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Abstract— We introduce an imitation learning-based
physical human-robot interaction algorithm capable of
predicting appropriate robot responses in complex interactions
involving a superposition of multiple interactions. Our
proposed algorithm, Blending Bayesian Interaction Primitives
(B-BIP) allows us to achieve responsive interactions in complex
hugging scenarios, capable of reciprocating and adapting to
a hug’s motion and timing. We show that this algorithm is a
generalization of prior work, for which the original formulation
reduces to the particular case of a single interaction, and
evaluate our method through both an extensive user study
and empirical experiments. Our algorithm yields significantly
better quantitative prediction error and more-favorable
participant responses with respect to accuracy, responsiveness,
and timing, when compared to existing state-of-the-art methods.

I. INTRODUCTION

A hug is a natural embrace and one of the most common

forms of social interaction in humans and animals. Beyond

a simple salutation, it is an effective means to communicate

affection and emotional support [1], and studies have shown

hugging to cause physiological responses, thereby resulting in

cardiovascular and mental health benefits [2], [3], [4]. With

the advent of social robotics, e.g., robots in malls, homes,

and theme parks, there is an increasing need for methods

that can produce responsive and convincing hugging motions

in anthropomorphic agents. However, despite its seemingly

simple appearance, hugging is a nuanced and complex process

of physical coordination in both time and space.

When execution fails, we are often left feeling uncomfort-

able, awkward, or embarrassed – the opposite of its intended

effect. In turn, implementing such behaviors in robots is

an extremely challenging task and often circumvented in

experimental hugging robots by not reciprocating hugs [5],

[6] or executing non-adaptive, pre-defined motions [7], [8],

[9]. Adaptive hugs require a robot to anticipate the type

of hug performed, the current temporal progress, and the

upcoming motion. Consequently, it has to generate accurate

motor behavior to produce a synchronized motion with the

human partner. One challenge in this regard is that hugs

can be initiated anytime. Hence, the starting point is not

predetermined nor easily identifiable. Another challenge is

that hugs are typically fast movements with a duration of

only a few seconds. Therefore, we need algorithms that allow

robots to repeatedly (a) replan their motions in response to

(b) the predicted behavior of the human partner. Finally, due

to cultural and personal preferences, there may be a number
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Fig. 1: Robot dressed as a plush bear hugs a human partner.

of variations and styles of hugs.

We seek to address the above challenges by introducing a

human-robot interaction framework that maintains a list of

possible interactions and fluidly transitions between them in

response to the interaction partner. Traditionally, HRI methods

require us first to classify which interaction is occurring,

then proceed with that classification for the remainder of

the interaction [10], [11], or to re-classify the interaction at

discrete time intervals. However, given the dynamic nature

of human interactions, this leads to stilted HRI in which the

robot is incapable of smoothly transitioning between discrete

actions or even accounting for an interaction that is a blend

of multiple actions.

We introduce a generalized version of Bayesian Interaction

Primitives [12] in which interaction may consist of multiple

sub-actions. In this context, the original formulation may

be considered a particular case of our proposed general

form. At each time step, we assess the likelihood of a

set of possible interactions based on observations of the

human partner. The model associated with each possible

interaction is then updated based on the observations, with

the magnitude of the update weighted by the likelihood.

The intuition here is straightforward: if we are observing

a seemingly unlikely interaction, then we do not want to

update the model significantly because the observation is

unlikely to have been generated from the model. It would

only serve to distort it. Aside from being able to responsively

transition from one interaction to another at any point in

time, our approach has two subtle advantages: a) by updating

all likely interactions at every time step, we avoid a sudden

discontinuous transition between discrete interactions when

switching occurs, and b) it is possible that interaction is a
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blend of multiple discrete interactions.

We propose the following contributions in this work:

• A generalized form of Bayesian Interaction Primitives,

which removes the restriction that a single interaction

consists of only a single action.

• A probabilistic formulation in which we detect action

transitions and update a state approximation.

• An empirical study in which we demonstrate that

our formulation can successfully detect and transition

between three discrete sub-actions in a physical hugging

scenario and compare it to baseline methods.

II. RELATED WORK

A. Social and Physical Human-Robot Interaction

Intimate, social pHRI, such as hugging, has been found to

have positive effects on the human emotional state [13], [14],

[8], [6]. Subsequently, robotic hugging has been an area of

interest as it would be beneficial if robots could confer the

same positive emotional benefits as humans. While passive,

non-reciprocating huggable robots have been shown to yield

emotional, mental, and physical health benefits [15], [6], [5],

robots which actively reciprocate hugs have been found to

lead to greater interaction duration [16] and are well received

if the robot is responsive and comfortable to hug [7].

However, given the challenges involved in developing

adaptive hugging algorithms, many robots capable of re-

ciprocating hugs use pre-defined motions in a "one size fits

all" setup [8], [17], [9]. Sometimes, limited adaptability is

achieved by controlling when the hug is initiated and ended

based on visual and haptic feedback [18]. More recently,

recognition and reciprocation of intra-hug gestures have been

investigated [19], leading to another layer of responsiveness.

However, the timing and motion of the hug itself are still

largely independent of the user once initiated. It is this latter

adaptability for which we propose a solution in this work.

B. Learning Interactions with Multiple Sub-Actions

Methods to combine multiple motion actions, i.e., primi-

tives, into complex movements have been extensively studied,

both in terms of sequences [20], [21] and superpositions [22],

[23]. However, such approaches have primarily been limited

to movement generation for a robot acting independently

without coordinating its behavior with a human partner.

Methods targeting human-robot interaction scenarios are

often based on graphical models. For example, Tanaka

et al. [24] developed a Markov model-based approach to

determining which discretized state space region the human

partner would be in so the robot could act appropriately.

Koppula et al. [25] demonstrate a method based on conditional

random fields which can anticipate future human behavior

and classify the specific sub-actions. Graphical models are

employed by Hawkins et al. [26] to develop a method in

which a robot plans its actions to reduce an expected cost

associated with a human’s predicted sub-action timings.

In the method most similar to ours, Ewerton et al. [11]

present a method to accommodate multiple interaction

primitives but do not support a blend or superposition of

primitives. Additionally, this method assumes the phase is

known/fixed (where observation comes from the last time

step of interaction), and then forward control is applied to

execute the trajectory. However, we address the problem

more generally, in that phase is treated as a random variable.

Therefore, our algorithm brings novelty in the sense that we

can estimate the correct primitive at an arbitrary phase, which

does not need to be provided beforehand; and due to the

online, closed-loop nature of the inference algorithm, we can

blend between interactions in real-time. In contrast to prior

work, we present a fully probabilistic model at the motion

planning level, which infers both the current action and the

motion and temporal timing into the future.

III. METHODOLOGY

In this work, we model a single physical human-robot inter-

action as a Bayesian Interaction Primitive [12]. Each primitive

explicitly models the relationship between the measured

degrees of freedom from a set of training demonstrations,

which is then used as a prior for inference during interactions,

as depicted in Fig. 2 in the Training block.

The goal is for a robot to interact with a human partner in

real-time and infer their (a) next actions, and (b) appropriate

robot response using this prior knowledge and a sequence

of observations of the human, shown in the Testing block

of Fig. 2. We begin by describing this model in detail, then

introduce an improved version, Blending BIP (B-BIP), which

allows us to expand a single primitive to encompass multiple

interactions while enabling transitions between them.

A. Preliminaries: Bayesian Interaction Primitives

We first train the primitive using a set of demonstrations

of the desired interaction. Each demonstration consists of

observed and controlled degrees of freedom, which we model

as the matrix Y ∈ R
D×T where D = |Dc|+|Do| denotes the

total number of degrees of freedom (DoFs) in the interaction

(having the sets of DoF indices Dc from the controlled agent

and Do DoFs from the observed agent) and T samples.

These demonstrations are then transformed to a time

invariant latent space w such that ydt = hd(φ(t),wd) =
Φ⊺

φ(t)w
d + ǫy, where Φφ(t) ∈ R

1×B is a row vector of

Bd basis functions, wd ∈ R
B×1, and ǫy is i.i.d. Gaussian

noise. We use the standard Gaussian basis function in

this work, although others may be selected if appropriate

for the task domain. The full latent state representation

for a demonstration w is obtained by concatenating each

degree of freedom together, and may be solved for using

standard optimization techniques such as least squares. As is

standard [12], the basis functions are dependent on a relative

time measure referred to as phase φ(t).
During inference, we wish to estimate the latent state w

from which the inferred controlled DoFs can be retrieved,

however, it is also necessary to localize both the phase, φ, and

phase velocity, φ̇, in order to accurately perform inference

on demonstrations done at different speeds. Therefore, we

augment the state representation to be st = [φt, φ̇t,wt].
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Fig. 2: An overview of B-BIP. Top: training demonstrations (left) are decomposed into a latent space (middle) and transformed

into an ensemble of samples (right). Bottom: observations are collected during a live interaction (left) which is used to

perform filtering with the learned ensemble (middle) and produce a response trajectory (right).

Given a sequence of measurements, Y1:t, of all modalities,

we have the following probabilistic formulation

p(st|Y1:t, s0) ∝ p(yt|st)p(st|Y1:t−1, s0). (1)

As in [27], this posterior density is approximated using a

Monte Carlo method in which an ensemble of samples are

used to predict the next measurement,

x
j

t|t−1 = g(xj

t−1|t−1) +N (0,Q) . (2)

The predicted ensemble is updated based on the error obtained

from the actual measurement using a gain coefficient K, the

equations for which are omitted due to space constraints. The

interested reader can refer to the standard Ensemble Kalman

Filter (EnKF) [28] algorithm for more information.

x
j

t|t = x
j

t|t−1 +K(ỹt − h(xj

t|t−1)). (3)

The set of training demonstrations that we start with are

used to directly initialize the ensemble members, such that

E demonstrations yields E ensemble members.

B. Modeling Multiple Primitives

The BIP framework as described above only supports

modeling a single interaction at a time. In order to extend

this model to a set of interactions, we first present a

probabilistic formulation for what this entails. Suppose we

have an ensemble X in which each of the E ensemble

members belongs to a class c ∈ C, in which the set of

classes C represents different discrete interactions. This

allows us to partition X into |C| sub-ensembles, such that

X = X1 ∪ X2 ∪ · · · ∪ X |C| where a sub-ensemble Xc

contains Ec members such that E =
∑

c∈C E
c. We define

C as a random variable over the set C which indicates the

class of an interaction. Each sub-ensemble Xc is a Monte

Carlo approximation of the probability distribution for the

c-th interaction, p(st|Y1:t, s0, C = c), for which we can

marginalize out C to re-obtain the full posterior distribution:

p(st|Y1:t, s0) =
∑

c∈C

p(st|Y1:t, s0, C = c)p(C = c|Y1:t, s0). (4)

The association of each ensemble member to a class

c is static and defined in the prior distribution s0, as

demonstrations must be initially collected for each individual

interaction and hence we have a mapping from demonstrations

to classes. This allows us to calculate the posterior for a

specific class, p(st|Y1:t, s0, C = c), in a similar manner as

Eqs. 2-3 but limited to the ensemble members x ∈ Xc; this

is covered in Sec. III-D. We do not restrict ourselves to the

case that C is fixed to a single value c; an interaction may

transition between multiple classes over time. Therefore, the

interaction scenarios examined in previous works are special

cases of this formulation and only take on one class value.

C. Interaction Detection

In this work, we peform Reduced-Rank Linear Discrim-

inant Analysis (LDA) for computing the probability of

the interaction class, given the current observations of the

human. For each interaction class, c ∈ C, let Y
(c)
i ∈ R

D×T

represent the i’th demonstration from the set of training

demonstrations of the corresponding class. Here, 1 ≤ i ≤
N (c), with N (c) denoting the total number of demonstrations

for class c. Let the within-class demonstration matrix be

defined by M (c) = [(Y
(c)
1 )Do,: , . . . , (Y

(c)

N(c))Do,:] and the

between-class demonstration matrix be defined by M =
[

M (1), . . . ,M (|C|)
]⊤

. Next, a low-rank representation of

M is found using Multiple Discriminant Analysis [29],

[30]. To perform dimensionality reduction, we compute the

solution of the Rayleigh coefficient, which is the ratio of the

between class scatter to within class scatter. Let SW denote

the within-class scatter matrix; i.e, the prior-weighted sum of

within-class covariance matrices. Here, µ(c) ∈ R
|Do| is the

mean of the columns of M (c).

The total scatter matrix, ST , is the covariance over the

dataset, M , and the between-class scatter matrix is defined

as SB = ST − SW . We obtain the eigenvectors, wi, of

the transformation matrix, W , which maximize the ratio of

between-class scatter to within-class scatter by solving (SB−
λiSW )wi = 0. Let Wk be the reduced-rank representation of

W , with eigenvectors corresponding to the k = |C|−1 largest

eigenvalues. The distribution of samples are projected onto

the k-dimensional subspace spanned by Wk. For notational

simplicity, let Z = W⊤
k M and zt = W⊤

k yDo

t . The posterior

density is computed as:

log p(C = c | Y1:t, s0)

= log p(Y1:t, s0 | C = c) + log p(C = c) + η

= −
1

2
(zt − µZ(c))⊤Σ−1

Z (zt − µZ(c))

+ log p(C = c) + η. (5)



Fig. 3: An example of a left-high to right-high interaction.

Left: The participant starts with a left-high interaction. Middle:

When switching to the right-high hug, the robot responds

accordingly. Right: The participant hugs the robot.

After dropping the quadratic term z⊤
t Σ−1

Z zt from 5, which

is independent of c, we get the resulting form,

log p(C = c | Y1:t, s0) = β⊤
c zt + βc0. (6)

where βc = Σ−1
Z µZ(c) and βc0 = − 1

2µ
⊤
Z(c)Σ

−1
Z µZ(c) +

log π(c). The posterior can now be computed by applying the

softmax function,

p(C = c | Y1:t, s0) =
eβ

⊤

c zt+βc0

∑

j∈C eβ
⊤
j
zt+βj0

. (7)

We assume a prior proportional to the number of samples in

each training set; i.e, p(C = c) = π(c) = N(c)
∑

j∈C N(j) .

D. Interaction Transition

When calculating Eq. 4 we must be careful to weight the

magnitude of the ensemble update with the class probability.

The intuitive reason is that the standard ensemble member

update of Eq. 3 assumes that the observation was generated

from a distribution approximated by that ensemble. However,

if there is only a small probability that the observation was

generated from a particular sub-ensemble and we apply a

full-magnitude update then we potentially skew the ensemble

members with an out-of-distribution measurement. Thus,

unlike Eq. 3, we now weight the gain coefficient with Eq. 7:

x
j

t|t =x
j

t|t−1+

p(C = c | Y1:t, s0)K(ỹt − h(xj

t|t−1)) (8)

for all xj ∈ Xc and all c ∈ C.

IV. EXPERIMENTAL DESIGN

In order to empirically evaluate our algorithm, we conduct

an IRB-approved participant study consisting of a hugging

scenario between a robot and a human.

A. Training Data Collection

Motion capture data is collected at 120 Hz from participants

wearing a hat and a wrist band on each hand, totaling three

observed modalities. 15 demonstrations of each interaction

type (left-high, middle, and right-high) are collected from 15
different participants, totaling 225 demonstration hugs per

interaction class and 675 in total. The term left-high is used to

indicate an interaction where the left hand of the robot and the

human are raised such that the human’s left hand approaches

the robot over its right shoulder; the same symmetry holds

for the right-high interaction, and middle is used to denote

a hug where the robot hugs with arms at the same height
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Fig. 4: Top left: The observed z positions of the participant’s

hands and the robot’s end effectors during a right-high to left-

high interaction. Bottom left: The corresponding interaction

class weights for each hug type, with vertical area equal to

the class probability. Right: The trajectory of the observed

DoF (black arrows) projected to the reduced-rank LDA space,

overlaid on the distributions (circles) for each hug type.

(see Fig. 3). We applied a response elicitation technique [31],

where the robot actuates according to an open loop control

policy and the human responds accordingly. Outlier training

demonstrations, which have any DOF value outside of four

standard deviations from the distribution of demonstrations

at the same point in time, are removed from the dataset.

After which, an 80 − 20 percent train-test split is used to

train and validate the methods for mean-squared error (MSE)

comparison. This results in 439 training demonstrations and

110 validation demonstrations.

B. Prediction Methods

The goal of the study is to compare 1) B-BIP, 2) BIP,

3) Probabilistic Movement Primitives (ProMP) [11], [32],

[23], and 4) a LSTM network, all of which are evaluated on

non-switching interactions (left-high, middle, and right-high

hugs) as well as on switching interactions (transitions from

either left-high to right-high or right-high to left-high hugs).

The LSTM architecture contains: 28 hidden units (twice the

number of DOFs from the robot), a dropout layer with rate

of 0.2, a batch normalization layer, a fully-connected layer

with 28 units, and a fully-connected layer with 14 units at the

output. In the case of ProMP, phase estimation is performed

via Dynamic Time Warping (DTW) as described in [32]. All

methods are trained on the 439 demonstrations previously

described; the alternative methods treat each interaction as

one class, while Blending takes into account the interaction

class labels.

C. Experimental Hypotheses

We identified three important factors to be evaluated when

comparing the B-BIP to the alternative methods. After every

hug, we ask the following questions:

1) On a scale of 1 to 5, how good was the timing of the

robot during the interaction?
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Fig. 5: Distribution of scores for the three questions- which

are used for hypothesis tests- after switching interactions.

2) On a scale of 1 to 5, how well did the robot match

your type of hug during the interaction?

3) On a scale of 1 to 5, how responsive was the robot to

your motion?

We state our main hypotheses – which are applied to both

non-switching and switching interactions – as follows:

• H1: Proposed method better matches the hug type than

baseline methods.

• H2: Proposed method has better timing than baseline

methods.

• H3: Proposed method elicits more responsive behavior

than baseline methods.

D. Participant Study

The participant study was conducted on 22 new participants

whose data was not used to train the methods, including 4
female and 18 male participants between the ages of 18
and 53. A preliminary power analysis for the Wilcoxon test

(which we use to conduct our hypotheses, see Section V)

indicates that a sample size of n = 20 is sufficient to achieve

a power level of 0.9, hence the number of participants. Every

participant performed 24 hugs such that each method was

deployed on the three non-switching interactions (totaling

12) and on switching interactions for the remaining 12. For

every hug, the participant is assigned an interaction and the

robot is assigned a method, both of which are randomly

drawn without replacement. In the switching interactions,

participants performed left-high to right-high hugs, right-high

to left-high hugs, and a randomly chosen option from the

former two interactions. This setup ensures that both switching

and non-switching interactions have the same number of

samples for every hypothesis test.

E. Quantitative Experimental Design

In addition to the participant study, offline experiments are

conducted to quantitatively evaluate the performance of our

proposed algorithm against the baseline methods in terms of

MSE. All methods predicted a response for the demonstrations

in the validation set as well as for demonstrations from a set of

unseen switching interactions. In order to get the ground truth

Switching H1: p-value H2: p-value H3: p-value

B-BIP vs. BIP
B-BIP vs. ProMP
B-BIP vs. LSTM

3.62× 10
−7

1.94× 10
−6

6.56× 10
−8

6.16× 10
−7

1.25× 10
−7

2.27× 10
−7

6.64× 10
−4

9.85× 10
−2

1.82× 10
−4

Supported Yes Partially Yes

Non-Switching H1: p-value H2: p-value H3: p-value

B-BIP vs. BIP
B-BIP vs. ProMP
B-BIP vs. LSTM

1.00 1.21× 10
−1

1.00

2.29× 10
−1

3.08× 10
−3

1.59× 10
−2

4.80× 10
−4

1.40× 10
−4

5.70× 10
−5

Supported Partially Partially Partially

TABLE I: Top: p-values for Switching Interactions. Bottom:

p-values for Non-Switching Interactions. Grey cells indicate

a p-value greater than α = 0.05.

dataset for the switching interactions, we manually design

hug trajectories where the robot transitions from left-high

to right-high and from right-high to left-high. We collect

25 demonstrations of the left-to-right interaction and 25
demonstrations of the right-to-left interaction. Here, each of

the 5 participants partake in 5 demonstrations per switching

interaction, where the robot executes the designed trajectories.

After which, outliers are removed in the same manner as the

validation set, resulting in 39 demonstrations in total.

V. RESULTS AND DISCUSSION

In the following section, we discuss the performance of

our proposed method by analyzing participant responses and

MSE prediction values with regard to the given hypotheses.

Figure 3 shows an example an interaction where the human

switches from a left-high to a right-high hug and the robot

reciprocates appropriately. Additionally, Figure 4 displays

predictions from Blending BIP during a right-high to left-high

interaction with a test participant. The top left plot shows

the trajectories from the human and robot DoFs during the

interaction. The bottom left plot shows the inferred weights

for each interaction, indicating which interaction Blending

BIP model estimates is active at every time step.

A. Survey Responses

Participant survey responses are visualized in Fig. 5 as a

histogram, where we can qualitatively observe a difference

in distributions. Notably, B-BIP yields the largest number

of survey responses with a maximum score of 5 for each

question. When performing hypothesis tests, we cannot make

the assumption that responses across different treatments are

independent; namely, every participant partakes in the same

set of methods. Additionally, given that the variable of interest,

score, takes on an integer value from 1 through 5 (as in the

Likert scale) and that the scores do not appear to be normally

distributed, we opt to use a paired non-parametric hypothesis

test. A one-way repeated measures analysis of variance is

conducted to test for differences in methods across participant

responses by using the Friedman test. After obtaining a p-

value of p < 10−5, we perform post-hoc analysis by applying

the two-sided Wilcoxon signed-rank test to every baseline

method paired with our proposed method. To account for
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and robot trajectories over all switching interactions from the

participant study (see Section V-B).

multiple comparisons, a Bonferroni correction is applied.

This procedure is performed separately for non-switching and

switching interaction scores. For a given hypothesis test, there

are 66 pairs of responses (i.e, 22 participants who perform 3
switching/non-switching interactions), and each pair contains

the participant’s scores to the question of interest for the

methods being compared.

The resulting significance results are shown in Table I. For

switching hugs, we find that participants strongly preferred

B-BIP over all baseline methods with respect to hugging

type, timing, and responsiveness. Hypotheses H1 and H3

were fully supported with participants reporting B-BIP to

offer improved timing and responsiveness over BIP, ProMP,

and LSTM. Hypothesis H2 was partially supported, with

participants finding B-BIP to yield better timing than BIP

and ProMP with statistical significance, but not to LSTM.

Responses are more mixed for non-switching hugs, as partic-

ipants did not prefer B-BIP over BIP in any category, while

preferring B-BIP over ProMP only in terms of timing (H2)

and responsiveness (H3). These results are not unexpected, as

any given single interaction falls within the prior distribution

modeled by BIP, which means it is not unreasonable for B-BIP

to perform similarly. B-BIP was, however, preferred over the

LSTM for all categories, indicating that LSTM struggled to

generalize with the small number of training demonstrations.

B. Interaction Responsiveness

In order to further assess the responsiveness, we evaluate

how well the robot matched switching interactions from

the group of test participants. We calculate the translation

(backwards in time, in seconds) which, when applied to the

robot end effector trajectories, maximizes the sum of the

Pearson correlation coefficients from: 1) the z position of

the human’s right hand with the z position of the robot’s

eight end effector, and 2) the z position of the human’s left

hand with the z position of the robot’s left end effector.

Namely, samples from these matching modalities (from

the recorded test interactions) are paired to compute the

correlation coefficients, and the average is taken over all

switching interactions for every method. These calculations

Switching Non-Switching

BIP 0.127 ± 0.008 0.040 ± 0.002
ProMP 0.128 ± 0.005 0.036 ± 0.001
LSTM 0.107 ± 0.005 0.102 ± 0.004
B-BIP 0.062 ± 0.005 0.018 ± 0.000

TABLE II: MSE values of the controlled DoFs (predicted

at each time step) compared to the ground-truth response,

using all validation demonstrations. Green cells indicate the

method with the smallest mean values. Tukey’s Range Test

indicates statistical significance for B-BIP in all cases, having

p < 10−5 in all cases.

take advantage of the symmetrical nature of the interaction,

and the intuition here is that preferable methods should exhibit

strong correlations with the participant within a small time

lag, especially when the switching occurs- with a perfect

response having zero time delay. Figure 6, shows that B-BIP

has a correlation which is maximized at the smallest time

delay of all methods, and B-BIP produces the highest total

correlation (i.e, is the sum of the correlations coefficients

from the left and right matching modalities), with a value

of 1.31 out of a a maximum value of 2.0. These findings

provide further support toward the hypothesis that B-BIP

exhibits better responsiveness during switching interactions.

C. Quantitative Analysis

The MSE values for all controlled DoFs in the quantitative

offline experiments are shown in Table II. We find that B-BIP

yields significantly lower prediction errors than all baseline

methods for both switching and non-switching hug types.

From the significance in switching hug types, we can conclude

that the interaction detection mechanism works as intended

and yields more accurate inference than BIP. The significance

for non-switching hugs is somewhat surprising given the

lack of statistical significance in the survey responses for

the non-switching hugs in Sec. V-A, and we conjecture that

error values of this magnitude do not always consistently

result in noticeable behavioral differences. It is clear, however,

that despite non-switching hugs falling within BIP’s prior

distribution, the wider distribution results in significantly

larger spatio-temporal errors when compared to the per-

interaction priors of B-BIP.

VI. CONCLUSION

In this paper we present a method for learning and blending

human-robot interactions from demonstration. A carefully-

designed user study is conducted to validate whether our

method produces a more responsive, timely, and suitably-

matching behavior, all of which are supported through

qualitative and quantitative analysis. Notably, Blending BIP

achieves 1) the highest correlation and lowest response

lag with test participants, 2) a nearly twofold reduction in

mean-squared prediction error compared to the second-best

methods, and 3) statistically significant participant responses

on switching interactions for most hypotheses.
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