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We consider variants of a recently developed Newton-CG algorithm for nonconvex problems (Royer,
C. W. & Wright, S. J. (2018) Complexity analysis of second-order line-search algorithms for smooth
nonconvex optimization. SIAM J. Optim., 28, 1448–1477) in which inexact estimates of the gradient
and the Hessian information are used for various steps. Under certain conditions on the inexactness
measures, we derive iteration complexity bounds for achieving ε-approximate second-order optimality
that match best-known lower bounds. Our inexactness condition on the gradient is adaptive, allowing for
crude accuracy in regions with large gradients. We describe two variants of our approach, one in which
the step size along the computed search direction is chosen adaptively, and another in which the step size
is pre-defined. To obtain second-order optimality, our algorithms will make use of a negative curvature
direction on some steps. These directions can be obtained, with high probability, using the randomized
Lanczos algorithm. In this sense, all of our results hold with high probability over the run of the algorithm.
We evaluate the performance of our proposed algorithms empirically on several machine learning models.
Our approach is a first attempt to introduce inexact Hessian and/or gradient information into the Newton-
CG algorithm of Royer & Wright (2018, Complexity analysis of second-order line-search algorithms for
smooth nonconvex optimization. SIAM J. Optim., 28, 1448–1477).
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1. Introduction

We consider the following unconstrained optimization problem

min
x∈Rd

f (x), (1.1)

where f : Rd → R is a smooth but nonconvex function. At the heart of many machine learning and
scientific computing applications lies the problem of finding an (approximate) minimizer of (1.1). Faced
with modern ‘big data’ problems, many classical optimization algorithms (Bertsekas, 1999; Nocedal &
Wright, 2006) are inefficient in terms of memory and/or computational overhead. Much recent research
has focused on approximating various aspects of these algorithms. For example, efficient variants of
first-order algorithms, such as the stochastic gradient method, make use of inexact approximations of
the gradient. The defining element of second-order algorithms is the use of the curvature information
from the Hessian matrix. In these methods, the main computational bottleneck lies with evaluating the
Hessian, or at least being able to perform matrix-vector products involving the Hessian. Evaluation of
the gradient may continue to be an unacceptably expensive operation in second-order algorithms too.
Hence, in adapting second-order algorithms to machine learning and scientific computing applications,
we seek to approximate the computations involving the Hessian and the gradient, while preserving much
of the convergence behavior of the exact underlying second-order algorithm.

Second-order methods use curvature information to nonuniformly rescale the gradient in a way
that often makes it a more ‘useful’ search direction, in the sense of providing a greater decrease in
function value. Second-order information also opens the possibility of convergence to points that satisfy
second-order necessary conditions for optimality, that is, x for which ‖∇f (x)‖ = 0 and ∇2f (x) � 0.
For nonconvex machine learning problems, first-order stationary points include saddle points, which
are undesirable for obtaining good generalization performance (LeCun et al., 2012; Saxe et al., 2013;
Dauphin et al., 2014; Choromanska et al., 2015).

The canonical example of second-order methods is the classical Newton’s method, which in its pure
form is often written as

xk+1 = xk + αkdk, where dk = −H−1
k gk,

where Hk = ∇2f (xk) is the Hessian, gk = ∇f (xk) is the gradient and αk is some appropriate step
size, often chosen using an Armijo-type line-search (Nocedal & Wright, 2006, Chapter 3). A more
practical variant for large-scale problems is Newton-Conjugate-Gradient (Newton-CG), in which the
linear system Hkdk = −gk is solved inexactly using the conjugate gradient (CG) algorithm (Steihaug,
1983). Such an approach requires access to the Hessian matrix only via matrix-vector products; it does
not require Hk to be evaluated explicitly.

Recently, a new variant of the Newton-CG algorithm was proposed in Royer et al. (2020) that can
be applied to large-scale nonconvex problems. This algorithm is equipped with certain safeguards and
enhancements that allow worst-case complexity to be bounded in terms of the number of iterations
and the total running time. However, this approach relies on the exact evaluation of the gradient and
on matrix-vector multiplication involving the exact Hessian at each iteration. Such operations can be
prohibitively expensive in machine learning problems. For example, when the underlying optimization
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1857

problem has the finite-sum form

min
x∈Rd

f (x) =
n∑

i=1

fi(x), (1.2)

exact computation of the Hessian/gradient can be costly when n � 1, requiring a complete pass through
the training data set. Our work here builds upon that of Royer et al. (2020), but allows for inexactness in
computation of gradients and Hessians, while obtaining a similar complexity result to the earlier paper.

1.1 Related work

Since deep learning became ubiquitous, first-order methods such as gradient descent and its adaptive,
stochastic variants (Duchi et al., 2011; Kingma & Ba, 2014), have become the most popular class of
optimization algorithms in machine learning; see the recent textbooks (Beck, 2017; Lan, 2020; Lin et al.,
2020; Wright & Recht, 2021) for in-depth treatments. These methods are easy to implement, and their
per-iteration cost is low compared to second-order alternatives. Although classical theory for first-order
methods guarantees convergence only to first-order optimal (stationary) points, Ge et al. (2015); Levy
(2016); Jin et al. (2017) argued that stochastic variants of certain first-order methods such as stochastic
gradient descent (SGD) have the potential of escaping saddle points and converging to second-order
stationary points. The effectiveness of such methods usually requires painstaking fine-tuning of their
(often many) hyperparameters, and the number of iterations they require to escape saddle regions can
be large.

By contrast, second-order methods can make use of curvature information (via the Hessian) to
escape saddle points efficiently and ultimately converge to second-order stationary points. This behavior
is seen in trust-region methods (Conn et al., 2000; Curtis et al., 2014, 2021), cubic regularization
Nesterov & Polyak (2006) and its adaptive variants (ARC) (Cartis et al., 2011a,b), as well as line-
search based second-order methods (Royer & Wright, 2018; Royer et al., 2020). Subsequent to Cartis
et al. (2011a,b, 2012), which were among the first works to study Hessian approximations to ARC and
trust region algorithms, respectively, Xu et al. (2020a) analyzed the optimal complexity of both trust
region and cubic regularization, in which the Hessian matrix is approximated under milder conditions.
Extension to gradient approximations was then studied in Tripuraneni et al. (2018); Yao et al. (2020). A
novel take on inexact gradient and dynamic Hessian accuracy is investigated in Bellavia & Gurioli
(2022). The analysis in Cartis & Scheinberg (2018); Gratton et al. (2018); Blanchet et al. (2019)
relies on probabilistic models whose quality are ensured with a certain probability, but which allow
for approximate evaluation of the objective function as well. Alternative approximations of the function
and its derivative are considered in Bellavia et al. (2019).

A notable difficulty of these methods concerns the solution of their respective subproblems, which
can themselves be nontrivial nonconvex optimization problems. Some exceptions are Roosta et al.
(2018); Royer et al. (2020); Liu & Roosta (2021), whose fundamental operations are linear algebra
computations, which are much better understood. While Roosta et al. (2018); Liu & Roosta (2021) are
limited in their scope to invex problems (Mishra & Giorgi, 2008), the method in Royer et al. (2020)
can be applied to more general nonconvex settings. In fact, Royer et al. (2020) enhances the classical
Newton-CG approach with safeguards to detect negative curvature in the Hessian, during the solution of
the Newton equations to obtain the step dk. Negative curvature directions can subsequently be exploited
by the algorithm to make significant progress in reducing the objective. Moreover, Royer et al. (2020)
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1858 Z. YAO ET AL.

Table 1 The upper bound of LH for some nonconvex finite-sum minimization problems of the form
(1.2). Here, we consider {(ai, bi)}ni=1 as training data where ai ∈ R

d and bi ∈ R. For Welsch’s
exponential function φ, α is a positive parameter

Problem
formulation Predictor function Upper bound of LH for single data point (a, b)

Upper bound of LH for entire
problem

n∑
i=1

(bi−φ(〈ai, x〉))2 φ(z) = 1/(1 + e−z) 2‖a‖3(|bφ′′′(z)| + 3|φ′(z)φ′′(z)| + |φ(z)φ′′′(z)|) �
2(|b| + 4)‖a‖3

maxi=1,...,n 2(|bi| + 4)‖ai‖3

n∑
i=1

(bi−φ(〈ai, x〉))2 φ(z) = (ez − e−z)/(ez + e−z) 2‖a‖3(|bφ′′′(z)| + 3|φ′(z)φ′′(z)| + |φ(z)φ′′′(z)|) �
2(|b| + 4)‖a‖3

maxi=1,...,n 2(|bi| + 4)‖ai‖3

n∑
i=1

φ(bi − 〈ai, x〉) φ(z) = (1 − e−αz2 )/α ‖a‖3|φ′′′(z)| 9α3/2 maxi=1,...,n ‖ai‖3

Table 2 The upper bound of Kg and KH for the nonconvex finite-sum minimization problems of
Table 1

Problem formulation Predictor function Upper bound of Kg Upper bound of KH
n∑

i=1
(bi − φ(〈ai, x〉))2 φ(z) = 1/(1 + e−z) maxi=1,...,n

(|bi| + 1
) ‖ai‖/2 maxi=1,...,n

(|bi| + 2
) ‖ai‖2

n∑
i=1

(bi − φ(〈ai, x〉))2 φ(z) = (ez − e−z)/(ez + e−z) maxi=1,...,n 2
(|bi| + 1

) ‖ai‖ maxi=1,...,n
(|bi| + 2

) ‖ai‖2
n∑

i=1
φ(bi − 〈ai, x〉) φ(z) = (1 − e−αz2 )/α

√
2/αmaxi=1,...,n ‖ai‖ 2maxi=1,...,n ‖ai‖2

gives complexity guarantees that have been shown to be optimal in certain settings. (Henceforth, we use
the term ‘Newton-CG’ to refer specifically to the algorithm in Royer et al., 2020.)

1.2 Contribution

We describe two new variants of the Newton-CG algorithm of Royer et al. (2020) in which, to reduce
overall computational costs, approximations of gradient and Hessian are employed. The first variant
(Algorithm 3) is a line-search method in which only approximate gradient and Hessian information is
needed at each step, but it resorts to the use of exact function values in performing a backtracking line
search at each iteration. This requirement is not ideal, since exact evaluation of the objective function
can be prohibitive. To partially remedy this situation, we propose a second variant (Algorithm 4), which,
by employing constant step sizes, obviates the need for exact evaluations of functions, gradients or
Hessians. The main drawback of this variant is that the fixed step size depends on bounds on problem-
dependent quantities. While these are available in several problems of interest in machine learning and
statistics (see Tables 1 and 2), they may be hard to estimate for other practical problems. Moreover, the
step sizes obtained from these bounds tend to be conservative, a situation that arises often in fixed-step
optimization methods.

For both of our proposed algorithms, we show that the convergence and complexity properties
of the original exact algorithm from Royer et al. (2020) are largely retained. Specifically, to achieve
(ε,

√
ε)-optimality (see Definition 2.1 below) under Condition 2.2 on gradient and Hessian approxima-

tions (see below, in Section 2.3), we show the following.

• Inexact Newton-CG with backtracking line search (Algorithm 3) achieves the optimal iteration
complexity of O(ε−3/2); see Section 2.3.
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1859

• Inexact Newton-CG in which a predefined step size replaces the backtracking line searches
(Algorithm 4) achieves the same optimal iteration complexity of O(ε−3/2); see Section 2.4.

• We obtain estimates of oracle complexity in terms of ε for both variants.

• The accuracy required in our gradient approximation changes adaptively with the current gradient
size. One consequence of this feature is to allow cruder gradient approximations in the regions
with larger gradients, translating to a more efficient algorithm overall.

• We empirically illustrate the advantages of our methods on several real datasets; see Section 3.

We note that Algorithm 3 may not be computationally feasible as written, because the backtracking
line searches require repeated (exact) evaluation of f . This requirement may not be practical in situations
in which exact evaluations of f are impractical. By contrast, Algorithm 4 does not assume such knowl-
edge and can be implemented strictly as written, given knowledge of the appropriate Lipschitz constant.
The step-lengths used in Algorithm 4 are, however, quite conservative, and better computational results
will almost certainly be obtained with Algorithm 3, modified to use approximations to f (x); see the
numerical examples in Section 3. This latter variant is not supported by our theory here. Nonetheless,
our approach can be regarded as a first attempt to introduce inexact Hessian and/or gradient information
into the Newton-CG algorithm of Royer et al. (2020).

2. Algorithms and analysis

We describe our algorithms and present our main theoretical results in this section. We start with
background (Section 2.1) and important technical ingredients (Section 2.2), and then we proceed to
our two main algorithms (Section 2.3 and Section 2.4).

2.1 Notation, definitions and assumptions

Throughout this paper, scalar constants are denoted by regular lower-case and upper-case letters, e.g., c
and K. We use bold lowercase and blackboard bold uppercase letters to denote vectors and matrices,
e.g., a and A, respectively. The transpose of a real vector a is denoted by aT . For a vector a, and
a matrix A, ‖a‖ and ‖A‖ denote the vector �2 norm and the matrix spectral norm, respectively.
Subscripts (as in at) denote iteration counters. The smallest eigenvalue of a symmetric matrix A
is denoted by λmin(A). For any x, y ∈ R

d, [x, y] denotes the line segment between x and y, i.e.,
[x, y] = {z | z = x + τ(y − x), 0 � τ � 1}.

We are interested in expressing certain bounds in terms of their dependence on the small positive
convergence tolerance ε, especially on certain negative powers of this quantity, ignoring the dependence
on all other quantities in the problem, such as dimension, Lipschitz constants, etc. For example, we use
O(ε−1) to denote a bound that depends linearly on ε−1 and Õ(ε−1) for linear dependence on ε−1| log ε|.

For nonconvex problems, the determination of near-optimality can be much more complicated than
for convex problems; see the examples of Murty & Kabadi (1987); Hillar & Lim (2013). In this paper,
as in earlier works (see for example Royer et al., 2020), we make use of approximate second-order
optimality, defined as follows.

Definition 2.1 ((εg, εH)-optimality). Given 0 < εg, εH < 1, x is an (εg, εH)-optimal solution
of (1.1), if

‖∇f (x)‖ � εg and λmin(∇2f (x)) � −εH . (2.1)
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1860 Z. YAO ET AL.

Assumption 1 The smooth nonconvex function f is bounded below by the finite value flow. It also has
compact sub-level sets, i.e., the set L (x0) = {

x | f (x) � f (x0)
}
is compact. Moreover, on an open set

B ⊂ R
n containing all line segments [xk, xk + dk] for iterates xk and search directions dk generated by

our algorithms, the objective function has Lipschitz continuous gradient and Hessian, that is, there are
positive constants 0 < Lg < ∞ and 0 < LH < ∞ such that for any x, y ∈ B, we have

‖∇f (x) − ∇f (y)‖ � Lg‖x − y‖ and
∥∥∥∇2f (x) − ∇2f (y)

∥∥∥ � LH‖x − y‖.

Although Assumption 1 is typical in the optimization literature, it nonetheless implies a somewhat
strong smoothness assumptions on the function. Some related works on various Newton-type methods,
e.g., Bellavia et al. (2019); Bellavia & Gurioli (2022), obtain second-order complexity guarantees that
require only Lipschitz continuity of the Hessian. It would be interesting to investigate whether our
analysis can be modified to allow for such relaxations. We leave such investigations for future work.

Consequences of Lipschitz continuity of the Hessian, which we will use in later results, include the
following bounds for any x, y ∈ B:

∥∥∥∇f (x) − ∇f (y) − ∇2f (y)(x − y)
∥∥∥ � LH

2
‖x − y‖2 (2.2a)

f (x) � f (y) + ∇f (y)T(x − y) + 1

2
(x − y)T∇2f (y)(x − y) + LH

6
‖x − y‖3. (2.2b)

An interesting avenue for future research is to try to replace these Lipschitz continuity conditions with
milder variants in which the gradient and/or Hessian are required to maintain Lipschitz continuity only
along a given set of directions, e.g., the piecewise linear path generated by the iterates such as the
corresponding assumption in Xu et al. (2020a). Our current proof techniques do not allow for such
relaxations, but we will look into possibility in future work.

For our inexact Newton-CG algorithms, we also require that the approximate gradient and Hessian
satisfy the following conditions, for prescribed positive values δg,t and δH .

Condition 2.1 For given δg,t and δH , we say that the approximate gradient gt and Hessian Ht at
iteration t are δg,t-accurate and δH-accurate if

‖gt − ∇f (xt)‖ � δg,t and ‖Ht − ∇2f (xt)‖ � δH ,

respectively.

Under these assumptions and conditions, it is easy to show that there exist constants Ug andUH such
that the following are satisfied for all iterates xt in the set defined in Assumption 1:

‖gt‖ � Ug and ‖Ht‖ � UH . (2.3)

2.2 Key ingredients of the Newton-CG method

We present the two major components from Royer et al. (2020) that are also used in our inexact variant
of the Newton-CG algorithm. The first ingredient, Procedure 1 (referred to in some places as ‘Capped
CG’), is a version of the conjugate gradient (Shewchuk, 1994) algorithm that is used to solve a damped
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1861

Newton system of the form H̄d = −g, where H̄ = H+2εI for some positive parameter ε. Procedure 1 is
modified to detect indefiniteness in the matrixH and, when this occurs, to return a direction along which
the curvature of H is at most −ε. The second ingredient, Procedure 2 (referred to as the ‘Minimum
Eigenvalue Oracle’ or ‘MEO’), checks whether a direction of negative curvature (less than −ε for a
given positive argument ε) exists for the given matrix H. We now discuss each of these procedures in
more detail.

Procedure 1 (Capped-CG). The well-known classical CG algorithm (Shewchuk, 1994) is used to
solve linear systems involving positive definite matrices. However, this positive-definite requirement
is often violated during the iterations for nonconvex optimization due to the indefiniteness of Hessians
encountered at some iterates. Capped-CG, proposed by Royer et al. (2020) and presented in Procedure 1
for completeness, is an original way to leverage and detect such negative curvature directions, when they
are encountered during CG iterations.

Lines 13–17 in Procedure 1 contain the standard CG operations. When H � −εI, the tests in lines
22, 26 and 28 that indicate negative curvature will not be activated, and Capped-CG will return an

approximate solution d ≈ −H̄
−1

g. However, when H �� −εI, Capped-CG will identify and return a
direction of ‘sufficient negative curvature’—a direction d satisfying dTHd � −ε‖d‖2. Such a negative
curvature direction is obtained under two circumstances. First, when the intermediate step (either yj or
pj) satisfies the negative curvature condition, that is, d

TH̄d � −ε‖d‖2 (Lines 22 and 26), Procedure 1
will be terminated and the intermediate step will be returned. Secondly, when the residual, rj, decays at
a slower rate than anticipated by standard CG analysis (Line 28), a negative curvature direction can be
recovered by the procedure of Lines 29, 30 and 31. Note that Procedure 1 can be called with an optional
input M, which is an upper bound on ‖H‖. However, even without a priori knowledge of this upper
bound, M can be updated so that at any point in the execution of the procedure, M is an upper bound
on the maximum curvature of H revealed to that point. Other parameters (κ , ζ̃ , τ , T) are also updated
whenever the value of M changes. It is not hard to see thatM is bounded byUH throughout the execution
of Procedure 1, provided that if an initial value of M is supplied to this procedure, this value satisfies
M � UH.

Lemma 2.1 gives a bound on the number of iterations performed by Procedure 1.

Lemma 2.1 (Royer et al., 2020, Lemma 1). The number of iterations of Procedure 1 is bounded by

min {d, J(M, ε, ζ )} ,

where J = J(M, ε, ζ ) is the smallest integer such that
√
T(1 − τ)J/2 � ζ̂ . The number of matrix-vector

products required is bounded by 2min{d, J(M, ε, ζ )} + 1, unless all iterates yi, i = 1, 2, . . . are stored,
in which case it is min{d, J(M, ε, ζ )} + 1. For the upper bound of J(M, ε, ζ ), we have

J(M, ε, ζ ) � min
{
d, Õ(ε−1/2)

}
. (2.5)

When the slow decrease in residual is detected (Line 21), a direction of negative curvature forH can
be extracted from the previous intermediate solutions, as the following result describes.
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1862 Z. YAO ET AL.

Procedure 1 Capped Conjugate Gradient

1: Inputs: Symmetric Matrix H ∈ R
d×d, vector g �= 0; damping parameter ε ∈ (0, 1); desired

accuracy ζ ∈ (0, 1);

2: Optional input: positive scaleM (set to 0 if not provided)

3: Outputs dtype,d

4: Secondary Output: M, κ , ζ̃ , τ ,T

5: Set

H̄ := H + 2ε, κ := M + 2ε

ε
, ζ̃ := ζ

3κ
, T := 4κ4

(1 − √
1 − τ)2

, τ := 1√
κ + 1

;

6: y0 ← 0, r0 ← g, p0 ← −g, j ← 0

7: if pT0 H̄p0 < ε
∥∥p0∥∥2 then

8: Set d = p0 and terminate with dtype = NC;

9: else if ‖Hp0‖ > M‖p0‖ then

10: M ← ‖Hp0‖/‖p0‖ and update κ , ζ̃ , τ ,T;

11: end if

12: while TRUE do

13: αj ← rTj rj/p
T
j H̄pj; (Traditional CG Begins)

14: yj+1 ← yj + αjpi;

15: rj+1 ← rj + αjH̄pj;

16: βj+1 ← rTj+1rj+1/r
T
j rj;

17: pj+1 ← −rj+1 + βj+1pj; (Traditional CG Ends)

18: j ← j + 1;

19: if max(‖Hpj‖/‖pj‖, ‖Hyj‖/‖yj‖, ‖Hrj‖/‖rj‖) > M then

20: M ← max(‖Hpj‖/‖pj‖, ‖Hyj‖/‖yj‖, ‖Hrj‖/‖rj‖) and update κ , ζ̃ , τ ,T;

21: end if

22: if yTj H̄yj � ε

∥∥∥yj∥∥∥2then
23: Set d ← yj and terminate with dtype = NC;

24: else if
∥∥∥rj∥∥∥ � ζ̂

∥∥r0∥∥ then
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1863

Continued

25: Set d ← yj and terminate with dtype = SOL;

26: else if pTj H̄pj � ε

∥∥∥pj∥∥∥2 then
27: Set d ← pj and terminate with dtype = NC;

28: else if
∥∥∥rj∥∥∥ �

√
T(1 − τ)j/2

∥∥r0∥∥ then
29: Compute αj,pj+1 as in the main loop above;

30: Find i ∈ {0, · · · , j − 1} such that

(yj+1 − yi)
TH̄(yj+1 − yi)∥∥∥yj+1 − yi

∥∥∥2 � ε; (2.4)

31: Set d ← yj+1 − yi and terminate with dtype = NC;

32: end if

33: end while

34: Return: d

Lemma 2.2 (Royer et al., 2020, Theorem 2). Suppose that the loop of Procedure 1 terminates with j = Ĵ,
where

Ĵ ∈ {1, 2, . . . , min{n, J(M, ε, ζ )}}

satisfies

‖rĴ‖ > max{ζ̂ ,√T(1 − τ)Ĵ/2}‖r0‖.

Suppose further that yT
Ĵ
H̄yĴ � ε‖yĴ‖2, so that yĴ+1 is computed. Then we have

(yĴ+1 − yi)
TH̄(yĴ+1 − yi)

‖yĴ+1 − yi‖2
< ε, for some i ∈ {0, . . . , Ĵ − 1}.

Note that dTH̄d � ε‖d‖2 ⇐⇒ dTHd � −ε‖d‖2.
Procedure 1 is invoked by the Newton-CG procedure, Algorithm 3 (described in Section 2.3), when

the current iterate xk has ‖gk‖ � εg > 0. Procedure 1 can either return the approximate Newton direction
or a negative curvature one. After describing how this output vector is modified by Algorithm 3, in the
next section, we state a result (Lemma 2.4) about the properties of the resulting step.
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1864 Z. YAO ET AL.

In the case of ‖gk‖ < εg, Algorithm 3 calls Procedure 2 to explicitly seek a direction of sufficient
negative curvature. We describe this procedure next.

Procedure 2Minimum Eigenvalue Oracle

1: Inputs: Symmetric matrix H ∈ R
d×d, scalar M � λmax(H) and ε > 0;

2: Set δ ∈ [0, 1);

3: Outputs: Estimate λ of λmin(H) such that λ�−ε/2 and vector v with ‖v‖ = 1 such that vTHv=λ

OR certificate that λmin(H) � −ε. The probability that the certificate is issued, but λmin(H) < −ε

is at most δ.

Procedure 2 (Minimum Eigenvalue Oracle). This procedure searches for a direction spanned by
the negative spectrum of a given symmetric matrix or, alternately, verifies that the matrix is (almost)
positive definite. Specifically, for a given ε > 0, Procedure 2 finds a negative curvature direction v of
Hk such that vTHv � −ε‖v‖2/2, or else certifies that H � −εI. The probability that the certificate is
issued, but λmin(H) < −ε is bounded above by some (small) specified value δ. As indicated in Royer
et al. (2020), this minimum eigenvalue oracle can be implemented using the Lanczos process or the
classical CG algorithm. (In this paper, we choose the former.) Both of these approaches have the same
complexity, given in the following result.

Lemma 2.3 (Royer et al., 2020, Lemma 2). Suppose that the Lanczos method is used to estimate the
smallest eigenvalue of H starting from a random vector drawn from the uniform distribution on the unit
sphere, where ‖H‖ � M. For any δ ∈ (0, 1), this approach finds the smallest eigenvalue of H to an
absolute precision of ε/2, together with a corresponding direction v, in at most

min

{
d, 1 +

⌈
ln(2.75d/δ2)

2

√
M

ε

⌉}
iterations, (2.6)

with probability at least 1 − δ. Each iteration requires evaluation of a matrix-vector product
involving H.

2.3 Inexact Newton-CG algorithm with line search

Algorithm 3 shows our inexact damped Newton-CG algorithm, which calls Procedures 1 and 2. In
this section, we establish worst case iteration complexity to achieve (εg, εH)-optimality according to
Definition 2.1. Under mild conditions on the approximate gradient and Hessian, the complexity estimate
is the same as for the exact Newton-CG algorithm described in Royer et al. (2020).

For Algorithm 3, approximations of the Hessian and gradient can be used throughout. However, to
obtain the step-size αk, Algorithm 3 requires exact evaluation of the function. We avoid the need for
these exact evaluations in the fixed-step variant, Algorithm 4, to be studied in Section 2.4.

Apart from the use of approximate Hessian and gradient, Lines 9–18 constitute a notable difference
between our algorithm and the exact counterpart of Royer et al. (2020), in which our method calls
Procedure 2 to obtain a direction of sufficient negative curvature when the direction dk derived from
Procedure 1 is small; specifically, ‖dk‖ � εg/εH . If such a direction is found, we perform a backtracking
line search along with it. Otherwise, if Procedure 2 certifies that no direction of sufficient negative
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1865

Algorithm 3 Inexact Damped Newton-CG with Line Search

1: Inputs: εg, εH > 0; backtracking parameter θ ∈ (0, 1); sufficient decrease parameter η > 0;
starting point x0; upper bound on Hessian norm UH > 0; accuracy parameter ζ ∈ (0,min{1,UH});

2: for k = 0, 1, 2, · · · do
3: if

∥∥gk∥∥ � εgthen

4: Call Procedure 1 with H = Hk,M = UH , ε = εH , g = gk and accuracy parameter ζ to
obtain d and dtype;

5: if dtype == NC then

6: dk ← −sgn(dTgk)
|dTHkd|

‖d‖2
d

‖d‖ and go to Line-Search:

7: else

8: dk ← d;

9: if
∥∥dk∥∥ � εg/εH then

10: Call Procedure 2 with H = Hk,M = UH , ε = εH to obtain v (with ‖v‖ = 1 and
vTHkv � −εH/2) or a certificate that λmin(Hk) � −εH ;

11: if Procedure 2 certifies that λmin(Hk) � −εH then

12: Terminate and return xk + dk;

13: else

14: dk ← − (sgn(vTgk)|vTHkv|
)
v, dtype ← NC, and go to Line-Search;

15: end if

16: else

17: Go to Line-Search;

18: end if

19: end if

20: else

21: dtype ← NC;

22: Call Procedure 2 with H = Hk,M = UH , ε = εH to obtain v with ‖v‖ = 1 and
vTHkv � −εH/2 or a certificate that λmin(Hk) � −εH ;

23: if Procedure 2 certifies that λmin(Hk) � −εH

24: Terminate and return xk;

25: else

26: dk ← −sgn(vTgk)|vTHkv|v and go to Line-Search;

27: end if
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1866 Z. YAO ET AL.

Continued

28: end if

29: Line-Search:

30: if dtype == SOL then

31: Set αk ← θ jk , where jk is the smallest nonnegative integer such that

f (xk + αkdk) < f (xk) − η

6
|αk|3

∥∥dk∥∥3; (2.7)

32: else

33: Set αk to be the first element of the sequence 1,−1, θ ,−θ , θ2,−θ2, θ3,−θ3, . . . for which
(2.7) holds;

34: end if

35: xk+1 ← xk + αkdk;

36: end for

curvature exists, we terminate and return the point xk + dk, which already satisfies the second-
order optimality condition. In theory, this modification is critical to obtaining the optimal worst-case
complexity. In practice, however, we have observed that performing line-search with such dk, despite
the fact that ‖dk‖ � εg/εH , results in acceptable progress in reducing the function. In other words,
we believe that Lines 9-16 of Algorithms 3 and 4 serve a mainly theoretical purpose, and can be safely
omitted in practical implementations.

Another notable difference with previous versions of this general approach is the use of a
‘bidirectional’ line search when dk is a negative curvature direction. We do backtracking along both
positive and negative directions, dk and −dk, because we are unable to determine with certainty the sign
of dTk ∇f (xk), since we have access only to the approximation gk of ∇f (xk). This additional algorithmic
feature causes only modest changes to the analysis of the function decrease along negative curvature
directions, as we point out in the appropriate results below.

We begin our complexity analysis with a result that summarizes important properties of the direction
dk that is derived from the capped CG algorithm, Procedure 1. (The proof is identical to that of the cited
result, Royer et al., 2020, Lemma 3, except that we use approximate values of the Hessian and gradient
of f here.)

Lemma 2.4 (Royer et al., 2020, Lemma 3). Suppose that Assumption 1 is satisfied. Suppose that
Procedure 1 is invoked at an iterate xk of Algorithm 3 (so that ‖gk‖ � εg > 0) with inputs H = Hk,
g = gk, ε = εH and ζ . Suppose that dk in Algorithm 3 is obtained from the output vector d of Procedure
1, after possible scaling and change of sign. Then one of the two following statements holds.

1. dtype = SOL and dk = d satisfies

dTkHkdk � −εH‖dk‖2, (2.8a)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/3/1855/6670031 by U
niversity of W

isconsin-M
adison Libraries user on 27 N

ovem
ber 2023



INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1867

‖dk‖ � 1.1ε−1
H ‖gk‖, (2.8b)

‖r̂k‖ � 1

2
εHζ‖dk‖, (2.8c)

where

r̂k = (Hk + 2εHI)dk + gk. (2.9)

2. dtype = NC and dk satisfies

dk = −sgn(dTgk)
|dTHkd|

‖d‖2
d

‖d‖ ,

and dk satisfies

dTkHkdk
‖dk‖2

= −‖dk‖ � −εH . (2.10)

In order to establish the iteration complexity of Algorithm 3, we first present a sufficient condition
on the degree of the inexactness of the gradient and Hessian.

Condition 2.2 We require the inexact gradient gk and Hessian Hk to satisfy Condition 2.1 with

δg,k �
1 − ζ

8
max

(
εg, min

(
εH‖dk‖, ‖gk‖, ‖gk+1‖

) )
and δH �

(
1 − ζ

4

)
εH .

One could simplify Condition 2.2 to have an iteration-independent condition on δg,k ≡ δg, namely,

δg �
1 − ζ

8
εg.

However, the adaptivity of the iteration-dependent version of Condition 2.2 through gk and gk+1 offers
practical advantages. Indeed, in many iterations, one can expect ‖gk‖ and ‖gk+1‖ to be of similar
magnitudes. Also, as shown in Lemma 2.4, we have ‖dk‖ � 1.1ε−1

H ‖gk‖. Thus, the three terms in
min(εH‖dk‖, ‖gk‖, ‖gk+1‖) are often roughly of the same order, and usually larger than εg. These
observations suggest that when the true gradient is large, we can employ loose approximations.

Given Condition 2.2, the proofs of the complexity bounds boil down to three parts. First, we bound
the decrease in the objective function f (xk) (Lemma 2.5) when taking the damped Newton step dk (that
is, when dtype = SOL on return from Procedure 1 and ‖dk‖ is not too small). Secondly, we bound the
decrease in the objective when a negative curvature direction is encountered in Procedure 1 (Lemma 2.6)
or Procedure 2 (Lemma 2.7). Thirdly, for Lines 9–18 in Algorithm 3, we show that the algorithm can be
terminated after the update in Line 12. In particular, when the update direction is sufficiently small from
Procedure 1 and a large negative curvature from Procedure 2 has not been detected, Line 12 terminates
at a point satisfying the required optimality conditions (Lemma 2.8).

We start with the case in which an inexact Newton step is used.
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1868 Z. YAO ET AL.

Lemma 2.5 Suppose that Assumption 1 is satisfied and that Condition 2.2 holds for all k. Suppose
that at iteration k of Algorithm 3, we have ‖gk‖ � εg, so that Procedure 1 is called. When Procedure 1
outputs a direction dk with dtype = SOL and

∥∥dk∥∥ > εg/εH , then the backtracking line search requires
at most jk � jsol + 1 iterations, where

jsol =
⌈
1

2
logθ

(
3(1 − ζ )ε2H

4.4Ug(LH + η)

)⌉
,

and the resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk+1) � csol max

{
0,min

(
(‖gk+1‖ − δg,k − δg,k+1)

3

(2.5εH)3
, (2.5εH)3, ε3/2g

)}
, (2.11)

where

csol = η

6
min

{
1

(1 + 2LH)3/2
,

[
3θ2(1 − ζ )

4(LH + η)

]3/2}
.

Proof. When the dtype = SOL, dk is the solution of the inexact regularized Newton equations. We first

prove that when dTk gk < 0, the inner product dTk ∇f (xk) is also negative:

dTk ∇f (xk) � dTk gk + δg,k‖dk‖
= dTk r̂k − dTk (Hk + 2εHI)dk + δg,k‖dk‖ (from (2.9))

� ‖dk‖‖r̂k‖ − εH‖dk‖2 + δg,k‖dk‖ (from (2.8a))

� 1

2
εHζ‖dk‖2 − εH‖dk‖2 + δg,k‖dk‖ (from (2.8c))

� −1

2
εH‖dk‖2 + 1 − ζ

8
max

(
εg, εH‖dk‖

)
‖dk‖ (from ζ ∈ (0, 1) and Condition 2.3)

= −1

2
εH‖dk‖2 + 1 − ζ

8
εH‖dk‖2 (from

∥∥dk∥∥ > εg/εH)

< −3

8
εH‖dk‖2.

We consider two cases here.
Case 1: Consider first the case in which the value αk = 1 is accepted by the backtracking line

search procedure. We first note that in the case ‖gk+1‖ − δg,k − δg,k+1 � 0, the claim (2.11) is satisfied
trivially, because f (xk+1) < f (xk) and the right-hand side of (2.11) is 0. Thus we assume in the rest of
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1869

the argument for this case that ‖gk+1‖ − δg,k − δg,k+1 > 0. We have

‖gk+1‖ = ‖gk+1 − gk + gk‖
= ‖gk+1 − ∇fk+1 + ∇fk+1 − gk − ∇fk + ∇fk − ∇2f (xk)dk−2εHdk+∇2f (xk)dk − Hkdk + r̂k‖
� δg,k + δg,k+1 + ‖∇fk+1 − ∇fk − ∇2f (xk)dk‖ + ‖2εHdk‖ + ‖∇2f (xk)dk − Hkdk‖ + ‖r̂k‖

� δg,k + δg,k+1 + LH
2

‖dk‖2 + 2εH‖dk‖ + δH‖dk‖ + 1

2
εHζ‖dk‖ (from 2.8c)

= δg,k + δg,k+1 +
(
2εH + δH + 1

2
εHζ

)
‖dk‖ + LH

2
‖dk‖2

� δg,k + δg,k+1 +
(
2εH + 1 − ζ

2
εH + 1

2
εHζ

)
‖dk‖ + LH

2
‖dk‖2 (from Condition 2.3)

= δg,k + δg,k+1 + 2.5εH‖dk‖ + LH
2

‖dk‖2.

We thus have A‖dk‖2 + B‖dk‖ − C � 0, where A = LH/2, B = 2.5εH and C = ‖gk+1‖ − δg,k −
δg,k+1 > 0. Since for any D � 0 and t � 0 we have −1 + √

1 + Dt �
(−1 + √

1 + D
)
min {t, 1} (see

Royer & Wright, 2018, Lemma 17), it follows that

‖dk‖ � −B + √
B2 + 4AC

2A
=
(

−1 +√
1 + 4AC/B2

2A

)
B �

(
−1 + √

1 + 4A

2A

)
min {C/B,B}

=
(

2√
1 + 4A + 1

)
min {C/B,B} �

(
1√

1 + 4A

)
min {C/B,B},

where the last step follows from A > 0. By substituting for A, B and C, we obtain

‖dk‖ � 1√
1 + 2LH

min

{‖gk+1‖ − δg,k − δg,k+1

2.5εH
, 2.5εH

}
.

Since αk = 1 was accepted by the backtracking line search, we have

f (xk) − f (xk + dk) �
η

6
‖dk‖3

� η

6

1

(1 + 2LH)3/2
min

{
(‖gk+1‖ − δg,k − δg,k+1)

3

(2.5εH)3
, (2.5εH)3

}
.

By combining this inequality with the trivial inequality obtained when ‖gk+1‖ − δg,k − δg,k+1 � 0,
we obtain (2.11) for the case of αk = 1.
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1870 Z. YAO ET AL.

Case 2: As a preliminary step, note that for any α ∈ [0, 1], we have the following:

αgTk dk + 1
2α

2dTkHkdk

= α
[
r̂k − (Hk + 2εHI)dk

]T dk + 1
2α

2dTkHkdk (from (2.9))

� α‖r̂k‖‖dk‖ − α
(
1 − 1

2α
)
dTk (Hk + 2εHI)dk − α2εH‖dk‖2

� α‖r̂k‖‖dk‖ − α
(
1 − 1

2α
)
dTk (Hk + 2εHI)dk

� 1
2αεHζ‖dk‖2 − 1

2αεH‖dk‖2 (from 1 − 1
2α � 1

2 , (2.8a), and (2.8c))

= 1
2αεH(ζ − 1)‖dk‖2. (2.12)

Now consider the case where αk = 1 is not accepted by the line search. In this case, suppose j � 0
is the largest integer such that the step acceptance condition is not satisfied. For this j, we have the
following:

−η

6
θ3j‖dk‖3

� f (xk + θ jdk) − f (xk)

� θ j∇f Tk dk + θ2j

2
dTk ∇2f (xk)dk + LH

6
θ3j‖dk‖3 (from (2.2b))

� θ jgTk dk + θ2j

2
dTkHkdk + θ jδg,k‖dk‖ + θ2j

2
δH‖dk‖2 + LH

6
θ3j‖dk‖3 (from Definition 2.2)

� −θ j

2
(1 − ζ )εH‖dk‖2 + θ jδg,k‖dk‖ + θ2j

2
δH‖dk‖2 + LH

6
θ3j‖dk‖3 (from 2.11)

� −θ j

2
‖dk‖2

(
(1 − ζ )εH − δH

)+ θ jδg,k‖dk‖ + LH
6

θ3j‖dk‖3 (from 0 < θ < 1).

By rearranging this expression, we obtain

θ2j �
(

3

LH + η

)((
(1 − ζ )εH − δH

)‖dk‖ − 2δg,k
‖dk‖2

)
.

From Condition 2.2, we have δH � (1 − ζ )εH/2, so this bound implies that

θ2j �
(

3

LH + η

)
(1 − ζ )εH‖dk‖ − 4δg,k

2‖dk‖2
. (2.13)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/3/1855/6670031 by U
niversity of W

isconsin-M
adison Libraries user on 27 N

ovem
ber 2023



INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1871

Since by assumption
∥∥dk∥∥ � εg/εH , we have from Condition 2.2 that either

δg,k �
1 − ζ

8
εg = 1 − ζ

8
εH

εg

εH
�

(1 − ζ )εH

∥∥dk∥∥
8

, (2.14)

or else

δg,k �
1 − ζ

8
min(εH‖dk‖, ‖gk‖, ‖gk+1‖) <

(1 − ζ )εH

∥∥dk∥∥
8

. (2.15)

In either case, we have that (1 − ζ )εH‖dk‖ − 4δg,k � (1 − ζ )εH‖dk‖/2, so we have from (2.13) that

θ2j �
(

3

LH + η

)(
(1 − ζ )εH

4
∥∥dk∥∥

)
. (2.16)

Since in the case under consideration, the acceptance condition for the backtracking line search fails for
j = 0, the latter expression holds with j = 0, and we have

∥∥dk∥∥ � 3(1 − ζ )εH

4(LH + η)
. (2.17)

From (2.16), (2.8b) and (2.3), we know that

θ2j � 3(1 − ζ )εH

4(LH + η)

∥∥dk∥∥−1 � 3(1 − ζ )εH

4(LH + η)

εH

1.1Ug
. (2.18)

Since

jsol =
⌈
1

2
logθ

3(1 − ζ )ε2H

4.4Ug(LH + η)

⌉
,

then for any j > jsol, we have

θ2j < θ2jsol � 3(1 − ζ )ε2H

4.4Ug(LH + η)
.

By comparing this expression with (2.18), we conclude that the line-search acceptance condition cannot
be rejected for j > jsol, so the step taken is αk = θ jk for some jk � jsol + 1. From (2.18), the preceding
index j = jk − 1 satisfies

θ2jk−2 � 3(1 − ζ )εH

4(LH + η)

∥∥dk∥∥−1,
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so that

θ jk �
√
3θ2(1 − ζ )

4(LH + η)
ε
1/2
H

∥∥dk∥∥−1/2.

Then, we have

f (xk) − f (xk + θ jkdk) �
η

6
θ3jk

∥∥dk∥∥3
� η

6

[
3θ2(1 − ζ )

4(LH + η)

]3/2
ε
3/2
H

∥∥dk∥∥3/2
� η

6

[
3θ2(1 − ζ )

4(LH + η)

]3/2
ε3/2g , (2.19)

where the last inequality follows from ‖dk‖ � εg/εH .
We obtain the result by combining the two cases above. �
Next, we deal with the negative curvature directions, for which dtype = NC and for which a

backtracking birectional line search is used. Lemmas 2.6 and 2.7 bound the amount of decrease obtained
from the negative curvature directions obtained in Procedures 1 and 2, respectively.

Lemma 2.6 Suppose that Assumption 1 is satisfied and that Condition 2.2 holds for all k. Suppose
that at iteration k of Algorithm 3, we have ‖gk‖ � εg, so that Procedure 1 is called. When Procedure 1
outputs a direction dk with dtype = NC that is subsequently used as a search direction, the backtracking

birectional line search terminates with (2.8) satisfied by either αk = θ jk or αk = −θ jk , with jk � jnc + 1,
where

jnc =
⌈
logθ

3

2(LH + η)

⌉
.

The resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk+1) � cncε
3
H ,

where

cnc = η

6
min

{[
3θ

2(LH + η)

]3
, 1

}
.

Proof. Note first that by (2.10), we have ‖dk‖ = |dTHkd| � εH . Thus, if αk = ±1, we have by (2.8)
that f (xk) − f (xk+1) �

η
6‖dk‖3 � η

6 ε3H , so the result holds in this case.
When |αk| < 1, using (2.10) again, we have

dTkHkdk = −‖dk‖3 � −εH‖dk‖2.
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We have from Definition 2.1 that

|dTk (Hk − ∇2f (xk))dk| � δH‖dk‖2,

so by combining the last two expressions, we have

dTk ∇2f (xk)dk � −‖dk‖3 + δH‖dk‖2. (2.20)

Let j � 0 be an integer such that neither θ j nor −θ j satisfies the criterion (2.8). Supposing first that
∇f (xk)

Tdk � 0, we have from (2.2b) and (2.20) that

−η

6
θ3j‖dk‖3 � f (xk + θ jdk) − f(xk)

� θ j∇f (xk)
Tdk + θ2j

2
dTk ∇2f (xk)dk + LH

6
θ3j‖dk‖3

� −θ2j

2
‖dk‖3 + θ2j

2
δH‖dk‖2 + LH

6
θ3j‖dk‖3. (2.21)

Supposing instead that ∇f (xk)
Tdk > 0, we have by considering the step −θ j that

−η

6
θ3j‖dk‖3 � f (xk − θ jdk) − f(xk)

� −θ j∇f (xk)
Tdk + θ2j

2
dTk ∇2f (xk)dk + LH

6
θ3j‖dk‖3

� −θ2j

2
‖dk‖3 + θ2j

2
δH‖dk‖2 + LH

6
θ3j‖dk‖3,

yielding the same inequality as (2.21). After rearrangement of this inequality and using ‖dk‖ � εH , it
follows that

θ j �
(

6

LH + η

)(‖dk‖ − δH

2‖dk‖
)

= 3

LH + η
− 3δH

(LH + η)‖dk‖
� 3

LH + η
− 3δH

(LH + η)εH
. (2.22)

Since from Condition 2.2, we have δH � (1 − ζ )εH/4 < εH/4, then

θ j � 3

2(LH + η)
. (2.23)

Meanwhile, we have for j > jnc that

θ j < θ jnc � 3

2(LH + η)
.
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1874 Z. YAO ET AL.

The last two inequalities together imply that j � jnc, so the line search must terminate with αk = ±θ jk

for some jk � jnc + 1. Since (2.23) must hold for j = jk − 1, we have

θ jk−1 � 3

2(LH + η)
�⇒ |αk| = θ jk � 3θ

2(LH + η)
.

Thus, from the step acceptance condition (2.8) together with (2.10) and the definition of cnc, we have

f (xk) − f (xk+1) �
η

6
|αk|3‖dk‖3 � cncε

3
H ,

so the required claim also holds in the case of |αk| < 1, completing the proof. �
We now turn our attention to the property of Procedure 2. The following lemma shows that when a

negative curvature direction is obtained from Procedure 2, we can guarantee descent in the function in
a similar fashion to Lemma 2.6.

Lemma 2.7 Suppose that Assumption 1 is satisfied and that Condition 2.2 holds for all k. Suppose that at
iteration k of Algorithm 3, the search direction dk is a negative curvature direction forHk, obtained from
Procedure 2. Then the backtracking bidirectional line search terminates with step size either αk = θ jk or
αk = −θ jk with jk � jnc + 1, where jnc is defined as in Lemma 2.6. Moreover, the decrease in function
value resulting from the chosen step size satisfies

f (xk) − f (xk + αkdk) �
cnc
8

ε3H , (2.24)

where cnc is defined in Lemma 2.6.

Proof. Note that

dTkHdk � −‖dk‖3 � −εH

2
‖dk‖2,

so that ‖dk‖ � εH/2. In the first part of the proof, for the case αk = ±1, we have

f (xk) − f (xk+1) �
η

6
‖dk‖3 �

η

6

1

8
ε3H � cnc

8
ε3H ,

so the result holds in this case. The analysis of the case |αk| < 1 proceeds as in the proof of Lemma 2.6
until the lower bound on θ j in (2.22), where because of ‖dk‖ � εH/2, we have

θ j � 3

LH + η
− 6δH

(LH + η)εH
,

which, because of δH � εH/4, still yields the lower bound (2.23), allowing the result of the proof to
proceed as in the earlier result, except for the factor of 1/8. �

Now comes a crucial step. When the output direction dk from Procedure 1 satisfies ‖dk‖ � εg/εH
and Procedure 2 detects no significant negative curvature in the Hessian, the update of xk with unit step
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1875

along dk is the final step of Algorithm 3. Dealing with this case is critical to obtaining the convergence
rate of our inexact damped Newton-CG algorithm.

Lemma 2.8 Suppose that Assumption 1 is satisfied and that Condition 2.2 holds for all k. Suppose that
Algorithm 3 terminates at iteration k at line 12, and returns xk+dk, where dk is obtained from Procedure
1 and satisfies

∥∥dk∥∥ � εg/εH . Then we have

∥∥∇f (xk + dk)
∥∥ � LH

2

ε2g

ε2H
+ 4εg.

If in addition the property Hk � −εHI holds, then

λmin(∇2f (xk + dk)) � −
(
5

4
εH + LH

εg

εH

)
I.

Proof. Note that termination at line 12 occurs only if dtype = SOL, so Part 1 of Lemma 2.4 holds. For
the gradient norm at xk + dk, we have

∥∥∇f (xk + dk)
∥∥ �

∥∥∥∇f (xk + dk) − ∇f (xk) − ∇2f (xk)dk + Hkdk + gk
∥∥∥

+ ∥∥∇f (xk) − gk
∥∥+

∥∥∥∇2f (xk)dk − Hkdk
∥∥∥

�
∥∥∥∇f (xk + dk) − ∇f (xk) − ∇2f (xk)dk

∥∥∥+ ∥∥Hkdk + gk
∥∥+ δg,k + δH

∥∥dk∥∥
�
∥∥∥∇f (xk + dk) − ∇f (xk) − ∇2f (xk)dk

∥∥∥+ ∥∥r̂k∥∥+ 2εH
∥∥dk∥∥+ δg,k + δH

∥∥dk∥∥
� LH

2

∥∥dk∥∥2 + 1

2
εHζ

∥∥dk∥∥+ (2εH + δH)
∥∥dk∥∥+ δg,k (from 2.2a and 2.8c)

� LH
2

∥∥dk∥∥2 + 3εH
∥∥dk∥∥+ δg,k (since ζ ∈ (0, 1) and δH � εH/2)

� LH
2

∥∥dk∥∥2 + 3εH
∥∥dk∥∥+

(
1 − ζ

8

)
max

(
εg, min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

)

� LH
2

ε2g

ε2H
+ 3εH

∥∥dk∥∥+ 1 − ζ

8
max

(
εg, εH‖dk‖

)

� LH
2

ε2g

ε2H
+ 3εg + 1 − ζ

8
εg (since ‖dk‖ � εg/εH)

� LH
2

ε2g

ε2H
+ 4εg,

as required.
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1876 Z. YAO ET AL.

For the second-order condition, since Hk � −εHI and δH � εH/4 (from Condition 2.2), we have

∇2f (xk + dk) � ∇2f (xk) − LH
∥∥dk∥∥I � Hk − δHI − LH

εg

εH
I � −

(
5

4
εH + LH

εg

εH

)
I.

This completes the proof. �
Now, combining Lemmas 2.5–2.8, we obtain the iteration complexity for Algorithm 3.

Theorem 2.3 Suppose that Assumption 1 is satisfied and that Condition 2.2 holds for all k. For a given
ε > 0, let εH = √

LHε, εg = ε. Define

K̄ :=

⎡
⎢⎢⎢⎢⎢

3(f (x0) − flow)

min

(
1

64L3/2H

csol, 8L
3/2
H csol,L

3/2
H cnc/8

)ε−3/2

⎤
⎥⎥⎥⎥⎥+ 5, (2.25)

where csol and cnc are defined in Lemmas 2.5 and 2.6, respectively. Then Algorithm 3 terminates in at
most K̄ iterations at a point, satisfying

‖∇f (x)‖ � ε.

Moreover, with probability at least (1 − δ)K̄ the point returned by Algorithm 3 also satisfies the
approximate second-order condition

λmin(∇2f (x)) � −√LHε. (2.26)

Here,� and� denote that the corresponding inequality holds up to a certain constant that is independent
of ε and LH .

Proof. Note first that for our choices of εg and εH , the threshold εg/εH for ‖dk‖ in line 9 of Algorithm

3 becomes
√

ε/LH .
We show first that Algorithm 3 terminates after at most K̄ steps. We taxonomize the iterations into

five classes. To specify these classes, we denote by dk and dtype the values of these variables immediately
before a step is taken or termination is declared, bearing in mind that these variables can be reassigned
during iteration k, in Line 14. Supposing for contradiction that Algorithm 3 runs for at least K steps, for
some K > K̄, we define the five classes of indices as follows.

K1 :=
{
k = 0, 1, 2, . . . ,K − 1 | ∥∥gk∥∥ < ε

}
K2 :=

{
k = 0, 1, 2, . . . ,K − 1 | ∥∥gk∥∥ � ε, dtype = SOL, ‖dk‖ >

√
ε/LH ,

∥∥gk+1

∥∥ < ε
}

K3 :=
{
k = 0, 1, 2, . . . ,K − 1 | ∥∥gk∥∥ � ε, dtype = SOL, ‖dk‖ >

√
ε/LH ,

∥∥gk+1

∥∥ � ε
}

K4 :=
{
k = 0, 1, 2, . . . ,K = 1 | ∥∥gk∥∥ � ε, dtype = SOL, ‖dk‖ �

√
ε/LH

}
K5 :=

{
k = 0, 1, 2, . . . ,K − 1 | ∥∥gk∥∥ � ε, dtype = NC

}
.
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1877

Obviously, K = ∣∣K1

∣∣+ ∣∣K2

∣∣+ ∣∣K3

∣∣+ ∣∣K4

∣∣+ ∣∣K5

∣∣. We consider each of these types of steps in turn.

Case 1: k ∈ K1. The update dk in this case must come from Procedure 2. Either the method terminates
(which happens at most once!) or from Lemma 2.7, we have that

f (xk) − f (xk+1) �
1

8
cncε

3
H = 1

8
L3/2H cncε

3/2. (2.27)

Thus the total amount of decrease that results from steps in K1 is at least
( ∣∣K1

∣∣− 1
)
L3/2H cncε

3/2/8.

Case 2: k ∈ K2. With Lemma 2.5, we can guarantee only that f (xk) − f (xk+1) � 0. However, since∥∥gk+1

∥∥ < ε, the next iterate must belong to class K1. Therefore we have
∣∣K2

∣∣ � ∣∣K1

∣∣.
Case 3: k ∈ K3. Here the step dk is an approximate solution of the damped Newton equations, and we
can apply Lemma 2.5 to obtain a nontrivial lower bound on the decrease in f . By Condition 2.2, we have

δg,k �
1

8
max

(
εg, min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

)
� 1

8
max(εg, ‖gk+1‖) = 1

8
‖gk+1‖,

δg,k+1 �
1

8
max

(
εg, min(εH‖dk+1‖, ‖gk+1‖, ‖gk+2‖)

)
� 1

8
max(εg, ‖gk+1‖) = 1

8
‖gk+1‖,

so that

‖gk+1‖ − δg,k − δg,k+1 �
3

4
‖gk+1‖ � 3

4
εg = 3

4
ε.

Thus, from (2.11) in Lemma 2.5, we have for this type of step that

f (xk) − f (xk+1) � csol max

{
0,min

(
(‖gk+1‖ − δg,k − δg,k+1)

3

(2.5εH)3
, (2.5εH)3, ε3/2g

)}

� csol min

(
( 34ε)

3

(2.5
√
LHε)3

, (2.5
√
LHε)3, ε3/2

)

= csol min

(
1

64L3/2H

, 8L3/2H , 1

)
ε3/2 = csol min

(
1

64L3/2H

, 8L3/2H

)
ε3/2.

Case 4: k ∈ K4. In this case, Procedure 1 outputs dtype = SOL along with a ‘small’ value of dk.
Subsequently, Procedure 2 was called, but it must have returned with a certification of near-positive-
definiteness of Hk, since dtype was not switched to NC. Thus, according to Lemma 2.8, termination
occurs with output xk + dk. Thus, this case can occur at most once, and we have |K4| � 1.

Case 5: k ∈ K5. In this case, either the algorithm terminates and outputs x = xk (which happens
at most once), or else a step is taken along a negative curvature direction for Hk, detected either in
Procedure 1 or Procedure 2. In the former case (detection in Procedure 1), we have from Lemma 2.6
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1878 Z. YAO ET AL.

that f (xk)− f (xk+1) � cncε
3
H = cncL

3/2
H ε3/2, while in the latter case (detection in Procedure 2), we have

from Lemma 2.7 that f (xk) − f (xk+1) � 1
8L

3/2
H cncε

3/2. Thus, the total decrease in f resulting from steps

of this class is bounded below by (|K5| − 1) 18L
3/2
H cncε

3/2.
The total decrease of f over all K steps cannot exceed f (x0) − flow. We thus have

f (x0) − flow �
K−1∑
k=0

(f (xk) − f (xk+1))

�
∑
k∈K1

(f (xk) − f (xk+1)) +
∑
k∈K3

(f (xk) − f (xk+1)) +
∑
k∈K5

(f (xk) − f (xk+1))

�
( ∣∣K1

∣∣+ ∣∣K5

∣∣− 2
)1
8
L3/2H cncε

3/2 + ∣∣K3

∣∣ csol min

(
1

64L3/2H

, 8L3/2H

)
ε3/2.

Therefore, we have

∣∣K1

∣∣+ ∣∣K5

∣∣− 2 � f (x0) − flow
L3/2H cnc/8

ε−3/2,

∣∣K3

∣∣ � f (x0) − flow

csol min

(
1

64L3/2H

, 8L3/2H

)ε−3/2.

Finally, we have

K = ∣∣K1

∣∣+ ∣∣K2

∣∣+ ∣∣K3

∣∣+ ∣∣K4

∣∣+ ∣∣K5

∣∣
� 2

∣∣K1

∣∣+ ∣∣K3

∣∣+ 1 + ∣∣K5

∣∣
� 2

( ∣∣K1

∣∣+ ∣∣K5

∣∣− 2
)+ ∣∣K3

∣∣+ 5

� 2(f (x0) − flow)

L3/2H cnc/8
ε−3/2 + f (x0) − flow

csol min

(
1

64L3/2H

, 8L3/2H

)ε−3/2 + 5

� 3(f (x0) − flow)

min

(
1

64L3/2H

csol, 8L
3/2
H csol,L

3/2
H cnc/8

)ε−3/2 + 5 � K̄,

which contradicts our assertion that K > K̄. Thus Algorithm 3 terminates in at most K̄ steps.
Note that if termination occurs at Line 24 of Algorithm 3, the returned value of x = xk certainly

has ‖∇f (x)‖ � εg = ε. This is because when ‖gk‖ � εg, we have from Condition 2.2 that δg,k �
(1 − ζ )εg/8, so that ‖∇f (x)‖ � ‖gk‖ + δg,k � εg. Alternatively, if termination occurs at Line 12, for
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1879

the returned value of x = xk + dk, we have

‖∇f (x)‖ � LH
2

ε2g

ε2H
+ 4εg = LH

2

ε2

LHε
+ 4ε = 9

2
ε.

Thus, the claim ‖∇f (x)‖ � ε at the termination point x holds.
We now verify the claims about probability of failure and the second-order conditions. Note that

for both types of termination (at Lines 12 and 24 of Algorithm 3), Procedure 2 issues a certificate that
λmin(Hk) � −εH . Subject to this certificate being correct, we show now that our claim (2.26) holds.
When termination occurs at line 12, we have in this case from Lemma 2.8 that at the returned point
x = xk + dk, we have

λmin(∇2f (x)) � −
(
5

4
εH + LH

εg

εH

)
= −9

4

√
LHε,

as required. For termination at Line 24, we have directly that λmin(∇2f (x)) � −εH = −√LHε, again
verifying the claim.

We now calculate a bound on the probability of incorrect termination, which can occur at either
Line 12 or Line 24 when Procedure 2 issues a certificate that λmin(Hk) � −εH , whereas in fact
λmin(Hk) < −εH . The proof is a simple adaptation from Xie & Wright (2021, Theorem 2) and Curtis
et al. (2021, Theorem 4.6), the adaptations for inexactness being fairly straightforward. We include the
argument here for the sake of completeness. The possibility of such an event happening on any individual
call to Procedure 2 is bounded above by δ. For all iterates k, we denote by P̃k the probability that
Algorithm 3 reaches iteration k, but λmin(Hk) < −εH , and denote by Pk the probability that Algorithm 3
reaches iteration k, but λmin(Hk) < −εH , yet the algorithm terminates due to Procedure 2 issuing an
incorrect certificate. Clearly, we have Pk � δP̃k for all k = 0, 1, . . . , K̄. Since it is trivially true for all
k that

P̃k +
k−1∑
i=0

Pi � 1,

we have for all k that

Pk � δP̃k � δ

(
1 −

k−1∑
i=0

Pi

)
. (2.28)

Now let Mk be the total number of calls to Procedure 2 that have occurred up to and including iteration
k of Algorithm 3. We prove by induction that

∑k
i=0 Pi � 1 − (1 − δ)Mk for all k. For k = 0, the claim

holds trivially, both in the case of M0 = 0 (in which case P0 = 0) and M0 = 1 (in which case P0 � δ).
Supposing now that the claim is true for some k � 0, we show that it continues to hold for k + 1.
If Algorithm 3 reaches iteration k + 1 with λmin(Hk+1) < −εH , and Procedure 2 is not called at this

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/43/3/1855/6670031 by U
niversity of W

isconsin-M
adison Libraries user on 27 N

ovem
ber 2023



1880 Z. YAO ET AL.

iteration, then Mk+1 = Mk and Pk+1 = 0, so by the induction hypothesis, we have

k+1∑
i=0

Pi =
k∑

i=0

Pi � 1 − (1 − δ)Mk = 1 − (1 − δ)Mk+1 ,

as required. In the other case in which Algorithm 3 reaches iteration k + 1 with λmin(Hk+1) < −εH ,
and Procedure 2 is called at this iteration, then Mk+1 = Mk + 1, so by using (2.28) and the inductive
hypothesis, we have

k+1∑
i=0

Pi =
k∑

i=0

Pi + Pk+1

�
k∑

i=0

Pi + δ

(
1 −

k∑
i=0

Pi

)

= δ + (1 − δ)

k∑
i=0

Pi

� δ + (1 − δ)
(
1 − (1 − δ)Mk

)
= 1 − (1 − δ)Mk+1 = 1 − (1 − δ)Mk+1 ,

as required. Since Mk � k � K̄ for all k = 1, 2, . . . , K̄, we have that the probability that Algorithm 3

terminates incorrectly on any iteration is bounded above by 1 − (1 − δ)K̄ . So when termination occurs,
the condition (2.26) holds at the termination point with probability at least (1 − δ)K̄ , as claimed. �

By incorporating the complexity of Procedures 1 and 2, as described in Lemmas 2.1 and 2.3, we
can obtain an upper bound on the number of approximate gradient and approximate Hessian-vector
product evaluations required during a run of Algorithm 3. The iteration count for the algorithm is
bounded by O(ε−3/2) in Theorem 2.3 and each iteration requires one approximate gradient evaluation.
Additionally, each iteration of Algorithm 3 may require a call to Procedure 1, which by Lemma 2.1
requires Õ(ε

−1/2
H ) = Õ(ε−1/4) approximate Hessian-vector products. A call to Procedure 2 may also

be required on some iterations. Here, by Lemma 2.3,O(ε
−1/2
H ) = O(ε−1/4) approximate Hessian-vector

products may be required also. We summarize these observations in the following corollary.

Corollary 2.1 Suppose that the assumptions of Theorem 2.3 hold. Let εg = ε, εH = √
LHε, and K̄ be

defined as in (2.25). Then for d sufficiently large relative to ε−1/2, Algorithm 3 terminates after at most
Õ(ε−7/4) matrix-vector products with the approximate Hessians and at most O(ε−3/2) evaluations of
approximate gradients. With probability at least (1−δ)K̄ , it returns a point that satisfies the approximate
first- and second-order conditions described in Theorem 2.3.

2.4 Inexact Newton-CG algorithm without line search

Although Algorithm 3 employs approximate gradients and Hessian at various steps, the use of
backtracking line search to compute the step-size αk requires exact evaluations of the function f and
its gradient. This setting has indeed been considered in some previous work, e.g., Roosta & Mahoney
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1881

(2019); Yao et al. (2020). When gradient evaluation has similar computational cost to the corresponding
function evaluation, we may not save much in computation by requiring only an approximate gradient.
We show in this section that a pre-defined (‘fixed’) value of the step length αk can be carefully chosen to
obviate the need for function evaluations. The advantage of not requiring exact evaluations of functions
is considerable, but there are disadvantages too. First, the computed fixed step size is conservative, so
the guaranteed descent in the objective generally will be smaller than in Algorithm 3; see Lemmas 2.5
to 2.7. Secondly, our approach makes use of an approximate upper bound LH on the Lipschitz constant
of the Hessian, which might not be readily available. Fortunately, there are many important instances
(especially in machine learning) where an estimate of LH can be obtained easily; for example, empirical
risk minimization problems involving the squared loss (Xu et al., 2020b) and Welsch’s exponential
variant (Zhang et al., 2019). See Table 1 for details.

We state our variant of the Inexact Newton-CG Algorithm that does not require line search as
Algorithm 4. Lines 6, 14, 24 and 27–31 constitute the main differences between Algorithms 3 and 4.

The analysis of this section makes use of the following condition.

Condition 2.4 The inexact gradient gk and Hessian Hk satisfy Condition 2.1 with

δg,k �
1 − ζ

8
min

(
3ε2H

65(LH + η)
, max

(
εg, min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

))

and δH � 1 − ζ

4
εH .

Throughout this section, we fix εH =
√
LHεg, so that εg/εH =

√
εg/LH .

In the next three lemmas, we show that the choices of αk in Algorithm 4 lead to the step length
acceptance condition used in Algorithm 3 being satisfied, that is,

− η

6
α3
k‖dk‖3 � f (xk + αkdk) − f (xk). (2.29)

We now show that the fixed step size can result in a sufficient descent in the function f (xk) when

dtype = SOL and ‖dk‖ �
√

εg/LH . The following lemma can be viewed as a modification of Lemma 2.5

with fixed step size.

Lemma 2.9 Suppose that Assumption 1 is satisfied and that Condition 2.4 holds for all k. Suppose
that at iteration k of Algorithm 4, we have ‖gk‖ � εg, so that Procedure 1 is called. When Procedure 1
outputs a direction dk with dtype = SOL and ‖dk‖ � εg/εH , Algorithm 4 sets

αk =
[
3(1 − ζ )

4(LH + η)

]1/2 ε
1/2
H

‖dk‖1/2
.

The resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk+1) � c̄solε
3
H ,
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1882 Z. YAO ET AL.

Algorithm 4 Inexact Newton-CG without Line Search

1: Inputs: εg, εH > 0; Parameter θ ∈ (0, 1); Starting point x0; upper bound on Hessian normUH > 0;
accuracy parameter ζ ∈ (0,min{1,UH});

2: for k = 0, 1, 2, · · · do
3: if

∥∥gk∥∥ � εg then

4: Call Procedure 1 with H = Hk,M = UH , ε = εH , g = gk and accuracy parameter ζ to
obtain d and dtype;

5: if dtype == NC then

6: dk ← −sgn(dTgk)
|dTHkd|

‖d‖2
d

‖d‖ ;

7: else

8: dk ← d;

9: if
∥∥dk∥∥ � εg/εH then

10: Call Procedure 2 with H = Hk,M = UH , ε = εH to obtain v with ‖v‖ = 1 and
vTHkv � −εH/2 or a certificate that λmin(Hk) � −εH ;

11: if Procedure 2 certifies that λmin(Hk) � −εH then

12: Terminate and return xk + dk;

13: else

14: dk ← −sgn(vTgk)|vTHkv|v and dtype ← NC;

15: end if

16: end if

17: end if

18: else

19: dtype ← NC;

20: Call Procedure 2 with H = Hk,M = UH , ε = εH to obtain v with ‖v‖ = 1 and
vTHkv � −εH/2 or a certificate that λmin(Hk) � −εH ;

21: if Procedure 2 certifies that λmin(Hk) � −ε then

22: Terminate and return xk;

23: else

24: dk ← −sgn(vTgk)|vTHkv|v;
25: end if

26: end if
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1883

Continued

27: if dtype == NC then

28: Define αk as in Lemma 2.10, to satisfy αk � 3
4

θ̃
LH+η

for some θ̃ ∈ ((2 − √
3)2, 1)

29: else

30: αk =
[

3(1−ζ )
4(LH+η)

]1/2 ε
1/2
H

‖dk‖1/2 (defined in Lemma 2.9)

31: end if

32: xk+1 ← xk + αkdk;

33: end for

where

c̄sol = η

6

[
3(1 − ζ )

4LH(LH + η)

]3/2
.

Proof. First, we prove that αk � 1. We have, using εH =
√
LHεg, that

α2
k = 3(1 − ζ )εH

4(LH + η)‖dk‖
� 3(1 − ζ )ε2H

4(LH + η)εg
= 3(1 − ζ )LH

4(LH + η)
< 1.

If we can show that (2.29) holds, then we obtain the conclusion of the lemma by substituting the formula

for αk into this expression, and using ‖dk‖ � εg/εH and εH =
√
LHεg.

Suppose for contradiction that condition (2.29) is not satisfied. Then we have

−η

6
α3
k‖dk‖3 � f (xk + αkdk) − f (xk)

� αk∇f Tk dk + α2
k

2
dTk ∇2f (xk)dk + LH

6
α3
k‖dk‖3

= αkg
T
k dk + α2

k

2
dTkHkdk + αk(∇fk − gk)

Tdk + α2
k

2
dTk (∇2f (xk) − Hk)dk

+ LH
6

α3
k‖dk‖3

� −αk

2
(1 − ζ )εH‖dk‖2 + αkδg,k‖dk‖ + α2

k

2
δH‖dk‖2 + LH

6
α3
k‖dk‖3 (from (2.11))

< αkδg,k‖dk‖ − αk

2
‖dk‖2

(
(1 − ζ )εH − δH

)+ LH
6

α3
k‖dk‖3 (since αk < 1).
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1884 Z. YAO ET AL.

By rearrangement, it follows that

LH + η

6
α2
k‖dk‖2 − 1

2

(
(1 − ζ )εH − δH

)‖dk‖ + δg,k > 0. (2.30)

By substituting the definition of αk and using δH � (1 − ζ )εH/2 into the formula above, we have that
(2.30) implies

LH + η

6

[
3(1 − ζ )

4(LH + η)

]
εH

‖dk‖
‖dk‖2 − (1 − ζ )εH

4
‖dk‖ + δg,k > 0

⇔ − (1 − ζ )

8
εH‖dk‖ + δg,k > 0.

By using δg,k � (1 − ζ )max
(
εg, min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

)
/8, this inequality implies that

− εH‖dk‖ + max
(
εg, min(εH‖dk‖, ‖gk‖, ‖gk+1‖)

)
> 0. (2.31)

If εg > min(εH‖dk‖, ‖gk‖, ‖gk+1‖), since εH =
√
LHεg, we have from (2.31) that

−
√
LHεg‖dk‖ + εg > 0 ⇒ ‖dk‖ <

√
εg/LH ,

which contradicts our assumption ‖dk‖ �
√

εg/LH = εg/εH . Alternatively, if we assume that

εg � min(εH‖dk‖, ‖gk‖, ‖gk+1‖), then from (2.31), it follows that

0 < −εH‖dk‖ + min(εH‖dk‖, ‖gk‖, ‖gk+1‖) � −εH‖dk‖ + εH‖dk‖ = 0,

which is again a contradiction. Hence, our chosen value of αk must satisfy (2.29), completing the
proof. �

Next, let us deal with the case when dtype = NC, which can be considered as a fixed-step alternative
to Lemma 2.6.

Lemma 2.10 Suppose that Assumption 1 is satisfied and that Condition 2.4 holds for all k. Suppose
that at iteration k of Algorithm 4, we have ‖gk‖ > εg, so that Procedure 1 is called. When Procedure 1
outputs a direction dk with dtype = NC, we can choose the pre-defined step size

αk =
⎛
⎝ (‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/3

⎞
⎠ θ̃ ,
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1885

where θ̃ is a parameter satisfying (2 − √
3)2 < θ̃ < 1. The resulting step xk+1 = xk + αkdk satisfies

f (xk) − f (xk+1) � c̄ncε
3
H , where

c̄nc :=
η

6

[
3θ̃

4(LH + η)

]3
.

Proof. We start by noting that under the assumptions of the lemma, we have

dTkHkdk � −εH‖dk‖2, ‖dk‖ � εH , (2.32)

We replace the lower bound on ‖dk‖ by the weaker bound ‖dk‖ � 1
2εH (so that we can reuse our results

in the next lemma), to obtain

‖dk‖ � 1

2
εH , δH � 1

4
εH � 1

2
‖dk‖ and so ‖dk‖ − δH � 1

2
‖dk‖ � 1

4
εH . (2.33)

Note too that dTk gk � 0 by design, so that from Definition 2.1 of δg,k, we have

dTk ∇f (xk) � dTk gk + ‖dk‖‖∇f (xk) − gk‖ � δg,k‖dk‖. (2.34)

We therefore have

f (xk + αkdk) − f(xk) � αk∇f (xk)
Tdk + α2

k

2
dTk ∇2f (xk)dk + LH

6
α3
k‖dk‖3

� αkδg,k‖dk‖ − α2
k

2
‖dk‖3 + α2

k

2
δH‖dk‖2 + LH

6
α3
k‖dk‖3. (from (2.20))

Thus condition (2.29) will be satisfied provided that

αkδg,k‖dk‖ − α2
k

2
‖dk‖3 + α2

k

2
δH‖dk‖2 + LH

6
α3
k‖dk‖3 � −η

6
α3
k‖dk‖3.

By rearranging and dividing by αk‖dk‖, we find that αk satisfies (2.29) provided that the following
quadratic inequality in αk is satisfied:

(
(LH + η)‖dk‖2

6

)
α2
k −

(‖dk‖(‖dk‖ − δH)

2

)
αk + δg,k � 0. (2.35)
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1886 Z. YAO ET AL.

In fact, this inequality is satisfied provided that αk ∈ [β2,β1], where

β1 :=
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/3
,

β2 :=
(‖dk‖ − δH)/2 −

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/3
.

To verify that the quantity under the square root is positive, we use (2.33) to write

(‖dk‖ − δH

2

)2

− 4
(LH + η)

6
δg,k �

1

16
‖dk‖2 − 2(LH + η)

3
δg,k

� 1

64
ε2H − 2(LH + η)

3
δg,k > 0,

where the last inequality follows from Condition 2.4, since

δg,k �
3

2 × 65

ε2H

LH + η
<

3

128

ε2H

LH + η
.

(Note that 0 < β2 < β1.)
Next, we show that our choice of αk, which equals θ̃β1, lies in the interval (β2,β1). First, we have

αk = θ̃β1 < β1 since θ̃ < 1. Secondly, proving αk > β2 is equivalent to showing that θ̃ > β2/β1.
Defining

z := ‖dk‖ − δH

2
, c := 2

3
(LH + η)δg,k,

we see that

β1 = z + √
z2 − c

(LH + η)‖dk‖/3
, β2 = z − √

z2 − c

(LH + η)‖dk‖/3
,

so that the required condition is

θ̃ > β2/β1 = z − √
z2 − c

z + √
z2 − c

= (z − √
z2 − c)2

c
.

We have from (2.33) and Condition 2.5 that

z2 =
(‖dk‖ − δH

2

)2

� ε2H

64
>

ε2H

65
� 8

3
(LH + η)δg,k = 4c.
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1887

Since z − √
z2 − c is a decreasing function of z for all z2 > c > 0, we have by using z2 > 4c that

β2

β1
= (z − √

z2 − c)2

c
<

(2
√
c − √

4c − c)2

c
= (2 − √

3)2 < θ̃ .

We have therefore proved that αk ∈ [β2,β1], so that αk satisfies (2.29).
From (2.33), we have

αk = θ̃β1 = θ̃
(‖dk‖ − δH)/2 +

√
((‖dk‖ − δH)/2)2 − 4(LH + η)δg,k/6

(LH + η)‖dk‖/3

� θ̃
‖dk‖/4

(LH + η)‖dk‖/3
= 3

4

θ̃

LH + η
. (2.36)

The final claim of the theorem is obtained by substituting this lower bound on αk into (2.29), and using
‖dk‖ � εH . �

The next lemma shows that when dtype = NC is obtained from Procedure 2, the same fixed step size
as in Lemma 2.10 can be used, with the same lower bound on improvement in f.

Lemma 2.11 Suppose that Assumption 1 is satisfied and that Condition 2.4 holds for all k. Suppose
that at iteration k of Algorithm 4, the step dk is of negative curvature type, obtained from Procedure 2.
Then when we define αk as in Lemma 2.10, we obtain

f (xk) − f (xk + αkdk) �
1

8
c̄ncε

3
H , (2.37)

where c̄nc is defined in Lemma 2.10.

Proof. Note that for dk obtained from Procedure 2, we have

dTkHdk � −1

2
εH‖dk‖2, ‖dk‖ � 1

2
εg.

Since the bulk of the proof of Lemma 2.10 uses only the latter lower bound on ‖dk‖, we can use this
proof to derive the same lower bound (2.36) on αk. The result follows by substituting this lower bound
together with ‖dk‖ � εH/2 into (2.29). �

Using Lemma 2.9 to 2.8, we are now ready to give the iteration complexity of Algorithm 4.

Theorem 2.5 Suppose that Assumption 1 is satisfied and that Condition 2.4 holds for all k. For a given
ε > 0, let εH = √

LHε, εg = ε. Define

K̄2 := 2

⌈
f (x0) − flow

min{c̄sol, c̄nc/8}L3/2H

ε−3/2

⌉
+ 3, (2.38)

where c̄sol and c̄nc are defined in Lemma 2.9 and Lemma 2.10, respectively. Then Algorithm 4 terminates

in at most K̄2 iterations at a point x satisfying ‖∇f (x)‖ � ε. Moreover, with probability at least (1−δ)K̄2 ,
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1888 Z. YAO ET AL.

the point returned by Algorithm 4 also satisfies the approximate second-order condition λmin(∇2f (x)) �
−√LHε. Here again, � and � denote that the corresponding inequality holds up to a certain constant
that is independent of ε and LH .

Proof. The proof tracks that of Theorem 2.3 closely, so we omit much of the detail and discussion.
For contradiction, we assume that Algorithm 4 runs for at least K steps, where K > K̄2. We partition

the set of iteration indices {1, 2, . . . ,K} into the same sets K1, . . . ,K5 as in the proof of Theorem 2.3.
Considering each of these sets in turn, we have the following.

Case 1: k ∈ K1. Either Algorithm 4 terminates (which happens at most once for k ∈ K1) or we achieve

a reduction in f of at least 1
8 c̄ncε

3
H = 1

8 c̄ncL
3/2
H ε3/2 (Lemma 2.11).

Cases 2 and 3: k ∈ K2∪K3. f is reduced by at least c̄solL
3/2
H ε3/2 (Lemma 2.9). Note that, unlike Case 2

in Theorem 2.3, we can indeed guarantee a positive decrease in f for all k ∈ K2. This is because, unlike
Lemma 2.5, the decrease obtained from Lemma 2.9 does not depend on ‖gk+1‖.

Case 4: k ∈ K4. The algorithm terminates, so we must have |K4| � 1.

Case 5: k ∈ K5. Either the algorithm terminates, or we achieve a reduction of at least c̄ncL
3/2
H ε3/2

(Lemma 2.10).
Reasoning as in the proof of Theorem 2.3, we have that

f (x0) − flow � (|K1| − 1) 18 c̄ncL
3/2
H ε3/2 + (|K2| + |K3|)c̄solL3/2H ε3/2 + (|K5| − 1)c̄ncL

3/2
H ε3/2,

from which we obtain

|K1| + |K5| − 2 � f (x0) − flow
1
8 c̄ncL

3/2
H

ε−3/2,

|K2| + |K3| �
f (x0) − flow
c̄solL

3/2
H

ε−3/2.

By using these bounds along with |K4| � 1, we obtain

K �
5∑

i=1

|Ki| � 2
f (x0) − flow

min(c̄nc/8, c̄sol)L
3/2
H

ε−3/2 + 3,

which contradicts our assumption that K > K̄2.
The proof of the remaining claim, concerning the approximate second-order condition, is identical

to the corresponding section in the proof of Theorem 2.3. �
Note that the worst-case iteration complexity of Algorithm 4 has the same dependence on ε as

Algorithm 3, despite the function evaluation no longer being required. The terms in the bound that
do not depend on ε are, however, generally worse for Algorithm 4.
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INEXACT NEWTON-CG ALGORITHMS WITH COMPLEXITY GUARANTEES 1889

We conclude with a discussion of Conditions 2.2 and 2.4. These conditions allow for the accuracy
of gk to be chosen adaptively, depending on problem-dependent constants, algorithmic parameters, the
desired solution tolerances εg and εH , and the quantities ‖dk‖, ‖gk+1‖ and ‖gk‖. The quantity ‖gk‖ is
easy to evaluate (since, after all, gk is the quantity actually calculated). However, the dependence on
the quantities ‖dk‖ and ‖gk+1‖ is more problematic, since gk is needed to compute both dk and gk+1.
Thus, the bounds on δg,k in Conditions 2.2 and 2.4 can be checked only ‘in retrospect’, not enforced as
an a priori condition. We can deal with this issue by checking the bound on δg,k after the step to xk+1
has been taken. if it fails to be satisfied, we can improve the accuracy of gk and re-do iteration k. If
we halve δg,k each time the step is recomputed, the number of recomputations is at worst a multiple of
log εg (since the bound on δg,k in both conditions is at least (1 − ζ )εg/8), so our complexity bounds are
not affected significantly. We choose to elide this fairly uninteresting issue in our analysis, and simply
assume for simplicity that the relevant bound on δg,k holds at each iteration.

2.5 Evaluation complexity of Algorithm 4 for finite-sum problems

When f has finite-sum form (1.2) for n � 1, we consider subsampling schemes for estimating gk and
Hk, as in Roosta & Mahoney (2019); Xu et al. (2020a). We can define the subsampled quantities as
follows

g � 1∣∣∣Sg

∣∣∣
∑
i∈Sg

∇fi(x) and H � 1∣∣SH

∣∣ ∑
i∈SH

∇2fi(x), (2.39)

where Sg,SH ⊂ {1, · · · , n} are the subsample batches for the estimates of the gradient and Hessian,
respectively. In Roosta & Mahoney (2019, Lemma 1 and 2) and Xu et al. (2020a, Lemma 16), it is
shown that with a uniform sampling strategy, the following lemma can be proved.

Lemma 2.12 (Sampling complexity, Roosta & Mahoney, 2019; Xu et al., 2020a). Suppose that
Assumption 1 is satisfied, and let δ̄ ∈ (0, 1) be given. Suppose that at iteration k of Algorithm 4,
δg,k and δH are as defined in Condition 2.4. Also, let 0 < Kg,KH < ∞ be such that

∥∥∇fi(x)
∥∥ � Kg and∥∥∇2fi(x)

∥∥ � KH for all x belonging to the set defined in Assumption 1. For gk and Hk defined as in
(2.39) with x = xk, and subsample sets Sg = Sg,k and SH , satisfying

∣∣∣Sg,k

∣∣∣ � 16K2
g

δ2g,k
log

1

δ̄
and

∣∣SH

∣∣ � 16K2
H

δ2H
log

2d

δ̄
,

we have with probability at least 1 − δ̄ that Condition 2.4 holds for the given values of δg,k and δH .

For the choices of εg and εH being used in this section, and assuming that δg,k and δH are set to their
upper bounds in Condition 2.4, we can derive a uniform condition on the required subsample sizes.

Lemma 2.13 Suppose the conditions of Lemma 2.12 holds, and that for some ε > 0, we set εH = √
LHε

and εg = ε. Suppose that at some iteration k, δg,k and δH are set to their upper bounds in Condition 2.4.

Then we have that δg,k � δ̄g for all k and δH = δ̄H , where

δ̄g = 1 − ζ

8
min

(
3LHε

65(LH + η)
, ε

)
= O(ε), δ̄H =

(
1 − ζ

4

)√
LHε = O(ε1/2). (2.40)
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1890 Z. YAO ET AL.

Moreover, when gk and Hk are estimated from (2.39) with x = xk and subsample sets Sg = Sg,k and
SH , satisfying

∣∣∣Sg

∣∣∣ � 16K2
g

δ̄2g
log

1

δ̄
= O(ε−2),

∣∣SH

∣∣ � 16K2
H

δ̄2H
log

2d

δ̄
= O(ε−1),

then Condition 2.4 is satisfied at iteration k with probability at least 1 − δ̄.

Proof. The right-hand side of the bound on δg,k in Condition 2.4 is bounded below by

1 − ζ

8
min

(
3ε2H

65(LH + η)
, εg

)
= 1 − ζ

8
min

(
3LHε

65(LH + η)
, ε

)
= δ̄g = O(ε),

as claimed. The claims concerning δ̄H are immediate. �
By combining Lemma 2.13 with Theorem 2.5, we can obtain an oracle complexity result in which

the oracle is either an evaluation of a gradient ∇fi for some i = 1, 2, . . . , n or a Hessian-vector product
of the form ∇2fi(x)v, for some i = 1, 2, . . . , n and some x, v ∈ R

d. The result is complicated by the
fact that there is a probability of failure to satisfy Condition 2.4 at each k, to go along with the possible
failure, noted in the previous section, to detect negative curvature when Procedure 2 is invoked. For our
result below, we consider the case in which failure to satisfy Condition 2.4 never occurs at any iteration,
Since there are at most K̄2 iterations, this case occurs with probability at least (1 − δ̄)K̄2 .

Corollary 2.2 (Evaluation complexity of Algorithm 4 for finite-sum problem (1.2)). Suppose that
Assumption 1 is satisfied. Let δ̄ ∈ (0, 1) be given, and suppose that at each iteration k, gk and Hk are
obtained from (2.39), with Sg = Sg,k and SH satisfying the lower bounds in Lemma 2.12, where

δg,k � δ̄g and δH � δ̄H , with δ̄g and δ̄H defined in (2.40). For a given ε > 0, let εH = √
LHε, εg = ε. Let

K̄2 be defined as in (2.38). Then with probability at least (1− δ̄)K̄2(1− δ)K̄2 , Algorithm 4 terminates in
at most K̄2 iterations at a point x satisfying ‖∇f (x)‖ � ε and λmin(∇2f (x)) � −√LHε. Again, � and �
denote that the corresponding inequality holds up to a certain constant that is independent of ε and LH .
Moreover, the total number of oracle calls is bounded by

(
2

⌈
(f (x0) − flow)

min{c̄sol, c̄nc/8}
ε−3/2

⌉
+ 3

)
︸ ︷︷ ︸

K̄2

·

⎛
⎜⎜⎜⎜⎝

16K2
g

δ̄2g
log

1

δ̄︸ ︷︷ ︸
Gradient Sampling

+ 16K2
H

δ̄2H
log

2d

δ̄︸ ︷︷ ︸
Hessian Sampling

·
⎛
⎜⎝Õ(ε−1/4)︸ ︷︷ ︸

Procedure 1

+ O(ε−1/4)︸ ︷︷ ︸
Procedure 2

⎞
⎟⎠
⎞
⎟⎟⎟⎟⎠

= O(ε−3/2) · (O(ε−2) + Õ(ε−1 × ε−1/4))

= O(ε−7/2).

As mentioned earlier, Algorithm 4 requires knowledge of an upper bound of the Lipschitz constant
LH of the Hessian matrix. In addition, not only do the sample complexities derived in Corollary 2.2
depend on LH through the use of δ̄g and δ̄H as in (2.40), but they also require upper estimates of Kg
and KH , which may be unavailable for many nonconvex problems. Fortunately, for many nonconvex
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objectives of interest in machine learning and statistical analysis, we can readily obtain reasonable
estimates of these quantities. Table 1 provides estimates on LH for some examples of such objectives.
See Table 2 for upper bounds on Kg and KH for such problems. Equipped with these estimates, we can
give a more refined complexity analysis tailored for the problems in Tables 1 and 2. Indeed, since for the
constants c̄sol and c̄nc in Lemmas 2.10 and 2.9, we have c̄sol ∈ �(1/L3H), c̄nc ∈ �(1/L3H), from Tables 1
and 2, it follows that the total number of oracle calls for these problems is at most

Õ

[((
max
i

‖ai‖9
)

(f (x0) − flow)ε−3/2
)]

·
(

Õ

((
max
i

‖ai‖2
)

ε−2
)

+ Õ

((
max
i

‖ai‖
)

ε−5/4
))

= Õ

(
ε−7/2(f (x0) − flow)max

i

{
1, ‖ai‖

}11) ,

where for simplicity we have assumed |bi| � 1 as in binary classification problems.

3. Numerical evaluation

In this section, we evaluate the performance of Algorithms 3 and 4 on three model problems in the form
of finite-sum minimization: nonlinear least squares (NLS), multilayer perceptron (MLP) and variational
autoencoder (VAE). Our aim here is to illustrate the efficiency gained from gradient and Hessian
approximations, as compared with the exact counterpart in Royer et al. (2020). More specifically, in
our numerical examples, we consider the following algorithms.

• Full NTCG: Newton Method with Capped-CG solver with full gradient and Hessian evalua-
tions, as developed in Royer et al. (2020).

• SubH NTCG (this work): Variant of Royer et al. (2020) where Hessian is approximated.
We consider this setting as an intermediary between the full algorithm and those where both
the gradient and the Hessian are approximated. Sample sizes for approximating Hessian for
experiments using NLS, MLP and VAE, are 0.01n, 0.02n and 0.02n, respectively.

• Inexact NTCG Full-Eval (this work): Newton Method with Capped-CG solver with
back-tracking line-search where both the gradient and the Hessian are approximated. To perform
the backtracking line search, we employ the full dataset to evaluate the objective function. The
sample size for estimating the gradient is adaptively calculated as follows: if ‖gt‖ � 1.2‖gt−1‖
or ‖gt‖ � ‖gt−1‖/1.2, then the sample size is decreased or increased, respectively, by a factor
of 1.2. Otherwise, we maintain the same sample size as the previous iteration. The initial sample
size to approximate the gradient for the experiments of Section 3.1 is set to 0.05n, while for the
experiments of Sections 3.2 and 3.3, we use an initial sample size of 10,000. The sample size for
approximating the Hessian is set the same as that in SubH NTCG.

• Inexact NTCG Fixed (this work): Newton Method with Capped-CG solver, using approxi-
mations of both the gradient and the Hessian and fixed step sizes. The step sizes are predefined as
follows: for NLS experiments, we use αk = 0.04 for dtype = NC and αk = 0.2 for dtype = SOL,

while for simulations on MLP/VAE models, we consider αk = 0.1 for dtype = NC and αk = √
0.1

for dtype = SOL. The gradient and Hessian approximations are done as in the previous two
variants.
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• Inexact NTCG Sub-Eval: This method is almost identical to Inexact NTCG Full-
Eval, however, the backtracking line search is performed on estimates of the objective function
using the same samples as the ones used in gradient approximation. Of course, our theoretical
analysis does not immediately support this variant. However, we have found this strategy to be
highly effective in practice, and we intend to theoretically investigate it in future work.

In all of our experiments, we run each stochastic method five times (starting from the same initial
point), and plot the average run (solid line) and 1-standard deviation band (shaded regions). To avoid
cluttering the plots, we only show the upper deviation from the average, since the lower deviation band
is almost identical on all of our experiments.

We note that the step size implied by Algorithm 4 is very pessimistic, and hence small. This is
a byproduct of our worst-case analysis, which comprises of descent obtained from a sequence of
conservative steps. Requiring small step-lengths to provide a convergence guarantee is perhaps the
main drawback for the worst-case style of analysis, which is almost ubiquitous within the optimization
literature, e.g., fixed step size of length 1/Lg for gradient descent on smooth unconstrained problems.
Our numerical example shows that much larger step sizes than those prescribed by Algorithm 4 can be
employed in practice. We suspect this to be the case for most practical applications.

Although in Algorithms 3 and 4, the case where ‖dk‖ is small (relative to the ratio εg/εH) is crucial
in obtaining theoretical guarantees, in all of our simulations, we have found that performing line search
directly with such small dk and without resorting to Procedure 2 in fact yields reasonable progress. In
this light, in all of our implementations, we have made the practical decision to omit Lines 9-16 of
Algorithms 3 and 4.

Similar to Xu et al. (2020b); Yao et al. (2020), the performance of all the algorithms is measured by
tallying the total number of propagations, that is, the number of oracle calls of function, gradient and
Hessian-vector products. This is so, since comparing algorithms in terms of ‘wall-clock’ time can be
highly affected by their particular implementation details, as well as system specifications. In contrast,
counting the number of oracle calls, as an implementation and system independent unit of complexity, is
most appropriate and fair. More specifically, after computing fi(x), which accounts for one oracle call,
computing the corresponding gradient ∇fi(x) is equivalent to one additional function evaluation, i.e.,
two oracle calls are needed to compute ∇fi(x). Our implementations are Hessian-free, i.e., we merely
require Hessian-vector products instead of using the explicit Hessian. For this, each Hessian-vector
product ∇2fi(x)v amounts to two additional function evaluations, as compared with gradient evaluation,
i.e., four oracle calls are used to evaluate ∇2fi(x)v.

3.1 Nonlinear least squares

We first consider the simple, yet illustrative, nonlinear least squares problems arising from the task of
binary classification with squared loss.1 Given training data {ai, bi}ni=1, where ai ∈ R

d, bi ∈ {0, 1}, we
solve the empirical risk minimization problem

min
x∈Rd

1

n

n∑
i=1

(
bi − φ

(〈ai, x〉))2,

1 Logistic loss, the ‘standard’ loss used in this task, leads to a convex objective. We use squared loss to obtain a nonconvex
objective.
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Table 3 Datasets used for NLP experiments

Data n d

covertype 464,810 54
ijcnn1 49,990 22

Fig. 1. Comparison between all variants of NTCG on ijcnn1 and covertype datasets.

where φ(z) is the sigmoid function: φ(z) = 1/(1 + e−z). Datasets are taken from LIBSVM library
(Chang & Lin, 2011); see Table 3 for details. We use the same setup as in Yao et al. (2020).

The comparison between different NTCG algorithms is shown in Fig. 1. It is clear that, for a given
value of the loss, all inexact variants in the Inexact NTCG family converge faster, i.e., with fewer
oracle calls. Clearly, lower per-iteration cost of Inexact NTCG Fixed comes at the cost of slower
overall convergence as compared with Inexact NTCG Sub-Eval. This is mainly because the step
size obtained as part of the line-search procedure can generally result in a better decrease in function
value. For this problem we could refer to Table 1 and explicitly compute the fixed step size prescribed by
Algorithm 4. As mentioned earlier, the resulting step size is overly conservative. Our simulations show
that much larger step sizes yield convergent algorithms. In this light, our fixed step sizes are chosen
without regard to the value prescribed in Algorithm 4, but are based rather on numerical experience.

3.2 Multilayer perceptron

Here, we consider a slightly more complex setting than simple NLS, and evaluate the performance
of Algorithms 3 and 4 on several MLPs in the context of the image classification problem. For our
experiments here, we will make use of the MNIST dataset, which is also available from LIBSVM
library (Chang & Lin, 2011). We consider three MLPs with one hidden layer, involving 16, 128 and
1024 neurons, respectively. All MLPs contain one output layer to determine the assigned class of the
input image. The intermediate activation is chosen as the SoftPlus function (Glorot et al., 2011), which
amounts to a smooth optimization problem. Table 4 summarizes the total dimensions, in terms of n and
d, of the resulting optimization problems.

Figure 2 depicts the performance of all variants of NTCG that we consider in this paper. As can be
seen, for all cases, our Inexact NTCG Full-Eval and Inexact NTCG Sub-Eval have the
fastest convergence rate and achieve lower training loss as compared to alternatives.
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Table 4 The problem size for various MLPs

Hidden layer size n d

16 60,000 12,704
128 60,000 101,632
1,024 60,000 813,056

Fig. 2. Comparison between all variants of NTCG on several MLPs with different hidden-layer sizes: 16 (left), 128 (middle) and
1024 (right).

Fig. 3. Comparison between all variants of NTCG on VAE.

3.3 Variational autoencoder

We now evaluate the performance of Algorithms 3 and 4 using a more complex setting of variational
autoencoder (VAE) model. Our VAE model consists of six fully-connect layers, which are structured as
784 → 512 → 256 → 2 → 256 → 512 → 784. The intermediate activation and the output truncation
functions, are respectively chosen as SoftPlus (Glorot et al., 2011) and Sigmoid (Glorot et al., 2011).
We again consider the MNIST dataset.

The results are shown in Figure 3. Although we did not fine-tune the fixed step sizes used
within Inexact NTCG Fixed (as evidenced by its clear nonmonotonic behavior), one can see that
Inexact NTCG Fixed exhibits competitive performance. Again, as observed previously, Inexact
NTCG Full-Eval and Inexact NTCG Sub-Eval have the fastest convergence rate among all of
the variants.
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4. Conclusion

We have described extensions of the Newton-CG algorithm proposed by Royer et al. (2020) to settings
with inexact Hessian and/or gradient information. Algorithm 3 employs approximations to the gradient
and Hessian matrix at each step, and this inexact information is used to obtain an approximate Newton
direction in Procedure 1. However, to obtain the step size, Algorithm 3 requires exact function values.
This issue is partially addressed in Algorithm 4, where fixed step sizes replace the line search. These
fixed step sizes are conservative, and they depend on some problem-dependent quantities that are
generally unavailable, though known for some important classes of machine learning problems. Still, our
approach here can be regarded as a first attempt at incorporating inexact gradient/Hessian evaluations in
the Newton-CG algorithm of Royer et al. (2020). An improved algorithm would allow for line searches
using inexact function evaluations. One might be able to derive such a version using some further
assumptions on the inexact function and the inexact gradient, such as those considered in Paquette
& Scheinberg (2020), and by introducing randomness into the algorithm and the use of concentration
bounds in the analysis. We intend to investigate these topics in future research.

We are especially interested in problems in which the objective has a ‘finite-sum’ form, so the
approximated gradients and Hessians are obtained by sampling randomly from the sum. For all of our
proposed variants, we showed that the iteration complexities needed to achieve approximate second-
order criticality are essentially the same as that of the exact variants. In particular, a variant that uses a
fixed step size, rather than a step chosen adaptively by a backtracking line search, attains the same order
of complexity as the other variants, despite never needing to evaluate the function itself.

Our algorithms depend on the randomized Procedure 2 to obtain a negative curvature direction or to
certify the approximate second-order optimality. Consequently, unlike the first-order optimality which
is guaranteed irrespective of the failure probability in Procedure 2, any point returned by Algorithms 3
and 4 satisfies the approximate second-order optimality condition with a high probability that depends
on the failure probability of Procedure 2, and hence can be chosen as desired.

We demonstrate the advantages and shortcomings of the approach, in comparison with other
methods, using several test problems.
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