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Abstract—Optical transmission systems intrinsically enjoy a
four-dimensional (4D) constellation space, corresponding to two
quadratures in two polarization states. In this paper, we introduce
a general nonlinear model that is valid for 4D symmetric
modulation formats. We take the inter-polarization dependency
into account to derive this model. The model accounts for all
perturbative nonlinear interference (NLI) terms, including self-
channel, cross-channel and multi-channel interferences. Split step
Fourier simulations show that the proposed model has the ability
to predict the NLI with high levels of accuracy for both low and
high fiber dispersion regimes. The simulation results further show
that previous models, including the EGN model, inaccurately
predict the NLI in certain scenarios.

Index Terms—Coherent systems, Enhanced Gaussian noise
model, Four-dimensional modulation formats, Gaussian noise
model, Kerr nonlinearity, Optical fiber communications.

I. INTRODUCTION

In coherent fiber-optic communication systems, both
quadratures and both polarizations of the electromagnetic field
are employed, resulting in a four-dimensional (4D) signal
space. Signal disturbance imposed by the Kerr nonlinearity
as the signal propagates through an optical fiber is the chief
factor limiting the capacity of wavelength division multi-
plexed (WDM) systems [1]. To counter this limit, nonlinearity-
tolerant 4D modulation formats have become especially attrac-
tive. Optimized modulation formats in a 4D space have been
previously studied in [2], [3], irrespective of the nonlinear
interference (NLI) that modulation formats undergo during
propagation. To find a nonlinearity-resistant constellation, we
need a powerful analytical model that enables us to accurately
estimate the experienced NLI. This paper presents a model to
accurately predict the NLI affecting 4D formats in both low
and high fiber dispersion regimes.

Although the literature has a wealth of approximate ana-
lytical models for nonlinear fiber propagation [4]–[9], they
all focus on estimating the NLI of polarization multiplexed
(PM) systems. The first nonlinear model was introduced in
1993 [10]. The Volterra series method, an analytical solution
of the nonlinear Schrödinger equation, was presented both
in the time and frequency domain in [11]. More recently,
the Gaussian noise (GN) model was derived based on the
assumption that the transmitted signal in a link approximates

H. Rabbani, H. Hosseinianfar and M. Brandt-Pearce are with the Charles
L. Brown Department of Electrical and Computer Engineering, University
of Virginia, Charlottesville, VA 22904, USA. E-mails: {dmr3ub, hh9af, mb-
p}@virginia.edu.

a Gaussian distribution in dispersion-uncompensated optical
systems [6], [12], leading to a slight overestimate of the NLI
variance. The first 4D GN-like nonlinear model was introduced
in [13]. The original GN models do not include comple-
mentary modulation-format-dependant terms. A modulation-
format-dependent time domain model was proposed for the
first time in [14] by resorting to an asymptotic approximation
similar to the far-field approximation in paraxial optics. The
authors of [7] found that there is a discrepancy between
the time-domain model [14] and the GN model [12]; they
attributed this deviation to the Gaussianity assumption of
the signal in the GN model. To settle this discrepancy,
[7] added a modulation-format-dependent correction term to
the cross phase modulation (XPM) estimate. Following the
same approach as in [7], the authors of [9] added correction
terms to the GN model, taking the self-channel interference
(SCI), cross-channel interference (XCI), and multi-channel
interference (MCI) terms into account, giving rise to the so-
called enhanced Gaussian noise (EGN) model. Comprehensive
surveys of nonlinear models proposed up to 2015 and 2020
were given in [15] and [16, Table I], respectively.

All the nonlinear models given in [16, Table I] apply
to modulation formats that modulate the two polarizations
independently, i.e., 2×2D formats, such as the PM-M-QAM
format. However, for 4D formats that modulate all four di-
mensions jointly, a more general nonlinear model is needed.
An analytical model for asymmetric 4D modulation formats
was presented in [17], comprising only the SCI. In [18], a
4D nonlinear model able to quantify the impact of SCI (the
pink lozenge-shaped island in [9, Fig. 7]) and XPM (the
blue lozenge-shaped islands in [9, Fig. 7], named as X1)
was derived. The model in [18] is only able to estimate the
impact of NLI in high dispersion systems because it discards
XCI (except for XPM) and MCI terms. No one has as yet
ascertained how to estimate the XCI (the islands marked as
X2, X3, and X4 in [9, Fig. 7]) and MCI (the islands marked
as M0, M1, M2, M3, and M4 in [9, Fig. 7]) terms that disturb
4D constellations.

This paper is an extension of [18] providing a far more
thorough and complete approach to deriving the NLI terms,
such as SCI, XCI and MCI, by taking the interpolarization
dependency into consideration. Unlike the model presented
in [18] that applies only to high dispersion fiber systems,
this work accurately models the nonlinear interference in
various scenarios, including narrow bandwidth channels often
encountered in elastic optical networks and transmission over
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low dispersion fiber. To the best of our knowledge, it is the first
paper that presents a comprehensive solution to modeling the
NLI that is applicable to any system using a 4D modulation
format. The reader may want to use the proposed model for
a wide range of purposes, such as quality of transmission
estimation or new modulation format design.

The structure of the paper is as follows. In Sec. II, we deal
with the Manakov equation in the pseudolinear regime, where
the SNR is high enough to support the first order perturbation
approach. Sec. III presents the key result of this work, the
new NLI model. Sec. IV is devoted to numerical results
showing how various 4D constellations compare in terms of
the experienced NLI. Sec. V provides the conclusion. The
paper ends with an appendix, where the derivation of the key
result is given in detail.

Notation: (·)x and (·)y are used throughout this paper to de-
note variables associated to polarizations x and y, respectively.
The boldface symbols stand for two dimensional complex
functions [18, Eq. (1)]. Expectations are shown by E{·}, and
(·)† stands for the complex conjugate.

II. PRELIMINARIES

Let us start with the Manakov equation [19, Eq. (2)], [18,
Eq. (2)]1,

∂

∂z
u(t, z) =− iβ2

2

∂2

∂t2
u(t, z)

+ i
8

9
γf(z)u†(t, z)u(t, z)u(t, z), (1)

where u(t, z) is linked to the electrical field E(t, z) [18,
Eq. (1)] through a distance-dependent scaling function, com-
pensating for gain/loss, as in [14, Sec. II], [18, Eq. 2]. In (1),
β2 is the group velocity dispersion, f(z) is the loss/gain power
profile, and γ is the fiber nonlinearity coefficient. The function
f(z) is equivalent to f(z) = exp{−αmod(z, L)} for lumped
amplification, where α is the loss coefficient, L is the span
length and mod(z, L) indicates the distance between the point
z and the nearest preceding amplifier.

We express the linear solution to (1) as [7, Eq. (1)]

u(t, z) =
N∑
n=1

∑
k

e−iνnt+
iβ2ν

2
n

2 zan,kgn(t− kTn − β2νnz, z),

(2)

where νn is the central frequency of channel n and an,k =
[an,k,x an,k,y]T is a column vector comprising two elements
representing the k-th symbol transmitted by channel n. Eq. (2)
is an extension of [7, Eq. (1)], [18, Eq. (3)] when the
WDM spectrum is occupied by N channels whose band-
widths are allowed to differ from each other. The dispersed
pulse waveform at point z along the fiber is gn(t, z) =
exp(−izβ2∂2t /2)gn(t, 0) [20], where gn(t, 0) is the injected
waveform in channel n, and ∂t is the time derivative operator.
The symbol rate of channel n is given by T−1n . In this paper,
we denote n as the channel of interest (COI).

1We note that in this paper we neglect the nonlinear interactions between
signal and amplified spontaneous emission noise.

We would like to detect the zeroth symbol in the COI,
namely an,0, with no loss of generality. The COI is matched
filtered with a filter whose impulse response is proportional
to g∗n(t, L) [7]. The extracted symbol at the receiver may
be expressed as an,0 + ∆an,0, where ∆an,0 accounts for
the NLI. By resorting to the perturbation approach, the NLI
contribution ∆an,0 that yields a first order solution of the
Manakov equation can be written as [7, Eqs. (3)-(5)], [20,
Eq. (3)], [18, Eq. (4)]

∆an,0 = i
8

9
γ
∑

n1,n2,n3∈T

∑
h,k,l

a†n2,k
an1,han3,lHn1,n2,n3

(h, k, l),

(3)

where T =
{

(n1, n2, n3) ∈ {1, · · · , N}3
}

, and
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∫ L

0
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∫ ∞
−∞

dtf(z)
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β2
2 (νn)

2z
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− β2νn2
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β2
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2z

· gn1
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· gn3
(t− lTn3
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2z.
(4)

Note that H(·) defined above and other expressions resulting
from it defined below (S(·), χ1(·), etc.) depend on n, but for
notational compactness we suppressed the dependence on n
throughout the paper.

Eq. (3) is a generalization of [7, Eq. (5)], [20, Eq. (3)],
[18, Eq. (4)] for a multi-channel WDM system. Considering
g(t, z) =

∫
dwg̃(w)exp(−iwt+iw2β2z/2)/(2π), where g̃(w)

is the Fourier transform of g(t, 0) (see [20, Appendix] and [19,
Eqs. (31) and (34)]), (4) is expressed in the frequency domain
as

Hn1,n2,n3
(h, k, l) =

∫
d3w

(2π)3
Sn1,n2,n3

(w1, w2, w3)

· ei(w1hTn1−w2kTn2+w3lTn3 ), (5)

respectively, where
∫

d3w stands for
∫ ∫ ∫

dw1dw2dw3, and

Sn1,n2,n3
(w1, w2, w3) = g̃∗n(w1 − w2 + w3 − νn)

· g̃n1
(w1 − νn1

)g̃∗n2
(w2 − νn2

)g̃n3
(w3 − νn3

)Υ(w1, w2, w3),
(6)

and

Υ(w1, w2, w3) =

∫ L

0

dzf(z)eiβ2(w2−w3)(w2−w1)z (7)

is the link function.

III. THE KEY RESULT: NLI VARIANCE

This section provides the key result of this work, which is
the power of the NLI contribution given in (3). The reader can
find a detailed derivation of the key result in the Appendix.
To obtain our result, we will make the same assumptions as
described in [18, Sec. III].

Channels across the spectrum can have different launch
powers and different 4D modulation formats. The launch
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powers in the x- and y-polarization are assumed to be the
same, which means that

Pn
2

= E{|an,x|2} = E{|an,y|2}, (8)

where Pn is the total launch power transmitted in channel n.
The power of the NLI on channel n is related to (3) as2

PNLI,n = trace [Cov {∆an,0}] (9)

= σ2
NLI,n,x + σ2

NLI,n,y, (10)

where σ2
NLI,n,x and σ2

NLI,n,y are the NLI variances on polariza-
tions x and y, respectively. The NLI variance on polarization
x (and similarly y) can be written as

σ2
NLI,n,x =

64

81
γ2

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

·
(
δn1,n2

δn1,n3
Ψ1χ1 + δn1,n2

Ψ2χ2+δn1,n3
Ψ3χ3+3Z

)
,

(11)

where Pni,x is the launch power of channel ni transmitted
in polarization x. The terms χ1, χ2, χ3, and Z are given
in Table I, while Ψ1, Ψ2, Ψ3 are expressed in Table II. By
swapping x and y in (11) and in the terms expressed in Table II,
the NLI variance in the y polarization σ2

NLI,n,y can be readily
obtained from (11).

Intuitively, the product δn1,n2δn1,n3 in (11) means that the
frequency components w1, w2, w3, given in (6), are within a
single channel. The term δn1,n2

, on the other hand, implies
that the frequency components w1 and w2 are located in the
same channel. The same interpretation is true for δn1,n3

in
(11). As shown in [18, Sec. III], the terms Ψ1, Ψ2, and Ψ3

converge to the EGN model in the special case of independent
polarizations. We can call the integral terms χ2 and χ3 the
fourth order noise coefficients, like [20, Eq. (16)]. The terms
χ1 and Z are therefore called the sixth order and second order
noise coefficients (see [20, Eq. (13)]), respectively.

IV. NUMERICAL RESULTS

In this section, we validate our proposed derived NLI power
(10) with split-step Fourier method (SSFM) simulations in
a single-link scenario for a number of modulation formats
chosen from [21] by mapping the first two coordinates to the x
polarization and the last two to the y polarization. We compare
the 4D modulation formats in terms of

ηn =
PNLI,n

P 3
, (12)

where PNLI,n is the NLI power at the COI. We also assume
in (12) that P = Pn1 = Pn2 = Pn3 . In (12), ηn is the NLI
noise experienced by channel n normalized over P−3, and so
it is independent of the launch power per channel.

In our simulations, we consider two scenarios that are quite
distinct from each other, like in [22]. The first and second
scenarios use standard single mode fiber (SMF) and non-zero
dispersion shifted fiber (NZDSF), respectively. Both scenarios
operate over 100-km uniform spans. We also assume that the

2Under the assumptions made in [18, Sec. III], the non-diagonal terms of
the covariance matrix are zero.

Table I
INTEGRAL EXPRESSIONS FOR THE TERMS USED IN (11).

Term Integral Expression

χ1(n1, n2, n3) 1
Tn1

∫ d3w
(2π)3

d2w′

(2π)2
Sn1,n2,n3 (w1, w2, w3)

·S∗n1,n2,n3
(w′1, w

′
2, w1 + w3 + w′2 − w2 − w′1)

χ2(n1, n2, n3) 1
Tn1Tn3

∫ d3w
(2π)3

dw′
2

2π
Sn1,n2,n3 (w1, w2, w3)

·S∗n1,n2,n3
(w1 − w2 + w′2, w

′
2, w3)

χ3(n1, n2, n3) 1
Tn1

Tn2

∫ d3w
(2π)3

dw′
2

2π
Sn1,n2,n3 (w1, w2, w3)

·S∗n1,n2,n3
(w′1, w2, w1 + w3 − w′1)

Z(n1, n2, n3) 1
Tn2Tn1Tn3

∫ d3w
(2π)3

|Sn1,n2,n3 (w1, w2, w3)|2

Table II
THE TERMS USED IN (11). THE VALUES OF ϕ1, · · · , ϕ5 ARE GIVEN IN

TABLE III.

Term Expression

Ψ1 ϕ1 − 12ϕ2 + 2ϕ3 + ϕ4 − 12ϕ5 + 24

Ψ2 5ϕ2 + 5ϕ5 − 15

Ψ3 ϕ2 + ϕ5 − 3

Table III
EXPRESSIONS FOR THE TERMS ϕ1, · · · , ϕ5 USED IN TABLE II.

Term Expression Term Expression

ϕ1
E{|an1,x|

6}
E3{|an1,x|

2} ϕ2
E{|an1,x|

4}
E2{|an1,x|

2}

ϕ3
E{|an1,x|

4|an1,y|
2}

E3{|an1,x|
2} ϕ4

E{|an1,y|
4|an1,x|

2}
E3{|an1,x|

2}

ϕ5
E{|an1,x|

2|an1,y|
2}

E2{|an1,x|
2}

WDM spectrum in both scenarios accommodates either 50
Gbaud channels with 50 GHz frequency spacing or 20 Gbaud
channels with 20 GHz spacing. We consider the following
parameters in our setup for SMF or NZDSF, respectively:
dispersion coefficient D = 16.5 or 3.8 ps/nm/km, nonlinear
coefficient γ = 1.3 or 1.5 1/W/km, and attenuation α = 0.2
dB/km in both cases. wavelength is 1550 nm.

Finding a numerical solution to the Manakov equation is
a big challenge faced by scientists today. This is caused by
high memory requirements and the excessive need for very
large fast Fourier transforms. The SSFM simulation (and the
corresponding analytical models) were therefore limited to a
fully occupied bandwidth of 0.5 THz similar to [18, Sec.
IV]. Four modulation formats, including PM-QPSK, subset
optimized PM-QPSK (SO-PM-QPSK) [21], [23], PM-16QAM
and a4_256 [21], [24] were simulated. The figures show ηn
in dB(W−2) = 10 log10(ηn · 1W 2) as a function of channel
number n.

Fig. 1 gives information about the NLI that 4D constella-
tions have undergone after traveling through SMF. As can be
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Figure 1. ηn as a function of channel number n after 5 spans of SMF fiber, comparing different models; the proposed model is referred to as ‘4D’. In the
top panel (Figs. (a) and (b)) the SMF supports N = 10 WDM channels with symbol rate 50 Gbaud and channel spacing 50 GHz, whereas in the bottem
panel (Figs. (c) and (d)) SMF supports N = 25 channels with symbol rate 20 Gbaud and channel spacing 20 GHz.

seen in Fig. 1, the results obtained from our model match
SSFM simulations, while the EGN model does not accurately
predict the NLI of SO-PM-QPSK and a4_256 formats. The
EGN model underestimates the NLI of 16-point constellations
(Figs. 1 (a) and (c)), while for 256-point constellations, it
overestimates the NLI (Figs. 1 (b) and (d)). Figs. 1 (a) and (b)
show the results for high symbol rates, where the predominant
nonlinear terms are SCI and XPM terms. Figs. 1 (c) and (d),
on the other hand, illustrate the results for low symbol rates
in which the major NLI contribution comes from MCI terms.
As indicated in Figs. 1 (c) and (d), the results obtained using
our model follow SSFM simulations very closely since our
model fully accounts for all the NLI terms. The model given
in [18, Eq. (15)] departs significantly from SSFM simulations
because it neglects MCI terms. The gap between our model
and the model given in [18, Eq. (15)] becomes greater in
systems operating at low baud rates: up to 1.55 dB and 1.28 dB
for PM-QPSK and a4_256 modulation formats, respectively,
as shown in Figs. 1 (c) and (d).

We plot corresponding numerical results for NZDSF in
Fig. 2 to evidence how our model is also suitable for estimating
the NLI for different fiber types [22]. In each of the figures
shown in Fig. 2, the results obtained through our model
are in close agreement with SSFM simulation results. The
model presented in [18] substantially underestimates the NLI,

especially for the narrower band signals shown in Figs. 2 (c)
and (d), due mostly to the massive number of discarded MCI
terms, in addition to low dispersion in NZDSF. As can be
seen in Fig. 2 (c), the NLI results of [18] are below the SSFM
results by about 3.46 dB for PM-QPSK and by about 2.40 dB
for SO-PM-PQSK. Fig. 2 (d) shows that the deviation between
the SSFM and the NLI model results of [18] is about 2.73 dB
for a4_256. This gap for PM-16QAM is about 2.55 dB.

Results show that our NLI model can accurately predict the
NLI for various bandwidth signals, unlike the model in [18]
that is accurate only for large signal bandwidths. Furthermore,
our model has the ability to predict the NLI of systems using
low dispersion fiber, such as NZDSF, resulting in high NLI; the
model presented in [18] fails to provide an accurate estimate
of the impairments in these cases. Our results are analogous
to [22, Fig. 1], which demonstrates that for a fully loaded link
of SMF or NZDSF, the MCI contributions to the NLI become
more significant for symbol rates lower than around 25 Gbaud
and 50 Gbaud, respectively. As the symbol rate decreases, we
face a huge number of MCI terms whose computation is a
considerable challenge. To circumvent this issue, we follow
an approach similar to [25, Fig. 1], meaning that many terms
in (11) that are repetitive are not recomputed. Our model can
be used for a wide range of purposes, such as reducing a
constellation’s vulnerability to NLI. The discrepancy between
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Figure 2. ηn as a function of channel number n after 5 spans of NZDSF fiber, comparing different models; the proposed model is referred to as ‘4D’. In the
top panel (Figs. (a) and (b)) the NZDSF supports N = 10 WDM channels with symbol rate 50 Gbaud and channel spacing 50 GHz, whereas in the bottem
panel (Figs. (c) and (d)) NZDSF supports N = 25 channels with symbol rate 20 Gbaud and channel spacing 20 GHz.

SSFM simulations and the results obtained using our 4D model
is on average 0.14 dB for the modulation formats and system
scenarios tested.

V. CONCLUSION

A detailed derivation of an analytical model for the nonlin-
ear fiber interference experienced by signals using 4D modu-
lation formats was given. The derived model has the power to
quantify the impact of all the NLI terms, such as SCI, XCI, and
MCI terms on a 4D signal space. The previously-proposed GN
and EGN models ignore the interpolarization dependency that
the proposed model captures. The proposed model is accurate
for a variety of scenarios, including both small and large
bandwidth signals and both high and low dispersion fiber-
based systems. Our model results in an average error of a
small fraction of a dB, while other models result in errors of
2-3 dB for typical scenarios.
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VII. APPENDIX

The aim of this section is to derive the NLI variance of
polarization x, given in (10). We set out with the x-polarized
component of (3), which is

∆an,0,x =i
8

9
γ

∑
n1,n2,n3∈T

∑
h,k,l

Hn1,n2,n3(h, k, l)

·
(
an1,h,xa

∗
n2,k,xan3,l,x + an1,h,ya

∗
n2,k,yan3,l,x

)
.

(13)

Under the assumption that the modulation formats
are zero-mean and symmetric in the complex
plane, we have E{an1,h,x} = E{a∗n1,h,x} = 0,
E{an1,h,xan1,h′,x} = E{a∗n1,h,xa

∗
n1,h′,x} = 0,

E{an1,h,xa
∗
n1,h′,y} = E{a∗n1,h,xan1,h′,y} = 0,

E{|an1,h,x|2an1,h′,x} = E{|an1,h,x|2an1,h′,y} = 0, and
E{an1,h,xa

∗
n1,h′,x} = E{|an1,x|2}δh,h′ (see [19, Appendix A],

[18, Appendix A]). The variance of (13) is equal to

σ2
NLI,n,x = E{∆an,0,x∆a∗n,0,x} − E{∆an,0,x}E{∆a∗n,0,x},

(14)
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Table IV
EXPRESSIONS FOR THE TERMS USED IN (18).

Term Expression

A1
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n1,n1 (h, k, l)H∗n1,n1,n1

(h′, k′, l′)E{an1,h,xa
∗
n1,k,x

an1,l,xa
∗
n1,h′,xan1,k′,xa

∗
n1,l′,x

}

A2
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n3,n3 (h, k, l)H∗n1,n3,n3

(h′, k′, l′)E{an1,h,xa
∗
n1,h′,x}E{a

∗
n3,k,x

an3,l,xan3,k′,xa
∗
n3,l′,x

}

A3
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n3,n3 (h, k, l)H∗n3,n3,n1

(h′, k′, l′)E{an1,h,xa
∗
n1,l′,x

}E{a∗n3,k,x
an3,l,xa

∗
n3,h′,xan3,k′,x}

A4
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n2,n1 (h, k, l)H∗n1,n2,n1

(h′, k′, l′)E{a∗n2,k,x
an2,k′,x}E{an1,h,xa

∗
n1,h′,xan1,l,xa

∗
n1,l′,x

}

A5
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n1,n3 (h, k, l)H∗n3,n1,n1

(h′, k′, l′)E{an3,l,xa
∗
n3,h′,x}E{an1,h,xa

∗
n1,k,x

an1,k′,xa
∗
n1,l′,x

}

A6
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n1,n3 (h, k, l)H∗n1,n1,n3

(h′, k′, l′)E{an3,l,xa
∗
n3,l′,x

}E{an1,h,xa
∗
n1,k,x

a∗
n1,h′,xan1,k′,x}

A7
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n2,n3 (h, k, l)H∗n1,n2,n3

(h′, k′, l′)E{an1,h,xa
∗
n1,h′,x}E{a

∗
n2,k,x

an2,k′,x}E{an3,l,xa
∗
n3,l′,x

}

A8
64
81
γ2

∑
h,k,l,h′,k′,lHn1,n2,n3 (h, k, l)H∗n3,n2,n1

(h′, k′, l′)E{an1,h,xa
∗
n1,l′,x

}E{a∗n2,k,x
an2,k′,x}E{an3,l,xa

∗
n3,h′,x}

where the expectation terms E{∆a0,x} and E{∆a∗0,x} are
therefore zero. Substituting (13) into (14) gives

σ2
NLI,n,x =

64

81
γ2

∑
n1,n2,n3∈T

∑
n′
1,n

′
2,n

′
3∈T

∑
h,k,l,h′,k′,l′

Hn1,n2,n3
(h, k, l)H∗n′

1,n
′
2,n

′
3
(h′, k′, l′)

·
(
E{an1,h,xa

∗
n2,k,xan3,l,xa

∗
n′
1,h

′,xan′
2,k

′,xa
∗
n′
3,l

′,x}

+ E{an1,h,xa
∗
n2,k,xan3,l,xa

∗
n′
1,h

′,yan′
2,k

′,ya
∗
n′
3,l

′,x}
+ E{an1,h,ya

∗
n2,k,yan3,l,xa

∗
n′
1,h

′,xan′
2,k

′,xa
∗
n′
3,l

′,x}

+ E{an1,h,ya
∗
n2,k,yan3,l,xa

∗
n′
1,h

′,yan′
2,k

′,ya
∗
n′
3,l

′,x}
)
. (15)

To compute (15), four terms must be calculated, expressed as

σ2
NLI,n,x =σ2

NLI,n,x,1st + σ2
NLI,n,x,2nd

+ σ2
NLI,n,x,3rd + σ2

NLI,n,x,4th, (16)

where σ2
NLI,n,x,1st, σ

2
NLI,n,x,2nd, σ2

NLI,n,x,3rd, and σ2
NLI,n,x,4th are

the first, second, third, and fourth term of (15), respectively.
We only give the procedure for calculating σ2

NLI,n,x,1st in detail,
and the others can be derived following the same approach.

Given the bias terms described in [14, Sec. VIII, Eqs. (63)–
(67)], [7, Sec. 3, Eq. (17)], [9, Appendix A], [26, Sec.IV-B
and the text after (63)], [6, Appendix C]) and [18, Eq. (37)],
we must ignore the triplets (h, k, l) in which h = k or k = l.
The following cases should therefore be taken into account for
computing σ2

NLI,n,x,1st
3:

1) n1 = n2 = n3 = n′1 = n′2 = n′3
2) n1 = n′1 6= n2 = n3 = n′2 = n′3
3) n1 = n′3 6= n2 = n3 = n′1 = n′2
4) n2 = n′2 6= n1 = n3 = n′1 = n′3
5) n3 = n′1 6= n1 = n2 = n′2 = n′3
6) n3 = n′3 6= n1 = n2 = n′1 = n′2
7) n1 = n′1 6= n2 = n′2 6= n3 = n′3
8) n1 = n′3 6= n2 = n′2 6= n3 = n′1,

3It is noticeable that without the simplifying assumptions made in [18,
Sec. III], quite a few terms must be taken into account for each term of (15),
leading to bulky formula.

resulting in

σ2
NLI,n,x,1st =

64

81
γ2

∑
n1,n2,n3∈T

∑
n′
1,n

′
2,n

′
3∈T

∑
h,k,l,h′,k′,l′

Hn1,n2,n3
(h, k, l)H∗n′

1,n
′
2,n

′
3
(h′, k′, l′)

·
(
δn1,n3δn1,n2δn1,n′

1
δn2,n′

2
δn3,n′

3

· E{an1,h,xa
∗
n1,k,xan1,l,xa

∗
n1,h′,xan1,k′,xa

∗
n1,l′,x}

+ δn2,n3
δ̄n1,n3

δn1,n′
1
δn2,n′

2
δn3,n′

3
E{an1,h,xa

∗
n1,h′,x}

· E{a∗n3,k,xan3,l,xan3,k′,xa
∗
n3,l′,x}

+ δn2,n3 δ̄n1,n3δn1,n′
3
δn2,n′

2
δn3,n′

1
E{an1,h,xa

∗
n1,l′,x}

· E{a∗n3,k,xan3,l,xa
∗
n3,h′,xan3,k′,x}

+ δn1,n3
δ̄n1,n2

δn2,n′
2
δn1,n′

1
δn3,n′

3
E{a∗n2,k,xan2,k′,x}

· E{an1,h,xan1,l,xa
∗
n1,h′,xa

∗
n1,l′,x}

+ δn1,n2
δ̄n1,n3

δn3,n′
1
δn2,n′

2
an1,n′

3
E{an3,l,xa

∗
n3,h′,x}

· E{an1,h,xa
∗
n1,k,xan1,k′,xa

∗
n1,l′,x}

+ δn1,n2 δ̄n1,n3δn3,n′
3
δn1,n′

1
δn2,n′

2
E{an3,l,xa

∗
n3,l′,x}

· E{an1,h,xa
∗
n1,k,xa

∗
n1,h′,xan1,k′,x}

+ δn1,n′
1
δn2,n′

2
δn3,n′

3
δ̄n1,n2

δ̄n1,n3
δ̄n2,n3

E{an1,h,xa
∗
n1,h′,x}

· E{a∗n2,k,xan2,k′,x}E{an3,l,xa
∗
n3,l′,x}

+ δn1,n′
3
δn2,n′

2
δn3,n′

1
δ̄n1,n2

δ̄n1,n3
δ̄n2,n3

E{an1,h,xa
∗
n1,l′,x}

· E{a∗n2,k,xan2,k′,x}E{an3,l,xa
∗
n3,h′,x}

)
, (17)

in which δ̄i,j = 1 − δi,j . We can then write this first term of
(16) as

σ2
NLI,n,x,1st =

∑
n1,n2,n3∈T

δn1,n3
δn1,n2

A1 + δn2,n3
δ̄n1,n3

· (A2 +A3) + δn1,n3
δ̄n1,n2

A4 + δn1,n2
δ̄n1,n3

(A5 +A6)

+ δ̄n1,n2
δ̄n1,n3

δ̄n2,n3
(A7 +A8), (18)

where A1, · · · , A8 are given in Table IV. Following the same
procedure as in [18, Eqs. (27)–(44)] and using (8), we can
compute A1 in (18) (see [18, Eqs. (46)]). Just as the approach
employed in [18, Eqs. (48)–(52)], we can evaluate a mix
of second and fourth order moments in (18) (A2, · · · , A6 in
Table IV). The calculation of a mix of second order moments
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(A7 and A8 in (18)) can be done using [18, Eqs. (40)–(43)].
Looking at the procedure used in [18, Eqs. (48)–(52)], we can
also find that A2 = A3, A5 = A6, and∑

n1,n2,n3∈T
δn2,n3 δ̄n1,n3A2 =

∑
n1,n2,n3∈T

δn1,n2 δ̄n1,n3A6.

(19)

Considering A7 = A8 and (19), (18) is equal to

σ2
NLI,n,x,1st =

64

81

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

(
δn1,n2

· δn1,n3((ϕ1 − 9ϕ2 + 12)χ1 + (4ϕ2 − 8)χ2

+ (ϕ2 − 2)χ3 + 2Z) + δn1,n3 δ̄n1,n2((ϕ2 − 2)χ3 + 2Z)

+ δn1,n2
δ̄n1,n3

(2(2ϕ2 − 4)χ2 + 4Z) + δ̄n1,n2
δ̄n1,n3

δ̄n2,n3
2Z
)
,

(20)

where χ1, χ2, χ3, and Z are given in Table I, and ϕ1 and ϕ2

are expressed in Table II.

We can follow the same approach for the other terms of
(15), and so we will not address their detailed derivation and
only give their final results. The other terms of (15) can be
written as

σ2
NLI,n,x,2nd =

64

81

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

(
δn1,n2

· δn1,n3((ϕ3 − 4ϕ5 − ϕ2 + 4)χ1 + (2ϕ5 − 2)χ2)

+ δn1,n2
δ̄n1,n3

2(ϕ5 − 1)χ2

)
, (21)

σ2
NLI,n,x,3rd =

64

81

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

(
δn1,n2

· δn1,n3((ϕ3 − 4ϕ5 − ϕ2 + 4)χ1 + (2ϕ5 − 2)χ2)

+ δn1,n2
δ̄n1,n3

(2ϕ5 − 2)χ2

)
, (22)

and

σ2
NLI,n,x,4th =

64

81

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

(
δn1,n2

· δn1,n3((ϕ4 − 4ϕ5 − ϕ2 + 4)χ1 +(ϕ5+ϕ2−3)χ2

+ (ϕ5 − 1)χ3 + Z)

+ δn1,n2 δ̄n1,n3((ϕ5 + ϕ2 − 3)χ2 + 2Z)

+ δn1,n3
δ̄n1,n2

((ϕ5 − 1)χ3 + Z) + δ̄n1,n2
δ̄n1,n3

δ̄n2,n3
Z
)
.

(23)

By plugging (20), (21), (22), and (23) into (16), we can write
(16) as

σ2
NLI,n,x =

64

81

∑
n1,n2,n3∈T

Pn1,xPn2,xPn3,x

(
δn1,n2δn1,n3

· [(ϕ1 − 12ϕ2 + 2ϕ3 + ϕ4 − 12ϕ5 + 24)χ1+

(5ϕ2 + 5ϕ5 − 15)χ2 + (ϕ2 + ϕ5 − 3)χ3 + 3Z]

+ δn1,n2 δ̄n1,n3 [(5ϕ2 + 5ϕ5 − 15)χ2 + 6Z]

+ δn1,n3 δ̄n1,n2 [(ϕ2 + ϕ5 − 3)χ3 + 3Z]

+ δ̄n1,n2
δ̄n1,n3

δ̄n2,n3
3Z
)
. (24)

Using the fact that δ̄i,j = 1− δi,j , (24) is expressed as (11).
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