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The Galileon scalar field theory is a prototypical example of an effective field theory that exhibits the
Vainshtein screening mechanism, which is incorporated into many extensions to Einstein gravity. The
Galileon describes the helicity-zero mode of gravitational radiation, the presence of which has significant
implications for predictions of gravitational waves from orbiting objects and for tests of gravity sensitive to
additional polarizations. Because of the derivative nature of their interactions, Galileons are superficially
not well posed as effective field theories. Although this property is properly understood merely as an
artifact of the effective field theory truncation, and is not theoretically worrisome, at the practical level it
nevertheless renders numerical simulation highly problematic. Notwithstanding, previous numerical
approaches have successfully evolved the system for reasonable initial data by slowly turning on the
interactions. We present here two alternative approaches to improving numerical stability in Galileon
numerical simulations. One of these is a minor modification of previous approaches, which introduces a
low-pass filter that amounts to imposing a UV cutoff together with a relaxation method of turning on
interactions. The second approach amounts to constructing a (numerical) UV completion for which the
dynamics of the high momentum modes is under control and for which it is unnecessary to slowly turn on
nonlinear interactions. We show that numerical simulations of the UV theory successfully reproduce the
correct Galileon dynamics at low energies, consistent with the low-pass filter method and with previous

numerical simulations.
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I. INTRODUCTION

In the current era of high precision cosmology and
gravitational wave physics, there is significant interest in
understanding how these precise data can be used to test
our theories of gravity and low energy particle physics and
to search for potential new physics beyond the standard
models. In order to do this we need to have a detailed
understanding of the predictions of extensions to standard
theories. Effective field theories are a natural tool to
describe these corrections, and in the last decade many
interesting effective field theories have been developed that
extend Einstein gravity while successfully reproducing its
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successful predictions. A large class of theoretical models
that have been developed as alternative descriptions of
dark energy and late-time acceleration are those that incor-
porate the Vainshtein screening mechanism [1] (see [2] for a
review). This mechanism is built into massive theories of
gravity [3—10] and allows them to be made consistent with
Solar System tests of gravity by screening the would-be fifth
forces that are propagated by the additional helicity-zero
mode of the massive graviton. While the complete theory of
massive gravity is quite complex [ 10], these essential features
are captured by a simplified scalar field theory, the Galileon
[11], which incorporates the nonlinear interactions that are
responsible for the screening mechanism [9,12].

The nonlinear nature of the Vainshtein screening mecha-
nism means that it is difficult to describe analytically
beyond very special configurations, and the traditional
post-Newtonian or post-Minkowskian formalisms fail to
adequately describe the essential features. Given this,
numerical progress is crucial, but is unfortunately ham-
pered by the fact that the Galileon effective theory is not
well posed, and despite admitting second-order equations
of motion it does have regimes in which the equations are
no longer hyperbolic. However, such regions arise only
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when the interactions are taken to be large, for which it is
unclear that the effective field theory (EFT) is under
control. Thus, while not a fundamental theoretical problem,
successful numerical approaches need to incorporate a
mechanism through which to avoid these dangerous
regions. For example, in [13] the cubic Galileon was
successfully simulated by slowly turning on the nonlinear
interactions to avoid instabilities.

In this paper we propose a different scheme, which
replaces the original Galileon theory with a well-posed
(numerical) UV completion by means of the introduction
of auxiliary higher spin fields. This approach is similar in
spirit to that proposed in [14,15], based on the Miiller-Israel-
Stewart formulation [16—19].1 The key difference is that here
the additional spin-1 and spin-2 fields will be given propa-
gating (hyperbolic) equations in a manner which is closely
motivated by the massive spin-2 origin of the Galileon. The
cubic Galileon arises consistently as the leading terms in the
low energy effective theory of our proposed UV completion,
and so we anticipate that a successful numerical treatment
will correctly reproduce the dynamics of the Galileon at long
wavelengths. We stress that the UV completion here is a
numerical one, since no Lorentz invariant local and unitary
UV completion of the Galileon is known, and there are now
strong arguments suggesting that one does not exist [23].2
Since our goal here is to render the low energy theory
numerically well defined, we are not constrained by the need
to find a local Lorentz invariant action, and thus we propose
only a local UV extension of the equations of motion which
reproduces the Galileon at low energies. Our approach
should render the theory well behaved when simulating
any type of physics, but we will focus mostly on solutions
relevant to radiation generated by orbiting binary objects,
since this is where the most immediately interesting numeri-
cal applications are likely to be.

II. CUBIC GALILEON

We begin by looking at the action for the cubic Galileon
(see, e.g., [27,28])
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where T is the trace of the stress-energy tensor for the
matter content. Note that we use a nonstandard choice of

'An alternative numerical scheme is to construct the solution
perturbatively in the EFT corrections as in [20,21]. Issues with
secular growth of such a perturbative expansion can potentially
be resummed in the manner proposed in [22]. We do not consider
these approaches as the Vainshtein screening region is necessarily
nonperturbative in the leading EFT derivative interactions.

These arguments hinge crucially on locality and Lorentz
invariance. If the UV theory is mildly nonlocal then there may be
no problem [24]. In addition fractons are a Lorentz violating
realization of Galileons [25,26].

normalization and coupling that is consistent with how the
Galileon degree of freedom arises as the helicity-zero mode
in theories of gravity where the graviton is effectively
massive. This action yields a classical equation of motion,

T
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which makes manifest the Galileon symmetry 7 — 7 +
¢ + v,x*, and in which the nonlinearity is parametrized by
the strength of the coupling 1/3A3.

In the case where the source is spherically symmetric and
time independent, with an associated source mass M, there
exist static, analytic solutions to Eq. (2),

E(r):—grl3— 9+§<r7)31 (3)

where E =o0n/or and where we have defined the

Vainshtein radius,
1/ M, \'/3
ry=-—+ ; . (4)
A \16Mp

The Vainshtein radius sets the distance from the center of
mass of the source at which the nonlinear interactions of the
Galileon become important. A key feature of the Vainshtein
screening mechanism is that this distance is astrophysically
large, meaning that most dynamical systems, such as binary
pulsars, lie well inside their own Vainshtein radius. For this
reason, all linear or perturbative approaches fail to describe
the physics of these systems.

This system was studied numerically in [13], where it
was shown that Eq. (1) could be simulated using numeri-
cal tools [29]. This work showed that the scalar power
radiated by this system followed anticipated scaling rela-
tionships. While this was an important proof of concept, the
numerical challenges of simulating this system for more
realistic hierarchies fundamentally arise from the physical
system itself. When setting up numerical simulations, it is
the normal practice to choose numerical parameters to
place the physics of greatest interest “well inside” the box.
However, in situations where there are many physical scales,
this becomes a more difficult problem. Nevertheless, if the
system is formally well posed, then any UV dynamics of the
system remains decoupled from the IR physics of interest.
When the system is not manifestly well posed (as happens,
for example, when including higher-derivative operators that
inevitably arise from quantum corrections within all EFTs
(for a detailed discussion, see [30]), then this decoupling of
the UV and IR modes is no longer guaranteed. Although
effective field theorists have well-established analytic tech-
niques for handling this behavior, it can cause serious
problems for numerical implementations. In particular, in
our system, if these modes become populated, they run the
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risk of violating the assumptions of the effective field theory
and are analytically unstable.

The question, then, is whether we can regulate these
higher-frequency modes using either numerical techniques
to dampen them or by finding a physical UV completion. In
this work we compare these two techniques by developing
examples of both and studying whether they are stable and
provide solutions that are consistent with a full-numerical
solution to Eq. (2).

A. The UV completion

In standard effective field theories, higher-dimension
operators can be understood as arising from integrating out
high energy (UV) physics, either via tree level or loop level
effects. For example, when there exists a “tree level” UV
completion, this means that it is possible to find an action
for a well-defined classical UV theory for which explicitly
solving the equations of motion for the heavy fields in
terms of the light fields as a derivative expansion and
substituting back in the action will result in the action for
the desired low energy effective field theory. Since the
would-be UV completion is valid at arbitrary high energy
scales, we would expect it to be well posed. Indeed if the
UV completion is Lorentz invariant, we would expect the
characteristics of the UV theory to match the Lorentz light
cone, which is to say that the front velocity of propagating
modes should be luminal.

In practice we are rarely lucky enough to know the UV
theory and in many cases it may be possible to argue that
one does not exist, at least satisfying familiar principles. In
the particular case of the massless Galileon [31] or massive/
weakly broken Galileon [23,32], there are now well-
established arguments from positivity bounds that appear
to rule out a standard local Lorentz invariant UV com-
pletion. It should be stressed, however, that there are
implicit assumptions in these arguments which are not
required of a UV completion (the UV completion may, for
example, be mildly nonlocal [24]), and so this does not rule
out the Galileon playing a role as an interesting effective
field theory. In particular, Lorentz violating Galileons
emerge in the context of fractons [25,26]. They also seem
to play a special role in scattering amplitude methods both
for Lorentz invariant theories [33,34] and nonrelativistic
theories [35,36].

In the present context, our goal is not to find a UV
completion satisfying all the principles of unitarity and
analyticity, but rather the more modest goal of a completion
with high energy behavior that is numerically more stable
than that of the initial system (2). Given this, we do not
require an action and at the price of a mild breaking of
Lorentz invariance can introduce friction terms to tame
unphysical modes. Our proposed method is motivated by
how the Galileon arises in massive gravity theories as the
helicity-zero mode of a massive spin-2 field. In particular,

given a spin-2 field H,,, the helicity-zero part of it is

encoded in H,, ~0,0,7. Indeed, in massive theories of
gravity, this enters explicitly via a dynamical gauge trans-
formation x* — x* + A# with A, ~ 9, [9,10,37,38]. With
this in mind, we introduce an auxiliary massive spin-1 field
A, and an auxiliary massive spin-2 field H,, that satisfy
damped hyperbolic sourced equations. The problematic
derivative terms in the Galileon equation of motion are
replaced by interactions built out of algebraic functions of
the massive spin-2 field. Thus, the UV theory is defined by

1 T
Or + —— (H*H,, — (HY)?) = — : 5
7[+3A3( uv ( 1/)) 3MP1 <)
1
LA, — ;a,AM — MzAﬂ = —M2a”7r, (6)

1 M?
OH,, - ;(),HW -M*H,, = - - (0,A,+0,A,). (7)

The presence of the friction terms, parametrized by 77/,
ensures that the homogenous spin-1 and spin-2 mode
solutions of (6) and (7) decay in a time of order z. The
sources on the rhs of (6) and (7) are introduced to ensure
that the particular solutions asymptote at low energies
k,w << M to

A, ~oum (8)

and
1
Hﬂv ~ 2 <5ﬂAU + aUAll) ~ aﬂal'ﬂ‘ (9)

Assuming the approximate validity of (8) and (9), then it is
simple to see that (5) reduces to (2), which ensures a
faithful UV extension. It is apparent that the UV completion
(5)—(7) has conventional second-order equations of motion
with characteristics at high energy determined by the
Minkowski light cone. While not a guarantee of stability
of the system, this removes the particular problems asso-
ciated with the derivative interactions present in the
Galileon equations of motion (2). This comes at the cost
of replacing the original single field system with a system
of 15 dynamical fields. Crucially though, the additional
degrees of freedom, even if initially excited, decay away
over a timescale 7.

There is an alternative way to write the UV completion that
makes its connection with the IR theory more transparent.
Assuming the homogenous modes of H,,, and A, are set to
zero initially, then we may solve for them directly via

Hu6) = 3 [ 9 D)5 0,4,0) + 0,4,0))

A,(x) = M2 / &y Dr(x.1)0,2(5). (10)
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where D, (x,y) is the retarded Green’s function satisfying

{D—%@—Mﬂow,w=64<x,y>, ()

with solution

(.’ro—vo)

Drei(x,y) = 0(x° = y%)e™ =

1
Gret (X,%Mz —@) (12)

where G (x,y; M? —ﬁ) is the conventional retarded

Green’s function for a Klein-Gordon field of mass squared
M? - #. Combining these relations we have

H,(x) = / D (x)0d,(y).  (13)
where

d*k eik‘(x—y)M4
(2m)* (K + Lk + M?)?

D (x.y) = / (14)

vanishes for x? — y0 < 0, given that the poles lie in the upper
half &, plane. Substituting (13) in (5) yields a causal integro-
differential equation for a single degree of freedom z. At low
energies |k| < M? it is apparent that

d*k
(27)*

which shows that the leading term in the EFT expansion
reproduces the original system (2).

(D x.y) / R0 S (x—y),  (15)

III. NUMERICAL SIMULATIONS

From a practical standpoint, the full system described
by Eq. (2) is difficult to study numerically due to the facts
that (1) the system is highly nonlinear and derivatively
coupled, (2) the system has a number of relevant scales that
need to be simultaneously resolved, and (3) the effective
metric for perturbations can become singular [39].
Nonetheless, it has been shown that the full system can be
simulated numerically, with results that are consistent with
analytic estimates.

To work with the system numerically, we define dimen-
sionless variables x* = x{,7/2 and 7z, = 7\/7/M; to
rewrite (2) as

|:lprﬂ:pr + K((I:]prﬂ:pr)2 - (algragrﬂpr)z) = _Jpr (16)
where

16M,

5 (17)

1 J16Mg 1 4 [16my
—r
M,

is a dimensionless parameter that sets the size of the
nonlinear terms and J, is the source.

Throughout our work here, we will focus on the system
described in [13] (which is a numerical implementation of
the binary system studied in [27,40]) and, as we have
commented, will also focus on the dynamics of an orbiting
binary system. To parametrize this system, we generally
use two dimensionless quantities: = r/r,, which relates
the diameter of the orbit (roughly the size of the source) to
the Vainshtein radius, and a = QF, which parametrizes the
rotational speed of the system. Roughly speaking, f sets
the overall mass of the binary system and a sets the
strength of the nonlinear effects. With these, Kepler’s law
tells us that

M

Qr=——">
8nMil?3

(18)

which fully constrains the system. In practical terms,
this sets

p3a . (19)

For our fiducial model here, we take o = 0.2 and
S = 0.05, which leads to a value of x ~ 1.70 x 10°.

We expect [13,27,28,40] the system (a Galileon with a
cubic interaction) to emit radiation in the quadrupole, with
power given by

M? 45 x 3432 (QF)°
8xMp, 1024097 (Qyry)*/?

pgebic = Q2 (20)

P

which we can express in a dimensionless way as

P A5 x 3432 (QuF)
w2 T o e Y
s 1 p'v

The analytic expression (20) is computed using the
outgoing power for the perturbations of the field about a
spherically symmetric background which accounts for the
Vainshtein screening due to the monopole. This power is
obtained from integrating #;,., where 7}, is the stress-energy
tensor for the Galileon perturbations (see, e.g., [13])

3 4 E
10, = E (l + 3?7) 0,70, 7. (22)

Provided the power is computed by integrating over a
sphere much larger than the Vainshtein radius, this should
provide a reliable estimate of the nonlinear power.

In practice, we calculate the power by defining a sphere
of radius r, = er, where ¢ = 22.5, which is somewhat
larger than r, = 207 but less than half the size of the box,
L/2 = 507. Unlike the analysis of [13], we choose to

043522-4



WELL-POSED UV COMPLETION FOR SIMULATING SCALAR ...

PHYS. REV. D 106, 043522 (2022)

evaluate the radial flux on a set of points defined by the
HEALPix> standard. The values of n, ©, and 0,7 are
calculated at all points over this sphere, even though they
are not grid points, by doing a trilinear interpolation. Using
this process allows us to (i) have assurances that the points
are approximately equally weighted when integrating over
the sphere and (ii) use efficient methods, provided by
HEALPY, to decompose the fields onto spherical harmonics.

We use different software for each of the sections below;
however all are based on GABE [29]—a verified numerical
tool for studying scalar fields. While the numerical methods
(and hardware) will vary from case to case, we will use the
same fiducial physical system and numerical parameters,
such as box size L = 2.5r, = 507 and number of points
along each side N = 384. In each of the simulations there
will be a buffer of points—we generally take this buffer to
the six grid points nearest to any boundary—around the
boundary in which the field will not evolve according
to Eq. (2), but rather will evolve according to outward-
going wave boundary conditions. For the 7 field, using an
assumption that the nonlinear terms are negligible at the
boundary, this means

n
.:———a . 2
r =07 (23)

While this assumption works very well for massless, Klein-
Gordon scalar fields, it remains one of the greatest
challenges to successfully simulating our systems.

In each simulation, we take the source to be two, rotating
Gaussian sources,

J = A(e_<7+pr(t)/6pr)2 + e_(7fpr(f)/o-13r)2>’ (24)

where 77 (1) = (xp £ €08 (Qprlpr), Vpr £ I (Rprlpr)s Zpr)
and the constant

242 Qr
A 2V20r
pr

(25)

3r o

is set such so that the total mass of the system is
M= [ d®xp= [ d®T. For our fiducial model, we will
take L = 507, N=3843, and will use a “standard” time
step dtgq = f~'7/6400 ~ 0.0031257.

A. An active low-pass filter

To recover and go beyond the analysis of [13], we begin
by attempting to simulate the fully nonlinear system (2),
using just one degree of freedom.

In this system, terms that involve products of second
derivatives are a particular numerical challenge. In these
cases, the accuracy of finite-differencing stencils (finite

*http://healpix.sourceforge.net.

approximations to calculating derivatives) is one of the main
roadblocks for accurately evolving the field. Accuracy can
be gained by increasing the number of nearby neighbors
used to calculate these derivatives; however, there is a
substantial run-time cost to that strategy.

Therefore, rather than using finite-derivative stencils, we
use a spectral method, in which we take a Fourier transform
of the scalar field z and its time derivative 7 at each step,
and we then calculate the first and second derivatives of z
and 7 in momentum space before performing a set of
inverse-Fourier transforms to recover the configuration-
space derivatives. This process gives excellent approxima-
tions to the derivatives of the field away from the boundary.
Luckily, we only need to evolve the boundaries using
Eq. (23) and we employ second-order, inward finite-
differencing stencils to calculate 0,z in that region.

This process can be computationally expensive on a
CPU, so we employ the GPU-accelerated version of GABE.
This version, written in CUDA, maintains all the same
structures of the original software, but is written such that
the field evolution occurs on a GPU. This acceleration is
particularly useful for taking Fourier transforms and is
ideally suited for our task. In addition, the GPU-accelerated
version of GABE also uses a fourth-order Runge-Kutta
integrator, which, in principle, allows us to use slightly
larger time steps as compared to GABE.

However, the greatest benefit to using the GPU-
accelerated version of GABE is the ability to quickly apply
a low-pass filter on the field (or on its derivatives) and
thereby to actively remove any high-frequency modes. In
practice, we found that applying a low-pass filter

1 (LN R

to 7 at the end of every Runge-Kutta step, as well as to
the Fourier-transform of mixed-spatial derivatives, gave
excellent stability without the need to apply additional filters.
This filter is designed to cut off power in modes larger than
the one-dimensional Nyquist frequency to k;py = dkN/2 =
zN/L, where dk = 2z /L is the standard unit for discrete
Fourier transforms.

In order to achieve stability, however, one needs to
employ slow “turn-on” strategies like those used in [13]. In
this scheme,

Dprﬂ'pr + ]03(l‘pr)K((Dpr”pr)2 - (aleragr”pr)z) = fl(tpr)‘]pr’
(27)

where f| and f3 are window functions that start at zero
“ramp up” to unity,

(1) = tanh(.015(z,, — 350.)) + tanh(5.25)
Faltye) = 1. + tanh(5.25) — 0.01

. (28)
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Left: the instantaneous (dotted) and period-averaged (solid) power emitted by the fiducial system for the monopole (red),

quadrupole (blue), and £ = 4 mode (green). Right: the quadrupole power emitted by the fiducial system (black line) employing an active
low-pass filter (as described in Sec. III A) as well as the quadrupole power emitted by the Klein-Gordon system. On both plots the lower
dotted black line shows the analytic expectation for a Klein-Gordon field and the higher dotted black line shows the analytic expectation
for the fully nonlinear system, Eq. (31). Note that the vertical axis scale varies between the two plots.

1 (1 1
= 2tanh <10[tpr 25}) +3 (29)
where the choice of smoothing parameter 0.015 is
chosen as a reasonable numerical parameter and 5.25 =
350 x 0.015.

Figure 1 shows the quadrupole power emitted in this
system as a function of time. The ratio of the late-time
quadrupole power in the full system compared to a Klein-
Gordon system is 1.81, which is consistent with the values
seen in [13].

In Fig. 1 (and in following figures), for simplicity, we
plot the quantity

f] (tpr)

- 3

P= 5/ dQr?0,zo,x, (30)
which is related to the analytic expression (20) for the
power radiated by

4 FE

-1
P PEubic(] +W7> ~3x 1077

M

=S (31
6

which is useful when comparing multiple methods.

B. Full auxiliary field method
The second approach is to define auxiliary fields,
A,=0,x and H, = (0,A, +d,A,)/2, for which the
classical equations of motion describing their interactions
are (5)—(7). When converting these equations to program
units, only a single window function f' (#,,) is now needed,

Ol + k(Hpr Hypw = (Hyet)?) = f1(8)Jprs (32)

1
Ol =~ Bl = MR AT = ~M3, o'z,

(33)

pr lapr pr 2 ggbr __ M%r
OlpcHfs, —— O Hjs ~ M HYL = ==

(0 AT + oA,
(34)

where M, = M7/2.

These massive auxiliary fields cannot use the same
massless outgoing wave boundary conditions that we
described earlier for the x field. Instead, we enforce the
constraint equations for A, and H,, given in (8) and (9)
when the waves reach the buffer (defined as N/64 where N
is the size of the box). Using these relaxed constraints, we
have been able to achieve numerical stability regardless of
when the source “turned on.”

In addition to the fiducial tests, we also make a single
comparison to a larger N3 = 5123 simulation for M7 = 10.
This run will be important as a comparison where we keep
the grid spacing dx = L/N constant, therefore moving the
boundary away from the source without changing the range
of high-frequency modes in our system. This run is of
particularly importance in diagnosing the limitations of
auxiliary fields as a numerical scheme.

We can compare the results of this system to the full
system in a couple of different ways. As a first comparison,
we look at the profile of the n field along a line in the
equatorial plane of the binary system (taken here to be
the x axis). Figure 2 shows excellent agreement between
the active low-pass filter and the auxiliary field methods,
particularly at N° = 3843, as well as agreement with the
larger N® = 5123 simulation.

Next, we can look to the multipole power radiated in the
system by the z field. Figure 3 shows the period-averaged
power in the quadrupole for a fairly low, M7 = 0.8, appro-
ximately Klein-Gordon simulation as well as the largest
mass, M7 = 10, that reached equilibrium. Figure 3 also
shows the parametric dependence of the final, quadrupolar
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FIG. 2. The profile of the x field along the x axis for the active
low-pass filter system (black, dashed), as well as the fiducial
N3 = 3843 (blue) and larger N* = 5123 (red) simulations using
auxiliary fields.

power versus M7. The progression from near-Klein-
Gordon to approaching the full, nonlinear system occurs
as M transitions from a small to large number compared to
one. Below we comment on the limitations of our numeri-
cal system to go to higher values of M, however, we
anticipate that the trend shown on the right panel of Fig. 3
would continue until it matches Fig. 1.

In addition to considering the period-averaged power,
we can also look for consistency in the power spectra of
the n field and its derivative. Figure 4 compares the
dimensionless power spectra of the 7 field, as well as its
time derivative 7. These plots show exceptional consistency
between our different methods as a mode-by-mode com-
parison. This figure also shows the effect of the nonlinear
terms on the system; the Klein-Gordon (or near Klein-
Gordon) simulations have significantly more power on
smaller scales which is suppressed as the nonlinear terms
become important.

5.X10_7'x""x'"'x""x""x""x'g
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2:x10 150 200 250 300

tr
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FIG. 3.

One of the issues we encountered while simulating this
model was that the code would crash as we increased the
mass of the auxiliary fields M. For our simulations, long-
term stability became intractable around M7 = 10. For the
specific borderline case of M7 = 10, our fiducial model
was able to achieve stability for many orbits of the system;
however, after some time high-frequency modes are excited
and the code becomes unstable. This instability does not
seem to arise from a problem with the dynamics of the
system, rather, it emerges as a consequence of our boundary
conditions. In the boundary, we calculate the derivatives of
the auxiliary fields assuming that the constraints are
satisfied and Eq. (23). This is a good approximation if
(1) we are sufficiently far away from the source such that
the 7 field is Klein-Gordon and (2) the constraints are
satisfied exactly. For values of M7 > 5 we seem to violate
these assumptions. To demonstrate, we look at our marginal
M7 = 10 case and test whether the instability is a conse-
quence of numerical instability (by reducing the time step)
or a result of the boundary conditions (by keeping dx the
same, but increasing resolution to send the boundary
further away from the source). Figure 5 shows that the
simulations are not stabilized by increasing time resolution
(which would indicate that we are not numerically resolv-
ing the problem well); however, the system remains stable
for much longer if the boundary is moved away from the
source.

C. Restricted auxiliary field method

In addition to the above described UV completion, we
also numerically explore a partial UV completion which is
obtained from the system (5)—(7) by taking the scaling limit
M — oo for fixed

1
T
5.x1077 .
| L.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, .
L]
2.x107r 1
» [ L]
S 1x107t 1
~ F L] 4
T Rl Rttt
k Ld © 4
-8l PR " L " " L " " PR
2.x10 1 2 5 10
Mr

Left: the quadrupole power emitted by the fiducial system using auxiliary fields (as described in Sec. III B) for M7 ~ 0.8 (red)

and M7 ~ 10 (blue). Right: the late-time quadrupole power emitted by the fiducial system using auxiliary fields for different values of M.
In both panels, the lower dotted black line shows the analytic expectation for a Klein-Gordon field and the higher dotted black line shows

the analytic expectation for the fully nonlinear system.
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FIG. 4. The dimensionless power spectrum of the 7 field after the system has reached equilibrium (left) and the dimensionless power
spectrum of 7 field after the system has reached equilibrium (right). The blue lines show the results of a near-Klein-Gordon field using
auxiliary fields (M7 = 0.8, solid lines) and a true Klein-Gordon field using the active low-pass filter (dashed lines). The single solid red
line is for an N> = 5123 simulation of auxiliary fields with a larger, L = 66.667, box. In both plots the leftmost vertical dashed line
corresponds to the frequency 2Q7, where one would expect to see quadrupole power from a binary system and the right vertical dashed
line corresponds to the one-dimensional Nyquist frequency zN/L.

In this limit, the equation of motion for the 7 field remains
the same, however those for the additional fields can be
reduced to second-order equations of motion for the ten
auxiliary fields H,,, given by

(1+%0,)°H,, = 0,0,x, (36)

or more explicitly

K°P(K)

10711 E

10—14 L

10—17,

kr

FIG. 5. The dimensionless power spectrum of 7 field near the
final time. The solid curves represent two N° = 384> simulations
using auxiliary fields and M7 = 10 with different time steps, dtgq
(blue) and dtg4/2 (black), the dashed black curve is a simulation
using an active low-pass filter, and the red curve is a N> = 5123
simulation using auxiliary fields (M7 = 10) with a larger L =
66.6677 box, a fiducial dx, and dt = dtg4/2. The leftmost vertical
dashed line corresponds to the frequency 7, and the right
vertical dashed line corresponds to the one-dimensional Nyquist
frequency zN/L. The slices are all taken at the same late time
when the N? = 3843 simulations are about to crash.

.. 1 2 . 1
le :%—2(0”01,71') _gH.“V_%_ZHIW' (37)

This restricted system is similar in spirit to the approach
taken in [14,15] based on the Miiller-Israel-Stewart for-
mulation [16-19] which has recently been successfully
applied to effective field theories of gravity in [41] (for
related work on cubic Horndeski theories see [42]). In this
approximation, as with the fully UV complete system, we
employed outward-going boundary conditions on the =z
field. In contrast to the full system of auxiliary fields,
however, we did not need to enforce any boundary
conditions on the H,, fields since these restricted auxiliary
fields are not propagating degrees of freedom and neither
the equations of motion for z nor for H,, depend on
derivatives of H,,. Given this, we only need to define H,,
in the bulk.

5_x10'7'x""x""x""x""x""x"

el e e ]
2.x10 50 100 150 200 250 300

tr

FIG. 6. The period-averaged quadrupole power using the
system of restricted auxiliary fields, Eq. (36), and 7 ~ 5.9 (red)
(in program units) with the full auxiliary fields for M7~ 8.2
(blue) and M7 =~ 10 (black).
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To compare it to the first system, we simulate this
system using numerical parameters comparable to the
largest stable value of M7 = 8.22—calculating 7 from
Eq. (35). Figure 6 shows a comparison of the period-
averaged quadruple power.

IV. DISCUSSION

Effective field theories inevitably involve derivative
interactions, the effects of which can have important and
interesting implications in a number of settings, particularly
in gravitational physics and cosmology. While it is well-
understood how to analytically deal with the subtleties of
solving the resulting equations of motions, significant
problems can arise in numerical implementations. This
fact has seriously hampered progress in understanding the
detailed predictions of large classes of theories that have
received much recent attention.

In this paper we have developed, compared, and contrasted
three ways of dealing with this problem in numerical
implementations of such theories. The first approach is to
employ a low-pass filter to tame the UV modes. The second
approach is to construct an example of a “UV completion” of
the equations of motion, involving auxiliary fields that
constitute new propagating degrees of freedom. The effect
of these fields is to render the full system of equations
formally well posed (the system is hyperbolic for all degrees
of freedom, and the characteristic speed is unity for all
modes), but also to ensure that the IR behavior lies in the
same universality class as the original set of equations. The
third approach is a restricted UV completion, also using
auxiliary fields but without introducing new propagating
degrees of freedom. The key point here is that we posit
equations of motion that, while remaining second order, now
involve damping terms to again tame the UV behavior.

Explicitly, we have simulated an orbiting two body
system and determined the power spectrum of scalar
radiation of relevance, for example, to binary pulsars in
common examples of modified theories of gravity. We have
demonstrated that, for the same initial data, all three
methods reproduce the same long wavelength physics with

the expected errors of the numerical simulations. In the case
of the low-pass filter, both the source and interactions need
to be turned on slowly in order to maintain numerical
stability. On the other hand, both of the UV completions are
found to be under better control, allowing the interactions
to be turned on at the initial time step. These results parallel
those of [43] and more recently [44,45], which consider UV
completions of theories with kinetic screening along the
lines of [46-48].

One remaining technical issue that prevents us from
treating large hierarchies of scale (large M) is that our
treatment of the boundary conditions for the massive
degrees of freedom is in tension with the damping of the
bulk degrees of freedom. This problem arises because of a
known issue with imposing boundary conditions in real
space for massive fields (see, for example, [49]). A better
treatment of boundary conditions should remove this issue.

Our hope is that the techniques described in this paper
will be of direct use to those wishing to simulate generic
effective field theories, including known difficult examples
such as Galileons, massive gravity, and the effects of
higher-curvature corrections in gravity. It is straightforward
to include higher-order Galileon interactions or Galileon
models with enhanced symmetries, e.g., the special
Galileon [33,34,50].
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