

Search...

The Journal of the Acoustical Sc

Advanced Search | Citation Search

Sign In ∨

The Journal of the Acoustical **Society of America**

HOME BROWSE COLLECTIONS ~ PUBLISH WITH US V ABOUT ~

Volume 150, Issue **4_Supplement**

October 2021

< Previous Article

Next Article >

Meeting abstract. No PDF available.

OCTOBER 01 2021

Effect of vocal tract morphology on tongue shaping for American English / J/ FREE

Yijing Lu; Haley Hsu; Louis Goldstein; Asterios Toutios

J. Acoust. Soc. Am. 150, A188 (2021) https://doi.org/10.1121/10.0008076

♣ Split-Screen

Share ∨

₹ Tools ∨

There is a lack of general agreement among previous studies (e.g., Bakst, 2016; Dediu & Moisik, 2019; Westbury et al., 1998) on whether measurements of vocal tract morphology are robust predictors of inter-speaker variation in tongue shaping for American English /』/. One possible reason is the different quantifications of /ɹ/ tongue shapes that were employed. The current study compares the relationships between a single set of anatomical measurements and three different measures of lingual articulation for /ɹ/ in /ɑɹɑ/ in midsagittal real-time MRI data. A novel method was developed to quantify the palatal constriction location and length, which served as the first two measures of tongue shape. A linear Support Vector Machine divided the constriction location and length measures into regions that approximate the visually identified categories of "retroflex" and "bunched." The third shape measurement is the signed distance of each token of /x/ to the division boundary, representing the degree of "retroflexion" or "bunchedness" based on palatal constriction properties. These three measures showed marginally to moderately significant linear relationships with two specific measures of individual speakers' vocal tract anatomy: the degree of mandibular inclination and the length of the oral cavity roof. Overall, the effect of anatomy on the lingual articulation of / J/ is not strong. [Work supported by NSF, Grant 1908865.]

Topics

Phonetics, Machine learning, Organs

© 2021 Acoustical Society of America.

View Metrics

Citing Articles Via

Google Scholar

Most Read

Most Cited

A survey of sound source localization with deep learning methods

Magnitude of extended high frequency hearing loss associated with auditory related tinnitus distress, when controlling for magnitude of hearing loss at standard frequencies

Vibrational and acoustic communication in fishes: The overlooked overlap between the underwater vibroscape and soundscape

Online ISSN 1520-8524 Print ISSN 0001-4966

Resources

For Researchers

For Librarians

For Advertisers

Our Publishing Partners

Explore

Journals

Physics Today

Conference Proceedings

Books

Special Topics

Publishers

pubs.aip.org

About

User Guide

Contact Us

Register

Help

Privacy Policy

Terms of Use

Connect with AIP Publishing

Facebook

LinkedIn

Twitter

YouTube

