
Journal of Cosmology and
Astroparticle Physics

     

PAPER • OPEN ACCESS

What is flat ΛCDM, and may we choose it?
To cite this article: Stefano Anselmi et al JCAP02(2023)049

 

View the article online for updates and enhancements.

You may also like
Joint Constraints on the Hubble Constant,
Spatial Curvature, and Sound Horizon
from the Late-time Universe with
Cosmography
Kaituo Zhang, Tianyao Zhou, Bing Xu et
al.

-

Relativistic numerical cosmology with
silent universes
Krzysztof Bolejko

-

Long-term Protoplanetary Disk Evolution
from Molecular Cloud Core Collapse and
Implications for Planet Formation. I. Weak
and Moderate Disk Self-gravities
Xin-Ming Wang

-

This content was downloaded from IP address 23.245.111.67 on 27/11/2023 at 02:01

https://doi.org/10.1088/1475-7516/2023/02/049


J
C
A
P
0
2
(
2
0
2
3
)
0
4
9

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

What is flat �CDM, and may we

choose it?

Stefano Anselmi,
a,b

Matthew F. Carney,
c

John T. Giblin Jr.,
d,e

Saurabh Kumar,
d

James B. Mertens,
c,d

Marcio O’Dwyer,
d

Glenn D. Starkman
d,f

and Chi Tian
c,g

aINFN, Sezione di Padova,
Via Marzolo 8, I-35131, Padova, Italy

bLaboratoire Univers et Théories, Université de Paris, Observatoire de Paris,
Université PSL, CNRS,
92190 Meudon, France

cDepartment of Physics and McDonnell Center for the Space Sciences,
Washington University,
1 Brookings Dr., St. Louis, MO 63130, U.S.A.

dDepartment of Physics/CERCA/Institute for the Science of Origins,
Case Western Reserve University,
2076 Adelbert Rd., Cleveland, OH 44106-7079, U.S.A.

eDepartment of Physics, Kenyon College,
201 N College Rd, Gambier, OH 43022, U.S.A.

f Department of Physics, Imperial College,
Prince Consort Rd, South Kensington, London SW7 2BW, U.K.

gSchool of Physics and Optoelectronics Engineering, Anhui University,
Hefei, China
E-mail: stefano.anselmi@pd.infn.it, c.matthew@wustl.edu, giblinj@kenyon.edu,
sxk1031@case.edu, bm120@case.edu, mro28@case.edu, glenn.starkman@case.edu,
cxt282@case.edu

Received July 29, 2022
Accepted November 30, 2022
Published February 24, 2023

c• 2023 The Author(s). Published by IOP Publishing

Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons

Attribution 4.0 licence. Any further distribution of this work must

maintain attribution to the author(s) and the title of the work,

journal citation and DOI.

https://doi.org/10.1088/1475-7516/2023/02/049

mailto:stefano.anselmi@pd.infn.it
mailto:c.matthew@wustl.edu
mailto:giblinj@kenyon.edu
mailto:sxk1031@case.edu
mailto:bm120@case.edu
mailto:mro28@case.edu
mailto:glenn.starkman@case.edu
mailto:cxt282@case.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2023/02/049


J
C
A
P
0
2
(
2
0
2
3
)
0
4
9

Abstract. The Universe is neither homogeneous nor isotropic, but it is close enough that we
can reasonably approximate it as such on suitably large scales. The inflationary-�-Cold Dark
Matter (�CDM) concordance cosmology builds on these assumptions to describe the origin
and evolution of fluctuations. With standard assumptions about stress-energy sources, this
system is specified by just seven phenomenological parameters, whose precise relations to
underlying fundamental theories are complicated and may depend on details of those fields.
Nevertheless, it is common practice to set the parameter that characterizes the spatial cur-
vature, �K , exactly to zero. This parameter-fixed �CDM is awarded distinguished status
as separate model, “flat �CDM.” Ipso facto this places the onus on proponents of “curved
�CDM” to present su�cient evidence that �K ”= 0, and is needed as a parameter. While
certain inflationary model Lagrangians, with certain values of their parameters, and certain
initial conditions, will lead to a present-day universe well-described as containing zero curva-
ture, this does not justify distinguishing that subset of Lagrangians, parameters and initial
conditions into a separate model. Absent any theoretical arguments, we cannot use obser-
vations that suggest small �K to enforce �K = 0. Our track record in picking inflationary
models and their parameters a priori makes such a choice dubious, and concerns about ten-
sions in cosmological parameters and large-angle cosmic-microwave-background anomalies
strengthens arguments against this choice. We argue that �K must not be set to zero, and
that �CDM remains a phenomenological model with at least 7 parameters.
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Concordance cosmology, a Universe that is dominated by dark energy of fixed energy density
and cold dark matter (�CDM) and that began, long ago, with a nearly scale-free spectrum of
adiabatic density fluctuations, is a surprisingly simple description of a remarkably complex
universe. In this setup, just about everything we see on cosmological scales can be described
in terms of a nearly homogeneous and isotropic space-time containing homogeneous and
isotropic vacuum energy, and filled with ordinary baryonic and dark matter, photons, and
neutrinos that are nearly homogeneous on cosmological scales, but have sizable fluctuations
on astrophysical scales. The dynamics of this energy density is governed by general relativity
(GR) and the Standard Model of particle physics (and possibly some other interactions
if the dark matter is not of the Standard Model), though the evolution of cosmological
perturbations can be tracked almost entirely with linearized GR. In addition, one commonly
postulates an early-universe “inflationary” origin for the fluctuations, which explains why
they are primordially adiabatic, with a nearly scale-invariant power spectrum over some
wide range of scales.

This cosmology can be parametrized in terms of just 7 real parameters: �bh
2, �ch

2, H0,
· , ns, As, and �K .1 In more detail, these are:2 the ratio �b of the energy density in baryons
flb to the critical energy density, flcrit = 3H

2
0 /8fiGN , for a homogeneous flat Friedmann-

Lemaître-Robertson-Walker (FLRW) universe, times h
2, the square of the current Hubble

parameter H0 in units of 100 km/s/Mpc; h
2 times �c, the ratio of the energy density in

cold dark matter flc to flcrit; the current Hubble parameter H0; the reionization optical
depth · (which should in principal be a calculable function of the other 6, but in practice
depends on complicated non-linear astrophysics); the index ns of the power spectrum of

1One might add TCMB, the current temperature of the cosmic microwave background radiation (CMB),
which fixes the cosmological moment at which we are describing the universe. TCMB also fixes the current
energy density in radiation �r once one has specified Ne� , the e�ective number of relativistic neutrino species
at the time of big bang nucleosynthesis. Ne� is calculable in the Standard Model. These parameters are those
of what is often called “vanilla” �CDM. There are also a number of additional parameters that characterize
detailed features of the Universe or departures from the simplest model. These include the neutrino masses
and mixings, and the amplitude and spectral parameters of any tensor modes. There are many other such
potential parameters.

2Throughout, we set c = 1.
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scalar fluctuations,3 and the amplitude As of that power spectrum. Finally, there is �K , a
measure of spatial curvature, written to appear like the ratio of the energy density in spatial
curvature to the flcrit. Actually there is no energy density associated with spatial curvature,
which is part of the geometric (Einstein tensor Gµ‹) term of the Einstein field equations
Gµ‹ + �gµ‹ = 8fiGN Tµ‹ , not the source (stress-energy tensor Tµ‹) term. However, in an
FLRW universe, �K is 1 minus the sum of the �i associated with each of the actual sources
of energy density — once the cosmological constant � has been rewritten as a vacuum-energy-
density contribution to Tµ‹ .

It is noteworthy that all these parameters are phenomenological, i.e. not one can be read-
ily understood as a parameter of the action of the fundamental theory underlying cosmology.
They are more closely analogous to the masses, orbital parameters and similar properties
of the Sun and planets in a “theory” of the solar system, than to General Relativity’s only
parameters, GN and the value of the cosmological constant �, or to the 19-20 parameters
of the Standard Model of particle physics (plus a few more if one includes neutrino masses
and mixings). The �CDM parameters depend in complicated, and in some cases not-yet-
understood, ways not just on the parameters of the fundamental theory — which is not yet
fully known — but also, at least potentially, on boundary conditions. A rough analogy is
to the dynamics of a plasma inside a cavity, which depend not just on the micro-physics of
the plasma constituents, but also on the shape of the cavity, the conductivity of its surface,
and even the roughness of that surface. It should therefore perhaps be surprising that just 7
parameters seem to su�ce to approximately describe the Universe.

It has nevertheless become the widespread practice among cosmological phenomenolo-
gists and observers to regard the last of these, �K , as optional; to set �K © 0 and analyze
the “6-parameter flat-�CDM” concordance cosmology. This argument rests on three legs:
first, there are the historical low-precision measurements of �K , from which there was no
evidence that �K ”= 0. Second, there are long-standing arguments that �K = 0 is a generic
prediction of inflation, though, during a period in the 1990s when �m ƒ 0.3 was the preferred
observational value, and it was believed that �� © 0, so 1 ≠ �m ≠ �� = 0.7 = �K , some
argued that �K ”= 0 was generic, or at least [2] that there was no good reason to prefer any
particular value of �K . These arguments have largely not been revisited since the emergence
of tensions in the fits of �CDM parameters to cosmological data, and of statistical anomalies
in that data. Finally, third, there is a sense among cosmologists that there are three choices
— k = 0, k = 1, and k = ≠1 — and that these are separate models that could be treated
separately, even though this is a choice not between distinct fundamental Lagrangians but
between boundary conditions (i.e. between three classes of possible manifolds, that don’t
even exhaust the full set of possible manifolds).

We set out here to challenge this practice of regarding (�K = 0)-�CDM as a distinct
model with one fewer parameter than �CDM, which can be evaluated separately. It has been
suggested that it is “premature” [3] to set �K = 0 in �CDM, and argued that this is a “very
restrictive assumption that needs to be tested empirically” [1], leading many others to explore
�CDM with �K ”= 0 (e.g., [4–7]) with a range of conclusions. Still others have worried about
the possibility of drawing erroneous conclusions about evolving dark energy [8, 9], the nature
of inflation [10], alternatives to inflationary �CDM [11], or that the observation of cosmic
acceleration might even predict an observable curvature [12]. Here we argue that one simply
is not entitled set �K = 0 in �CDM. By downgrading an inescapable phenomenological

3More specifically, ns customarily measures the “tilt” of the power spectrum away from a phenomenologi-
cally specified �K-dependent form, which is scale-invariant when �K = 0 [1].

– 2 –
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parameter of the model universe to an optional parameter, we introduce — through our priors
— information that we simply don’t have a priori. By insisting that the parameter should be
restored only if the need for it is justified by strong evidence, we potentially mislead ourselves
about tensions among data sets, how they might be solved, our confidence in our concordance
model, the utility of future and planned experiments, and other key questions in the era of
precision cosmology. The point of this paper is not to take sides for or against particular
tensions, but to argue that the correct stage on which they should be examined cannot be
assumed to be flat. Without a theory of initial fluctuations, such as inflation, indentifying �K

indistinguishable from 0 as a “model” relies completely on arbitrary assumptions about the
properties of cosmic fluctuations to even make sense of a background cosmology, much less
select the specific Euclidean background. Within the inflationary �CDM paradigm, it is a
prediction of certain, but not all, inflationary Lagrangians, with certain, but definitely not all,
values of those Lagrangian’s parameters, and certain, but again not all, initial conditions —
all in a context where there is no well-understood measure on the models/parameter/initial-
condition “space” from which one is choosing.

Properly including �K as a free parameter has practical consequences: changing the
best-fit values of other parameters and their uncertainties,4 and exacerbating or moderating
the strengths of parameter tensions. In principle, one may also wish to replace �K with
one or more underlying model parameters that can be more closely connected to calculable
predictions for observables.

1 What does it mean to be flat?

The subtext of this question is that FLRW cosmology equates/conflates at least three distinct
meanings of the statement “the Universe is flat”:

1. The Universe is a Euclidean three-manifold: all of spacetime may be foliated by space-
like hypersurfaces each of which is a Riemannian three-manifold (an appropriately
smooth space) with the appropriate topology to “admit” a single homogeneous metric,
and that is the Euclidean metric. This property might extend back to just after a
spacelike “Big Bang” singularity, or to t = ≠Œ in a cyclic or bouncing cosmology; but
most importantly, it includes the time slice we inhabit.

2. The observable Universe has zero average curvature: the “three-geometry” of the
constant-time spacelike hypersurface through us is characterized by a 3-Riemann-curva-
ture tensor 3

Rijkl. The spatial average of this 3-geometric quantity (or the 3-Ricci ten-
sor, or the 3-Ricci scalar) is 0 over the region of space that we observe.

3. The (first) Friedmann equation requires no term that scales like curvature: cosmological
observations are analyzed in the context of a phenomenological model — background

4The consequences can even extend to the reconsideration of the proper form of the power spectrum, and
therefore of its appropriate parametrization. For typical assumptions about the usual suite of inflationary
models, the “tilt” away from a scale-free spectrum parametrized by ns may be a nearly faithful representation
of the theoretical predictions for the scalar spectrum. However, [13] argued that for models [14, 15] specifically
constructed to give �K ”= 0 it is not, and even suggested that ns should not be included as a parameter for
these models. Others [16] have argued for using parameters that characterize the kinematics of the inflationary
period (eg. slow-roll parameters, or the number of e-folds) and avoiding entirely parameters, like ns that
characterize a phenomenological or model-specific power-spectrum. A more fundamental approach might use
parameters of the inflaton (and reheating) Lagrangian plus initial conditions of the inflaton and related fields.

– 3 –
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FLRW cosmology plus perturbations. The background has only one dynamical degree-
of-freedom, the scale factor a(t). The Friedmann equation, supplemented with an
equation-of-state relationship between pressure and energy density, relates the rate of
change of a(t), to the energy density fl. In “vanilla” �CDM, four contributions to fl are
included, which scale as5

a
≠4 (“radiation”), a

≠3 (“matter”), a
≠2 (“curvature”),6 and a

0

(“vacuum energy”). The current fractional contributions to the total energy density are
given by �i, with i indexing these four sources. (Thus

q
i �i © 1.) �K is the symbol

for the fractional coe�cient of the a
≠2 contribution to the Friedmann equation.

The word flat is thus non-specific. Our not-precisely homogeneous or isotropic universe
may or may not be flat in each of the above three senses.

We examine each of these meanings of flatness below, the goal being to ask if, and to
what extent, we are justified in assuming that any or all of the above flatness conditions are
satisfied a priori, i.e. what are the implications of placing a strict prior that perfectly enforces
any or all of these conditions on the cosmology, and which then requires strong evidence to
overturn.

The question is not, for example, how good or bad an approximation it is to expand
around a homogeneous, isotropic, zero-spatial-curvature background, but rather whether one
can justify regarding perfectly flat FLRW as a separate model, in which, in particular, �K

is simply not a parameter that one must measure.

1.1 Topological flatness

An underlying assumption of FLRW is that 3 + 1-dimensional classical (i.e. ignoring any
underlying quantum nature) spacetime is smooth7 — a semi-Riemannian manifold — and
can be described as a time-ordered sequence of smooth 3-d spatial slices, at least from soon
after some possible initial singularity to the present and into the foreseeable future. We know
that this is a problematic assumption given the existence of black holes, which are thought
to hide singularities, or quantum-mechanically resolved singularities, behind horizons. Nev-
ertheless, we have the sense, and assume, that we can excise these short-distance defects in
the geometry.

We also assume for concordance cosmology that this large-scale spatial 3-manifold has
no boundary hypersurfaces. This is not an essential feature of spacetime; in certain models
of large extra dimensions in which interest exploded in the 1990’s [17–19], we (i.e. all or most
Standard Model particles) are confined to “the brane” — a 3+1-dimensional sub-spacetime
of the full “bulk” spacetime. This brane generically imposes boundary conditions on bulk
fields. Nevertheless, a no-boundary prior is defensible, if not essential.

Having assumed that space on large scales is a three-manifold, we confront their vast di-
versity. Spatial three-manifolds can be infinite (non-compact) or finite (compact). Compact

5When placed in the context of the Standard Model of particle physics, or various extensions thereto,
specific particles contribute to either the matter or radiation component at di�erent epochs. As the Universe
expands, particles with mass transition from radiation-like to matter-like. This slightly complicates the simple
four-component description, and is of particular current relevance for neutrinos.

6In General Relativity, the presumed underlying theory of FLRW, an a≠2 term can have a geometric origin,
arising from an isotropic homogeneous curvature of space. It thus enters the Einstein equations through the
Einstein tensor, not the stress-energy tensor. Certain forms of energy density, such as certain networks of
cosmic strings, would also scale as a≠2, but these are assumed not to be present in vanilla �CDM.

7We try to steer clear of specific mathematical definitions when those are not necessary.

– 4 –



J
C
A
P
0
2
(
2
0
2
3
)
0
4
9

manifolds without boundary are called closed8 and have been extensively studied. Many cos-
mologists are familiar with the fact that in two dimensions every simply connected Riemann
surface admits one of just three homogeneous geometries — Euclidean (E2), spherical (S2),
or hyperbolic (H2). E�ectively, it is possible to smooth out any local ripples in the spacetime
and leave behind a homogeneous and isotropic geometry (i.e. metric).

The situation is much less simple in three dimensions. Thurston, in 1982, put forward
the eponymous Geometrization Conjecture [20], since proved by Perelman [21, 22]. It states,
approximately, that every closed 3-manifold is the connected sum of irreducible pieces called
prime 3-manifolds. This decomposition is unique for orientable manifolds.9 Each prime
submanifold admits a homogeneous geometry — however there are 8 of them, not 3. Non-
compact three-manifolds in general are much less well studied.

FLRW considers only the three homogeneous and isotropic 3-geometries — Euclidean
(E3), spherical (S3), and hyperbolic (H3). Because the dynamical equations of General
Relativity depend only on the metric, the Einstein field equations for the evolution of the
homogeneous metric (but not their boundary conditions) are entirely agnostic about which
of the many manifolds of each type we might inhabit. Cosmologists therefore tend to equate
these geometries with the covering spaces of these geometries — for each geometry, the
manifold that has the full unbroken symmetry group of that geometry — because the field
equations of GR are independent of the topology. Cosmologists thus refer to all E

3 manifolds
as k = 0, all S

3 manifolds as k = 1, and all H
3 manifolds as k = ≠1. Two more of the

8 possible homogeneous geometries follow quite naturally from the two-dimensional case:
S

2
◊ E

1, and H
2

◊ E
1. They are anisotropic — flat in one dimension and isotropically

curved in the other two. The final three, ÊSL(2, R), Nil, and Sol, are less familiar, and also
anisotropic.

It is a challenge to place any measure on this rich space of possibilities. There are only 10
topologically distinct closed 3-manifolds with the E

3 geometry. On the other hand there are a
countable infinity of distinct topologies for manifolds admitting the S

3 geometry. Meanwhile
“there are enormous numbers of examples of . . . [H3 manifolds], and their classification is not
completely understood.” [23]. This suggests that flat 3-manifolds are a set of measure zero
in the space of closed 3-manifolds. However, we should be cautious to adopt the topologists’
counting for cosmological purposes. For example, hyperbolic three-manifolds are rigid [24]
— the only deformation of the fundamental domain permitted if one wants to preserve
the homogeneity of the metric is an overall scaling (i.e. a change in the curvature scale). In
contrast, the simplest Euclidean three-torus is usually described as a cube with opposite faces
identified; however, each of the three side lengths can be independently and continuously
varied, as can the three independent angles between the sides. Thus the finite number
of flat three-manifolds each require up to 6 real parameters to specify them, whereas the
countable infinity of hyperbolic three-manifolds require only one each. On the other hand, it
is not clear why we should count the parameters that specify the homogeneous geometry, and
disregard the overwhelmingly larger set of real parameters required to specify inhomogeneities

8This meaning of a closed manifold should not be confused with the cosmologists’ description of a universe
that eventually stops expanding and then collapses toward a future big crunch as a “closed universe.” S3

LFRW universes are closed in both senses if � is su�ciently small that curvature causes the cosmic expansion
to halt before � can cause accelerated expansion.

9We may or may not inhabit an orientable manifold. The Standard Model is chiral — it includes di�erent
left-handed and right-handed fermionic particles/fields. On a non-orientable manifold this is not possible.
On the other hand, it seems risky to infer global properties of spacetime from no-go theorems whose subtle
assumptions may prove consequential.
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— represented, for example, by the amplitudes of eigenmodes of the appropriate Laplacian.
Returning to and refining our initial assertion — it is a challenge to select a single

compelling measure for cosmology on the space of possible three-manifolds.10

In summary, the cosmologists’ classification of FLRW models as k = 0, ±1 cannot be
taken as a rational basis for assigning priors to three-manifolds, as it is grossly incomplete,
and arbitrarily implies something like equal weight for each of the three special classes of
manifolds that it happens to include, and zero weight for all other three-manifolds, not to
mention spaces that aren’t manifolds, but that would/might be just as viable cosmologically.

It is distinctly possible that the entire question of cosmic topology is obviated by a
prolonged epoch of cosmic inflation. Suppose the pre-inflationary universe was homogeneous
but with a geometry other than E

3. (Perhaps because this allows to avoid any Big Bang
type singularity, as possibly first noted in [25].) Or perhaps it was nearly homogeneous, but
well described by a background geometry other than E

3 plus perturbations. During cosmic
inflation, the length scale(s) associated with that (background) geometry would increase
compared with the Hubble Horizon scale and any other scale determined by microphysics.
Local measurements of geometry — i.e. measurements made over fixed distances — might be
increasingly well-approximated by Euclidean geometry.11 After inflation ended, the physical
scale over which such “local” measurements could be made would begin to increase — this
is often described as scales coming (back) “into the horizon.” If inflation was su�ciently
brief, then we could today, once again, detect the non-Euclidean nature of the background
geometry. If inflation lasted long enough, then even today, the deviation of the background
geometry from Euclidean might be too small to detect.

Detecting the background curvature and detecting the non-triviality of cosmic topology
are not one and the same thing, though they are certainly connected. Moderately stringent
limits have been placed on observables related to the topology of the Universe. The shortest
closed loops “around the Universe” passing through us must, at 99.7% CL, be longer than at
least 98.5% of the diameter of the last scattering surface of the cosmic microwave background
(CMB) [26–28] — a statement that can be made regardless of the specific manifold in which
we might live, and of the specific background geometry given the inferred levels of curvature
fluctuaions. This is known based on the absence of “matched circle pairs” [29] in Wilkinson
Microwave Anisotropy Probe (WMAP) temperature maps [30], slightly extended to special
cases using Planck data [31, 32]. The Planck team also searched for evidence of non-trivial
topology using a correlation-function technique, but that search was limited to certain classes
of manifolds, to certain values of the parameters of the applicable fundamental domain, and,
for most topologies, to certain locations within that fundamental domain. The possibility
remains of non-trivial topology on length scales short enough that it could be detected.

In summary, a spatial slice through us may have the appropriate topology to allow us to
put the homogeneous Euclidean 3-metric on its entirety (once we somehow excise the black
holes and “stitch up” those excisions). This could reasonably be called a topologically flat
space. It is hard (or impossible) to put a meaningful measure on the space of 3-spaces to
evaluate the probability for this to be the case. We have not measured the topology (and may

10We avoid even contemplating the complications if the topology of the 3 + 1d spacetime precludes a global
decomposition into a spatial manifold cross time.

11Cosmologists would normally say that local measurements of geometry would be increasingly well-
approximated by Euclidean geometry; however, that statement hides the important assumption of a short-
distance cut-o� in the spectrum of initial inhomogeneities — perhaps the physical Planck scale at the onset
of inflation.
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never do so), so do not yet have any basis for settling the question observationally. Neither
do we have any basis from cosmic topology for assuming the Universe is flat.

1.2 Zero average spatial curvature
Whether or not the spatial slice through us (or at least a judiciously chosen slice) is a topo-
logically flat 3-manifold (i.e. admits a homogeneous Euclidean metric), the actual metric
is not homogeneous — everywhere around us is evidence of non-Euclidean geometry. Per-
haps, however, the Universe is flat because the average spatial curvature over the observable
Universe is zero. There are at least three questions pertaining to this suggestion:

1. Which average of which quantity is zero?

2. Which theoretical models predict that that average will be precisely zero?

3. Is there justification for assigning a prior to one or more of those models that plucks
them out of the vast space of models and distinguishes them among their alternatives?

1.2.1 Which average curvature?
While the geometry of spacetime is described by a metric gµ‹ , the curvature is characterized
by the Riemann tensor R–—“”, which, written this way with 4 covariant indices, is a function
of the second derivatives of the metric with respect to the spacetime coordinates. R–—“” has
20 independent degrees of freedom. The Einstein field equations, the dynamical equations of
GR, depend only on the Ricci tensor, a trace of the Riemann tensor Rµ‹ = g

–“
R–µ“‹ (and

its trace, the Ricci scalar, R = g
µ‹

Rµ‹), through the Einstein tensor12
Gµ‹ = Rµ‹ ≠

1
2Rgµ‹ .

Gµ‹ has just 10 independent components. The field equations state that Gµ‹ is proportional
to the stress-energy tensor Tµ‹ ,

Gµ‹ = 8fiGN Tµ‹ . (1.1)
For a universe that is close to homogeneous and isotropic, and which seems to be rea-
sonably well-modeled by some mixture of perfect fluids (characterized by their density fl

and isotropic pressure p), the diagonal elements of T
‹
µ in a Cartesian coordinate system —

fl, p, p, p — are most definitely not zero on average at most cosmological epochs — during
the radiation-dominated and matter dominated periods they are positive definite; during the
current accelerated-expansion epoch (and any past inflationary epoch), fl is positive definite
while p is negative definite. Thus none of Gµ‹ , Rµ‹ , and R average to 0 over a cosmologically
interesting volume, at least for any reasonable choice of average.

This is not surprising to any cosmologist. “Flat” cannot mean that spacetime has no
curvature — it is a claim about space not spacetime, in other words about the induced met-
ric on spatial slices. We must first perform a “space-time decomposition” — we must take
the 3 + 1-dimensional spacetime manifold and represent it as a sequence of non-intersecting
3-dimensional spatial manifolds, a foliation. On any given spatial slice any two points are
outside one anothers’ light-cones. The coordinates within any given slice are spatial coordi-
nates, the label for the di�erent slices is time. On each such slice, we can then find13 the
metric 3

gij describing distances between pairs of points (with i, j now running over 3 spatial
coordinates), and we can compute the 3-d spatial Riemann tensor, 3

Rijkl from spatial deriva-
tives of 3

g. When cosmologists speak of a flat universe, they are describing the properties of
3
Rijkl. 3

Rijkl has 6 degrees of freedom, but in the Euclidean 3-geometry E
3, 3

Rijkl = 0.
12The remaining degrees of freedom of the Riemann tensor are contained in the Weyl or conformal tensor.
13 3g can be computed directly from g and the specification of the foliation.
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We can immedately identify several challenges. First, the separation of spacetime into
space and time is not unique. Even if there is a choice of foliations that gives 3

Rijkl = 0,
this will not be true on other foliations. We could adopt a very mathematical approach and
merely require that there exist such a foliation, but how would one verify this observationally?
And what precisely would one mean? After all, the geometry is very far from Euclidean on
small scales. More on that below.

The second and related challenge is that we do not observe spatial slices. The only
point on our spatial slice that we know we can observe is the one we occupy. Mostly we
observe photons (or lately gravitational waves and neutrinos) that emanate from points on
(or incredibly near, in the case of neutrinos) our past light cone — approximately these are
nested spheres of increasing radius as one moves further into the past. (We do get information
from our past worldline — e.g. geological data; we also get photons that have scattered in
the past, o�ering in principle an opportunity to fill in the light cone, but that is far less
extensive. Cosmic rays do this to a limited extent as well, travelling at all speeds Æ c.)
But this simple description relies on the Universe being nearly homogeneous. The presence
of mass concentrations, which create gravitational lenses, black holes, et cetera, complicates
this description. On which surface are we meant to average the curvature and find zero?

Finally, what quantity are we meant to average and how? Is it 3
Rijkl or 3

R
i
jkl; the

3-Ricci tensor 3
Rij or 3

R
i
j ; or the 3-Ricci scalar, 3

R? Or is it some function of these? The
average of a function is not the function of the average; averaging doesn’t commute with
most mathematical operations. And how do we weight the average?

And is it zero? One clear challenge in placing a delta-function prior on any average of
the curvature at zero is that no viable theory predicts that the curvature will be precisely
zero. This is absolutely clear on “small scales” — the existence of structures from Cavendish
experiments to superclusters testifies to the curvature of space. Most of these structures,
while non-linear from the point of view of their stress-energy, source gravitational fields that
can be studied at low order in perturbation theory; however this is certainly not the case
for the mergers of stellar mass black hole binaries, which we now detect regularly via their
gravitational radiation. Thus any attempt to assert that the curvature is zero must involve
a scheme to remove the contribution of these linear and non-linear deviations from an ideal-
ized flat background. Many authors [33–49] have explored analytically the question of which
averages of which observables might be best suited for recovering an unbiased measure of the
background geometry, although the expected variance has not as far as we can tell been stud-
ied. Recently, Adamek et al. [50] explored the influence of small-scale non-linear structures
on determinations of certain curvature averages and provided numerical evidence supporting
the claim [43] that well-designed measurements could at least be unbiased. (See below.)

Meanwhile, current theories of the origins of structure ascribe the origin of the small
scale structures we inhabit and observe to a spectrum of fluctuations in some primordial
field, typically a scalar field termed the inflaton, with associated fluctuations in the metric.
This spectrum naturally extends to wavelengths much larger than the size of currently known
structures, indeed larger than the Hubble scale. Kleban [51] argued that if the fluctuations
in the Newtonian potential are �N , then they generate 3

R = 4Ò2�N
a2 . (Of course there can be

vector and tensor perturbations, anisotropic stress, and other non-Newtonian contributions.)
There is no compelling reason to expect a sudden cuto� in the spectrum at scales just

larger than observed structures. For example, some of us [52] demonstrated that such a cut-
o�, somewhat unexpectedly, does not naturally explain the absence of large angle correlations
in the CMB temperature fluctuations. Cosmic topology would provide a cuto�, but only on

– 8 –



J
C
A
P
0
2
(
2
0
2
3
)
0
4
9

scales larger than the fundamental domain, which, as described above, is already known not
to be much smaller than the sphere of last scattering — the limits of our direct electromag-
netic observations. Both the “subhorizon” and “superhorizon” contributions to the metric
fluctuations would contribute to any average of the curvature on large scales. Kleban showed
that for a canonical inflationary power spectrum, the square root of the expectation value of
the spatial average of (3

R)2 is non-zero. Interpreted as a background curvature it would lead
to |�K | ƒ 10≠5. The magnitude of the contribution of large-scale modes to the average cur-
vature (as characterized by |�K |) was explored numerically in [50] and by some of us in [53],
where we also considered di�erent averaging procedures. While long-wavelength fluctuations
make a non-vanishing contribution to inferred cosmological parameters, for that contribution
to be observationally significant would require that their amplitude is larger than anticipated
in vanilla inflationary �CDM. Exactly this has been suggested as a possible solution to the
H0 tension [54].

This spatial average of (3
R)2 may, anyway, not be an observationally relevant quantity

to explore. Certainly, while (3
R)2 = 0 implies �K = 0, the converse is not true; it is not

necessary to have (3
R)2 = 0 in order to get �K = 0. We are interested in observables, such

as the coe�cient of the a
≠2 term in the Friedmann equation, not an integral over a gauge-

dependent spatial hypersurface. Moreover, a similar computation to those in [50] or [53]
would presumably yield a non-isotropic e�ective curvature, probably of similar size to the
average curvature, but which might be more detectable.

1.3 �≠2 = 0 for scale-factor evolution
In a homogeneous and isotropic universe, the metric in spherical polar coordinates can be
written in the form

ds
2 = dt

2
≠ a(t)2

C
dr

2

1 ≠ kr2 + r
2

1
d◊

2 + sin2
◊d„

2
2D

(1.2)

where k is the curvature parameter described above. This metric is consistent with a ho-
mogeneous diagonal stress energy tensor of the form T

µ
‹ (t) = diag(fl(t), p(t), p(t), p(t)). The

Einstein equations for the dynamics of the metric then reduce to a pair of independent equa-
tions for the first and second time derivatives of a(t) in terms of the density fl(t), the pressure
p(t), and two constants, the cosmological constant � and the curvature constant k. These
are the Friedmann equations:

3
ȧ

a

42
= 8fiGfl

3 ≠
1
3� ≠

k

a2 (1.3)

ä

a
= ≠

4fiGfl

3 (fl + 3p) ≠
1
3� . (1.4)

Applied to a homogeneous isotropic perfect fluid with a given equation of state, p = p(fl),
or to a collection of such fluids (i.e. fl =

q
i fli), the Friedmann equations yield the time

evolution of the one dynamical function in (1.2) — the scale factor a(t).
We know that the contributions to the energy density in the Universe include certain

elements — relativistic particles such as photons, massive slow-moving composite “particles”
such as atoms, ions, and nuclei (and the still-more-composite objects built out of them like
stars and galaxies). The latter category is widely understood to also include cold dark
matter, non-relativistic non-interacting “particles”. A gas of photons, which are massless and
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non-self-interacting, is very well approximated as a perfect fluid with p = flc
2
/3. Because

p is the kinetic energy density of a perfect fluid, for non-relativistic non-interacting species,
p ƒ

1
2flv

2
π flc

2, so p = 0 is a good leading order approximation. This is known as “dust.”
Conservation of stress-energy (or equivalently the Friedmann equations) imply that a

fluid with p = fl/3 has fl Ã a
≠4, while one with p = 0 has fl Ã a

≠3. This allows the first
Friedmann equation in a homogeneous isotropic universe containing only radiation (pr =
flrc

2
/3) and pressureless matter to be rewritten as a first-order non-linear ordinary di�erential

equation: 3
ȧ

a

42
= H

2
0

ÿ

i=0,≠2,≠3,≠4
�i

3
a

a0

4i

(1.5)

with

�0 © ≠
�c

2

3H
2
0

, �≠2 © ≠
kc

2

a
2
0H

2
0

, �≠3 ©
8fiG

3H
2
0

flm0 , and �≠4 ©
8fiG

3H
2
0

flr0 . (1.6)

H0 is ȧ/a evaluated today, and flm0 and flr0 are the dust and radiation energy densities when
a = a0. Conventionally, cosmologists replace �0 æ ��, �≠2 æ �K , �≠3 æ �m, �≠4 æ �r.

The framework described above relies implicitly on the confidence that the metric that
solves the full Einstein equations sourced by the real stress energy tensor is well approximated
by the homogeneous metric that is sourced by the average stress-energy tensor

ḡ–—

Ë
Gµ‹ = 8fiGN Tµ‹

È
(1.7)

ƒ g–—

Ë
Gµ‹ = 8fiGN T̄µ‹

È
,

(where spatial averages over FLRW hypersurfaces are represented by an overbar); and, more-
over, that the average stress-energy tensor is well described by the sum of homogeneous per-
fect fluids that have the same equations of state as the constituent fluids would if they were
actually homogeneous

T̄µ‹ ƒ Tµ,‹ [fl̄, p(fl̄)] . (1.8)

This casual commutation of averaging with the solving of systems of coupled non-linear
partial di�erential equations is not to be taken lightly, and has long been the subject of
concern under the name of “the cosmlogical backreaction problem” and remains unsettled
(see, for example, [55] and references therein for a recent review). It raises several questions:

• Is the average stress energy tensor well described as the sum of a homogeneous ra-
diation fluid and a homogeneous dust fluid? Even though the matter has non-linear
inhomogeneities and complex physics such as magneto-hydrodynamics is required to
describe the evolution of at least the baryonic component of that matter? Even though
certain neutrino species may currently be transitioning from the relativistic (radiation)
regime to the non-relativistic weakly interacting (dust) regime?

• If so, is the average of the metric obtained from the full Einstein tensor (which is
proportional to the full stress-energy tensor) equal to the metric obtained from the
Einstein tensor that is proportional to the average stress energy tensor?

• If the answer is “yes, though not precisely”, how good is the approximation?
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These questions themselves hide subtleties like — what is meant by spatial average? Over
which spatial hypersurfaces? The Einstein equations are local, and respect causality — the
spatial average of a quantity over some volume cannot causally determine the change of
another quantity at any point until such time as the volume over which the average is taken
is inside the past light cone of that point. In other words averaging requires abandoning local
di�erential equations.

What can we imagine are the possible consequences of averaging on the evolution of the
spatially averaged metric ḡ–— :

• The average metric over the finite Hubble volume may not be precisely isotropic —
local anisotropies may average away slowly, or not at all.

• The Friedmann equation obeyed by the average metric may not be represented to
su�cient accuracy by a sum of terms that are proportional to a

0, a
≠2, a

≠3, or a
≠4. In

other words, (1.5) may not be a good representation of the evolution of the e�ective
stress-energy, curvature, and cosmological-constant contributions to the right-hand-side
of the Friedmann equation.

• �i may not be sourced exclusively by the homogeneous sources to which they are
ascribed — for example there may be contributions to �≠2 that are sourced by matter
non-linearities.

There is another set of concerns relating to how we extract the values of �i in (1.5). In
many cases this involves modeling the dynamics of the perturbations in the metric and in
the stress-energy in the background metric. This is true for example in both CMB and large-
scale structure inferences of cosmological parameters. Errors in the assumed form of (1.5)
will propagate into the dynamical equations underlying those perturbations.

Thus to use (1.5) in the context of precision cosmology requires more than having a
prior that favors a model for the stress energy that includes only radiation, baryonic matter,
and non-interacting dark matter. It requires demonstrating that none of the concerns raised
by the above questions lead to measurable deviations from the FLRW background model
sourced by the average fluids.

As remarked above, Adamek et al. [50] provided numerical evidence supporting the
claim (e.g., [43]) that, despite the presence of non-linear structure, well-designed averages
of observations could recover estimates of parameters in a background FLRW model that
are reasonably unbiased. Specifically they found that a redshift-binned average of 1/d

2
L

for Type 1a supernova luminosity distances yields �K consistent with the fiducial �K = 0
universe, with a 1‡ uncertainty of ƒ 0.001. However they analyzed only one simulation
from which the precise value of neither the bias nor the theoretical variance in �K can
be inferred. That study could resolve halos down to 5 ◊ 1011

M§ — how finer resolution
(and greater non-linearity) or baryonic physics might a�ect the bias or variance remains
uncertain. Also uncertain is how inhomogeneities a�ect other cosmological observables from
which FLRW background parameters are estimated. This has been addressed in some cases
analytically in perturbation theory [44], but not in the context of non-linear simulations.
Heinesen and Macphereson [56–59] have worked to build a framework for further explorations
of these matter.

One way to understand these issues is that the meaning of �K may itself have an
irreducible ambiguity at the level of ≥ 10≠3, and so its value may well vary at this level
among even well-designed observables that are used to infer “it.” As the precision with
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which experiments seek to infer �K , one should be cautious that this ambiguity not be
misinterpreted as disagreement. On the other hand, this also suggests that properly designed
estimates that result in values larger than this ambiguity cannot be dismissed. Truthfully,
this caution extends to other potential parameters of FLRW cosmology that we quietly
ignore, e.g. �≠1 in the language of (1.6). �K stands out principally because it is an inherent
parameter of FLRW, i.e. it belongs to the geometric (left-hand) side of (1.1), not (or not
only, if we mean �≠2) to the stress-energy (right-hand) side.

Finally, we must note that [50] studied the e�ect of inhomogeneities only in a background
�K = 0 FLRW model. It is unclear how the results generalize to �K ”= 0, or indeed
to the wider set of allowed homogeneous but anisotropic models, or the even wider set of
manifolds without, or with boundaries. A real program would seek to measure the full metric
everywhere and then, if appropriate, fit it to a homogeneous metric plus perturbations. While
this is perhaps an impossible program, we should be aware of the true physical problem and
its challenges.

At this point we might be tempted to ignore that to describe our Universe we need a
theory of the initial fluctuations. Within vanilla-�CDM, this role is served by any one of a
large set of possible inflation models, each with all of its attendant parameters. However,
proceeding boldly to ignore the questions of inhomogeneities — whether as initial conditions
or generated in the very early universe — one could, instead of fitting for �K (or better for
fitting for a more general homogeneous background metric), opt to include a specification of
the boundary conditions14 for the homogeneous background geometry as part of the model.
One would then argue that a well-defined class of manifolds (with their associated boundary
conditions) identifies a model, and that we can do this in such a way as to focus our attention
on FLRW models, and in particular flat-FLRW models.

To execute this boundary-condition approach, one must first assign a prior of 0 to all
manifolds with boundaries, manifolds that do not admit a single homogeneous geometry,
and manifolds that admit only an anisotropic geometry. One does this, despite the lack
of any fundamental principle that excludes them, and in fact in the full knowledge that
today we appear to live in a manifold with boundaries (black-hole singularities), or at least
with regions hidden behind horizons. One would be left with just the “space” of manifolds
that admit a homogeneous and isotropic geometry, i.e. the FLRW models. One would then,
despite lacking a measure on this space, separate it into three classes — those that admit
homogeneous positive, zero, or negative curvature. We could then call each class a model,
and assign it a prior. Homogeneous geometries in each class would have their own set of
parameters that describe the metric15 The Euclidean metric has one fewer than the other
two — i.e. �K © 0. One could then test whether the background curvature is flat, negatively
or positively curved by performing model selection among the three models. Usually this is
done by fixing the boundary conditions within each class to select the covering space of that
geometry.

This approach seems very hard to justify, especially given the absence of any theory
that dynamically selects the homogeneous isotropic boundary-free manifolds from among all

14Even manifolds without boundaries have boundary conditions — e.g. the periodic boundary conditions
that define a three-torus.

15There will be others that characterize the di�erent boundary conditions within each class — e.g. the
relative side lengths of the fundamental domain of a three-torus. As well, one will have some indexing of the
di�erent members of each model class, i.e. of the boundary conditions that all allow the same homogeneous
geometry.
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possible spaces, or that chooses one of the Euclidean 3-spaces from among these manifolds.
Moreover, it is only through the fluctuations, for which one has adopted no theory, that one
has observables through which to perform the model selection.

In the next section we explain why including inflation as the theory of the fluctu-
ations prevents us from pursuing this program by generating through a random process
non-primordial fluctuations that supplement (or replace) the initial fluctuations.

2 Inflationary model priors

How does one justify assuming an FLRW background metric and then setting �K = 0, i.e.
removing �K from the set of free parameters of the theory, when no model yields �K (or
indeed the rest of 3

Rijkl) exactly zero? The standard answer is that inflation predicts that
the geometry is currently (perturbed) FLRW, with |�K | smaller than the uncertainty in any
measurement we are likely to perform, justifying setting a ”(�K) prior [60].

Certainly, there are inflationary models — by which we mean Lagrangians of field
theories coupled to GR,16 as opposed to our previous use of model to denote a choice of
background manifold — that, for certain ranges of the Lagrangian parameters, take many
cosmological initial conditions and map them into late-time universes in which certain spatial
averages of the spatial Riemann tensor are small. For those models, parameter choices and
initial conditions, the flat-FLRW metric, and thus �K = 0, is an attractor of the classical
theory — given any patch of the early universe in which the initial conditions allow inflation
to begin and in which there is a short-wavelength cuto� to the initial perturbation spectrum,
then, ignoring quantum fluctuations, the Riemann tensor in that patch will be driven toward
that of the flat-FLRW metric, and �K will be driven toward zero.

This e�ective classical convergence to �K indistinguishable from 0 is not universal in
inflationary models [7]. Certainly, if the inflation lasts forever, then one is driven classically
toward a universe in which the only energy density is that of the inflation plus (any other
source of) vacuum energy, and in which the spatial metric is precisely Euclidean. On the other
hand, if one is not in the right part of model parameter space or one has the wrong initial
conditions, then inflation may not begin, or the Riemann tensor may not reach that of flat-
FRW. In “just-so” inflationary models, this leads to �K arriving near 0, but to a value that
may be observationally distinguishable from 0. Meanwhile, there are also inflationary models
that predict �K ”= 0 for appropriate parameters [2, 16] — such models were particularly
popular when it was thought that �K ”= 0 and are once-again becoming of interest.

Ironically, one should now realize that if inflation carries the scale of topology far beyond
the Hubble scale, then it removes the possibility for an observer to use topology to determine
which unique homogeneous geometry our spatial 3-manifold admits. Thus if we wanted to
fix �K = 0, we would have to rely on a local-geometry meaning of �K . Here the fact that
inflation is used not just as an explanation for the near-homogeneity, near-isotropy and near-
flatness of the universe, but also as an explanation for its inhomogeneities is crucial, as we
now discuss.

The great success of the inflationary scenario is widely regarded as the prediction of
a spectrum of scalar quantum fluctuations that (at least by the time they are observed 14
Gyr later): are predominantly or entirely adiabatic; are nearly, but not precisely, scale free;
extend at least to scales that until recently were super-horizon; and are nearly Gaussian at

16There must also be coupling to the Standard Model in order to e�ect “reheating” — the transfer of a
su�cient fraction of the potential energy density driving inflation into ordinary particles as inflation ends.
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early times. These quantum fluctuations are produced at sub-horizon scales in an ongoing
process during inflation even as the initial fluctuations in the stress-energy and geometry are
being stretched to ever-longer and eventually super-horizon physical scales. These quantum
fluctuations carry components of the Riemann tensor away from zero even as the accelerated
expansion of the Universe is redshifting the initial fluctuations and their contribution to the
Riemann tensor.

To summarize, the background initial conditions pre-inflation could be �K = 0 (in the
topological sense), but long-enough inflation removes the ability of the observer to use the
topology to anchor a unique choice of homogeneous geometry, and thereby set �K exactly to
0. Inflation simultaneously generates fluctuations in the metric which create an irreducible
ambiguity for any observer about the precise value of �K in their Hubble patch — di�erent
“nearby” choices of homogeneous background geometry will yield “nearby” descriptions of
the fluctuations. All of them will be consistent with the theory — there is no unique way
to perform the background-plus-perturbations split. Hence we cannot assume �K = 0,
with a theory that can only describe |�K | ƒ 0; but how “nearby” does inflation predict these
descriptions to be, i.e. does inflation have a generic prediction of the amplitude and spectrum
of post-inflationary fluctuations?

When inflation was first proposed, it was expected that the amplitude of the quantum-
induced scalar fluctuations would naturally be O(1) — and that in most inflationary models
a fine-tuning of model parameters would be necessary to suppress the fluctuations, so as
not to spoil the inflationary prediction of homogeneity and flatness. As the search for CMB
fluctuations continued, it resulted in increasingly stringent upper limits on their amplitude,
so the required fine tuning became increasingly stringent. The scalar fluctuations were finally
detected by the Cosmic Background Explorer [61], but at a level that requires either stringent
fine tuning or clever models in which the necessary small parameters emerge “naturally.” The
original a priori space of parameter of inflationary models was slowly shrunk by gradually
improving observational limits, with the result that what we confidently believed about
inflationary models to begin with was not matched by our posterior inferences.17 Moreover,
this evolution to more restricted parts of parameter space — in which FLRW would be a
better approximation — was driven by observations, not new understanding of theoretical
principles.

There have been concerted e�orts to demonstrate that there is a large set of initial
conditions in which inflation begins and persists for long enough to homogenize, isotropize,
and flatten the Universe. Arguments have been made that the appropriate measure on the
space of initial conditions favors those that support inflation, and that the more inflation
they support they more heavily they should be weighted. There has also been a history of
cosmologists remaining or becoming unconvinced by the explanatory power of this mapping.
Priors on possible initial conditions are di�cult to assess, and the on-again-o�-again interest
in the “measure problem” for inflationary models is probably a reflection of this di�culty.
(See, e.g. [62–68].)

The tensor fluctuations from inflation have not yet been detected as “B-modes” in
the cosmic microwave background. That non-detection has itself begun driving not just

17Of course every improved measurement of a fundamental parameter shrinks the allowed parameter space,
and one would not want to view that as generically problematic for a theory. This makes the precise char-
acterization of fine-tuning di�cult; however, if dimensionless parameters of models are forced to have very
small values, or very particular ratios without an explanation through symmetry, that is generally viewed as
concerning.
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a shrinking of the parameter spaces of inflationary models, but a shrinking of the allowed
space of inflationary models. Priors on the set of possible inflationary models are even more
di�cult to assess than the priors on model parameters. However, over the last decades many
of the single-field inflationary models that were regarded as heavily favored a priori are now
e�ectively ruled out. Yet, the claim that a very narrow prior on �K is justified rests on
confidence in our ability to pre-judge inflationary models.

Should we have such confidence in an unspecified and shrinking set of inflationary models
that we insist that an observable cosmological parameter �K should not be estimated because
in some of those models, with certain parameter choices (and some range of initial conditions)
that have been dictated by observations, its expected value cannot currently be distinguished
from zero?

More concisely, within the inflationary framework, one is not meant to include a spec-
ification of the boundary conditions for the homogeneous and isotropic background as part
of the model, the FLRW background geometry is meant to emerge dynamically. Meanwhile,
the theory for the inhomogeneous part of the metric, make it impossible to expect that the
average curvature, and hence �K , is exactly zero. Instead, the observed properties of fluctu-
ations is what drives limits on inflationary models and their parameters. Perhaps one could
try to argue that it is possible to test �K ƒ 0 FLRW against the data. However this choice
of priors is not motivated by our theoretical understanding, i.e. there are no theoretical rea-
sons to select initial conditions patches and inflationary model parameter values to fulfill the
�K ƒ 0 FLRW condition and then call this a “cosmological model”. Only data can tell us
if our inflationary-�CDM description works with FLRW geometry and �K consistent with
zero or not. Hence, even within an FLRW assumption, the value of �K needs to be properly
inferred from observational data.

3 Some practical takeaways regarding spatial curvature

The universe is not precisely homogeneous and isotropic, it has fluctuations. �K , and for
that matter the other cosmological parameters of FLRW, are phenomenological parameters,
not fundamental parameters. They describe a background universe that doesn’t actually
exist, but which is meant to approximate the Universe (or the piece of it in which we live)
well enough that we can treat deviations from FLRW as perturbations with statistics we
can relate simply to our model of the origin and evolution of those perturbations. Cer-
tain inflationary models, with certain values of their parameters, map certain parts of the
space of initial conditions to regions of spacetime in which spatial curvature is small but
not exactly zero, but our track record in reliably placing strong priors on this extremely
complicated space of inflationary models, parameters and initial conditions does not justify
placing strongly informative priors on cosmological parameters and then claiming that this
set of priors defines a new “cosmological model” named flat-�CDM where the background is
homogeneous, isotropic, and Euclidean (�K = 0).

One should not fix an FLRW parameter to a specific value without a theoretical frame-
work to enforce that value. It is not appropriate to regard such fixing as “a restrictive
assumption that must be tested empirically” [1], if that means demanding strong Bayesian
evidence to negate the assumption and restore the parameter. In particular, there is no
compelling theoretical reason to set �K = 0. It must be included in the set of FLRW that
are to be fit. In doing that fit, one should take care not to automatically adopt parametriza-
tions of the model predictions that are specific to so-called “�K = 0 inflationary models.”
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In particular [13], models [2, 14, 15] specifically constructed to predict �K ”= 0, may yield a
scalar spectrum whose deviation from the scale-free spectrum, or even from an �K-dependent
modification of the scale-free spectrum [1], is not well captured by a tilt parametrized by ns.
They may even predict ns ƒ 0 [13].

If one finds that �K ”= 0, then it will be important to explore whether other degrees of
freedom of the spatial curvature (3

Rijkl) are non-zero. This is necessary to understand the
cause of the non-zero value of �K , in particular whether the deviation is consistent with the
universe being nearly FLRW.

Notice (e.g. [4–6, 8, 9]) that fitting for �K rather than fixing it has consequences for best-
fit values and errors of other cosmological parameters, and for assessments of the consistency
of cosmological data sets (e.g. [69]).

Theorists should also consider predicting and observers then measuring quantities that
have clear meanings not just in the background metric but in the actual metric (and that may
reduce to simpler quantities in a homogeneous and isotropic limit). For example, components
of the (3 + 1-d) Riemann or Ricci tensors, or the Ricci scalar.

4 Summary

We examined the common practice among cosmologists of omitting �K from the set of 7
standard FLRW parameters to be fit to data, by setting it precisely to 0, and then arguing
that to add it requires su�cient evidence that it is not 0. This practice is given the name “flat
�CDM,” suggesting that it is a well-defined separate and fundamental theory of the Universe
from curved �CDM. However, the 7 parameters of inflationary �CDM cosmological theory
are phenomenological parameters of an approximate e�ective theory of the Universe on large,
but not necessarily superhorizon, scales. The map to them from the much larger number
of parameters of an ultimate complete underlying microscopic theory — General Relativity,
plus the Standard Model (SM) of particle physics, plus any Beyond the SM fundamental
physics ultimately needed to account for dark matter, dark energy, inflation, baryogenesis or
leptogenesis, the quantum nature of gravity, and whichever current observational anomalies
ultimately prove to be physical — is unknown, but undoubtedly highly nonlinear, and prob-
ably chaotic in many parts of the parameter space of the fundamental theory. It may well
also involve a specification of a wide variety of data on some Cauchy surface; or perhaps it
has no deterministic specification.

Since the injection of this information, �K © 0 a priori may alter the inferred values of
the 6 other parameters and will reduce the uncertainty on them, we need to understand the
underlying justification for this delta-function prior on a phenomenological parameter.

We began by exploring the meaning of the term flat and its connection to any arguments
underlying the prior. We noted that a spatial hypersurface on which we find ourselves
(“space”) could be a manifold that admits a unique homogeneous geometry, and that could
be the Euclidean geometry. It is extremely challenging to justify any specific measure on
the space of manifolds, and to use this to argue convincingly for a strong preference for
a topologically flat manifold. A compelling theory of quantum cosmology might help in
this regard, but it is currently lacking. The topology of space thus seems destined to be a
question that can be answered only by observation, if it is answerable at all. Cosmic topology
can in principle be determined from appropriate measurements if the spatial hypersurface is
topologically non-trivial and the relevant length scales are not too superhorizon; e�orts to
search for such topology has so far yielded only lower limits on certain associated observational
length scales.
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We therefore have no theoretical justification to choose, out of all possible manifolds,
those manifolds that admit a Euclidean metric and declare them to be a separate privileged
(high-prior) class.

A second, more relevant definition of flatness is that appropriate averages of the Riemann
tensor of the 3-geometry of space are zero. We pointed to some of the many questions or
challenges surrounding this definition. Perhaps salient among them is that we have had
very little observational access to any sizable sub-volume of space at a fixed time — our
information about the distant reaches of the Universe comes to us at the speed of light,
and so we observe on our past light cone.18 We could in principle make observations of the
geometry and the stress energy on that past light cone and evolve it forward to the current
time, but even in principle that would only determine the geometry here, since every other
location in space has points on its past light cone that are outside our past light cone. We
are thus limited, perhaps in principle, to checking consistency of observations with a theory
that predicts the statistical properties of the spatial Riemann tensor on our past light cone.

We do have a theory that makes predictions about the behavior of the spatial Riemann
tensor — inflation. At least in regimes where deviations from a flat FLRW spacetime are
linear, the primary e�ect of inflation on a classical level is to change the relation between
comoving and physical scales, so that short-wavelength fluctuations become long-wavelength.
Under the assumption that the initial conditions have no fluctuations below some cuto�
scale, this will cause the Riemann tensor measured over a fixed physical volume to eventually
approach that of a Euclidean cosmological spacetime. This stretching out of the fluctuations
is balanced by quantum mechanical generation of new fluctuations on small scales (which are
then also stretched) which can be arranged to be of small amplitude. At the end of inflation,
the nearly homogeneous energy density driving inflation could be transformed e�ciently into
ordinary matter and radiation, and the Riemann tensor could be close to that of k = 0
FLRW — spatially nearly homogeneous and nearly isotropic, with nearly zero 3-Riemann
tensor. Whether or not inflation begins, and how closely this classical evolution would cause
the patch we are in to approach the Euclidean LFRW geometry, depends on the initial pre-
inflationary geometric inhomogeneities, on the parameters of the inflationary theory, on the
initial conditions of the inflaton field, and on other specifics of the inflationary model.

For a very long time after that post-inflationary thermalization, or perhaps forever —
depending on the underlying topology, and the magnitude of vacuum energy (or the value
of �), and amplitude of the quantum fluctuations — the Universe would be well described
approximately by an FLRW metric with k = 0. Its dynamics would therefore be close, by
some measure, to those of an �K = 0 FLRW universe.

Predictions of a small current value of �K — i.e. below the observational uncertainties
of our current experiments — are thus inflationary-model dependent, model-parameter de-
pendent, and (to a widely debated extent) initial-condition dependent. We have to be in an
inflationary model that has a flat-FLRW attractor; we have to be in a region of initial condi-
tion “space” that is in the basin of that attractor; the quantum fluctuations cannot drive us
too far away from the FLRW Riemann tensor on large scales; the non-linear fluctuations on
small scales must average in some precise way to recover a Hubble-scale flat-FLRW Riemann
tensor with some appropriate observational scheme.

18We will eventually get some information from observables like the Sunyaev-Zeldovich (SZ) e�ect where
light is scattered into our past light cone, and also from messengers, like neutrinos and cosmic rays, that are
subluminal.
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Our ability to predict a priori which is the correct inflationary Lagrangian has already
been shown to be poor. We have even less theoretical justification for choosing the values of
the associated Lagrangian parameters, the initial inflaton field value, the initial metric and
inflaton inhomogeneities, and whatever else determines the duration of inflation and the am-
plitude of inflationary fluctuations. These are determined from observation, not theoretical
principles. Since �K depends on these, we cannot justify an �K = 0 prior, or even a prior
that enforces that |�K | be less than our observational error bars.

Setting �K = 0 does not define a “cosmological model”, it is just an arbitrary insertion
of strong information into FLRW parameter determination. Within FLRW, �K must be
estimated from observations.
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