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Abstract

The paper presents a Q-learning based dynamic routing algorithm for C+L
band elastic optical networks (EONs) considering fiber impairments such as
cross-phase modulation (XPM), self-phase modulation (SPM), amplified spon-
taneous emission (ASE), and inter-channel stimulated Raman scattering (ISRS).
The effect of fragmentation is considered in the Q-learning process in addition
to considering constraints related to spectrum continuity, contiguity, and non-
overlapping. Three classical spectrum allocation strategies, first-fit, last-fit, and
exact-fit are used after the Q-learning routing algorithm. The proposed rout-
ing, modulation, and spectrum allocation (RMSA) approach is shown to have
a lower blocking probability compared with using K-shortest path routing com-
bined with the three classical spectrum allocation strategies.
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impairments; Fragmentation; C+L band; Reinforcement learning; Q-learning

1. Introduction

Nearly two-thirds of the world population is forecasted to have internet con-
nectivity by 2023 [1]. The rise in the number of devices, innovative applications,

and machine-to-machine communications will cause a 2-4 times increase in traf-
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fic [1]. Therefore, communication networks will need to be used efficiently to
accommodate the growing traffic. During the last few years, elastic optical net-
works (EONs) have been investigated as a promising solution to the inefficient
spectrum utilization of traditional wavelength-division multiplexing (WDM) op-
tical networks. The frequency grid of EONs offers finer spectrum slot widths
of 12.5 GHz or 6.25 GHz as opposed to the fixed frequency grid of 50 GHz
in WDM systems. Hence, EONs generate elastic optical paths that divide the
available spectrum flexibly and allocate the available resources in a network
according to the traffic demands of the users, leading to efficient utilization of
fiber bandwidth.

The task of selecting a route and contiguous spectral slots on each link
of that route while avoiding frequency overlapping for a given traffic demand
is called the routing and spectrum assignment (RSA) problem in EONs, and
has been shown to be NP-hard [2]. When adaptive modulation is considered,
the RSA problem becomes the RMSA problem. It is analogous to the routing
and wavelength assignment (RWA) problem of WDM, but RSA comes with the
additional constraints of spectrum contiguity, spectrum continuity, and non-
overlapping of frequency slots, as depicted in Fig. 1(a). Consider a request
that needs links 1 through 4 and requires three slots; the selected slots fulfill
the adjacency requirement and are the same frequencies on all the links. The
traffic demand may be static (i.e., a fixed or offline traffic matrix) or dynamic
(i.e., time-varying traffic). In dynamic RSA, dynamically setting up and tearing
down connections can lead to bandwidth fragmentation resulting in inefficient
spectrum use. Fig 1(b) shows this phenomenon for a demand requesting four
slots. They are available on both the links but cannot be assigned due to non-
contiguity, thus leading to unnecessary blocking.

EONSs offer better spectrum utilization than WDM networks. Still, it is
essential for network operators to find ways to utilize the existing resources ef-
ficiently and explore new technologies to increase the networks’ capacity. The
deployment of entirely new optical fibers (multi-core type) is an attractive so-

lution but is not capital cost-friendly at present. A cost-effective solution is
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Figure 1: Example showing the (a) contiguity and continuity constraints and (b) fragmentation

in EONs

exploiting other frequency bands of operation in the existing single-mode fibers.
At present, C-band (5 THz bandwidth) is majorly used by all optical systems.
Adding the next band, i.e., L band, to this existing C band would increase the
system’s capacity to 10 THz. This is possible due to the negligible attenua-
tion coefficient variation in C+L bands and the possibility of using the same
Erbium-doped fiber amplifier (EDFA) for the L-band. However, this also intro-
duces inter-channel stimulated Raman scattering (ISRS), resulting in a power
transfer from high-frequency components to lower ones and making the optical-
signal-to-noise ratio (OSNR) frequency-dependent [3]. Hence, when dealing
with the C+L band, it is vital to consider the ISRS nonlinear effects in addition
to the usual Kerr nonlinear effects such as the cross-phase modulation (XPM)
and self-phase modulation (SPM), as well as the EDFA’s amplified stimulated
emission (ASE) noise. RSA/RMSA algorithms should incorporate these effects
as physical layer impairments (PLI) degrade the quality of transmission (QoT)

and thereby limit the transmission reach.



1.1. Related works

Several research works can be found in the literature on solving the RSA
problem in EONs. Xu et al. [4] proposed an online-offline algorithm for spec-
trum assignment of demands with varying bandwidths. To accommodate the
randomness of bandwidth demands, the authors proposed a probabilistic PLI
model. In another work, Xu et al. [5] proposed a Gaussian noise-based PLI
model and a mixed-integer linear programming (MILP) design using a heuristic
approach, resulting in resource savings and comparatively higher speeds. Yan
et al. [6] investigated the regenerator allocation problem in flex-grid optical net-
works to deal with PLI and included time as an extra optimization dimension
to address time-varying traffic. Wang et al. [7] studied the impacts of us-
ing multiple-modulations, regeneration, modulation conversion, and wavelength
conversion techniques in EONs using a recursive MILP approach. Chatterjee
et al. [8] compared different routing and spectrum allocation approaches and
summarized recent works on RSA related issues such as modulation, fragmen-
tation, the traffic grooming, survivability, QoT, energy saving, and network-
ing cost. Adhikari et al. [9] presented a BER and fragmentation-aware RSA
algorithm; their simulation results showed that BER-awareness increases the
blocking probability, which can be addressed by increasing the transmit power.
Abkenar and Rahbar [10] reviewed existing RSA and RMSA (routing, modu-
lation, and spectrum assignment) algorithms and compared them in terms of
their computational complexity and quality of performance in resource manage-
ment. Li and Li [11] presented an RMSA algorithm for EONs with a tradeoff
between minimizing the interval between spectrum blocks and the consumed
resources. Choudhury et al. [12] described the performances of different rout-
ing and spectrum allocation approaches for multicast traffic in elastic optical
networks.

Considerable literature exists on fragmentation management [9, 13, 14, 15].
However, most of these works on defragmentation have considered only the C
band while assuming hard values for reach and capacity, due to a lack of low

computational-complexity QoT estimators.



A few techniques using machine intelligence have been proposed to optimize
network routing, as described in recent survey papers. Zhang et al. [16] pre-
sented an overview on routing and resource allocation based on machine learning
in different optical networks such as WDM, OFDM-based EON, and space divi-
sion multiplexing (SDM)-based EON. Dai et al. [17] investigated state-of-the-art
techniques in machine intelligence-enabled network routing and discussed devel-
opment trends. Amirabadi [18] reviewed machine learning (ML) applications in
optical communications, providing a comprehensive view of ML techniques ap-
plicable in this field. Amin et al. [19] surveyed applications of machine learning
techniques for routing optimization based on unsupervised learning, supervised
learning, and reinforcement learning in software-defined networking. Mammeri
[20] provided a comprehensive review of literature on reinforcement learning
(RL) applications for optimal route selection in different types of communica-
tion networks under various user quality-of-service requirements.

The following works are the closest to our contribution. Yu et al. [21]
proposed a deep learning-based RSA strategy and reported that the neural
network model had reduced spectrum fragmentation and blocking probability.
Shimoda and Tanaka [22] proposed a deep reinforcement learning (DRL)-based
RSA algorithm enhanced with domain-specific knowledge. Chen et al. [23]
proposed DeepRMSA, a deep reinforcement learning-based neural network for
addressing the RMSA problem of EONs. The DeepRMSA learned the correct
online RMSA policies by parameterizing the policies with deep neural networks
(DNNs) to sense complex EON states; PLIs were considered but limited to
modulation format selection based on distance. The same author [24] extended
the DeepRMSA to multi-domain EONs and presented a new architecture for
network management using multi-agent RL showing better performance than a
heuristic-based design. Further, Chen et al. [25] proposed a transfer learning
based DeepRMSA that can transfer knowledge of different DRL agents depend-
ing on the network tasks. However, efficient network feature extraction still
remains a challenge and graph neural networks (GNNs) were cited as a poten-

tial solution. Lia and Zhu [26] used GNNs for resource orchestration in elastic



optical datacenter interconnections.

Mitra et al. [27] studied the effect of reduced link margins on C+L band
EONs and reported that significant gains in capacity can be achieved by oper-
ating at low margins across the networks. Jana et al. [28] proposed a signal-
quality-aware proactive defragmentation scheme for C+L band systems using
deep neural networks; minimizing the fragmentation index and QoT mainte-
nance was prioritized for both nonlinear-impairment-aware and unaware de-

fragmentation.

1.2. Contribution and paper organization

Based on our literature review, only a few researchers have considered ML
approaches such as RL, neural networks (NNs), deep neural networks (DNNs),
deep reinforcement learning (DRL), with or without consideration of different
impairments. The PLIs considered in previous works do not simultaneously
include linear and nonlinear impairments. Furthermore, the NN, DNN, and
DRL models presented in current literature are knowledge-intensive, and most
of them consider only the C band. These models require a large amount of data
and are expensive to train.

The novelty of this paper lies in attempting to adopt a simple model-free Q-
learning algorithm, which belongs to the family of RL algorithms. Q-learning
has not, to the best of our knowledge, been applied to the optical network
routing problem; Q-learning does not require pre-collected training data, can
be used by the network controller in real situations and is simple to implement.

In addition, the present work considers the ISRS, Kerr nonlinear impairments
(SPM, XPM), and the EDFA ASE noise encountered by the signal along the
chosen network path. These impairments have rarely been jointly considered [28]
for resource provisioning in C+L band operation. The effect of fragmentation of
the network is also considered in the Q-learning process. Hence, the significance
of the work lies in being the first application of the Q-learning algorithm for
optical routing while simultaneously considering PLIs, fragmentation, and the

constraints of spectrum continuity, contiguity, and non-overlapping to perform



online RMSA for C+L band EONSs.

Our algorithm’s performance is compared to a standard K-shortest path
algorithm as a frequently-used benchmark. Using the Q-learning routing algo-
rithm results in a lower blocking probability for all spectrum algorithms, network
loads, and topologies tested.

The paper is organized as follows. Section 2 explains the physical layer
impairments, corresponding modeling, and QoT estimation process. Section 3
briefs about Q-learning and provides a detailed pseudocode of the proposed
algorithm. An example demonstration is also given. Section 4 discusses the
time and space complexity of the algorithm. Section 5.2 details the simulation

and discusses the obtained RMSA results, followed by conclusions in Section 6.

2. Network model and QoT estimation

2.1. Network model

The EON is represented by a graph G(V, E') where V are the nodes and E are
the links/edges. This work considers transparent EONs, i.e., the data transmis-
sion is entirely in the optical domain, and there is no optical-electrical-optical
conversion in the nodes. The physical layer impairments (PLIs) accumulate over
the entire lightpath/route and tend to degrade the signal quality (measured us-
ing OSNR) at the receiver.

Using different modulation formats for different traffic demands can ensure
a proper signal reception. Unlike the case of translucent EONs, where regen-
erators can be equipped with a modulation conversion facility, we assume that
the same modulation format is used along the entire route. Higher-order modu-
lation formats (higher spectral efficiency) are usually used for shorter distances
as they are more susceptible to the PLI accumulation if assigned for demands
on longer routes.

For a given demand, the modulation format selection, the required number of
slots, and the OSNR criterion are interrelated. Each modulation format requires

a certain OSNR threshold to keep the bit error rate (BER) within a specified



limit. Once the spectrum assignment is done, the OSNR is predicted as shown
in Section 2.2 below and compared with the threshold OSNR. The number of
frequency slots of width Af required for a demand with data rate R using a
chosen modulation spectral efficiency n,, denoted as ngots, is calculated using

R
TNslots = ’72*Af*’l’]M—‘ + 1. (1)

One slot is used as a guard band.
Another term that requires defining is fragmentation since it is used as a
part of the proposed algorithm. To compute the fragmentation on a particular

link of a lightpath, we use an entropy based fragmentation metric given by,[29]

k e
Fragmentation, = g [U;,J -In <Se>1 ; (2)
we
J

j=1
where £ is the number of free fragments on link e, S is the total number of slots
of link/edge e and w§ is the number of slots in the free fragment j of link e. This
is a better metric than the commonly-used external fragmentation (EF) metric
[29] w.r.t distinguishing different fragmented links, and also has a lower time
complexity compared to the more comprehensive access blocking probability

metric (ABP) [29].

2.2. C+L band lightpath model and OSNR estimation

In the current work, the considered C+L band EON consists of bidirectional
links of 10 THz bandwidth, with each link divided into spans. A typical network
lightpath connection is shown in Fig. 2. The signal is launched with power
P.;, and travels through a series of intermediate reconfigurable optical add-drop
multiplexers (ROADMS) placed at the end of each link. At the end of each span,
two Erbium-doped fiber amplifiers amplify the signals, one for the C-band and
one for the L-band. The EDFAs are capable of compensating for the ISRS power
transfer variations across all the active channels in the C+L band by bringing
the power back to P, and thereby restoring the originally transmitted power

spectrum.
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Figure 2: Lightpath example with multiple hops. The symbol « represents the fiber attenua-

tion.

The PLIs are estimated by using mathematical models, and one such widely
known model is the Gaussian noise (GN) model. It accounts well for the Kerr
nonlinearity effects, but it cannot be directly applied to the C+L band scenario
due to the additional ISRS effect in this extended bandwidth. ISRS can be either
accounted for by using an extra exponential power decay term or by numeri-
cally solving the ISRS differential equations. The first approach is suitable for
approximating weak ISRS regimes, and the second approach can approximate
any level of ISRS but has a higher computational complexity. The latter neces-
sitates a closed-form model, and one such model was used in [27]. The ISRS
gain is modeled using a linear approximation up to 15 THz by using the slope
of the normalized Raman gain spectrum. Hence, this can also be applied to our
10 THz C+L band scenario. The current work adopts the OSNR estimation
model of [27].

The OSNR of a light path with Ny, links is calculated using

1 Np—1 P(l) f +P(i) f
OSNR(f) — Z ( ASE( )PCh NLI( )) ) (3)

=0

PX;E( f) is the ASE noise due to the EDFA present on the i" link of the



light path and PJ(\;)LI (f) is the NLI power due to self-phase modulation (SPM)
and cross-phase modulation (XPM). The signal power spectral density (PSD)
is assumed to be rectangular, and so, the NLI power is calculated for the center
frequency f of the signal. In the current work, f refers to the center frequency
of the set of frequency slots that the spectral assignment algorithm adopted
proposes to assign to the request.

The ASE noise generated by each EDFA of the ith span is given by

PRs(f) ~ 2059 (F)1f Brey, (4)

where 1, is the noise figure of the EDFA and h is the Planck’s constant. Biet
is the reference bandwidth of the operating ASE noise power measurement and
is usually taken as 12.5 GHz [30]. The gain g(f) is a function of frequency and
considers the frequency-dependent ISRS gain profile across the C+L band.

The total NLI power generated in the i** optical link with Ns(i) spans is
given by

P& (F) = PAND (nxpar (f) + nseu (f)) - (5)

The procedure to calculate the NLI coefficients, nx pas (f.) and nspas (f2) can
be found in [27, Eqgs. (7)-(11)]. Fully filled channels were considered in [27] to
show the effectiveness of the closed-form expressions. For the scenario in this
paper, N, is the total number of demands active on the particular link that
can vary as requests arrive and depart.

In this work, the OSNR that the current request would experience if it were
to be assigned the particular tentative route is calculated using the model above
and compared with the OSNR, threshold. Also, alongside satisfying its OSNR,
constraint, the new and about to be provisioned request should not degrade
different existing requests along with various links of the tentative route. Hence,
the OSNR constraint also includes checking their corresponding OSNR threshold

requirements.
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3. Reinforcement and Q-learning based EON routing algorithm

Reinforcement learning (RL) enables learning optimized behavior in a system
through the reward-based interaction of an agent with the environment [31].
The reward is positive or negative depending on whether the action by the
agent results in the desired behavior or not. The agent in the long run takes
actions/decisions that are favorable to get the desired output because it tries to
maximize the cumulative rewards. RL has found application in areas such as
robotics, gaming, networks, telecommunications, and for building autonomous
systems. RL is commonly considered suitable for solving optimization problems
related to distributed systems in general and for network routing in particular

[32]. Fig 3 shows the general scheme of reinforcement learning.

Agent:
Network
controller

A
Action (A):
Next hop node

I State (S) ] IReward (r)]

1

Environment:
Elastic optical
network

Figure 3: General scheme of reinforcement learning

Q-learning is one of the important breakthroughs in RL [31]. Q-learning al-
gorithms use a state-action table consisting of Q-values that indicate the quality
of the action at each state, as shown in Table 1. Each Q-value is denoted by
Q(S, A), representing the expected reinforcement of taking action A in state S.
The action space contains the actions that the agent can perform, while the

state space represents possible system conditions.
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Table 1: Q-table used in Q-learning

States Action 1 Action 2 Action N

State 1 Q(S1,41) — Q(S1,AN)
State 2 Q(Ss, Ay) — Q(S2, An)
State M Q(Swm,A1) | — Q(Su,AN)

The entries in the Q-table are updated using the Bellman equation after an

action is taken, given by

Quew(S,4) = (1= P)Q(S, A) +p (revs +ymax, Q (8, 4)) . (6)

where Qnew (S, A) is the updated value denoting the quality of action A taken,
Q(S, A) is the old value, and r;11 is the reward obtained for taking action A;
p is the learning rate parameter and -~ is the discount factor that determines
the importance given to the anticipated future rewards; S’ is the state attained
after taking the action A; A’ is the particular action that has the maximum
Q-value among all the possible actions from the given state S’.

This work uses the Q-learning algorithm to perform dynamic routing in C+L
EONs. In our EON scenario, the states are the network nodes, S € V', and their
respective Q-values are affected by the estimated PLI, fragmentation and link
availability as seen by the adjacent nodes. The action is a decision on what the
next hop should be given the desired destination, and thus the action space is
represented as the pair (network node, destination) € (V, V). Our routing al-
gorithm includes the effect of fragmentation, link availability and physical layer
impairments in the Q-learning process through local (fragmentation based and
link availability based) and global (PLI based) rewards. Our approach is mod-
eled on recent literature defining the state and/or action spaces similar to this
current work [20] (Table 2 and 3), [33, 34, 35, 36]. However, these prior studies
have targeted different applications than ours: we adopt the Q-learning method

to perform routing in EONs by including EON-specific system parameters and
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performance metrics, which has not been reported in the literature.

After the routing is done by the Q-learning algorithm, the modulation assign-
ment is done based on the length of the chosen tentative route. The spectrum
allocation (SA) for each candidate route is then assumed to use one of three
well-known algorithms: first-fit, last-fit, and exact-fit. In first-fit SA, the first
available frequency slot is selected, i.e., starting from the lowest frequency. In
last fit SA, the free slots are checked from the other end of the spectrum, i.e.,
higher frequencies. Finally, in exact-fit SA, a search for the exact number of
required slots is performed; if it is not found, then the first-fit criterion is used.

In RL, an episode is defined as a sequence of states that ends at a terminal
state. To adapt the Q-learning algorithm to the proposed resource allocation
scenario, an episode is defined as one lightpath selection made by the central
network controller, starting from the requested source node and reaching the
destination node. As a consequence, we consider our approach to emulate hop-
by-hop routing without the network making actual node-level decisions. This is
possible due to the automated EON data plane control by the network controller.

The algorithm collects current network information in a Q-table as a result
of rewards acquired both during provisioning of other requests and during the
current request’s episodic runs. It uses a randomizing parameter ¢ that con-
trols whether to explore different paths or exploit the gained knowledge in the
Q-table. This e decays over the episodes to make the system take exploratory
decisions initially; as the epsilon decays over the episodes, it tends to take more
exploitative actions through the knowledge already acquired. Table 2 shows
K = 3 routes obtained using our Q-routing algorithm for the NSFNET, shown
in Fig. 5 (a), for two repeated requests tracked for demonstration purpose.
Requests for routes with (source, destination) = (13,5) result in different can-
didate lighpaths since the Q-table values vary based on the different reward
values. This is not the case for KSP routes. Similarly, when requests for trans-
mission between nodes (4, 14) occur, different routes become candidate choices
at different request arrival times. Note that some repetition in the candidates

route list is normal since the K routes cannot all be unique to each arrival time;
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they all belong to the same subset of all possible paths.

Table 2: K = 3 routes obtained by the Q-routing algorithm in the NSFNET for a given

(source, destination) pair connection request

(Src,Dest) | Routing Route 1 Route 2 Route 3
KSP (13,9,8,7,5] | [13,14,1,9.8,7.5] | [13,14,6.5]
(13,5) Q-routing | [13,9,8,7,5] | [13,14,6,5] [13,9,10,6,5]
Q-routing | [13,14,6,5] | [13,11,4,5] 13,9,10,6,5]
KSP [4,11,13,14] | [4,11,12,14] [4,5,7,8,9,13,14]
Qrouting | [4,11,13,14] | [4,5,6,14] 4,2,3,6,14]
(4,14)
Q-routing | [4,2,3,6,14] | [4,11,12,9,13,14] | [4,11,13,14]
Qrouting | [4,2,3,6,14] | [4,5,6,14] 4,5,7,8,9,12,14]

Algorithm 1 gives a pseudo-code of the proposed Q-learning algorithm for
EON routing. Consider a particular network provisioning demand where X is
the current node, Z the destination node, and Y a next-hop node for X. Then,
Q(X,(Y,Z)) represent the Q-value for X to reach Z via Y It is important for
the Q-value to be a function of the destination node so that the node-by-node
learning accounts for how beneficial it is to traverse through a particular Y to
reach Z.

Rewards play a major role in steering the decisions of the Q-learning agent
and this work uses rewards to avoid routing loops, invalid actions and proper
node selections, all enabling destination reaching capability. The actions of non-
connected nodes and already visited nodes are penalized and additionally, each
episode restricts the search to a maximum number of steps to curb routing loops.
Positive rewards are given upon reaching Z based on computed fragmentation,
link availability and PLI satisfaction for all remaining action scenarios.

Algorithm 2 shows the PLI-aware RMSA algorithm that uses the output

routes of Algorithm 1. The algorithm computes the required frequency slots
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based on the chosen modulation format, and checks for continuity and contiguity
of the frequency slots. It then checks if the route satisfies the OSNR threshold
constraint and accepts it if all constraints are satisfied. If K candidate paths
are assumed (K = 3 in the present work), then the above procedure is repeated

for those K paths until a proper route is found, or else the request is blocked.

3.1. Ezample scenario

The algorithm’s application is explained with an example scenario. Consider
a traffic demand from source X to destination Z with a data rate of 200 Gbps.
K routes are found for this source to destination pair using Algorithm 1; in our
results we use K = 3. The first route is selected and the modulation format
is assigned based on the length of the route. The number of frequency slots,
Nsiots, 18 computed using Eq. (1). Then the spectrum allocation part of the
algorithm begins. A set of frequency slots are found using either the first fit,
last fit, or exact fit SA. The contiguity constraint (the ng.s are adjacent on
the link), continuity constraint (the mg.s are at same spectral positions on
each link of the route), and frequency non-overlapping constraint are checked
on the selected route. If all constraints are satisfied, then the OSNR constraint
is checked, which is OSNR > OSN R {hreshold-

The OSNR is obtained from Eq. (3); the OSN R threshod 1s based on the
chosen modulation format. If any of the three constraints were not satisfied
or the OSNR condition failed for the selected frequency slots, then the next
frequency is selected and again checked. If all the frequencies are exhausted,
then the next route in the already-found routes from Algorithm 1 is picked and
the conditions are checked. If no suitable route is found even after three paths,
the request is blocked. The blocking can be either frequency blocking or PLI
blocking.

Whether a route acceptance or rejection happens, rewards are assigned to
all the nodes of the route that led to success or failure. If it is a success, the
local reward is calculated based on the fragmentation occurring on each of the

chosen links (Eq. (2)) and the links’ availability, i.e., number of unoccupied
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Algorithm 1: Q-learning-based EON routing algorithm

Data: source = X, destination = Z, Q-table (initialized to 0)
Result: K valid routes from X to Z
Start
Repeat
Set Visited nodes = [ |
Set Current node = X
Set Candidate_route = [ ]
Repeat
Obtain Q(possible_actions) where possible_actions € (|V|, Z)
If exploitation is True
action = argmax(|y| z) {Q(possible_actions)}
Else exploration is True
action = random number € |V|
End if
Get neighbors of Current node
If action € neighbors
Append action to final_route
Get reward for (Current node, action)
Update Visited nodes
Perform Bellman Q-value update (Eq. (6)), where S’ =
action and A’ € (|V|, Z))
Do Current node = action
End
Get a negative reward
Perform Bellman Q-value update (Eq. (6))
End If
Until Current node = Z (i.e. terminal state)
Store the route of current episode if it is a feasible path
Until Maximum number of episodes reached
Extract K-1 more paths from stored set of feasible path from over the

episodes
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Algorithm 2: PLI aware RMSA scheme based on proposed routing

algorithm

Data: source = X, destination = Z, requested bandwidth
Result: A valid RMSA solution
Start
Obtain K paths from Algorithm 1
Set route counter k =0
Repeat
Obtain modulation format, number of frequency slots (Eq. (1)), and
OSNR_threshold
Find feasible spectrum slots using First Fit/Last Fit/Exact Fit
If spectrum constraints are satisfied
Compute OSNR (Eq. (3))
If OSNR _computed > OSNR._threshold

Assign the light path (LP) resources.

Compute the local reward for each node of the LP:
fragmentation (Eq. (2)) and available spectral slots on the
corresponding link

Compute a positive global reward if PLI constraint satisfied,
else a negative global reward

Add the global to reward to each local reward

Perform Bellman update similar to Algorithm 1

Else
Check on next feasible spectrum block
Else
Check on next feasible spectrum block
Set k=k+1
Until a valid route satisfying all constraints is found or k = K (request

is blocked)
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frequency slots. These two are considered in the reward calculation since high
fragmentation and low link availability can lead to higher blocking. If the chosen
route has three nodes, then the local reward will be a vector of three elements.
Including this information is a way of praising or criticizing the action taken to
choose that particular node’s link for any next request to the same destination.
The fragmentation reward is negative since the Q-learning algorithm tries to
maximize the reward and fragmentation values are desired to be low. As a side
note, this approach could be extended to EON using multimode or multicore
fibers, where the fragmentation computation is different than for the single-
core single-mode RMSA case [37] [38]. Perhaps a more carefully crafted reward
functions can then be used in order to capture the fragmentation differences in
the spatial modes/cores rather than considering a single value in the reward.
In our Q-learning algorithm, the global reward is related to OSNR satisfac-
tion. A global reward of +1 or -1 is added to the above-decided local reward for
each node on the route depending on if the OSNR constraint is satisfied or not.
The total rewards (sum of the local and global reward) are then used to update
the Bellman equation, Eq. (6), for each node of the considered route. It is these
same node values that the Q-learning EON routing later uses to tentatively
choose a path at each node, thus emulating hop-by-hop routing for upcoming

requests.

4. Time and Space Complexity

The worst case time complexity of Algorithm 1 can be deduced as follows.
The Q-table is stored in the form of a dictionary that is implemented as a hash
table to make it less time consuming to find the desired Q-value using the state
as the key. The time complexity to search one value in a dictionary is O(1).
Hence, the worst case scenario for a given destination is when all the states
in the state and action space are visited and the complexity would then be
o (IV?).

The size of the Q-table in the proposed algorithm is |V'| x |V| x |V| because
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Figure 4: Obtained mean reward over the number of episodes for two source and destination

examples, given in (a) and (b).

for each of |V| state node there are |V| potential next hops on the way to |V|
potential destinations. This size is reasonable for Q-learning provided all the
entries are visited and updated [31]. This condition is fulfilled in the consid-
ered network scenario since, as part of the training and during provisioning,
the source/destination pairs are randomly generated for thousands of requests
and node-by-node tabular updates are performed for both success and failure

scenarios.

5. Results and Analysis

5.1. Training Setup

As mentioned in Section 3, a Q-table is maintained by the centralized con-
troller. Multiple episodes are run in order for the Q-table to converge even
though a route may be found before all episodes are considered. This also helps
to finalize a better route than one found along the episode iterations. Fig. 4
shows the mean rewards obtained for two example source/destination pairs,
where the data has been downsampled for plotting purposes. For any given
source and destination, convergence was always reached before 10,000 episodes.
Note that the overall trend of the rewards is increasing; reward values are more

often positive than negative.
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5.2. Network results

Two networks are used to test the performance of the proposed Q-learning
algorithm for routing combined with the three classical spectrum allocation
strategies. The networks are the 14-node NSFNET and 11-node COST-239.
Fig. 5(a) shows the 14-node NSENET with 21 bidirectional optical fiber links
and the European 11-node COST-239 network with 52 optical fiber links is
shown in Fig. 5(b). Both these networks have a wide diversity of link distances
(200 km - 2400 km), which is essential while considering the inclusion of PLI
This work assumes a 10 THz (C+L band) optical spectrum for both networks.

Table 3 presents the parameters used in the current work.

Table 3: System and fiber parameters used in the current work [27]

Parameters Values
Fiber loss, dB/km 0.2
Dispersion, ps/nm/km 17
Dispersion slope, ps/nm?/km 0.067

Nonlinear coefficient, 1/W/km 1.2
Raman gain slope, 1/W/km/THz | 0.028

Raman gain, 1/W/km 0.4
Channel launch power, dBm 0
Number of channels Variable
Optical bandwidth, THz 10

Slot bandwidth, GHz 12.5

Requests arrive in a Poisson manner with an exponential holding time, and
the input traffic load is measured in Erlangs. A request is composed of a source
node, destination node, and data rate. Data rates considered are between 50
Gbps to 300 Gbps. Modulation formats considered are BPSK, QPSK, 8QAM,
16-QAM and 32-QAM; the threshold OSNRs are 9 dB, 12 dB, 16 dB, 18.6 dB,
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Figure 5: (a) 14-node NSFNET (b) 11-node COST 239 network

and 21.6 dB, respectively [39]. The algorithm’s effectiveness is measured by cal-
culating the blocking probability (BP), bandwidth blocking probability (BBP)
and network fragmentation (NF). The BP, BBP and NF [40] are given by

BP — Number of blocked requests

Total number of requests

BBP — Amount of blocked bandwidth (8)
~ Total amount of requested bandwidth

|Z|

1
= 7] Z(Fragmentatione) 9)
e=1

NF
For each trial, 300,000 requests are considered to determine these network
metrics.

In optical networks, PLI’s are typically addressed either through a PLI-aware
algorithm, as described above, or using an algorithm that ignores the PLI and
then performs a final quality PLI-check just before provisioning; we compare
our approach to KSP under each assumption. The PLI effects considered are

the fiber Kerr nonlinearity (SPM and XPM) and ASE noise, including the ISRS
effect. In the PLI-check approach, the OSNR constraint is checked after the
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Figure 6: Blocking probabilities in NSFNET for PLI-check type RMSA considering KSP
routing and Q-learning EON routing using (a) first fit and (b) exact fit for spectrum allocation.

algorithm finds a route and a spectrum allocation. If the constraint is satisfied,
the request is provisioned, but no attempt is made to find another route if
the condition fails. This process is like the basic RMSA problem but with
the additional OSNR constraint. This checking increases the blocking when
compared to basic RMSA algorithms, but in a practical network, there is no
use in provisioning a request just based on the availability of resources without
considering physical layer aspects. Conversely, in the PLI-aware type RMSA,
OSNR constraints are checked as a part of the RMSA problem, and re-attempts
are made to find another route and/or spectrum allocation (still among the K
paths) if the OSNR constraint fails.

Simulation results of blocking probabilities with KSP and Q-learning PLI-
check routing using first and exact fit allocation in the NSFNET topology are
given in Fig. 6. The last fit performance is almost identical to the first fit and
hence not shown here. As the load increases, a higher resource blocking or QoT
blocking is inevitable irrespective of the chosen routing or spectrum strategy.
For all three SA algorithms tested, the Q-learning routing performed better
than the traditional KSP routing.

When requests arrive repeatedly with sources and destinations whose routes
include many common crowded links, shortest path routing leads to repeated

blocking due to unavailability of frequency slots or QoT degradation to existing
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requests on these links. Hence, always following the shortest-path rule is not
wise in high-usage network operations. Conversely, in the proposed Q-learning
routing for C+L EON, the Q-values consider the estimated link fragmentation,
link availability, and estimated PLI effects associated with each node. As ten-
tative routes are predetermined, the decision of how to hop from one node to
the next is optimized, thus finding the best Q-valued routes. Unlike the KSP
PLI-check case, the likelihood of failure is reflected in the Q-values of the nodes
of a failed route. This leads to the selection of different routes over time since
the network state changes and gets reflected in the Q-values through the re-
wards. Consequently, the agent chooses the path that is in the best interest
of the current request being considered and also for better service provisioning
in long-term operation. This is supported by the simulation results shown in
Fig. 6.

Fig. 7 shows the blocking probabilities obtained using KSP and Q-learning
routing in the NSFNET for the PLI-aware RMSA scenario. The results are
plotted with 95% confidence intervals, confirming the stability of our measure-
ments. The blocking probabilities for these algorithms are lower than for the
PLI-check versions, as expected because there is a re-attempt to find another
route (among the K routes) and/or frequency spectrum if the OSNR constraint
is violated. Q-learning routing continues to perform better than the conven-
tional KSP routing even at at high loads. The proposed algorithm achieves
1% blocking at higher loads (around 120 Erlangs higher) than the benchmark.

Even with the inclusion of PLI constraints, the Q-learning EON routing can
adapt well in the long run. This behavior is explained as follows. For the KSP
algorithm, routing decisions affect the blocking probability but is unaffected by
spectrum decisions since routing decisions are solely based on distance. On the
other hand, for the Q-learning routing, the spectrum affects the routing because
the success or failure of the route is included in the Q-learning process through
local (fragmentation, link availability-based) and global (PLI-based) rewards,
affecting the routing of future requests.

Fig. 8 shows the network fragmentation for the PLI-aware algorithm on the

23



) 2107t
3 3
3 3102
Q 2
a [« W 3
o o 10-
9 —e— KSP: first fit [%} _a —e— KSP: last fit
2 10-4] L . 210 . )
foe) —e— Q-routing: first fit | m —e— Q-routing: last fit
200 300 400 500 600 700 200 300 400 500 600 700
Traffic load in Erlangs Traffic load in Erlangs
(a) b
Z107!
£ 1072
[
a 10—3
(o)}
£
Ag 1074 —e— KSP: exact fit
o 10-5 —e— Q-routing: exact fit

200 300 400 500 600 700
Traffic load in Erlangs
(c)

Figure 7: Blocking probabilities for PLI-aware RMSA with (a) first fit (b) last fit and (c)
exact fit for spectrum allocation in NSFNET.

NSFNET network. At each load, the network fragmentation for every 10,000
requests was collected and then averaged to obtain each of the points on the
graph. The proposed Q-learning based RMSA algorithm is able to maintain
lower fragmentation levels because rewards are calculated based on the frag-
mentation that occurs after provisioning, and the Q-learning agent tries to learn
to minimize the fragmentation. Note that the considered metric, Eq. (2) is a
relative measure and not bounded between 0 to 1.

Fig. 9 depicts the bandwidth blocking probability for the PLI-aware NSFNET
scenario. The Q-learning based routing results in lower BBP when compared
to the KSP for all loads tested. The improvement is smaller at higher loads
because the fragmentation and PLI effects are higher and link availability is
lower.

To verify that the proposed Q-learning RMSA algorithm performs well in

multiple scenarios, a similar traffic pattern as used on the NSFNET topology is
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given as input to the European COST-239 network. Fig. 10 shows the blocking
probabilities obtained using KSP and Q-learning for PLI-aware routing for this
topology. Similar conclusions as the PLI-check scenario of NSFNET topology
are applicable here as well; hence, only exact fit results are shown. In this
network topology as well, the Q-learning routing algorithm is more robust than
KSP routing and maintains lower blocking probabilities. Note that the blocking
is minutely higher in the COST-239 network when compared to the NSFNET
network. In both cases, the proposed algorithm outperforms the traditional

KSP algorithm.
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Figure 10: Blocking probabilities for PLI-aware COST-239 network with exact fit SA.

The better performance of the proposed algorithm in both continental-sized
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networks evidences our claim that Q-learning routing can perform better than
widely-used KSP routing. As the primary intention of moving towards C+L
band EON operation is to support higher capacity traffic, our results showing
improved performance at high loads with the inclusion of realistic PLI provides

a notable contribution towards the realization of this emerging technology.

6. Conclusions

Using Q-learning for routing combined with classical spectrum allocation
strategies of first-fit, last-fit, and exact-fit is investigated in C+L band EONs.
The Q-learning algorithm belongs to the family of RL techniques. The present
work has considered the ISRS effect, Kerr nonlinear impairments such as SPM
and XPM, and also the ASE noise encountered by the signal along the chosen
network path. The effect of fragmentation and link availability of the network
is also considered through the reward-based interactions of Q-learning. Thus,
the current work is PLI- and fragmentation-aware while choosing the route in a
C+L band EON. To the best of our knowledge, this is the first application of the
Q-learning algorithm for routing considering the PLIs, fragmentation, and the
constraints of spectrum continuity, contiguity, and non-overlapping to perform
online RMSA for C+L band EONSs.

The simulations are performed on two topographically diverse topologies,
NSFNET and COST-239, and the results are analyzed. In general, Q-learning
routing performed better than the K-shortest path algorithm. The proposed
Q-learning for routing is simple and can be used easily by operators in real
situations.

As part of future work, additional link information can be incorporated
in the state representation to make the routing more adaptive while crafting
better reward functions. The comparisons of the proposed Q-learning with
other routing approaches and its extension to spectrum allocation are also the

subject of ongoing research.
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