), such that it includes the values of P at which the homotopy type of
the sub-level sets of S changes. The algorithm has singly exponentially bounded
complexity.

Algorithm 3 (Reducing to a finite filtration)

Input:
(a) ` ∈ Z≥0.
(b) R ∈ D, R > 0.
(c) A finite set P = {P1, . . . , Ps} ⊂ D[X1, . . . , Xk].
(d) A P-closed formula φ.
(e) A polynomial P ∈ R[X1, . . . , Xk].

Output:
(a) A finite set of Thom encodings F = {(fi, σi) | 0 ≤ i ≤ N}, with fi ∈ D[T ]

with associated points t0 < · · · < tN , such that for t ∈ R, denoting by
St = R(φ) ∩ Bk(0, R) ∩ {x | P (x) ≤ t}, for each i, 0 ≤ i ≤ N − 1, and all
t ∈ [ti, ti+1) the inclusion maps Sti ↪→ St are homological equivalences.

(b) A filtration of finite simplicial complexes

K0 ⊂ K1 ⊂ · · · ⊂ KN

such that Simp[N ](St0 , . . . , StN ) is homologically `-equivalent to

Simp[N ](|K0|, . . . , |KN |).
Procedure:

1: P0 ←
∑k
i=1X

2
i −R.

2: Ps+1 ← P − Y .
3:

P?(ε̄)←
⋃

0≤i≤s+1

{Pi + εi, Pi − εi}.

4: Denote by φ?(ε̄), the P?(ε̄)-closed formula obtained by replacing each occur-
rence of Pi ≥ 0 in φ by Pi + εi ≥ 0 (resp. Pi ≤ 0 in φ by Pi − εi ≤ 0) for
0 ≤ i ≤ s+ 1.
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5: for Q ⊂ P?(ε), card(Q) ≤ k do
6:

Jac(Q)←
∑

1≤i1<i2<···<icard(Q′)≤k

det

((
∂Q

∂Xij

)
Q∈Q,1≤i≤k

)
7: end for
8: for Q ⊂ P?(ε), card(Q) = k + 1 do
9:

Σ(Q′)←
∑
Q∈Q

Q2.

10: end for
11:

H ← {Jac(Q) | Q ⊂ P?(ε), card(Q) ≤ k} ∪ {Σ(Q) | Q ⊂ P?(ε), card(Q) = k + 1}.
12: Call Algorithm 14.1 (Block Elimination) from [9] with the block of variables

(X1, . . . , Xk) and H as input, and obtain G = BElimX(F) (following the
same notation as in [9, Algorithm 14.1 (Block Elimination)]).

13: Call Algorithm 2 with G as input and obtain an ordered list of Thom encodings
F = ((f0, σ0), . . . , (fN , σN )).

14: for 0 ≤ i ≤ N do
15: Call Algorithm 14.5 (Quantifier Elimination) [9] with input the formula

ψ̃(Y ) := ∀Z((fi(Z) = 0) ∧ (sign(Der(fi))(Z) = σi))⇒ (Y ≤ Z)

to obtain an equivalent quantifier-free formula ψ̃i(Y ).

16: Call Algorithm 1 with ψ̃i(Y ) as input to obtain a closed formula ψi(Y ).

17: φi ← φ̃ ∧ ψi(Y ).
18: Qi ← the set of polynomials appearing in ψi.
19: end for
20: Call Algorithm for simplicial replacement with input: the closed formulas

φ0, . . . , φN , R and `, and output the simplicial complexes Ki, 0 ≤ i ≤ N .

Complexity: The complexity of the algorithm is bounded by (sd)k
O(`)

, where
s = card(P), and d = maxP∈P deg(P ).

Proof of correctness. The correctness of the algorithm follows from Proposition 3.3,
and the correctness of the following algorithms: Algorithm 14.1 (Block Elimination)
in [9]), Algorithm 2, Algorithm 14.5 (Quantifier Elimination) in [9], Algorithm 1,
and the Algorithm for simplicial replacement [7, Theorem 1]. �

Complexity analysis. The complexity bound follows from the complexity bounds of
Algorithm 14.1 (Block Elimination) in [9]), Algorithm 2, Algorithm 14.5 (Quantifier
Elimination) in [9], Algorithm 1, and the Algorithm for simplicial replacement [7,
Theorem 1]. �

4.5. Computing barcodes of semi-algebraic filtrations. We can now describe
our algorithm for computing the barcode of the filtration of a semi-algebraic set
by the sub-level sets of a polynomial. First we need an algorithm for computing
barcodes of finite filtrations of finite simplicial complexes.
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Algorithm 4 (Barcode of a finite filtration of finite simplicial complexes)

Input:
1. ` ∈ Z≥0.
2. A finite filtration F , K0 ⊂ · · · ⊂ KN of finite simplicial complexes.

Output:
Bp(F), 0 ≤ p ≤ `.

Procedure:
1: K−1 ← ∅.
2: KN+1 ← KN .
3: for −1 ≤ i ≤ j ≤ N + 1 do
4: Use Gaussian elimination to compute the persistent Betti numbers bi,jp (F).
5: end for
6: for 0 ≤ p ≤ `, 0 ≤ i ≤ j ≤ N + 1 do
7:

8: if j = N + 1 then

µi,jp ← bi,jp (F)− bi−1,j
p (F)

9: else

µi,jp ← (bi,j−1
p (F)− bi,jp (F))− (bi−1,j−1

p (F)− bi−1,j
p (F))

10: end if
(cf. Eqn. (3.5)).

11: end for
12: for 0 ≤ p ≤ ` do
13: Output

Bp(F) = {(i, j, µi,jp ) | 0 ≤ i ≤ j ≤ N,µi,jp > 0}∪
{(i,∞, µi,jp ) | 0 ≤ i ≤ j = N + 1, µi,jp > 0}.

14: end for
Complexity: The complexity of the algorithm is bounded polynomially in N times

the number of simplices appearing in the complex KN .

Proof of correctness. The correctness of the algorithm follows from Eqn. (3.5). �

Complexity analysis. The complexity of the algorithm follows from the complexity
of Gaussian elimination. �

Algorithm 5 (Computing persistent homology barcodes of semi-algebraic sets)

Input:
(A) A P-closed formula φ, with P a finite subset of D[X1, . . . , Xk], such that

R(φ,Rk) is bounded.
(B) A polynomial P ∈ D[X1, . . . , Xk].
(C) `, 0 ≤ ` ≤ k.

Output:
For each p, 0 ≤ p ≤ `, Bp(S, P ), where S = R(φ).



PERSISTENT HOMOLOGY OF SEMI-ALGEBRAIC SETS 31

Procedure:
1: P ′ ← P ∪ {ε(X2

1 + · · ·+X2
k)− 1}.

2: φ′ ← φ ∧ ε2(X2
1 + · · ·+X2

k)− 1 ≤ 0).
3: R← R〈ε〉, D← D[ε].
4: Call Algorithm 3 with input `, 1/ε,P ′, φ′, P , to obtain a finite ordered set of

Thom encodings (f0, σ0), . . . , (fN , σN ), and a finite filtration F = (K0 ⊂
· · · ⊂ KN ), where KN is a finite simplicial complex.

5: Call Algorithm 4 with input ` and the finite filtration F , and output for each
p, 0 ≤ p ≤ `, Bp(F).

6: for each p, 0 ≤ p ≤ `
Output

Bp(S, P ) =
⋃

(i,j,µ)∈Bp(F),0≤i≤j≤N

{((fi, σi), (fj , σj), µ)}∪

⋃
(i,∞,µ)∈Bp(F)

{((fi, σi),∞, µ)}.

Complexity: The complexity of the algorithm is bounded by (sd)k
O(`)

, where
s = card(P), and d = maxQ∈P∪{P} deg(Q).

Proof of correctness. The correctness of the algorithm follows from the correctness
of Algorithms 3 and 4. �

Complexity analysis. The complexity bound follows from the complexity bounds of
Algorithms 3 and 4. �

Proof of Theorem 1. The theorem follows from the correctness and the complexity
analysis of Algorithm 5. �

5. Future work and open problems

We conclude by stating some open problems and possible future directions of
research in this area.

1. It would be very interesting (and challenging) to obtain an algorithm with singly
exponential complexity that computes the entire barcode of a semi-algebraic fil-
tration, and not restricted to dimension up to `. This would imply also an
algorithm with singly exponential complexity for computing all the Betti num-
bers of a given semi-algebraic set, which is a challenging problem on its own
[1].

2. Another open problem is to extend Algorithm 5 to the case of non-proper semi-
algebraic maps using the proposed definition of barcodes for non-proper semi-
algebraic maps (see Definition 2.8).

3. One very active topic in the area of persistent homology is the theory of multi-
dimensional persistent homology [18]. In our setting this would imply studying
the sub-level sets of two or more real polynomial functions simultaneously. While
the so called persistence modules and associated barcodes can be defined anal-
ogously to the one-dimensional situation (see for example [18]), an analog of
Proposition 3.1 is missing. It is thus an open problem to give an algorithm with
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singly exponential complexity to compute the barcodes of “higher dimensional”
semi-algebraic filtrations.
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