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Abstract

The paper presents a Q-learning based dynamic routing algorithm for C+L

band elastic optical networks (EONs) considering fiber impairments such as

cross-phase modulation (XPM), self-phase modulation (SPM), amplified spon-

taneous emission (ASE), and inter-channel stimulated Raman scattering (ISRS).

The effect of fragmentation is considered in the Q-learning process in addition

to considering constraints related to spectrum continuity, contiguity, and non-

overlapping. Three classical spectrum allocation strategies, first-fit, last-fit, and

exact-fit are used after the Q-learning routing algorithm. The proposed rout-

ing, modulation, and spectrum allocation (RMSA) approach is shown to have

a lower blocking probability compared with using K-shortest path routing com-

bined with the three classical spectrum allocation strategies.

Keywords: Routing, Modulation and Spectrum allocation; Physical layer

impairments; Fragmentation; C+L band; Reinforcement learning; Q-learning

1. Introduction

Nearly two-thirds of the world population is forecasted to have internet con-

nectivity by 2023 [1]. The rise in the number of devices, innovative applications,

and machine-to-machine communications will cause a 2-4 times increase in traf-
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fic [1]. Therefore, communication networks will need to be used efficiently to

accommodate the growing traffic. During the last few years, elastic optical net-

works (EONs) have been investigated as a promising solution to the inefficient

spectrum utilization of traditional wavelength-division multiplexing (WDM) op-

tical networks. The frequency grid of EONs offers finer spectrum slot widths

of 12.5 GHz or 6.25 GHz as opposed to the fixed frequency grid of 50 GHz

in WDM systems. Hence, EONs generate elastic optical paths that divide the

available spectrum flexibly and allocate the available resources in a network

according to the traffic demands of the users, leading to efficient utilization of

fiber bandwidth.

The task of selecting a route and contiguous spectral slots on each link

of that route while avoiding frequency overlapping for a given traffic demand

is called the routing and spectrum assignment (RSA) problem in EONs, and

has been shown to be NP-hard [2]. When adaptive modulation is considered,

the RSA problem becomes the RMSA problem. It is analogous to the routing

and wavelength assignment (RWA) problem of WDM, but RSA comes with the

additional constraints of spectrum contiguity, spectrum continuity, and non-

overlapping of frequency slots, as depicted in Fig. 1(a). Consider a request

that needs links 1 through 4 and requires three slots; the selected slots fulfill

the adjacency requirement and are the same frequencies on all the links. The

traffic demand may be static (i.e., a fixed or offline traffic matrix) or dynamic

(i.e., time-varying traffic). In dynamic RSA, dynamically setting up and tearing

down connections can lead to bandwidth fragmentation resulting in inefficient

spectrum use. Fig 1(b) shows this phenomenon for a demand requesting four

slots. They are available on both the links but cannot be assigned due to non-

contiguity, thus leading to unnecessary blocking.

EONs offer better spectrum utilization than WDM networks. Still, it is

essential for network operators to find ways to utilize the existing resources ef-

ficiently and explore new technologies to increase the networks’ capacity. The

deployment of entirely new optical fibers (multi-core type) is an attractive so-

lution but is not capital cost-friendly at present. A cost-effective solution is
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Figure 1: Example showing the (a) contiguity and continuity constraints and (b) fragmentation

in EONs

exploiting other frequency bands of operation in the existing single-mode fibers.

At present, C-band (5 THz bandwidth) is majorly used by all optical systems.

Adding the next band, i.e., L band, to this existing C band would increase the

system’s capacity to 10 THz. This is possible due to the negligible attenua-

tion coefficient variation in C+L bands and the possibility of using the same

Erbium-doped fiber amplifier (EDFA) for the L-band. However, this also intro-

duces inter-channel stimulated Raman scattering (ISRS), resulting in a power

transfer from high-frequency components to lower ones and making the optical-

signal-to-noise ratio (OSNR) frequency-dependent [3]. Hence, when dealing

with the C+L band, it is vital to consider the ISRS nonlinear effects in addition

to the usual Kerr nonlinear effects such as the cross-phase modulation (XPM)

and self-phase modulation (SPM), as well as the EDFA’s amplified stimulated

emission (ASE) noise. RSA/RMSA algorithms should incorporate these effects

as physical layer impairments (PLI) degrade the quality of transmission (QoT)

and thereby limit the transmission reach.
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1.1. Related works

Several research works can be found in the literature on solving the RSA

problem in EONs. Xu et al. [4] proposed an online-offline algorithm for spec-

trum assignment of demands with varying bandwidths. To accommodate the

randomness of bandwidth demands, the authors proposed a probabilistic PLI

model. In another work, Xu et al. [5] proposed a Gaussian noise-based PLI

model and a mixed-integer linear programming (MILP) design using a heuristic

approach, resulting in resource savings and comparatively higher speeds. Yan

et al. [6] investigated the regenerator allocation problem in flex-grid optical net-

works to deal with PLI and included time as an extra optimization dimension

to address time-varying traffic. Wang et al. [7] studied the impacts of us-

ing multiple-modulations, regeneration, modulation conversion, and wavelength

conversion techniques in EONs using a recursive MILP approach. Chatterjee

et al. [8] compared different routing and spectrum allocation approaches and

summarized recent works on RSA related issues such as modulation, fragmen-

tation, the traffic grooming, survivability, QoT, energy saving, and network-

ing cost. Adhikari et al. [9] presented a BER and fragmentation-aware RSA

algorithm; their simulation results showed that BER-awareness increases the

blocking probability, which can be addressed by increasing the transmit power.

Abkenar and Rahbar [10] reviewed existing RSA and RMSA (routing, modu-

lation, and spectrum assignment) algorithms and compared them in terms of

their computational complexity and quality of performance in resource manage-

ment. Li and Li [11] presented an RMSA algorithm for EONs with a tradeoff

between minimizing the interval between spectrum blocks and the consumed

resources. Choudhury et al. [12] described the performances of different rout-

ing and spectrum allocation approaches for multicast traffic in elastic optical

networks.

Considerable literature exists on fragmentation management [9, 13, 14, 15].

However, most of these works on defragmentation have considered only the C

band while assuming hard values for reach and capacity, due to a lack of low

computational-complexity QoT estimators.
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A few techniques using machine intelligence have been proposed to optimize

network routing, as described in recent survey papers. Zhang et al. [16] pre-

sented an overview on routing and resource allocation based on machine learning

in different optical networks such as WDM, OFDM-based EON, and space divi-

sion multiplexing (SDM)-based EON. Dai et al. [17] investigated state-of-the-art

techniques in machine intelligence-enabled network routing and discussed devel-

opment trends. Amirabadi [18] reviewed machine learning (ML) applications in

optical communications, providing a comprehensive view of ML techniques ap-

plicable in this field. Amin et al. [19] surveyed applications of machine learning

techniques for routing optimization based on unsupervised learning, supervised

learning, and reinforcement learning in software-defined networking. Mammeri

[20] provided a comprehensive review of literature on reinforcement learning

(RL) applications for optimal route selection in different types of communica-

tion networks under various user quality-of-service requirements.

The following works are the closest to our contribution. Yu et al. [21]

proposed a deep learning-based RSA strategy and reported that the neural

network model had reduced spectrum fragmentation and blocking probability.

Shimoda and Tanaka [22] proposed a deep reinforcement learning (DRL)-based

RSA algorithm enhanced with domain-specific knowledge. Chen et al. [23]

proposed DeepRMSA, a deep reinforcement learning-based neural network for

addressing the RMSA problem of EONs. The DeepRMSA learned the correct

online RMSA policies by parameterizing the policies with deep neural networks

(DNNs) to sense complex EON states; PLIs were considered but limited to

modulation format selection based on distance. The same author [24] extended

the DeepRMSA to multi-domain EONs and presented a new architecture for

network management using multi-agent RL showing better performance than a

heuristic-based design. Further, Chen et al. [25] proposed a transfer learning

based DeepRMSA that can transfer knowledge of different DRL agents depend-

ing on the network tasks. However, efficient network feature extraction still

remains a challenge and graph neural networks (GNNs) were cited as a poten-

tial solution. Lia and Zhu [26] used GNNs for resource orchestration in elastic
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optical datacenter interconnections.

Mitra et al. [27] studied the effect of reduced link margins on C+L band

EONs and reported that significant gains in capacity can be achieved by oper-

ating at low margins across the networks. Jana et al. [28] proposed a signal-

quality-aware proactive defragmentation scheme for C+L band systems using

deep neural networks; minimizing the fragmentation index and QoT mainte-

nance was prioritized for both nonlinear-impairment-aware and unaware de-

fragmentation.

1.2. Contribution and paper organization

Based on our literature review, only a few researchers have considered ML

approaches such as RL, neural networks (NNs), deep neural networks (DNNs),

deep reinforcement learning (DRL), with or without consideration of different

impairments. The PLIs considered in previous works do not simultaneously

include linear and nonlinear impairments. Furthermore, the NN, DNN, and

DRL models presented in current literature are knowledge-intensive, and most

of them consider only the C band. These models require a large amount of data

and are expensive to train.

The novelty of this paper lies in attempting to adopt a simple model-free Q-

learning algorithm, which belongs to the family of RL algorithms. Q-learning

has not, to the best of our knowledge, been applied to the optical network

routing problem; Q-learning does not require pre-collected training data, can

be used by the network controller in real situations and is simple to implement.

In addition, the present work considers the ISRS, Kerr nonlinear impairments

(SPM, XPM), and the EDFA ASE noise encountered by the signal along the

chosen network path. These impairments have rarely been jointly considered [28]

for resource provisioning in C+L band operation. The effect of fragmentation of

the network is also considered in the Q-learning process. Hence, the significance

of the work lies in being the first application of the Q-learning algorithm for

optical routing while simultaneously considering PLIs, fragmentation, and the

constraints of spectrum continuity, contiguity, and non-overlapping to perform
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online RMSA for C+L band EONs.

Our algorithm’s performance is compared to a standard K-shortest path

algorithm as a frequently-used benchmark. Using the Q-learning routing algo-

rithm results in a lower blocking probability for all spectrum algorithms, network

loads, and topologies tested.

The paper is organized as follows. Section 2 explains the physical layer

impairments, corresponding modeling, and QoT estimation process. Section 3

briefs about Q-learning and provides a detailed pseudocode of the proposed

algorithm. An example demonstration is also given. Section 4 discusses the

time and space complexity of the algorithm. Section 5.2 details the simulation

and discusses the obtained RMSA results, followed by conclusions in Section 6.

2. Network model and QoT estimation

2.1. Network model

The EON is represented by a graph G(V,E) where V are the nodes and E are

the links/edges. This work considers transparent EONs, i.e., the data transmis-

sion is entirely in the optical domain, and there is no optical-electrical-optical

conversion in the nodes. The physical layer impairments (PLIs) accumulate over

the entire lightpath/route and tend to degrade the signal quality (measured us-

ing OSNR) at the receiver.

Using different modulation formats for different traffic demands can ensure

a proper signal reception. Unlike the case of translucent EONs, where regen-

erators can be equipped with a modulation conversion facility, we assume that

the same modulation format is used along the entire route. Higher-order modu-

lation formats (higher spectral efficiency) are usually used for shorter distances

as they are more susceptible to the PLI accumulation if assigned for demands

on longer routes.

For a given demand, the modulation format selection, the required number of

slots, and the OSNR criterion are interrelated. Each modulation format requires

a certain OSNR threshold to keep the bit error rate (BER) within a specified

7



limit. Once the spectrum assignment is done, the OSNR is predicted as shown

in Section 2.2 below and compared with the threshold OSNR. The number of

frequency slots of width ∆f required for a demand with data rate R using a

chosen modulation spectral efficiency ηM , denoted as nslots, is calculated using

nslots =

⌈
R

2 ∗∆f ∗ ηM

⌉
+ 1. (1)

One slot is used as a guard band.

Another term that requires defining is fragmentation since it is used as a

part of the proposed algorithm. To compute the fragmentation on a particular

link of a lightpath, we use an entropy based fragmentation metric given by,[29]

Fragmentatione =

k∑
j=1

[
we

j

S
· ln

(
S

we
j

)]
, (2)

where k is the number of free fragments on link e, S is the total number of slots

of link/edge e and we
j is the number of slots in the free fragment j of link e. This

is a better metric than the commonly-used external fragmentation (EF) metric

[29] w.r.t distinguishing different fragmented links, and also has a lower time

complexity compared to the more comprehensive access blocking probability

metric (ABP) [29].

2.2. C+L band lightpath model and OSNR estimation

In the current work, the considered C+L band EON consists of bidirectional

links of 10 THz bandwidth, with each link divided into spans. A typical network

lightpath connection is shown in Fig. 2. The signal is launched with power

Pch and travels through a series of intermediate reconfigurable optical add-drop

multiplexers (ROADMs) placed at the end of each link. At the end of each span,

two Erbium-doped fiber amplifiers amplify the signals, one for the C-band and

one for the L-band. The EDFAs are capable of compensating for the ISRS power

transfer variations across all the active channels in the C+L band by bringing

the power back to Pch and thereby restoring the originally transmitted power

spectrum.
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Figure 2: Lightpath example with multiple hops. The symbol α represents the fiber attenua-

tion.

The PLIs are estimated by using mathematical models, and one such widely

known model is the Gaussian noise (GN) model. It accounts well for the Kerr

nonlinearity effects, but it cannot be directly applied to the C+L band scenario

due to the additional ISRS effect in this extended bandwidth. ISRS can be either

accounted for by using an extra exponential power decay term or by numeri-

cally solving the ISRS differential equations. The first approach is suitable for

approximating weak ISRS regimes, and the second approach can approximate

any level of ISRS but has a higher computational complexity. The latter neces-

sitates a closed-form model, and one such model was used in [27]. The ISRS

gain is modeled using a linear approximation up to 15 THz by using the slope

of the normalized Raman gain spectrum. Hence, this can also be applied to our

10 THz C+L band scenario. The current work adopts the OSNR estimation

model of [27].

The OSNR of a light path with NL links is calculated using

1

OSNR(f)
=

NL−1∑
i=0

(
P

(i)
ASE(f) + P

(i)
NLI(f)

Pch

)
. (3)

P
(i)
ASE(f) is the ASE noise due to the EDFA present on the ith link of the
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light path and P
(i)
NLI(f) is the NLI power due to self-phase modulation (SPM)

and cross-phase modulation (XPM). The signal power spectral density (PSD)

is assumed to be rectangular, and so, the NLI power is calculated for the center

frequency f of the signal. In the current work, f refers to the center frequency

of the set of frequency slots that the spectral assignment algorithm adopted

proposes to assign to the request.

The ASE noise generated by each EDFA of the ith span is given by

P
(i)
ASE(f) ≈ 2ηspg(f)hfBref , (4)

where ηsp is the noise figure of the EDFA and h is the Planck’s constant. Bref

is the reference bandwidth of the operating ASE noise power measurement and

is usually taken as 12.5 GHz [30]. The gain g(f) is a function of frequency and

considers the frequency-dependent ISRS gain profile across the C+L band.

The total NLI power generated in the ith optical link with N
(i)
s spans is

given by

P
(i)
NLI (f) = P 3

chN
(i)
s (ηXPM (f) + ηSPM (f)) . (5)

The procedure to calculate the NLI coefficients, ηXPM (fz) and ηSPM (fz) can

be found in [27, Eqs. (7)-(11)]. Fully filled channels were considered in [27] to

show the effectiveness of the closed-form expressions. For the scenario in this

paper, Nch is the total number of demands active on the particular link that

can vary as requests arrive and depart.

In this work, the OSNR that the current request would experience if it were

to be assigned the particular tentative route is calculated using the model above

and compared with the OSNR threshold. Also, alongside satisfying its OSNR

constraint, the new and about to be provisioned request should not degrade

different existing requests along with various links of the tentative route. Hence,

the OSNR constraint also includes checking their corresponding OSNR threshold

requirements.
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3. Reinforcement and Q-learning based EON routing algorithm

Reinforcement learning (RL) enables learning optimized behavior in a system

through the reward-based interaction of an agent with the environment [31].

The reward is positive or negative depending on whether the action by the

agent results in the desired behavior or not. The agent in the long run takes

actions/decisions that are favorable to get the desired output because it tries to

maximize the cumulative rewards. RL has found application in areas such as

robotics, gaming, networks, telecommunications, and for building autonomous

systems. RL is commonly considered suitable for solving optimization problems

related to distributed systems in general and for network routing in particular

[32]. Fig 3 shows the general scheme of reinforcement learning.

Figure 3: General scheme of reinforcement learning

Q-learning is one of the important breakthroughs in RL [31]. Q-learning al-

gorithms use a state-action table consisting of Q-values that indicate the quality

of the action at each state, as shown in Table 1. Each Q-value is denoted by

Q(S,A), representing the expected reinforcement of taking action A in state S.

The action space contains the actions that the agent can perform, while the

state space represents possible system conditions.
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Table 1: Q-table used in Q-learning

States Action 1 Action 2 Action N

State 1 Q(S1,A1) — Q(S1,AN )

State 2 Q(S2, A1) — Q(S2, AN )

State M Q(SM ,A1) — Q(SM ,AN )

The entries in the Q-table are updated using the Bellman equation after an

action is taken, given by

Qnew(S,A) = (1− ρ)Q(S,A) + ρ
(
rt+1 + γmax

A′
, Q (S′, A′)

)
, (6)

where Qnew(S,A) is the updated value denoting the quality of action A taken,

Q(S,A) is the old value, and rt+1 is the reward obtained for taking action A;

ρ is the learning rate parameter and γ is the discount factor that determines

the importance given to the anticipated future rewards; S′ is the state attained

after taking the action A; A′ is the particular action that has the maximum

Q-value among all the possible actions from the given state S′.

This work uses the Q-learning algorithm to perform dynamic routing in C+L

EONs. In our EON scenario, the states are the network nodes, S ∈ V , and their

respective Q-values are affected by the estimated PLI, fragmentation and link

availability as seen by the adjacent nodes. The action is a decision on what the

next hop should be given the desired destination, and thus the action space is

represented as the pair (network node, destination) ∈ (V, V ). Our routing al-

gorithm includes the effect of fragmentation, link availability and physical layer

impairments in the Q-learning process through local (fragmentation based and

link availability based) and global (PLI based) rewards. Our approach is mod-

eled on recent literature defining the state and/or action spaces similar to this

current work [20] (Table 2 and 3), [33, 34, 35, 36]. However, these prior studies

have targeted different applications than ours: we adopt the Q-learning method

to perform routing in EONs by including EON-specific system parameters and
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performance metrics, which has not been reported in the literature.

After the routing is done by the Q-learning algorithm, the modulation assign-

ment is done based on the length of the chosen tentative route. The spectrum

allocation (SA) for each candidate route is then assumed to use one of three

well-known algorithms: first-fit, last-fit, and exact-fit. In first-fit SA, the first

available frequency slot is selected, i.e., starting from the lowest frequency. In

last fit SA, the free slots are checked from the other end of the spectrum, i.e.,

higher frequencies. Finally, in exact-fit SA, a search for the exact number of

required slots is performed; if it is not found, then the first-fit criterion is used.

In RL, an episode is defined as a sequence of states that ends at a terminal

state. To adapt the Q-learning algorithm to the proposed resource allocation

scenario, an episode is defined as one lightpath selection made by the central

network controller, starting from the requested source node and reaching the

destination node. As a consequence, we consider our approach to emulate hop-

by-hop routing without the network making actual node-level decisions. This is

possible due to the automated EON data plane control by the network controller.

The algorithm collects current network information in a Q-table as a result

of rewards acquired both during provisioning of other requests and during the

current request’s episodic runs. It uses a randomizing parameter ϵ that con-

trols whether to explore different paths or exploit the gained knowledge in the

Q-table. This ϵ decays over the episodes to make the system take exploratory

decisions initially; as the epsilon decays over the episodes, it tends to take more

exploitative actions through the knowledge already acquired. Table 2 shows

K = 3 routes obtained using our Q-routing algorithm for the NSFNET, shown

in Fig. 5 (a), for two repeated requests tracked for demonstration purpose.

Requests for routes with (source, destination) = (13, 5) result in different can-

didate lighpaths since the Q-table values vary based on the different reward

values. This is not the case for KSP routes. Similarly, when requests for trans-

mission between nodes (4, 14) occur, different routes become candidate choices

at different request arrival times. Note that some repetition in the candidates

route list is normal since the K routes cannot all be unique to each arrival time;

13



they all belong to the same subset of all possible paths.

Table 2: K = 3 routes obtained by the Q-routing algorithm in the NSFNET for a given

(source, destination) pair connection request

(Src,Dest) Routing Route 1 Route 2 Route 3

(13,5)

KSP

Q-routing

Q-routing

[13,9,8,7,5]

[13,9,8,7,5]

[13,14,6,5]

[13,14,1,9,8,7,5]

[13,14,6,5]

[13,11,4,5]

[13,14,6,5]

[13,9,10,6,5]

[13,9,10,6,5]

(4,14)

KSP

Q-routing

Q-routing

Q-routing

[4,11,13,14]

[4,11,13,14]

[4,2,3,6,14]

[4,2,3,6,14]

[4,11,12,14]

[4,5,6,14]

[4,11,12,9,13,14]

[4,5,6,14]

[4,5,7,8,9,13,14]

[4,2,3,6,14]

[4,11,13,14]

[4,5,7,8,9,12,14]

Algorithm 1 gives a pseudo-code of the proposed Q-learning algorithm for

EON routing. Consider a particular network provisioning demand where X is

the current node, Z the destination node, and Y a next-hop node for X. Then,

Q(X, (Y,Z)) represent the Q-value for X to reach Z via Y It is important for

the Q-value to be a function of the destination node so that the node-by-node

learning accounts for how beneficial it is to traverse through a particular Y to

reach Z.

Rewards play a major role in steering the decisions of the Q-learning agent

and this work uses rewards to avoid routing loops, invalid actions and proper

node selections, all enabling destination reaching capability. The actions of non-

connected nodes and already visited nodes are penalized and additionally, each

episode restricts the search to a maximum number of steps to curb routing loops.

Positive rewards are given upon reaching Z based on computed fragmentation,

link availability and PLI satisfaction for all remaining action scenarios.

Algorithm 2 shows the PLI-aware RMSA algorithm that uses the output

routes of Algorithm 1. The algorithm computes the required frequency slots
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based on the chosen modulation format, and checks for continuity and contiguity

of the frequency slots. It then checks if the route satisfies the OSNR threshold

constraint and accepts it if all constraints are satisfied. If K candidate paths

are assumed (K = 3 in the present work), then the above procedure is repeated

for those K paths until a proper route is found, or else the request is blocked.

3.1. Example scenario

The algorithm’s application is explained with an example scenario. Consider

a traffic demand from source X to destination Z with a data rate of 200 Gbps.

K routes are found for this source to destination pair using Algorithm 1; in our

results we use K = 3. The first route is selected and the modulation format

is assigned based on the length of the route. The number of frequency slots,

nslots, is computed using Eq. (1). Then the spectrum allocation part of the

algorithm begins. A set of frequency slots are found using either the first fit,

last fit, or exact fit SA. The contiguity constraint (the nslots are adjacent on

the link), continuity constraint (the nslots are at same spectral positions on

each link of the route), and frequency non-overlapping constraint are checked

on the selected route. If all constraints are satisfied, then the OSNR constraint

is checked, which is OSNR > OSNR threshold.

The OSNR is obtained from Eq. (3); the OSNR threshold is based on the

chosen modulation format. If any of the three constraints were not satisfied

or the OSNR condition failed for the selected frequency slots, then the next

frequency is selected and again checked. If all the frequencies are exhausted,

then the next route in the already-found routes from Algorithm 1 is picked and

the conditions are checked. If no suitable route is found even after three paths,

the request is blocked. The blocking can be either frequency blocking or PLI

blocking.

Whether a route acceptance or rejection happens, rewards are assigned to

all the nodes of the route that led to success or failure. If it is a success, the

local reward is calculated based on the fragmentation occurring on each of the

chosen links (Eq. (2)) and the links’ availability, i.e., number of unoccupied
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Algorithm 1: Q-learning-based EON routing algorithm

Data: source = X, destination = Z, Q-table (initialized to 0)

Result: K valid routes from X to Z

Start

Repeat

Set Visited nodes = [ ]

Set Current node = X

Set Candidate route = [ ]

Repeat

Obtain Q(possible actions) where possible actions ∈ (|V |, Z)

If exploitation is True

action = argmax(|V |,Z) {Q(possible actions)}

Else exploration is True

action = random number ∈ |V |

End if

Get neighbors of Current node

If action ∈ neighbors

Append action to final route

Get reward for (Current node, action)

Update Visited nodes

Perform Bellman Q-value update (Eq. (6)), where S′ =

action and A′ ∈ (|V |, Z))

Do Current node = action

End

Get a negative reward

Perform Bellman Q-value update (Eq. (6))

End If

Until Current node = Z (i.e. terminal state)

Store the route of current episode if it is a feasible path

Until Maximum number of episodes reached

Extract K-1 more paths from stored set of feasible path from over the

episodes
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Algorithm 2: PLI aware RMSA scheme based on proposed routing

algorithm

Data: source = X, destination = Z, requested bandwidth

Result: A valid RMSA solution

Start

Obtain K paths from Algorithm 1

Set route counter k = 0

Repeat

Obtain modulation format, number of frequency slots (Eq. (1)), and

OSNR threshold

Find feasible spectrum slots using First Fit/Last Fit/Exact Fit

If spectrum constraints are satisfied

Compute OSNR (Eq. (3))

If OSNR computed ≥ OSNR threshold

Assign the light path (LP) resources.

Compute the local reward for each node of the LP:

fragmentation (Eq. (2)) and available spectral slots on the

corresponding link

Compute a positive global reward if PLI constraint satisfied,

else a negative global reward

Add the global to reward to each local reward

Perform Bellman update similar to Algorithm 1

Else

Check on next feasible spectrum block

Else

Check on next feasible spectrum block

Set k=k+1

Until a valid route satisfying all constraints is found or k = K (request

is blocked)
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frequency slots. These two are considered in the reward calculation since high

fragmentation and low link availability can lead to higher blocking. If the chosen

route has three nodes, then the local reward will be a vector of three elements.

Including this information is a way of praising or criticizing the action taken to

choose that particular node’s link for any next request to the same destination.

The fragmentation reward is negative since the Q-learning algorithm tries to

maximize the reward and fragmentation values are desired to be low. As a side

note, this approach could be extended to EON using multimode or multicore

fibers, where the fragmentation computation is different than for the single-

core single-mode RMSA case [37] [38]. Perhaps a more carefully crafted reward

functions can then be used in order to capture the fragmentation differences in

the spatial modes/cores rather than considering a single value in the reward.

In our Q-learning algorithm, the global reward is related to OSNR satisfac-

tion. A global reward of +1 or -1 is added to the above-decided local reward for

each node on the route depending on if the OSNR constraint is satisfied or not.

The total rewards (sum of the local and global reward) are then used to update

the Bellman equation, Eq. (6), for each node of the considered route. It is these

same node values that the Q-learning EON routing later uses to tentatively

choose a path at each node, thus emulating hop-by-hop routing for upcoming

requests.

4. Time and Space Complexity

The worst case time complexity of Algorithm 1 can be deduced as follows.

The Q-table is stored in the form of a dictionary that is implemented as a hash

table to make it less time consuming to find the desired Q-value using the state

as the key. The time complexity to search one value in a dictionary is O(1).

Hence, the worst case scenario for a given destination is when all the states

in the state and action space are visited and the complexity would then be

O
(
|V |2

)
.

The size of the Q-table in the proposed algorithm is |V | × |V | × |V | because
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(a) (b)

Figure 4: Obtained mean reward over the number of episodes for two source and destination

examples, given in (a) and (b).

for each of |V | state node there are |V | potential next hops on the way to |V |

potential destinations. This size is reasonable for Q-learning provided all the

entries are visited and updated [31]. This condition is fulfilled in the consid-

ered network scenario since, as part of the training and during provisioning,

the source/destination pairs are randomly generated for thousands of requests

and node-by-node tabular updates are performed for both success and failure

scenarios.

5. Results and Analysis

5.1. Training Setup

As mentioned in Section 3, a Q-table is maintained by the centralized con-

troller. Multiple episodes are run in order for the Q-table to converge even

though a route may be found before all episodes are considered. This also helps

to finalize a better route than one found along the episode iterations. Fig. 4

shows the mean rewards obtained for two example source/destination pairs,

where the data has been downsampled for plotting purposes. For any given

source and destination, convergence was always reached before 10,000 episodes.

Note that the overall trend of the rewards is increasing; reward values are more

often positive than negative.

19



5.2. Network results

Two networks are used to test the performance of the proposed Q-learning

algorithm for routing combined with the three classical spectrum allocation

strategies. The networks are the 14-node NSFNET and 11-node COST-239.

Fig. 5(a) shows the 14-node NSFNET with 21 bidirectional optical fiber links

and the European 11-node COST-239 network with 52 optical fiber links is

shown in Fig. 5(b). Both these networks have a wide diversity of link distances

(200 km - 2400 km), which is essential while considering the inclusion of PLI.

This work assumes a 10 THz (C+L band) optical spectrum for both networks.

Table 3 presents the parameters used in the current work.

Table 3: System and fiber parameters used in the current work [27]

Parameters Values

Fiber loss, dB/km 0.2

Dispersion, ps/nm/km 17

Dispersion slope, ps/nm2/km 0.067

Nonlinear coefficient, 1/W/km 1.2

Raman gain slope, 1/W/km/THz 0.028

Raman gain, 1/W/km 0.4

Channel launch power, dBm 0

Number of channels Variable

Optical bandwidth, THz 10

Slot bandwidth, GHz 12.5

Requests arrive in a Poisson manner with an exponential holding time, and

the input traffic load is measured in Erlangs. A request is composed of a source

node, destination node, and data rate. Data rates considered are between 50

Gbps to 300 Gbps. Modulation formats considered are BPSK, QPSK, 8QAM,

16-QAM and 32-QAM; the threshold OSNRs are 9 dB, 12 dB, 16 dB, 18.6 dB,
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Figure 5: (a) 14-node NSFNET (b) 11-node COST 239 network

and 21.6 dB, respectively [39]. The algorithm’s effectiveness is measured by cal-

culating the blocking probability (BP), bandwidth blocking probability (BBP)

and network fragmentation (NF). The BP, BBP and NF [40] are given by

BP =
Number of blocked requests

Total number of requests
(7)

BBP =
Amount of blocked bandwidth

Total amount of requested bandwidth
(8)

NF =
1

|E|

|E|∑
e=1

(Fragmentatione) (9)

For each trial, 300,000 requests are considered to determine these network

metrics.

In optical networks, PLI’s are typically addressed either through a PLI-aware

algorithm, as described above, or using an algorithm that ignores the PLI and

then performs a final quality PLI-check just before provisioning; we compare

our approach to KSP under each assumption. The PLI effects considered are

the fiber Kerr nonlinearity (SPM and XPM) and ASE noise, including the ISRS

effect. In the PLI-check approach, the OSNR constraint is checked after the
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Figure 6: Blocking probabilities in NSFNET for PLI-check type RMSA considering KSP

routing and Q-learning EON routing using (a) first fit and (b) exact fit for spectrum allocation.

algorithm finds a route and a spectrum allocation. If the constraint is satisfied,

the request is provisioned, but no attempt is made to find another route if

the condition fails. This process is like the basic RMSA problem but with

the additional OSNR constraint. This checking increases the blocking when

compared to basic RMSA algorithms, but in a practical network, there is no

use in provisioning a request just based on the availability of resources without

considering physical layer aspects. Conversely, in the PLI-aware type RMSA,

OSNR constraints are checked as a part of the RMSA problem, and re-attempts

are made to find another route and/or spectrum allocation (still among the K

paths) if the OSNR constraint fails.

Simulation results of blocking probabilities with KSP and Q-learning PLI-

check routing using first and exact fit allocation in the NSFNET topology are

given in Fig. 6. The last fit performance is almost identical to the first fit and

hence not shown here. As the load increases, a higher resource blocking or QoT

blocking is inevitable irrespective of the chosen routing or spectrum strategy.

For all three SA algorithms tested, the Q-learning routing performed better

than the traditional KSP routing.

When requests arrive repeatedly with sources and destinations whose routes

include many common crowded links, shortest path routing leads to repeated

blocking due to unavailability of frequency slots or QoT degradation to existing
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requests on these links. Hence, always following the shortest-path rule is not

wise in high-usage network operations. Conversely, in the proposed Q-learning

routing for C+L EON, the Q-values consider the estimated link fragmentation,

link availability, and estimated PLI effects associated with each node. As ten-

tative routes are predetermined, the decision of how to hop from one node to

the next is optimized, thus finding the best Q-valued routes. Unlike the KSP

PLI-check case, the likelihood of failure is reflected in the Q-values of the nodes

of a failed route. This leads to the selection of different routes over time since

the network state changes and gets reflected in the Q-values through the re-

wards. Consequently, the agent chooses the path that is in the best interest

of the current request being considered and also for better service provisioning

in long-term operation. This is supported by the simulation results shown in

Fig. 6.

Fig. 7 shows the blocking probabilities obtained using KSP and Q-learning

routing in the NSFNET for the PLI-aware RMSA scenario. The results are

plotted with 95% confidence intervals, confirming the stability of our measure-

ments. The blocking probabilities for these algorithms are lower than for the

PLI-check versions, as expected because there is a re-attempt to find another

route (among the K routes) and/or frequency spectrum if the OSNR constraint

is violated. Q-learning routing continues to perform better than the conven-

tional KSP routing even at at high loads. The proposed algorithm achieves

1% blocking at higher loads (around 120 Erlangs higher) than the benchmark.

Even with the inclusion of PLI constraints, the Q-learning EON routing can

adapt well in the long run. This behavior is explained as follows. For the KSP

algorithm, routing decisions affect the blocking probability but is unaffected by

spectrum decisions since routing decisions are solely based on distance. On the

other hand, for the Q-learning routing, the spectrum affects the routing because

the success or failure of the route is included in the Q-learning process through

local (fragmentation, link availability-based) and global (PLI-based) rewards,

affecting the routing of future requests.

Fig. 8 shows the network fragmentation for the PLI-aware algorithm on the
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Figure 7: Blocking probabilities for PLI-aware RMSA with (a) first fit (b) last fit and (c)

exact fit for spectrum allocation in NSFNET.

NSFNET network. At each load, the network fragmentation for every 10,000

requests was collected and then averaged to obtain each of the points on the

graph. The proposed Q-learning based RMSA algorithm is able to maintain

lower fragmentation levels because rewards are calculated based on the frag-

mentation that occurs after provisioning, and the Q-learning agent tries to learn

to minimize the fragmentation. Note that the considered metric, Eq. (2) is a

relative measure and not bounded between 0 to 1.

Fig. 9 depicts the bandwidth blocking probability for the PLI-aware NSFNET

scenario. The Q-learning based routing results in lower BBP when compared

to the KSP for all loads tested. The improvement is smaller at higher loads

because the fragmentation and PLI effects are higher and link availability is

lower.

To verify that the proposed Q-learning RMSA algorithm performs well in

multiple scenarios, a similar traffic pattern as used on the NSFNET topology is
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Figure 8: Network fragmenta-

tion for PLI-aware RMSA in the

NSFNET network.

Figure 9: Bandwidth blocking prob-

abilities for PLI-aware RMSA in the

NSFNET network.

given as input to the European COST-239 network. Fig. 10 shows the blocking

probabilities obtained using KSP and Q-learning for PLI-aware routing for this

topology. Similar conclusions as the PLI-check scenario of NSFNET topology

are applicable here as well; hence, only exact fit results are shown. In this

network topology as well, the Q-learning routing algorithm is more robust than

KSP routing and maintains lower blocking probabilities. Note that the blocking

is minutely higher in the COST-239 network when compared to the NSFNET

network. In both cases, the proposed algorithm outperforms the traditional

KSP algorithm.

Figure 10: Blocking probabilities for PLI-aware COST-239 network with exact fit SA.

The better performance of the proposed algorithm in both continental-sized
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networks evidences our claim that Q-learning routing can perform better than

widely-used KSP routing. As the primary intention of moving towards C+L

band EON operation is to support higher capacity traffic, our results showing

improved performance at high loads with the inclusion of realistic PLI provides

a notable contribution towards the realization of this emerging technology.

6. Conclusions

Using Q-learning for routing combined with classical spectrum allocation

strategies of first-fit, last-fit, and exact-fit is investigated in C+L band EONs.

The Q-learning algorithm belongs to the family of RL techniques. The present

work has considered the ISRS effect, Kerr nonlinear impairments such as SPM

and XPM, and also the ASE noise encountered by the signal along the chosen

network path. The effect of fragmentation and link availability of the network

is also considered through the reward-based interactions of Q-learning. Thus,

the current work is PLI- and fragmentation-aware while choosing the route in a

C+L band EON. To the best of our knowledge, this is the first application of the

Q-learning algorithm for routing considering the PLIs, fragmentation, and the

constraints of spectrum continuity, contiguity, and non-overlapping to perform

online RMSA for C+L band EONs.

The simulations are performed on two topographically diverse topologies,

NSFNET and COST-239, and the results are analyzed. In general, Q-learning

routing performed better than the K-shortest path algorithm. The proposed

Q-learning for routing is simple and can be used easily by operators in real

situations.

As part of future work, additional link information can be incorporated

in the state representation to make the routing more adaptive while crafting

better reward functions. The comparisons of the proposed Q-learning with

other routing approaches and its extension to spectrum allocation are also the

subject of ongoing research.
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