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Learning Ergonomic Control in Human—Robot
Symbiotic Walking

Geoffrey Clark

Abstract—This article presents an imitation learning strategy for
extracting ergonomically safe control policies in physical human—
robot interaction scenarios. The presented approach seeks to proac-
tively reduce the risk of injuries and musculoskeletal disorders
by anticipating the ergonomic effects of a robot’s actions on a
human partner, e.g., how the ankle angle of a prosthesis affects
future knee torques of the user. To this end, we extend ensemble
Bayesian interaction primitives to enable the prediction of latent
biomechanical variables. This methodology yields a reactive control
strategy, which we evaluate in an assisted walking task with a
robotic lower limb prosthesis. Building upon the learned interac-
tion primitives, we also present a model-predictive control (MPC)
strategy that actively steers the human-robot interaction toward
ergonomic and safe movement regimes. We compare the introduced
control strategies and highlight the framework’s ability to generate
ergonomic, biomechanically safe assistive prosthetic control. A rich
analysis of constrained MPC shows a 20 X reduction in the effects of
large perturbations on prosthetic control system. We empirically
demonstrate a 16% reduction in vertical knee reaction forces in
real-world jumping experiments utilizing our control methodology
and examine other optimal control strategies in simulated walking
experiments.

Index Terms—ILearning from demonstration, optimization and
optimal control, physical human-robot interaction, prosthetics and
exoskeletons.

1. INTRODUCTION

CRITICAL challenge in the field of prosthetics is the

development of healthy and ergonomic control of assistive
devices for those with musculoskeletal conditions. Amputations
and other musculoskeletal conditions are especially debilitating
when present in lower limbs as human adults walk, on average,
several thousand steps per day. Consequently, even minor mis-
alignments or suboptimal control trajectories can substantially

Manuscript received 26 October 2021; revised 30 April 2022; accepted 16
June 2022. Date of publication 5 October 2022; date of current version 8 February
2023. This work was supported in part by the National Science Foundation under
the career award under Grant FP00012258, and in part by the Global KAITEKI
Center. This article was recommended for publication by Associate Editor
C. Yang and Editor E. Yoshida upon evaluation of the reviewers’ comments.
(Corresponding author: Geoffrey Clark.)

The authors are with the School of Computing, Informatics and Decision
Systems Engineering, Arizona State University, Tempe, AZ 85281 USA (e-mail:
gmclark] @asu.edu; hbenamor @asu.edu).

This work involved human subjects or animals in its research. Approval of
all ethical and experimental procedures and protocols was granted by the ASU,
Institutional Review Board under Application No. 00007521, and performed in
line with The Federalwide Assurance (FWA).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR0O.2022.3192779.

Digital Object Identifier 10.1109/TRO.2022.3192779

327
and Heni Ben Amor
A - High Force Knee Force
B - Medium Force | 1000 N
C - Low Force 900 N
800 N

Fig. 1. Introduced model-predictive interaction primitive predicts the future
motion and biomechanical state of a human user during walking with a prosthe-
sis. Predictions are conditioned on the robot’s actions {A, B, C'} resulting in
variation of the future evolution of the biomechanical state (visualized by three
trajectories). The controller then chooses the control action which minimizes an
objective function, e.g., minimize the sum of ankle torques over a horizon of
future time steps.

increase the risk of further musculoskeletal injuries, such as
osteoarthritis, due to increased repetitive joint loads [1]. To
ensure the efficacy and long-term safety of such devices, it
is, therefore, critical to develop control strategies which are
responsive to the users’ actions and adaptable to their ergonomic
needs.

In this article, we characterize optimal robotic assistance as
a symbiotic interaction [2] in which a robotic device predicts
future human states and optimizes control actions to steer the
user toward healthy, ergonomic interactions. The fundamental
goal is to incorporate the biomechanical well being of the human
user into the robot control and decision-making process. To this
end, a robotic device needs to be able to anticipate the effects of
its actions on a human partner, e.g., how the ankle angle of a pros-
thesis affects future knee torques of the user, shown in Fig. 1. In
addition, such a device needs to leverage generated predictions
to optimize and plan control trajectories which preemptively
avoid high-torque states. To realize the above goals, we focus
on three technical aspects of symbiotic interactions with robotic
assistive devices: 1) biomechanical prediction, 2) inference of
prosthetic controls, and 3) optimization of control trajectories
to achieve intended biomechanical and ergonomic outcomes.
The presented control algorithm will therefore observe real-time
sensor data (as a human user is walking or otherwise interacting
with their environment) and use a learned model to estimate
an accurate control signal as well as the biomechanical state
(such as forces in the knees) of its human partner. Working
from the human-centered design perspective, we propose a
comprehensive methodology for data collection, augmentation,
and learning for human-robot symbiotic walking. Leverag-
ing a data-driven approach, we collect multimodal training
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TABLE I
HIGH-LEVEL OVERVIEW OF POPULAR DYNAMIC MOVEMENT PRIMITIVE INFERENCE METHODS

Method Model Type Inference Type  Analysis Type  Planning
Probabilistic Movement Primitives [3] (ProMP) Probabilistic Spatial Exact No
Interaction Primitives [4] (IP) Dynamical System Spatial Exact No
Interaction ProMP [5] Probabilistic Spatial Exact No
Bayesian Interaction Primitives [6] (BIP) Probabilistic Spatiotemporal Exact No
Ensemble Bayesian Interaction Primitives [7] (enBIP) Probabilistic Spatiotemporal Approximate No
Model Predictive Interaction Primitives [8] (MPIP) Probabilistic Spatiotemporal ~ Approximate MPC

demonstrations from able-bodied subjects during human-
locomotion tasks. An important feature of this method is the
reduction of training trajectories into a low-dimensional latent
space using basis function decomposition in a time-independent
phase space. We then generate a probabilistic model capable
of forecasting the future evolution of the human’s full state,
including nonobservable biomechanical variables, such as knee
reaction force or impulse. Projected estimates are incorporated
into control processes to produce an immediate reactive control
output from the subject’s observed state, detailed in Section I'V.

However, such a purely reactive control strategy does not
adequately take into account the predicted effects of a control
policy on the subject’s kinematics or kinetics. Going beyond
these limitations, we also discuss a model-predictive control
(MPC) loop which explicitly minimizes bodily stress over a
future time horizon by iteratively querying the learned model
(detailed in Section V). To demonstrate our method’s predictive
and control capabilities, we conducted a variety of simulated
and real-world experiments that involve ergonomic control of
a lower-limb prosthesis and compare the effectiveness the two
control methodologies, namely, reactive control and optimized
ergonomic control. This work builds upon our prior work in [7],
which introduced the usage of MPC for ergonomic control and
provided a demonstration on a jumping task. We substantially
expand upon this prior work by 1) providing an expanded and
detailed description of the methodology, 2) comparing reactive
control to MPC, 3) incorporating comparisons with other motor
primitive algorithms, 4) performing a perturbation analysis to
investigate robustness, and 5) expanding the evaluation our
method to a variety of tasks in both real world and simulation
(Experiments 1 and 2).

II. RELATED WORK

Recent years have witnessed substantial progress in the do-
main of wearable robotic devices, such as lower-limb pros-
thetics [8]. Early work on prosthetics control has focused on
reactive systems utilizing classical control methods, leading
to controllers for transtibial as well as transfemoral amputees
over varied terrain, such as slopes and stairs [9], [10], [11].
However, a major engineering challenge is to determine how
information from healthy humans can be used to estimate the
user’s locomotive intent, which influences both user adaptation
and ergonomy [12].

Machine learning techniques are well positioned to over-
come this challenge by modeling healthy human motion in a

data-driven fashion and applying the learned features to robotic
assistive devices. For example, the work of [13] formulates a
deep learning approach to the behavioral cloning and accurate
reproduction of a PD controller, with a recurrent neural net-
work. Such approaches utilizing neural networks have shown
remarkable predictive power in human intention prediction sce-
narios [14] including locomotion mode detection [15], terrain
recognition [16], or neural prosthetic interfacing [17]. Although
deep learning approaches are both popular and powerful, major
barriers in the fields of certification, monitoring, and verification
for deep neural networks [18], [19] currently prevent their use
in safety-critical applications, such as prosthetics and orthotics.
It has proven difficult to provide safety criteria necessary to
ensure that outputs are both within expected bounds and re-
main uninfluenced by external forces, such as adversarial
attacks [20].

An alternative, and increasingly popular, approach is the use
of probabilistic or Bayesian formulations. For example, Thatte
etal. [21] leverages sparse Gaussian processes to predict hip an-
gles and hip heights and reactively solves for prosthesis control
trajectories with a fast quadratic-program planner for real-time
trip avoidance. Locomotion research has leaned heavily on the
predictive power of Gaussian processes [22], [23], [24], [25],
likely due to their ability to use prior knowledge to generate
accurate posterior distributions with uncertainty estimates and
the ease with which Gaussian methods are integrated into exist-
ing Bayesian filtering and control methods (Kalman or particle
filters).

Another probabilistic framework termed interaction primi-
tives (IPs) [4], [6] combines a Bayesian inference scheme with
insights from dynamical movement primitives (DMPs) [26].
IPs represent expert trajectories as a weighted superposition of
basis functions and then form a probability distribution over
the resulting weights. In a similar vein, probabilistic movement
primitives (ProMP) [3] also introduced a probabilistic formula-
tion of DMPs that allows for complex inference schemes. As a
result, nearly all of the subsequent papers on interaction primi-
tives combine the interaction and phase modeling methodology
from [4] with the probabilistic representation and inference
scheme introduced [3]. This includes, for example, the work
in [27] which introduced mixture models for learning composite
behaviors.

Previous applications of IPs illustrate their efficacy in robot-
control scenarios requiring human intention prediction, e.g., col-
laborative assembly [27], catching a thrown ball [35], multiagent
handover [28], or engaging in a handshake [29]. IPs have been
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Overview diagram of our approach depicting both the training and deployment phases. The training phase is composed of the data collection and

augmentation via simulation steps, and generates a probabilistic model. The probabilistic model is queried first to generate a new state estimate given observed
sensors, and second to formulate an optimal predictive control trajectory to meet biomechanical and ergonomic objectives.

shown to be particularly well suited for predictive modeling of
human locomotion and biomechanics [7], termed “predictive
biomechanics,” through the use of 1) parameterized models for
individual agents via basis function decomposition, 2) modeling
the joint parameter distributions (covariance of basis weights),
and 3) recursive Bayesian filtering (Kalman or particle filtering).
Also of note is that although IPs generate locally optimal future
state trajectory estimates, they do not take these estimates into
account during action generation. Giving IP the ability to incor-
porate anticipated results of individual actions in an organized
way would eliminate the risk of generating unhealthy control
actions that lead to undesirable interactions or situations.
Although IPs are particularly powerful at filtering noise in
coupled human-robot systems; they require an additional sepa-
rate step to identify the temporal phase of the interaction. This
extra step is required since an interaction involves two separate
agents, one of which is strictly observed (human) and the other
strictly controlled (robot). Therefore, the controlled agent must
infer and adjust for both the temporal and spatial states of the
observed agent. As human motion is commonly represented as
a low-dimensional subspace of the high-dimensional observa-
tion space [30], [31], [32], the proposed solution to temporal
prediction in Bayesian interaction primitives (BIP) [6] is to
incorporate the system’s time dynamics into the inference prob-
lem. The joint inference in both time and space sets BIP apart
from other dynamic movement primitive methods (DMP) [33],
such as ProMP [3] which does not inherently infer the temporal
state. Specifying the time dynamics as part of the system state
has proven to be a more computationally efficient, accurate, and
robust solution than other common methods in human-robot in-
teraction (HRI) scenarios. Additionally, by incorporating a non-
linear observation function through an ensemble Kalman-based
approach Ensemble BIP (enBIP) [35] is capable of modeling
highly nonlinear physical interactions. Table I contains a high-
level overview of these DMP inference methods along with the
general model type, inference type, and analysis type for each.
While recent theoretical works have shown that IPs are
capable of robust and safe control in highly nonlinear muscu-
loskelatal systems, the control architecture remains singularly
reactive in nature [27], [34], [35]. This study goes a step further
to enable the planning of optimal trajectories for safer and more

fine-grained control of desired of control outputs. Specifically,
we illustrate how MPC [36], [37] methods are integrated with
BIPs, as an underlying model for biomechanically safe and ro-
bust control. The resulting approach is capable of optimal control
based on the future nonobservable states of the human-robot
system, and is therefore, a powerful tool for generating trajec-
tories which minimize biomechanical stresses within amputees.
Although this work singles out the biomechanical regime of
human locomotion, the methodology and data-driven framework
are applicable to a wide range of HRI scenarios.

III. LEARNING AN INTERACTION PRIMITIVE

As an imitation learning approach, the foundation of our
method is a data-driven learning framework, illustrated in Fig. 2.
The learning process consists of a) data collection, b) data
augmentation, c) latent variable modeling, and d) probabilistic
modeling. Typically, the first step in any imitation learning
approach is the recording and processing of data, in our case
human-locomotion data from a variety of sensors (e.g., IMUs,
force plates, motion capture, etc.). It is common to apply a
low-pass filter to the raw sensor readings to remove undesirable
noise from the data collection process. However, as we will be
modeling system time dynamics in a future step, extreme care
should be taken to avoid undue influence through the injected
phase lag of the filtering process. However, even correctly pro-
cessed sensor data does not always include all useful or desired
variables; in particular, including immeasurable variables, such
as knee loads, muscle forces, and prosthetic-control signals,
provides critical insights into the biomechanical or ergonomic
state of the subject. To this end, we use offline simulations and
biomechanics models in order to augment our original dataset.

The high fidelity of demonstration trajectories in time, how-
ever, poses a significant challenge with respect to the necessary
modeling complexity. We, therefore, project the trajectories into
a low-dimensional latent space via basis function decomposi-
tion. In turn, the augmented dataset is used to train a probabilistic
model of the underlying system and time dynamics, called an
enBIP, [6], [29].

The methodology discussed in the following sections extends
prior work by reformulating MPC for interaction primitives,
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Fig.3. Comparison of DMP inference methods. We specifically compared the
inference capabilities for nonobserved variables using probabilistic movement
primitives [3] (proMP), interaction primitives [4] (IP), particle filter Bayesian
interaction primitives [7] (particleBIP), and ensemble Bayesian interaction
primitives (enBIP).

while also incorporating constraints. In addition, we substan-
tially expand our experimental section to encapsulate a variety
of situations as well as robustness tests. First in Section III-A, our
data collection and augmentation process along with the chal-
lenges inherent to human walking data and control are discussed.
Next in Section III-B, we introduce the latent space formulation
and expound on prior work by including a detailed description
of von Mises basis functions and their functionality within the
context of enBIP. Section I'V then mathematically outlines enBIP
and illustrates the uses and drawbacks of enBIP in the prediction
of human walking data, including a comparative study of enBIP
against other DMP-based inference methods, such as: ProMP, IP,
and a particle filter inference method (Fig. 3). Finally, Section V
presents our MPC scheme and further illustrates both, how to
specify constraints in the optimization process, and the benefits
of constrained optimization of the systems performance (Fig. 9).

A. Data Collection and Augmentation

To collect human-locomotion demonstrations, we utilize a
diverse suite of sensors, including IMUs, smart shoes, motion
capture, and an instrumented treadmill. By utilizing high-fidelity
state-of-the-art sensor packages we insure that the collected data
are of the highest quality possible and that embedded sensors are
resilient to external perturbation. Due to the high-quality sensor
modalities, we avoid the postprocessing or filtering of raw data,
except to downsample higher rate motion-capture data to 100 Hz,
which is adequate for human locomotion. However, because
these sensors alone do not produce a sufficiently detailed repre-
sentation of human locomotion, nonobservable biomechanical
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data. Observable trajectories (top) are a measurement of the global tibia angle in
the sagittal plane, each trajectory is from an independent stride. The augmented
control trajectory (center) are collected from the angle of the ankle joint in the
sagittal plane. Finally, nonobservable variables are illustrated by ankle torque
(bottom), these variables are considered nonobservable since we cannot directly
measure them during operation.

variables are generated through the use of analytical simulation
methods, such as OpenSim [38].

Likewise, control signals can either be recorded via sensor
observations, as is the case with a PID controller tracking an
observable joint angle, or modeled to generate a more com-
plex impedance control system utilizing joint angles and mo-
ments. Regardless of which control method is employed during
the data-augmentation process, it should also be adequately
implemented and tested on prosthesis hardware to ensure a
robust control architecture. Time sequences of both observed
and augmented data are processed into N individual strides,
[¥1,---,y7,] € RPv*Tn with D, signals and T), time steps
for each of the nth demonstrations. As the following section
demonstrates, containing all demonstrations in a single matrix
simplifies the learning formulation dramatically.

An example is given in Fig. 4, which shows how human sub-
ject data are modeled and optimal control trajectories calculated.
Our example contains three modalities, (tibia angle, ankle angle,
and ankle torque) collected from 100 strides of an able-bodied
human subject walking at a fixed speed on an instrumented
treadmill. In this example, we will use the observable tibia angle
to infer the correct ankle angle and ankle torque values. Since
the ankle angle and torque and intrinsically linked we expect to
be able to modify the torque by changing the angle.

B. Latent Space Formulation

In order to reduce the dimensionality of the modeling problem
to a reasonable level we first project the data from Section I1I-A
into a latent space. The goal of the latent space formulation is



CLARK AND AMOR: LEARNING ERGONOMIC CONTROL IN HUMAN-ROBOT SYMBIOTIC WALKING 331

Von Mises Basis Function Example

0.25 Phase

0135
\\

e

0.37/

/

/ \
/ \
- \ A
“ 02— 06 10|
0.5 — 0.0
| “~Magnitude ||
\ /’y‘
\
\

///
0.6& A875
. 7

Fig. 5. Example of von Mises basis functions wrapped around a circle, with
rotation axis units in phase.

to then estimate a distribution over future observed and nonob-
served state variables Y, 1.7 given a partial observation of the
states and a prior set of N demonstrations Y17, ..., Y\

p(YA‘tJrl:T‘YLt,Y%;le--»Y{\;ITN)- (1)

This formulation, however, requires a generative model over
the observed and nonobserved variables as well as a nonlinear
transition function, which is a nontrivial challenge. Campbell
and Amor [6] proposed to rather transform the full state into a
time-invariant representation via basis function decomposition.
With basis function decomposition, we define the state space as
a linear combination of B? basis functions D, € RB? with

corresponding basis weights w? € RP “ to approximate each
state dimension d as Y{ = @7 ,,w’ + ¢,, with the transition
function represented as y; = h(¢(t), w). Note the shift into
a relative time measure known as phase ¢(t) € R, where 0 <
¢(t) <1, as well as the approximation error €. Basis function
selection is usually dependent on application and data; in this
work we utilize von Mises basis functions for their ability to
represent periodic behavior and cyclical domains

ereos((ap—p)

V(@) = 2mlo(k)

2
where the distribution mean is specified by p in 0 < p < 27
and the time scale « is set to 27 to properly scale the phase
variable depicted in Fig. 5, as well as Gaussian distributions
in noncyclical domains. Finally, ~ is the dispersion metric and
is analogous to 02 in the normal distribution, and I, is the
zero-order Bessel function. The concatenation of all basis weight
vectors w = [wT ... . wPT] € RE then forms the full state
representation, where B = Zfl) B¢, Intuitively we can refor-
mulate (1) since estimating the time-invariant w is equivalent to
estimating all temporal state values of Y into p(wi|y1.:, Wo),
where y1.; utilizes the observation of ¢ time steps. A posterior
distribution

P(We|Y 1., Wo) o p(ye|We)p(We | Y101, Wo) 3)

is attained with an application of Bayes’ rule.

Latent Space Formulation

0.8 038 038
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Fig. 6. Example with three component variables (black) decomposed into von

Mises basis functions (color) with uncertainty estimates (gray).

An example of our methodology for the latent space formu-
lation is illustrated in Fig. 6. A single observation for each of
the state variables is decomposed into a latent set of von Mises
basis functions; the cyclical nature of the data is evident as the
phase is wrapped around a circle. Gaussian and polynomial basis
functions tend to perform poorly on cyclical data as there is a
discontinuity between the end of one cycle and the start of the
next. Each basis function component is shown in color with the
uncertainty estimates places as bounds on each component.

By reducing complex nonlinear trajectories into a linear com-
bination of basis components, we enable a model of sufficient
complexity to observe a small subset of the component weights
and predict the remainder. One such model, enBIPs, has a
number of notable features, namely, 1) prediction of future
system states and, 2) inference of nonobserved variables from
observed ones, 3) providing uncertainty estimates for inferred
components, and 4) robustness against observation and process
noise as well as missing values. The functionality provided by
enBIPs, enables its use in complex human-robot interactions in
which one or more estimates of control variables are needed.
Additionally, through the data-augmentation step, enBIPs will
generate optimal inference of nonobservable biomechanical
variables, such as joint forces, moments, or muscle forces.

Continuing to Section IV we show how the latent formulation
is integrated into a Bayesian filtering process to predict the
nonobservable augmented variables from a novel set of observed
sensor data. By predicting nonobservable control variables, e.g.,
the ankle angle of the prosthesis, we enable reactive control:
the generation of control values based on the immediate sensory
context. However, the ability to perform predicted biomechanics
can be utilized in a more complex way, as shown in Section V, to
generate optimized control trajectories over a prediction horizon,
thereby maximizing user ergonomics or comfort.

IV. INFERENCE AND REACTIVE CONTROL WITH ENSEMBLE
BAYESIAN INTERACTION PRIMITIVES

Our objective is to utilize the latent space formulation of
human locomotion to generate robot control parameters in
human-robot symbiotic tasks. In order to achieve this objective,
we need the ability to perform real-time inference of the current
and future state in latent space. To this end, observed sensor
readings are passed through a Bayesian filter to generate optimal
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predictions of sensor values, nonobserved biomechanical vari-
ables, and augmented control signals. We achieve approximate
inferences regarding the posterior distribution in (3) through the
ensemble Bayesian estimation method found in [29]. Funda-
mentally, the posterior in (3) can be solved by approximating
the system state with an ensemble Bayesian filter, as long as 1)
the Markov property [39] holds and 2) we can ignore higher order
statistical moments in the state error [40]. More specifically, we
must first generate an ensemble of latent models which we select
at random from the set of example demonstrations, including
both state and time dynamics. During execution, as new sensor
data becomes available, we then propagate each member of the
ensemble one step forward with the state transition function.
Observed sensor data are then used to perform the measurement
update, perturbed with stochastic noise across the ensemble
members. The mean and covariance of the ensemble can easily
be calculated from the ensemble members and further projected
into the trajectory space by applying the linear combination
of basis functions, also known as the nonlinear observation
function. The desired reactive control values at the current
interaction phase are finally applied to the robot, while the
interaction continues. Because we extract full trajectories from
the interaction along with estimated time dynamics, this method
allows for approximate high-frequency control with periodic
low-frequency updates of the model. Which is convenient if
either the system is very complex or control is required at a very
high rate.

We start by defining an ensemble X of £ members shown
by X = [x!,...,x"]. Optimally we want to sample the ini-
tial ensemble X directly from the prior xg ~ p(wyg) for all
x¢ € Xp; however, since we do not have direct access to p(wy),
as a data-driven method, it is standard to instead sample from
observed training demonstrations. Random selection on en-
semble members is reasonable as the ensemble-based filtering
approach provides robustness against possible non-Gausian un-
certainties, provided the number of ensemble members is not
less than the number of example demonstrations £ < N. As
a two-step Bayesian estimation method, our first step approxi-
mates p(w|y1..—1, Wo) by propagating each ensemble member
forward one time step with

Xilt—l = g(xi—l\t—l) ter, 1<j<E “)

with constant-velocity state transition operator ¢(-), and noise
error €,. Next, the ensemble members are updated from the
observation and the nonlinear observation operator h(-) via

H: X1 = [h(xtl\t—l)’ R h(Xfft_l)] ' o)

H A, = Hi Xy

E

Z

E
t\t 1 E : t\t 1

(6)

Both the state transition and nonlinear observation operators
in ensemble filters differ from classical Kalman filter methods
in that they can represent any function. A notable improvement
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Algorithm 1: Ensemble Bayesian Interaction Primitives.

Inputs:
oW = [w] WN] € RB*N: N demos of B weights.
e1=[#,..., 7] € R": Reciprocal demo lengths.

e y; € RP: State observation at time .
e [/ € 7T : Number of desired ensemble members.
Outputs:
e y; € RP: State trajectory inference at time ¢.
e V; € RP: State trajectory variance at time .
1) Generate initial ensemble Xj:

xp=[0,¢/,w/], 1<j<E

¥ ==, w =w;, i~UILN)
2) Propagate each member of the ensemble one step
forward:

9y +N(0,Qi), 1<j<E

3) Perturb observation with stochastic noise for each
ensemble member:

J _
Xije-1 =

yi = [Yt+€11,,-~-7}’t+€ﬂ
4) Perform measurement update:
Xy = Xy + K(¥: — HiXy-1)

5) Precipitate inferred state and variance from ensemble:
E

1 ; 1
Ky = E in\f,_p Et\t = -1
j=1

AA]

6) Output reactive trajectory for each controlled DoF:

Vi = h(p‘t\t)v Ve = h(Zy)

7) Repeat steps 2—6.

in this formulation over previous work utilizing analytical for-
mulations, such as extended Kalman filter (EKF), is the lack of
anintroduced linearization error. The deviation of each ensemble
member from the sample mean H; A, and the observation noise
matrix R are then used to compute the innovation covariance
with
1

E-1

wy = ——(H:Ay)(H:Ay)T + R. (7

The Kalman gain is likewise calculated directly from the
ensemble, with no need to specify an explicit covariance matrix,
with

E
1 )
A= Xt\t—l T E Z Xi‘t,l 3
j=1
Kt = 7At(HtAt)TWt . (9)

E—

Lastly, the ensemble update occurs by applying the Kalman
gain to the difference between actual and expected observations
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adjustments to their stride which do not effect the observation.
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As is typical in Kalman filtering, partial observations are
sufficient to optimally estimate the full state, which we leverage
to generate a posterior over unobservable latent variables, i.e.,
biomechanics and controls. In the case of partial observations,
nonobservable variables are set to zero or random Gaussian
noise, while the observation noise is artificially inflated to insure
the filtering process rejects the nonobserved input values. A
full algorithmic description of the reactive control and inference
process is available in Algorithm1.

The inference and reactive control process is further illustrated
in Fig. 7, where from a partial observation of a single state
variable, the ensemble-based probabilistic model estimates the
nonobservable variables forward in phase via the latent for-
mulation. A critical insight at this stage is that although the
uncertainty estimate for the observable variable is exceedingly
low, showing a well-modeled system, the observable variable
does not contain information regarding the relationship between
nonobservable and control variables. While the uncertainty is,
therefore, much larger for nonobservable and control variables,
the model does, however, accurately model the expected or mean
trajectory, shown by the blue dashed line. Although a high level
of uncertainty in the control estimate is problematic, it is not nec-
essarily a failure of the model, as no model can generate accurate
estimates without necessary information. In fact, we can take the
models uncertainty about optimal the control trajectory as an
opportunity to select specific control trajectories from the latent
formulation which correspond to desirable outcomes for other

observable or nonobservable variables. For example we could
seek to minimize or maximize the ankle torque by modulating
the ankle angle.

While there is an entire family of DMP methods which
use similar motor primitive schemes with basis functions, we
ultimately settled on the enBIP inference method. EnBIP was
selected as it has the lowest error of those we tested over
long time horizons as it explicitly models the time dynamics
as part of the state. The particle filter-based BIP was a close
runner up in terms of accuracy. However, since it has not been
thoroughly evaluated in other contexts yet, we did not feel
confident applying it to human subjects. Both the vanilla Kalman
filter-based IP and ProMP models performed poorly as they
model the temporal state as a linear process, which progresses
as a function of some time value J¢. Additionally while the IP
method includes an optimal filtering process, ProMP does not
and, therefore, executed the estimated mean trajectory given the
predetermined phase. If a subject is walking at a consistently
slower or faster rate than the ProMP or vanilla IP models expect,
we get catastrophic failure of the models over time.

V. MODEL-PREDICTIVE CONTROL WITH INTERACTION
PRIMITIVES

The primary concern we address in this work is generating
control signals which conform to requirements of long-term
comfort and safety. Because enBIP models the latent formula-
tion between nonobservable biomechanics and prosthesis con-
trol variables, but cannot select an optimal control from the
range of possible solutions, we construct an efficient MPC [37]
framework to optimize the open-loop prosthesis control strategy
for more favorable biomechanical outcomes given the learned
probabilistic model. The control loop is closed by instantiating
only the first control value, and periodically recomputing the
control strategy from new observations. Of seminal importance
is the cost function structure, in which we integrate across the
latent formulation to achieve long-term estimates of the subject’s
comfort and safety as they relate to the myriad of control trajecto-
ries. Optimization, via cost function minimization, incorporates
the biomechanical and control expectations from enBIP and
effectively produces control solutions able to maximize the
health, comfort, and safety of human partners.

MPC formulations are usually noted as the optimal control
strategy u* which minimizes a specified cost function J(u). The
classical MPC method recursively modifies the control vector u
and then iteratively calls a state transition function to compute
the sum of its effects on some reference variables r out to the
specified time horizon H,

u” = argmin(J(u)) (12)
H, H,

J(w) = [IrllP+ ) [|Aul]?. (13)
i=1 i=1

A common addition to the cost function as seen in (13)
is a cost related to the deviation of the new control strategy
from the previous control strategy Au = u;_; — u; out to the
control horizon H,,. Minimizing the control deviation helps to
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ensure stability and rejection of perturbations. Building upon
(13), the latent formulation provides the notable advantage of an
analytical time-invariant composition due to the basis function
construction of the system Yf = <I>;( t)wd. We can, therefore,
simply compute the cost over the time horizon as an integration
of weighted basis functions

Aw"||? dg.

H,
J(w“):/ ||q>;(t)w7"‘”||2d¢+/
® ®
(14)

It follows that we now have a cost over the reference vari-
able weights w'l* = w"Cov(w", w") (calculated using the
covariance model from enBIP) and control trajectory change
Aw" = w¥-1 — wt (the difference between the last and cur-
rent control weights). To facilitate greater efficiency, we pull the
weight vectors out of the integration

HU

.
124s)

H,
J(w") < /¢ 19T |2 w2

H,
+ /4) 19T, I2do [aw 2 (15)

since the analytical integrals ¥,y = ff \|<I>;(t)\|2dq§ can be
precomputed and stored in a hash table trading memory for
speed. Incorporating the new cost function into the optimization

problem then resolves to
u' = argmin(¥7 p, [[w']? + @, [AwY([?)  (16)

where in the case of the Gaussian basis function, the integration
resolves to

®(g01) = — ;ﬁ%)? a7
" 2 n-o
Uy = / |@(¢o1)||? = \/7@‘20 . (18)
) Vs

Application Remark 1: It is important to note that the von
Mises basis function in (2) does not have an analytical integral as
itrequires the integration of an infinite series of Bessel functions.
The indefinite integral is therefore difficult to attain, and we
instead compute, via numerical quadrature integration [41], the
definite integral; a reasonable approximation as the upper and
lower bounds of the integration are naturally constrained in the
von Mises distribution to £.

Application Remark 2: Modern constrained optimization
solvers, such as sequential least squares quadratic programming
(SLSQP) [42], provide both fast and accurate solutions to the
optimization problem in (16). Alternately, for more robust so-
lutions multiobjective MPC solvers compute a Pareto-optimal
solution, seen in [43]. Regardless of the particular solver, upper
and lower bounds can be imposed on the control trajectory and
selected from the maximum and minimum values for each basis
function during training.

Application Remark 3: Using enBIP we are able to condition
on past events and predict future control states with a probabilis-
tic model. However, when applying this same model to the MPC
process to optimize the control trajectory for specific results we
may not want to optimize future control states based on past
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Fig. 8. Reactive versus model predictive control for walking example. Infer-
ence of the reactive control and nonobservable trajectories (blue) with uncer-
tainty estimates from a partial state observation. Using MPIP we optimize (green)
the ankle angle control to maximize the magnitude of the nonobservable ankle
torque. Intermediate optimization trajectories are shown between the inferred
and optimal trajectories.

executed controls. Recent theoretical insights [44] into learning
models for control show that conditioning on prior actions can
cause ‘“‘self-delusions,” i.e., the model takes its own actions
as evidence about the world, thereby slowly corrupting the
inference process. To avoid the occurence of such self-delusions,
we zero out all weights below the diagonal of the weight matrix
w’ ¥ from (15), which represent the delusional effects of future
controls on past actions.

An example model predictive interaction primitives (MPIP)
solution is shown in Fig. 8 for the walking problem, and com-
pared with the reactive inference and control values. In this
example, we selected a control trajectory through optimization
to maximize the magnitude of the nonobservable (ankle torque)
trajectory. Small changes in the ankle angle during pushoff,
where the peak force occurs, produce a drastic effect on the
expected torque. The intermediate lines illustrate the path the
optimization process took to maximize the ankle torque in this
example. To complete the MPC process we actuate only on
the current temporal control signal and reoptimize the entire
trajectory every time-step, thus closing the control loop.

In the walking example shown in Fig. 8 we included the con-
trol difference from (15), in which we minimize the difference
between the current and last control values u;_; — u; for the
time horizon H,, = 0.1, which is approximately 10% of the
phase. The control delta minimization keeps the control from
fluctuating too quickly. The control time horizon, therefore,
influences the robustness of the controller by filtering large
changes in the control. We illustrate the effectiveness of dif-
ferent control horizons in disturbance rejection in Fig. 9. We
compare the baseline (no MPC, blue) against MPIP (red) with
progressively increasing control horizons, while applying a large
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Fig.9. Perturbation analysis of MPIP, without the MPC portion (blue), without

constraints (yellow), and our version of MPIP with both MPC and constraints
implemented. A large Dirac delta perturbation was added to the observation, to
analyze its effects on the control output.

impulse type perturbation to the observation. The large impulse
is partially filtered by the Kalman filter, however, there remains
a significant change in the control signal, on the order of 20
degrees change. MPIP, however, cuts the effects in half and
further reduces as the time horizon approaches 1. Furthermore,
Fig. 9 shows that the application of constrained optimization
(green) in the MPC process significantly increases the rejection
of perturbations from output control signals by approximately
20x. More specifically we incorporate the error covariance from
the Kalman filter as bounds for the constrained optimization.
Utilizing MPC with enBIPs produces smooth output control
trajectories which effortlessly transition the reactive control out-
put to minimize the latent formulation. Constraints are imposed
on the MPC solution via the uncertainty bounds to give an added
measure of safety by ensuring that the MPC solution does not
deviate from the latent distribution. The full algorithmic descrip-
tion of utilizing MPC with enBIP is shown in Algorithm 2.

VI. EXPERIMENTAL SETUP

Real-World Experiments: Our experiments heavily utilize
human-subject data to train our predictive models. The fol-
lowing section details our data collection and augmentation
methodology, including sensor and algorithm descriptions for
Experiments 1 and 4. Real-world experiments were performed
in two stages: 1) data collection and augmentation and 2)
model evaluation. In the data collection phase, we performed
multimodal data collection on participants, fitted with inertial
measurement units (IMUs) on each lower-limb segment and
retroreflective markers for a VICON motion capture system,
which included a split-belt instrumented treadmill to capture par-
ticipant kinematics. Additionally, ground reaction force sensors
in the form of pressure sensitive shoes, measuring the subject’s
force at four points in the shoe (across the toes, center of the
heel, first metatarsal, and fourth metatarsal) were fitted to each
participant to capture kinetic data in environments a treadmill
cannot simulate. Each participant was then asked to perform a
specific locomotive task, such as walking or jumping.

Algorithm 2: Model Predictive Interaction Primitives.

Inputs:
oW =[w],...,wk] € RE*N: N demos of B weights.
ol=[7,..., 7] € RV: Reciprocal demo lengths.

e y; € RP: State observation at time ¢.
e I/ € Z": Number of desired ensemble members.
e J: Cost function for biomechanical optimization.
Outputs:
ey, € RP: State trajectory inference at time .
e v; € RP: State trajectory variance at time .
1) Generate initial ensemble X:
xp=[0.¢/,w/], 1<j<E
.. 1 .
J— — W =w
¢ TZ ) (2]
2) Perform steps 2-5 of Ensemble Bayesian Interaction
Primitives (Algorithm 1)
3) Calculate basis integral for necessary time horizons:

" 1412 2
V= / RGP =y e

t|t

i ~U(1,N)

1<b<B
4) Optimize control weights for cost function:
u; = argmin(J (py);, Wo:rr))
5) Output reactive trajectory for each controlled DoF:
Vi = h(pyy), Vi =h(Zy)
6) Repeat steps 2-8.

In addition to the IMU and shoe force data, we processed the
motion capture and ground reaction force data with the com-
mercially available OpenSim [38] to extract accurate kinematics
(angles/velocities) and kinetics (reflected forces and moments)
for data augmentation purposes. Because OpenSim, or any hu-
man biomechanics simulation software for that matter, has no
scientific consensus regarding its accuracy, specific quantitative
estimates may be of questionable value. We instead followed
the advice from the OpenSim best practice [45] and model, in
Section III-B, the qualitative relationships between the simulated
forces and observable sensor values as (conditional) distribu-
tions. It follows empirically that individual subject’s joint loads
may differ dramatically due to biological difference (i.e., sex,
weight, or age); however, we seek to model general trends
between variables, allowing for MPC to, later on, maximize or
minimize trajectories without focusing on quantitative values.
To ensure that data are of the highest quality, we go a step
further and incorporate sanity checks with data range, calibrate
to accurate physiological measurements, and cross-compare the
results from OpenSim with results generated from the Vicon
plug-in gait model [46] (<5% error). Overall, nonobservable
variables include: ankle angle, velocity, and moment, as well
as biomechanical variables strongly linked to osteoarthritis in
amputees, that is, the vertical knee-reaction force and medial
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knee moment. These variables were, in turn, augmented to the
recorded sensor dataset.

Although simulation and modeling strategies are the de facto
standard in the biomechanical analysis of clinical gaits, technol-
ogy does exist to measure joint forces and moments in vivo [47].
Ithas been reported in [48] “that current generic musculoskeletal
modeling techniques are able to reproduce the in vivo conditions
(i.e., ground truth) measured during walking,”. We would, there-
fore, like to highlight that our methodology is agnostic to the
type of approach used to collect the nonobserved, biomechanical
data and that it can be used with either simulations or in vivo
measurements.

In the model-evaluation phase, control methods were tested
on able-bodied subjects utilizing a powered prosthesis for the
same locomotive task. A large variety or powered prosthetics
exist, we chose to utilize the SpringActive “Ruggedized Odyssey
Ankle” [49] because its parallel elastic mechanism allows both
the prosthesis and subject to drive the interaction. The high level
of synergy between human and robot in our scenario necessi-
tates a cooperative approach to physical interaction. Subjects
participating in the real-world tests were fitted with an ankle
bypass; a carbon fiber structure molded the the foot and lower
limb and was constructed such that a prosthetic ankle can be
fitted to allow the able-bodied subject to walk on the prosthesis.
Fitting and alignment of a prosthesis with the ankle bypass is
done in much the same way as a traditional prosthesis and per
device recommendations.

All experiments with human subjects were conducted in ac-
cordance with Arizona State University Guidelines. Written in-
formed consent was obtained under an appropriate institutional
review board (IRB) review.

Simulation Experiments: To evaluate the modeling accuracy
with respect to biomechanical prediction, a simulation environ-
ment was used. Since internal biomechanical features can be
calculated directly without external sensor noise, this approach
allows for more accurate testing conditions. Simulation exper-
iments were performed in two stages 1) data collection and
augmentation and 2) model evaluation.

As a simulation environment, we utilized the winning sub-
mission from the NeurIPS Al for Prosthetics competition. The
competition focused on controlling a biomechanically realistic
musculoskeletal simulation through muscle activations and it
notably featured a passive prosthesis (spring/damper) mounted
to the right lower limb. Furthermore, the NeurIPS competition
simulator uses OpenSim in a physics-based environment to pro-
vide a physiologically accurate musculoskeletal dynamics. The
NeurIPS competition provides an excellent comparison model
since it enables access to traditionally nonobservable variables.
We performed data collection and augmentation by modifying
the simulator such that kinematic and kinetic variables, such as
joint angles and forces, are output while the winning submission
controls the model at a range of speeds from 0.5 to 1.2 m/s
to be in line with the locomotion speeds of Experiment 1.
As traditionally nonobservable biomechanical forces were the
focus of this experiment, we collected data from a multitude of
biomechanical regimes including 1) vertical knee-reaction force:
the reflected force across the knee joint as the sum of all external
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forces in the vertical world frame, 2) medial knee moment:
moment about the knee joint in the medial direction, and 3)
sum of muscle forces: aggregate of forces in right leg simulated
muscle groups, including the hamstring, biceps femoris, vasti
muscles, rectus femoris, iliopsoas, and gluteus maximus.

Model evaluation utilized an identical simulation environ-
ment, except for the addition of a controllable series elastic
actuator at the ankle joint and an accompanying PID controller.
In this control strategy, the series elastic spring is set to mimic
the quasi-static stiffness curve of the ankle during walking,
whereas the controlled actuator modifies the shape of the curve
between strides. Quasi-active control further allows for the ankle
control values to be easily tuned for different speeds or subject
conditions.

VII. EXPERIMENTS

In this section, we present experiments in the domain of
assisted mobility that highlight the capabilities of our method-
ology and compare them to other state-of-the-art methods. We
target two phases of the MPIP methodology and highlight
results in both simulated as well as real-world environments.
Experiment 1-Section VII-A and experiment 2-Section VII-B
highlight the performance of reactive control and inference of
enBIPs in human locomotion tasks. Experiment 3-Section VII-C
and experiment 4-Section VII-D add a comparison of the purely
reactive control method to MPIP by evaluating safety, comfort,
and biomechanical stresses placed on the human body.

A. Experiment 1: Reactive Control on Robotic Prosthesis

In the first experiment, we apply enBIPs to evaluate the
inference capabilities on real-world and simulated locomotion
data when predicting future reactive control and biomechan-
ical trajectories. Each participant was instructed to walk on
the instrumented treadmill at five uniformly distributed speeds
between 0.5 and 1.3 m/s.

Training incorporates both sensors and augmented biome-
chanics from OpenSim into a single model and can be seen
as a behavioral cloning approach, whereas only the inference
mechanism of the enBIP is used to generate reactive control
values from recorded joint angles. As a generic model of human
locomotion is desired, data from all five participants were com-
bined in training to form a single model. In this way, we hope to
capture as general a model as possible without imposing a single
individual’s distinct gait or posture dynamics on other subjects.
The joint subject model was tested on reserved sensor data from
each participant in a test of the model’s inference capabilities
for both observed and nonobserved variables.

Table II shows the mean absolute error (MAE) of predictions
averaged across all five subjects. Our method tracks the observed
kinematics closely, with an average error less than 1.5 degrees.
However, although the inference error of nonobserved ankle
kinematics is also very low, at approximately 1.45 degrees,
we see significantly higher errors across other biomechanical
variables including ankle moment and vertical knee force. As
suggested by [50], frequent errors in biomechanical variables
are likely driven by two factors 1) imperfect biomechanical
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Fig. 10.
TABLE II

PREDICTION ERRORS ON ALL VARIABLES

Real-World Observed Inference Error
MAE % Error  Range
GRF Vertical N 23.44 2.74 882.74
Tibia Angle deg 1.50 2.09 68.54
Tibia Velocity deg/s  10.68 2.16 484.41
Femur Angle deg 0.93 2.23 4434
Femur Velocity deg/s 931 3.27 284.88
Knee Angle deg 1.82 2.66 67.17
Knee Velocity deg/s  18.79 2.72 685.35

Real-World Nonobserved Inference Error

MAE % Error  Range
Ankle Angle deg 1.45 5.19 24.69
Ankle Velocity deg/s  30.11 6.92 320.44
Ankle Moment Nm 8.14 422 172.41
Vertical Knee Force N 43.90 9.53 458.16

modeling and 2) motion capture errors from the complacency of
soft tissues.

Knee forces are known to be especially susceptible to simu-
lation errors due to the small movement of the knee relative to
its compliance in the motion capture model and the difficulty in
modeling the complex multidimensional structure of the biome-
chanical joint. The idea that data collection and biomechanical
modeling errors compound to influence the modeling abilities
of the enBIP is further corroborated by the high noise estimate
seen in the latent variables associated with biomechanical forces
as compared to the direct kinematic measurement.

Of critical importance when evaluating machine learning
methods for powered prosthetic devices is safety. One aspect
of safety, aside from model accuracy, is the minimal deterio-
ration of projected inference due to external noise or sensor
dropout, known as graceful degradation. Graceful degradation
as exhibited during inference is shown in Fig. 11, where sensors
are iteratively removed until a single inertial sensor remains.
It can be seen that as sensors are removed, the uncertainty of
the prediction increases and inference accuracy decreases, as
expected from a loss of sensing modalities. However, the system
remains stable and does not exhibit significant or unexpected
adverse effects from the sensor dropout.

Finally, the reactive control output was used to actively control
arobotic prosthetic ankle in a real-world locomotion task, shown
in Fig. 10. The subject was asked to walk, with the assistive
device, first on a treadmill under controlled conditions and later
on a sidewalk environment using the joint model from all five test

Assisted mobility with model predictive interaction primitives running in real-time on a SpringActive Ruggedized Odyssey prosthesis.
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Fig. 12.  Comparison of able-bodied ankle angle (black) to a state-of-the-art
adaptive RNN controller [13] (green) and the enBIP inferred control (red).

subjects. Interaction between the subject and the powered pros-
thesis was successful even when performed in out-of-laboratory
conditions. Fig. 12 shows our reactive control method (in red)
and a state-of-the-art adaptive controller (in green) compared
against the expected trajectory from data collection (in black).
The adaptive recurrant neural network (RNN) controller was
trained based on the methodology of [13], while using the
SpringActive robotic prosthetic device. The adaptive RNN con-
troller utilizes the angular position and velocities from the femur
and tibia in order to compute the motor current necessary to
drive the ankle controller. The RNN controller was trained with
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TABLE III
PREDICTION ERRORS ON ALL VARIABLES

Simulation Observed Inference Error

MAE % Error Range
GRF Vertical N 41.13 3.67 1119.24
Tibia Angle deg 1.79 3.40 52.70
Tibia Velocity deg/s  50.37 7.31 689.16
Femur Angle deg 2.62 6.27 41.79
Femur Velocity deg/s  25.92 5.61 461.88
Knee Angle deg 1.64 3.37 48.51
Knee Velocity deg/s  54.96 7.81 703.40

Simulation Nonobserved Inference Error

MAE % Error Range
Ankle Angle deg 0.73 3.17 23.02
Ankle Velocity deg/s  40.50 5.51 734.52
Vertical Knee Force N 166.84 4.51 3700.71
Medial Knee Moment Nm 15.56 6.75 230.48
Sum Muscle Forces N 352.48 7.33 4809.41

early stopping to avoid overfitting and attained an mse of 7.16 in
the real-world control task. The significantly lower testing mse
of 1.81 for the enBIP model, Fig. 12 illustrates that the RNN
controller does not generalize well to unseen data. Since we train
on a limited dataset, the control output of the RNN controller
significantly deviates from the expected trajectory during the
stance phase. This insight indicates that the PID portion of the
RNN controller was not correctly trained. In comparison, the
enBIP controller accurately matched the ankle angle during
the stance phase, which further illustrates the power of our
method to correctly learn a controller from limited expert data.
Furthermore, because the enBIP implementation included multi-
modal sensor data, the controller is able to distinguish between
the stance and swing phases and apply the necessary control
outputs accordingly. In the final swing phase, the adaptive RNN
controller has a small output oscillation due to the controller not
correctly differentiating the end of one stride from the beginning
of the next. While this amounts to a minor deviation, it shows
that the adaptive RNN controller is susceptible to fluctuactions
which may lead to dangerous situations.

B. Experiment 2: Reactive Inference in Simulated Environment

An important motivation behind the use of Bayesian inference
is the ability to leverage multiple low-cost and low-quality
sensors to infer high-quality variables which would otherwise
be too (computationally or economically) costly to generate.
The underlying rationale is that such high-quality data, such as
information on human biomechanics dynamics, are available at
training time and can be used to train our models. The training
process, in turn, reveals the hidden relationships and covariances
between the high-quality data and our low-cost sensors. After
training, these relationships can be used to infer the biomechan-
ics from low-cost sensors alone.

To further evaluate the efficacy of inference for nonobserv-
able biomechanical factors, we ran a comparative analysis of
locomotion with a passive prosthesis in the simulation environ-
ment described in Section VI. Data collection in the simulation
environment focused on the variables listed in Table III, while
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training following the enBIP methodology was performed and
the resulting model was tested on a new simulation run at 0.8 m/s.
The results of this experiment are shown in Table III.

When comparing Tables III to II, it is immediately clear
that inference of direct kinematics is slightly less accurate in
the simulation environment. We postulate that the increased
modeling error derives from the lower local dynamic stability
(LDS) the simulated subject exhibits, with a Lyapunov exponent
of 1.78 in comparison to the human subject’s. However, even
with a lower LDS, inference error on biomechanical variables
is reduced by utilizing the simulated environment data. Further-
more, the simulation environment enables collection of novel
and interesting biomechanical values, such as muscle forces,
providing a detailed look into how different control strategies
may effect ergonomic quantities, such as muscle fatigue and
energy expenditure.

C. Experiment 3: Optimal Control With MPIP in Simulation

Although reactive control can be very efficient in many scenar-
ios, itdoes not take into account the future bodily ramifications of
generated robot actions. By contrast, the MPIP algorithm is able
to generate control trajectories which 1) minimize vertical force
at the knee, 2) minimize knee moment in the medial direction,
and 3) minimize muscle forces in the right leg.

To adequately train our model, we again use the winning
submission from the 2018 NeurIPS competition [51] to collect
kinematic as well as biomechanical features of locomotion,
while incorporating low-frequency pseudorandom control of the
lower-limb prosthesis. After training, we performed locomotion
experiments in the virtual environment for four different modes
1) passive prosthesis as experimental control, 2) reactive control
generated via the inference step of enBIP, 3) MPIP variant in
which the cost function minimizes vertical knee-reaction force,
and 4) MPIP variant in which the cost function minimizes muscle
forces of the amputated limb. Each cost function specified time
horizons covering the entire phase as well as equally long control
horizons to prevent high-frequency changes in the prosthesis
control from individual perturbations.

Results averaged across 60 strides from each mode are listed in
Table IV. The first, reactive controller, mode generates approxi-
mately equal internal stresses (i.e., knee forces) as compared to
the passive prosthesis, however, it exhibits a significant increase
in the LDS calculated via the Lyapunov exponent. We speculate
that empirically due to the tight coupling of the system, actu-
ating a mean or average expected trajectory from the reactive
controller posterior adds stability to the human robot system
by constantly nudging the subject toward a more dynamically
stable regime. For both healthy and pathological locomotion
analysis the LDS has been shown to be a reliable indicator of
dynamic stability corresponding to risk factors of injuries and
falls. When applying MPC in tandem with an enBIP the cost
function pertaining to a reduction in the vertical knee-reaction
force performed the best. It results in significant reductions in the
vertical knee impulse and medial knee impulse, both of which
are highly associated with increased risk of osteoarthritis [52].
Additionally, minimization of the vertical knee force produces
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TABLE IV
RESULTS OF WALKING EXPERIMENT IN SIMULATION

Simulation Experiment 60 Stride Average

Medial Knee Impulse

Vertical Knee Impulse

Muscle Impulse  Prosthetic Impulse Dynamic Stability

Control Methods (Nm- s) (N- s) (N- s) (N- s) Lyapunov Exponent
Passive Prosthesis 44.6 + 16.3 1114 + 209 1880 + 337 25.1 £+ 4.01 1.78
Interaction Primitives (enBIP) 449 + 239 1160 £ 275 1880 + 445 22.3 4+ 3.31 -0.617
MPIP (Knee Force Reduction) 294 + 12.5 913 + 245 1900 + 238 21.3 £+ 4.82 -0.226
MPIP (Muscle Force Reduction) 47.6 £ 19.2 1200 + 186 1680 + 469 239 £ 2.45 3.31
The best (lowest) values are highlighted for each optimized variable.
TABLE V

RESULTS OF REAL-WORLD JUMPING EXPERIMENT WITH A SPRINGACTIVE PROSTHESIS

Prosthesis Experiment 10 Trials

Peak Heel Force Peak Toe Force

Peak Knee Force Total Knee Impulse Impact Ankle Angle

Control Methods (Body Weight) (Body Weight) (Body Weight) (Body Weight: s) (Deg)
AB Soft Landing Training 0.211 £ 0.041 0.374 £ 0.093 2.36 + 0.355 118 £+ 16.6 -22.6 £ 3.96
AB Hard Landing Training 0.660 + 0.045 0.406 + 0.086 3.90 £+ 1.25 158 £+ 27.1 7.10 & 5.22
Interaction Primitives (enBIP) 0.333 £ 0.087 0.342 £ 0.098 2.68 + 0.687 130 £ 19.6 -11.6 £ 4.81
MPIP Reduction 0.191 +£ 0.049 0.384 £ 0.095 2.26 + 0.387 109 £ 134 -28.6 + 2.00
MPIP Increase 0.650 £ 0.048 0.321 + 0.096 3.49 + 0.989 146 £ 22.7 9.03 + 0.942
MPIP Symmetry 0.511 £ 0.059 3.98 + 0.090 2.41 + 0.764 122 £ 26.0 -14.8 £ 8.67

The best (lowest) values are highlighted for each optimized variable.

an increase in LDS and does not significantly alter the sum
of muscle forces in any way. The final MPIP cost function,
produces a reduction in muscle impulse, however, does so at
the expense of LDS. Empirically, it follows that higher muscle
forces are necessary for sufficient resilience to external perturba-
tions, which occur cyclically during locomotion with heel-strike
and toe-off.However, this control application also serves as a
warning that the model predictive controller is not a catchall
solution without a robust and effective cost function.

D. Experiment 4: Model Predictive Control on Real-World
Prosthesis

Lastly, we implemented multiple MPC control strategies for
assisted jumping with MPIP on a real-world robotic prosthetic
ankle. A subject was tasked with jumping in different ways to
generate an accurate model of joint-reaction loads in reference to
the ankle angle. We then examined the effect of different MPIP
strategies on the kinematics and biomechanics of the jump and
on the interaction between human subject and robotic prosthetic
device.

During training, an able-bodied subject performed ten vertical
jumps while landing softly and ten jumps while landing hard,
for a total of 20 jumps. To augment the sensor data estimates,
joint-reaction forces were constructed from the shoe sensors
through the Newton—Euler formulation of 3-D inverse dynamics,
by means of [53]. In our 3-D inverse dynamics formulation,
the four external forces acting on the foot are consolidated
to a singe equivalent force, and projected from the center of
pressure at the foot through a point just above the subjects
center mass (CM), known as the divergence point. Consequently,
Newton—Euler equations provide the 3-D forces and moments
as reaction forces of each body segment. Of particular note is
the use of the Gaussian basis function in this experiment, as
opposed to the von Mises basis functions used throughout the

rest of the article, resulting in greater independence between
the beginning and end of the interaction because they are not
directly connected by any single basis function. After training,
the subject performed ten trials for each control strategy, with a
carbon fiber ankle bypass which allows an able-bodied subject
to interact with a prosthesis without utilizing their own foot.
We evaluate four control strategies, with results presented in
Table V, 1) reactive control from enBIPs, 2) vertical knee
reaction force (minimization), 3) vertical knee-reaction force
(maximization), and 4) maximization of ankle angle symmetry
between left and right lower limbs. In each trial, the time horizon
was set from the current phase to the end of the interaction, with
no control time horizon.

The optimization strategies for knee force minimization
(blue), knee force maximization (red), and ankle angle symmetry
(green) are visualized in Fig. 14. In each subplot the ankle angle
control parameter is on the top and the calculated knee force
reaction on the bottom. Furthermore, the shaded areas of each
plot illustrate the difference of the optimized solution and the
mean action. Image sequences of the force minimization and
maximization solutions are presented in Fig. 13 and match up
with the plots in Fig. 14, respectively. Comparing the three
strategies by looking first at the control actions, the force re-
duction strategy (Fig. 14, blue) pushes the toe down throughout
the entire flight phase of the jump. Therefore, when the toe
touches down the internal compliant mechanism absorbs the
force over a longer time reducing the peak force substantially.
By contrast, the force increase method (Fig. 14, red) optimizes
the control trajectory to pull the toe up as fast as possible
such that little to none of the force is absorbed by the internal
compliant mechanism and is instead applied directly to the knee
joint. This is the expected result, and illustrates the algorithm’s
ability to exploit the design and construction of compliant
prosthetics. To show the wide range of optimization strategies
possible with MPIP, we applied an additional optimization
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Fig. 13. Depiction of possible variations in the jumping controller. After the initial vertical jump the optimization can yield many control solutions for landing,
such as force minimization with the toe down (top) or force maximization with the toe up (bottom).
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Fig. 14.  Three separate MPIP optimization strategies for vertical jumping with a powered prosthesis. In each experiment a subject jumps with the powered

prosthesis, while the subject is in the air the MPIP optimizes the reference angle of the prosthetic ankle in attempts to (a) reduce the internal vertical knee force,
(b) increase the internal vertical knee force, and (c) enforce symmetry between the prosthesis and intact ankles. For each optimization strategy we compare the
inferred ankle angle reference trajectory from enBIP, to the optimized MPIP ankle angle reference trajectory. By actualizing the optimized ankle angle references
trajectories with a PID controller, we compare the actual knee forces experienced by the subject with each optimization strategy.

strategy geared toward maximizing the symmetry between the
prosthetic and intact ankles (Fig. 14, green). The symmetry-
based optimization strategy pushes the toe down somewhat but
reduces the vertical knee impulse through mimicking the intact
ankle.

Although the knee force reduction (Fig. 14, blue) and symme-
try (Fig. 14, green) control trajectories differ significantly during
the jump, both methods produce decreased vertical knee reaction
forces during landing, showing that multiple mechanisms can
be exploited to reduce the risk of osteoarthritis. However, when
assessing the knee force it is clear that the knee force maxi-
mization strategy (Fig. 14, red) results in a 50% greater impact
on the subject’s knee. These optimization strategies show that
MPIP is capable of incorporating expected future outcomes into
the decision-making process.

VIII. CONCLUSION

In this article, we present a data-driven methodology for learn-
ing robot control policies that take ergonomic considerations
into account. Specifically, we present an imitation learning strat-
egy for learning MPIPs for human-robot interaction scenarios.
Once trained, these policies can be used to generate robot control
signals that are both functional and biomechanically safe. An
important element of this approach is the ability to perform
predictive biomechanics: the prediction of future nonobserved
biomechanical variables of a human partner from multimodal,
low-fidelity sensor readings of the human-robot system. In turn,
these predictions are used within an efficient MPC loop to
optimize robotic actions, so as to minimize future stress to the
human body.
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Results of Current Study: We show how IPs, in a general
sense, are a useful tool for learning predictive models that
bridge the divide between the state of the controlled system
(prosthesis), the biomechanical state of the human user, and
the required control signals. Our experiments show that we
can use these models to produce accurate estimates of human
biomechanics over a range of simulated and real-world loco-
motion tasks. We specifically tested multiple inference models,
including ProMP, IP, particleBIP, and enBIP on human subject
data to show that the nonlinear BIP-based models outperform
all others. At training time, a comprehensive dataset consisting
of both system states and high-fidelity biomechanics data was
collected. However, once a model was learned, multimodal
low-cost and fidelity sensors were sufficient to infer the human
biomechanical features. Likewise, learned predictive models
can integrate unique and interesting cost functions into the
control loop, to meet user-specific ergonomic requirements, that
is, minimization of knee loads, muscle forces, or symmetrical
constraints. In our experiments we showed, that the result-
ing MPIP approach successfully reduced vertical knee-reaction
forces by approximately 18% in simulated locomotion trials and
by approximately 16% in real-world prosthesis-assisted jumping
trials.

Safety is a critical aspect of HRI. As such, our framework
introduced safe functionality in a number or ways. 1) During
operation, our framework provided an estimate of the error
covariance, i.e., how certain the framework is about the control
outputs generated by the ensemble Kalman filter. In the case of
a large error, a default controller can be used or retraining can
be requested. 2) We incorporated ergonomic and safety-critical
features, such as joint forces to explicitly lower the risks of
secondary musculoskeletal conditions, such as osteoarthritis.
Our framework is extensible and allows for other features and
cost functions to be used should new insights in biology or
biomechanics warrant that. However, as shown in Table 1V,
optimizing for one feature might effect others, such as stability.
In such a case, a multiobjective solver may be needed. 3) To
ensure that the control output is robust and stable in the presence
of perturbations, we utilized a constrained MPC framework to
restrict the control actions to the bounds of the demonstrations.
Fig. 9 indicates that adding constrained optimization that min-
imizes the change in control output reduces the effects of a
perturbation by approximately 20x.

Limitations and Future Work: In this article, we restricted the
data collection process to focus on isolated behaviors, which is
an unrealistic expectation for real-world locomotion scenarios,
where users are expected to navigate dynamic environments,
including varying ground types, slopes, and stairs. Furthermore,
because subjects, especially those with amputations, can vary
dramatically from generic human locomotion models, we cannot
say with certainty that our models will provide safe or healthy
control for all groups. We, therefore, intend to explore calibration
of model parameters during deployment with active learning
methods to compensate for uncertainties due to abnormal gaits.
Further tailoring of predictive models to individual users would
both increase inference/control capabilities and give critical
insights into optimal fitment of prosthetic devices.

To attain longer, more comprehensive interactions, we will
further investigate Bayesian formulations which can incorporate
a diverse set of interactions in a single dexterous model. As
nonlinear features will become more important as the models
we utilize become more complex, we expect to incorporate
more powerful modeling formulations, such as neural networks
to better handle nonlinear system dynamics. Finally, because
safety is our highest priority, we expect to incorporate novel
safety features, such as barrier functions [54] or more complex
planning algorithms [55].
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