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Abstract

Training language-conditioned policies is typically time-consuming and resource-intensive. Additionally, the resulting con-

trollers are tailored to the specific robot they were trained on, making it difficult to transfer them to other robots with different

dynamics. To address these challenges, we propose a new approach called Hierarchical Modularity, which enables more

efficient training and subsequent transfer of such policies across different types of robots. The approach incorporates Super-

vised Attention which bridges the gap between modular and end-to-end learning by enabling the re-use of functional building

blocks. In this contribution, we build upon our previous work, showcasing the extended utilities and improved performance by

expanding the hierarchy to include new tasks and introducing an automated pipeline for synthesizing a large quantity of novel

objects. We demonstrate the effectiveness of this approach through extensive simulated and real-world robot manipulation

experiments.

Keywords Language-conditioned learning · Attention · Imitation · Modularity

1 Introduction

The word robot was introduced and popularized in the Czech

play, “Rossum’s Universal Robots”, also known as R.U.R.

In this seminal piece of theatre, robots understand and carry

out a variety of verbal human instructions. Roboticists and

AI researchers have long been striving to create machines

with such an ability to turn natural language instructions into

physical actions in the real world (Jang et al., 2022; Step-
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puttis et al., 2020; Lynch and Sermanet, 2021; Ahn et al.,

2022; Shridhar et al., 2021). However, this task requires

robots to interpret instructions in the current situational and

behavioral context in order to accurately reflect the inten-

tions of the human partner. Achieving such inference and

decision-making capabilities demands a deep integration of

multiple data modalities—specifically, the intersection of

vision, language, and motion. Language-conditioned imita-

tion learning (Lynch and Sermanet, 2021; Stepputtis et al.,

2020) is a technique that can help address these challenges

by jointly learning perception, language understanding, and

control in an end-to-end fashion.

However, a significant drawback of this approach is that,

once trained, these language-conditioned policies are only

applicable to the specific robot they were trained on. This is

because end-to-end policies are monolithic in nature, which

means that robot-specific aspects of the task, such as kine-

matic structure or visual appearance, cannot be individually

targeted and adjusted. While it is possible to retrain the policy

on a new robot, this comes with the risk of catastrophic for-

getting and substantial computational overhead. Similarly,

adding a new aspect, behaviors, or elements to the task may

also require a complete retraining.

This paper tackles the problem of creating modular

language-conditioned robot policies that can be re-structured,
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Fig. 1 Our proposed method demonstrates high performance on a vari-

ety of tasks. It is able to transfer to new robots in a data-efficient manner,

while still keeping a high execution performance. It also accepts adding

new behaviors to an existing trained policy. Besides them, we also

demonstrate the ability to learn relational tasks, where there are two

objects involved in the same sentence

extended and selectively retrained. Figure 1, depicts a set of

scenarios that we want to address in this paper. For exam-

ple, we envision an approach which allows for the efficient

repurposing and transfer of a policy to a new robot. We also

envision situations in which a new behavior may be added

to an existing policy, e.g., incorporating obstacle avoidance

into an existing motion primitive. Similarly, we envision

situations in which the type of behavior is changed by incor-

porating additional modules into a policy, e.g., following

human instructions that define a relationship between multi-

ple objects, such as, “Put the apple left of the orange!”.

However, the considered modularity is at odds with the

monolithic nature of end-to-end deep learning. To overcome

this challenge, the paper proposes an attention-based method-

ology for learning reusable building blocks, or modules, that

realize specialized sub-tasks. In particular, we discuss super-

vised attention which allows the user to guide the training

process by focusing the attention of a sub-network (or mod-

ule) on certain input–output variables. By imposing a specific

locus of attention, individual sub-modules can be guided to

realize an intended target functionality. Another contribution,

called hierarchical modularity, is a training regime inspired

by curriculum learning that aims to decompose the over-

all learning process into individual subtasks. This approach

enables neural networks to be trained in a structured fashion,

maintaining a degree of modularity and compositionality.

Our contributions can be summarize and extend our prior

work in Zhou et al. (2022) as follows: (1) we propose a

sample-efficient approach for training language-conditioned

manipulation policies that allows for rapid transfer across

different types of robots; (2) we introduce a novel method,

which is based on two components called hierarchical mod-

ularity and supervised attention, that bridges the divide

between modular and end-to-end learning and enables the

reuse of functional building blocks; (3) we demonstrate that

our method outperforms the current state-of-the-art methods

[BC-Z (Jang et al., 2022) and LP (Stepputtis et al., 2020)]; (4)

we extend the methodology by creating more complex tasks

that incorporate obstacle avoidance and relational instruction

following. Finally, we also perform an extensive number of

experiments that shed light on generalization properties of

the our methodology from different angles, e.g., dealing with

occlusions, synonyms, variable objects, etc (Fig. 1).

2 Preamble: how generative AI helped write
the paper

This paper largely centers around the training of generative

models at the intersection of vision, language and robot con-

trol. Besides being the topic of the paper, generative models

have also been instrumental in writing this paper. In partic-

ular, we incorporated such techniques into both (a) the text

editing process when writing the manuscript, as well as (b)

the process of generating 3D models and textures of manip-

ulated objects.

For text editing, we utilized GPT-4 (OpenAI, 2023) to iter-

atively revise and refine our initial drafts, ensuring improved

readability and clarity of the concepts discussed. We achieved

this by conducting prompt engineering and formulating a

specific prompt as follows:

“Now you are a professor at a top university, studying

computer science, robotics and artificial intelligence. Could

you please help me rewrite the following text so that it is

of high quality, clear, easy to read, well written and can be

published in a top level journal? Some of the paragraphs

might lack critical information. If you notice that, could you

please let me know? Let’s do back and forth discussions on

the writing and refine the writing.”

We initiate each conversation with this impersonation

prompt, followed by our draft text. GPT-4 then returns a

revised version of the text, ensuring the semantics remained
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Fig. 2 Using generative models to automatically synthesize an unlimited set of 3D models

unaltered while updating the literary style to incorporate pro-

fessional terminology and wording, as well as a clear logical

flow. This prompt also encourages GPT-4 to solicit feedback

on the revised text, thus facilitating back-and-forth conver-

sations. We manually determine when a piece of writing has

been fine-tuned to a satisfactory degree and bring the con-

versation to a close.

With regard to the generation of 3D models and assets, we

created a new pipeline for automated synthesis of complete

polygonal meshes. Figure 2(top row) depicts the individual

steps of this process. First, we synthesize an image of the

intended asset using latent diffusion models (Rombach et al.,

2022) to produce an image of the required asset. We provide

as input to the model a textual description of the asset, e.g.,

“A front image of an apple and a white background.”. In turn,

the resulting image is fed into a monocular depth-estimation

algorithm (Ranftl et al., 2022) to generate the corresponding

depth map. At this stage, each pixel in the image has both

(1) a corresponding depth value and (2) an associated RGB

texture value. To generate a 3D object, we take a flat mesh

grid of the same resolution as the synthesized RGB image.

We then perform displacement mapping (Zirr and Ritschel,

2019) based on the values present in the depth image. Within

this process, each point of the originally flat grid gets elevated

or depressed according to its depth value. The result is a 3D

model representing the front half of the target object. For the

sake of this paper, we assume a plane symmetry—a feature

that is common among a large number of household objects.

Accordingly, we can mirror the displacement map in order to

yield the occluded part of the object. Finally, we also apply

a Laplacian smoothing operation (Sorkine et al., 2004) on

the final object. Texturing information is retrieved from the

source image. This automated 3D synthesis process allows us

to rapidly generate a potentially infinite number of variants of

an object. This is particularly useful when studying the gener-

alization capabilities of a model. It also completely removes

any 3D modeling or texturing burden. At the moment, the

pipeline is limited to symmetric objects.

3 Related work

Imitation learning offers a straightforward and efficient

method for learning agent actions based on expert demon-

strations (Dillmann and Friedrich, 1996; Schaal, 1999; Argall

et al., 2009). This approach has proven effective in diverse

tasks including helicopter flight (Coates et al., 2009), robot

control (Maeda et al., 2014), and collaborative assembly.

Recent advancements in deep learning have enabled the

acquisition of high-dimensional inputs, such as vision and

language data (Duan et al., 2017a; Zhang et al., 2018a;

Xie et al., 2020)—partially stemming from improvements

in image and video understanding domains (Lu et al., 2019;

Kamath et al., 2021; Chen et al., 2020; Tan and Bansal,

2019; Radford et al., 2021; Dosovitskiy et al., 2021), but

also in language comprehension (Wang et al., 2022; Ouyang

et al., 2022). Specifically, the work presented in Radford

et al. (2021) paved the way for multimodal language and

vision alignment. The generalizability of such large mul-

timodal models (Singh et al., 2022; Alayrac et al., 2022;

Ouyang et al., 2022; Zhu et al., 2023) enables a variety of

downstream tasks, including image captioning (Laina et al.,

2019; Vinyals et al., 2015; Xu et al., 2015), visual ques-

tion answering systems (VQA) (Antol et al., 2015; Johnson

et al., 2017), and multimodal dialog systems (Kottur et al.,

2018; Das et al., 2017). However, most importantly, these
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models have shown their utility when learning language-

conditioned robot policies (Shridhar et al., 2021; Nair et al.,

2022) that conduct a variety of manipulation tasks (Lynch

and Sermanet, 2021; Stepputtis et al., 2020; Jang et al., 2022).

Utilizing multimodal inputs for task specification and robot

control (Anderson et al., 2019; Kuo et al., 2020; Rahmati-

zadeh et al., 2018; Duan et al., 2017b; Zhang et al., 2018b;

Abolghasemi et al., 2019; Mees et al., 2022) plays a cru-

cial role, as the environment and verbal instruction needs to

be grounded across modalities. Most notably, BC-Z (Jang

et al., 2022) proposes a large multimodal dataset which is

trained via imitation learning in order to complete a variety of

diverse household tasks. Similar in spirit, LanguagePolicies

(LP) (Stepputtis et al., 2020) learns a language-conditioned

policy to comprehend commands that describes what, where

and how to do a task, but describes the outputs of the policy in

terms of a dynamic motor primitive (DMP) (Schaal, 2006).

Going beyond single instruction following, SayCan (Ahn

et al., 2022) focuses on planning of longer horizon tasks and

incorporates prompt engineering. Most recently, even large

language models have achieved impressive performance on

embodied agents (Vemprala et al., 2023), with a push to gen-

erally capable agents that can play Atari, caption images,

chat, and stack blocks with a real robot arm (Reed et al.,

2022).

While these model achieve impressive performance, they

usually require large quantities of data and are mostly “black

box” approaches that do not lend themselves well to human

interpretation in case the policy behavior is not perform-

ing as desired. A potential solution to this problem that

retains the end-to-end training benefits of deep learning

is the utilization of a modularized approach, allowing the

creation of entire policies from a set of modules that can

afford additional insights into the inference process of the

neural network. Such modularization can be achieved by

introducing auxiliary tasks that have shown to improve pol-

icy performance (Huang et al., 2022). Recent works on

modularity investigate the question of whether “modules

implementing specific functionality emerge” in neural net-

works automatically (Csordás et al., 2021; Filan et al.,

2020). However, in contrast to these emergent modularity

approaches, our prior work (Zhou et al., 2022) introduced

supervised attention, together with a hierarchical learning

regime akin to curriculum learning. Originating in machine

translation (Liu et al., 2016), supervised attention and hier-

archical modularity allow for such functional modules to be

implemented in a top-down manner. In this work, we delve

deeper into the benefits of this approach by investigating how

it can be extended to more complex tasks including obstacle

avoidance and instructions utilizing referential expressions

across tasks that utilize a large qunatity of automatically gen-

erated scene objects.

4 Methodology

In this section, we present our approach for modularity in

language-conditioned robot policies. The main objective of

the approach is to build neural networks out of composable

building blocks which can be reused, retrained and repur-

posed whenever changes to the underlying task occur. A

distinguishing feature of our approach is its modular training,

while maintaining end-to-end learning benefits. In particu-

lar, the shift from training individual components to training

the complete network occurs progressively, yet modules can

be trained quickly without requiring gradient propagation

throughout the entire network. Owing to its modularity, πθ

can be transferred to a new robot in a sample-efficient man-

ner. The modular nature of the resulting neural networks also

enables easy introspection into the intermediate computation

steps at runtime.

The introduced methodology builds upon two essential

components, namely supervised attention and hierarchical

modularity—two ingredients that are used in conjunction

to crystallize individual modules within an end-to-end deep

learning system. Subsequently, we first introduce the prob-

lem statement underlying language-conditioned imitation

learning. Thereafter, a detailed description of the training

process is provided. Initially, we focus on efficient training of

language-conditioned policies that can be transferred across

a variety of robots. Thereafter, we shift our focus to the ques-

tion of how new modules can be incorporated or how multiple

modules can be interrelated.

4.1 Problem statement

In Language-Conditioned Imitation Learning (Lynch and

Sermanet, 2021; Stepputtis et al., 2020), the goal is to learn

a policy πθθθ (a | s, I) that can execute a human instruction

while taking into account situational and environmental con-

ditions. The result of the learning process is a deep neural

network parameterized by weight vector θ . Input s is a ver-

bal task instruction provided by a human whereas I is an

image captured by an RGB camera mounted on the robot.

Throughout this paper, policy πθθθ is trained to generate an

action a ∈ R
7 containing the Cartesian position (x, y, z)

and orientation (r , p, y) for the robot end-effector, as well

as a binary label g = {open, closed} indicating the gripper

state. Policies are trained following the imitation learning

paradigm from a dataset D = {d0, . . . , d N } of N expert

demonstrations and corresponding verbal commands. In this

dataset, each demonstration dn represents a sequence with T

steps ((a0, s0, I0), . . . , (aT , sT , I T )). Each step in demon-

stration dn is defined as a tuple (at , st , I t ) containing the

action, language command, and image at time step t . Upon

completion of training, the policy is expected to execute novel

configurations of the task.
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Fig. 3 Overview: different input modalities, i.e., vision, joint angles

and language are fed into a language-conditioned neural network to

produce robot control values. The network is setup and trained in a

modular fashion—individual modules address sub-aspects of the task.

The neural network can efficiently be trained and transferred onto other

robots and environments (e.g. Sim2Real)

4.2 Trainingmodular language-conditioned policies

Our overall method is illustrated in Fig. 3. First, camera

image I is processed together with a natural language instruc-

tion s and the robot’s proprioceptive data (i.e., joint angles)

through modality-specific encoders to generate their respec-

tive embeddings. The resulting embeddings are subsequently

supplied as input tokens to a transformer-style (Vaswani et al.,

2017) neural network consisting of multiple attention lay-

ers. This neural network is responsible for implementing the

overall policy πθ and produces the final robot control signals.

The encoding process ensures that distinct input modal-

ities, e.g., language, vision and motion, can effectively be

integrated within a single model. To that end, Vision Encod-

ings eI = fV (I) are generated using an input image

I ∈ R
H×W×3. Taking inspiration from (Carion et al., 2020;

Locatello et al., 2020), we maintain the original spatial

structure while encoding the image into a sequence of lower-

resolution image tokens. The resolution is reduced via a

convolutional neural network while increasing the number of

channels, yielding eIII ∈ R
(H/s)×(W/s)×d , with s representing

a scaling factor and d denoting the embedding size. Conse-

quently, the low-resolution pixel tokens are transformed into

a sequence of tokens eI ∈ R
Z×d , where Z = (H × W )/s2

through a flattening operation.

By contrast, Language Encodings es = fL(s) ∈ R
1×d

are produced via a pre-trained and fine-tuned CLIP (Radford

et al., 2021) model. Particularly, each instruction s is rep-

resented as a sequence of words [w0, w1, . . . , wn] in which

each word wi ∈ W is a member of vocabulary W . During

training, we employ automatically generated, well-formed

sentences; however, after training, we allow any free-form

verbal instruction that is presented to the model, including

sentences affected by typos or bad grammar. Finally, Joint

Encodings e j = fJ (a) ∈ R
1×d are created by transforming

the current robot state a into a latent representation using

a simple multi-layer perceptron. The main purpose of this

step is to transform the joint representation into a compatible

shape that aligns with the other input embeddings.

4.2.1 Supervised attention

After encoding, the inputs are processed within a single

neural network in order to produce robot control actions.

However, a unique element of our approach is the formation

of semantically meaningful sub-modules during the learn-

ing process. These modules may solve a specific sub-task,

e.g., detecting the robot end-effector or calculating the dis-

tance between the robot and the target object. To achieve this

effect, we build upon modern attention mechanisms (Vaswani

et al., 2017) in order to manage the flow of information within

attention layers, thereby explicitly guiding the network to

concentrate on essential inputs.

More specifically, we adopt a supervised attention mech-

anism in order to enable user-defined information routing

and the formation of modules within an end-to-end neural

network. The main idea underlying this mechanism is that

information about optimal token pairings may be available

to the user. In other words, if we know which key tokens

are important for the queries to look at, we can treat their

similarity score as a maximization goal. In Fig. 4, we see

the information routing for three modules. The first module

LANG is supposed to identify the target object within the sen-

tence. Hence, the corresponding attention layer is trained to

only focus on the language input. The attention for the robot

joint values and vision input is trained to be zero. In order to

provide the output of this module to the attention layer in the

next level, we use so-called register slots. Register slots are

used to store the output of a module so that it can be accessed

in subsequent modules in the hierarchy. Accordingly, each

module within our method has corresponding register slot

tokens. The role of the register slots is to provide access to

the output of previously executed modules within the hierar-

chy. Coming back to Fig. 4, the second module EE2D locates
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Fig. 4 Different sub-aspects of the tasks are implemented as modules (via supervised attention). LANG identifies the target object. EE2D locates

the robot end-effector

the robot end-effector in the image. Accordingly, the atten-

tion for this module is trained such that the focus is on the

vision and language inputs only. In turn, the result is writ-

ten into the corresponding register slot. The final module in

Fig. 4, DISP, calculates the distance between the end effector

(EE) and the target object (O). Since this module is higher up

in the hierarchy, it accesses the register slots of lower-level

modules as inputs in order to calculate the distance.

Registers serve multiple purposes and can either be used

as inputs to a module, in which case they serve as a learnable

latent embedding, or be used to store the output of a partic-

ular module. An output register of a module is calculated by

utilizing the standard transformer architecture. In particular,

we define a transformer based attention module over queries

( Q), keys (K ), and values (V ), which are subsequently pro-

cessed as follows:

rout = Attn.( Q, K , V ) = softmax

(

Q K T

√
dk

)

V (1)

where dk is the dimensionality of the keys. In our use case,

the queries are initialized with either learnable and previ-

ously unused register slots, or with registers that have been

set by modules operating in prior layers, thus encoding their

respective results. Our keys are equivalent to the values and

are initialized with all formal inputs (language, vision, and

joint embeddings) as well as all previously set registers from

prior layers. In contrast to common practice, we control the

information flow when learning each module via our pro-

posed supervised attention, which is a specific optimization

target for attention layers.

As an illustrative example, consider a query identifying the

location of the end-effector, as demonstrated in Fig. 5 (first

key and query combination in the top left) or finding the tar-

get object (key and query combination near the center). For

simplicity, we omit the other formal inputs and only focus

on the visual input. However, the Tar Reg. would also

Fig. 5 Supervised attention example for the second layer of processing

information throughout our overall policy

depend on the language register from the prior LANG mod-

ule. Following common practice, the keys and values derive

from the input image, with each image embedding vector cor-

responding to an image patch (Fig. 5 left). In this particular

example, the EE uses a trainable, previously unused register

as query, while the Tar register utilizes the output register of

the language module to find the correct object (Fig. 5 top).

The EE register is supervised to focus on the robot’s gripper

image patch, thereby creating a sub-module for detecting the

robot end-effector. Similarly, the target register attends to the

target object’s image patch, forming a sub-module respon-

sible for identifying the target object. When these queries

accurately attend to their respective patches, these patches

will primarily contribute to the output register’s embedding

vector, which can then be used as subsequent module inputs.

More formally, we maximize the similarity between query

qi and key k j if a connection should exist, thus optimizing
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Table 1 Explanation of the

various modules utilized in our

hierarchical attention module

Module Layer Formulation, supervised attention mask, and explanation

LANG 1 r L AN G = fLANG(r0, {es , e j , eI })
Supervised to connect r1 ↔ es

Identify the target object in the user’s language

EE2D 2 r E E2D = fEE2D(r1, {es , e j , eI , r L AN G})
Supervised to connect r2 ↔ eI

Identify the robot’s end-effector in the image patches

TAR2D 2 rT AR2D = fTAR2D(r2, {es , e j , eI , r L AN G})
Supervised to connect r L AN G ↔ eI

Identify visual representation of the target object in the image

EE3D 3 r E E3D = fTAR2D(r3, {es , e j , eI , r L AN G , r E E2D, rT AR2D})
Supervised to connect r3 ↔ e j , rE E2D

Similar to forward kinematics, calculates the end-effector’s 3D position

TAR3D 3 rT AR3D = fTAR3D(r4, {es , e j , eI , r L AN G , r E E2D, rT AR2D})
Supervised to connect r4 ↔ rT AR2D

Identify the robot’s end-effector in 3D space

DISP 4 r DI S P = fDISP(r5, {es , e j , eI , r L AN G , r E E2D, r E E3D, rT AR2D, rT AR3D})
Supervised to connect r5 ↔ r E E3D, rT AR2D

Calculate the displacement between the end-effector and the target object

CTRL 5 rCT RL = fCTRL(r6, {es , e j , eI , r L AN G , r E E2D, r E E3D, rT AR2D, rT AR3D, r DI S P })
Supervised to connect r5 ↔ r E E3D, rT AR3D, r DI S P , es , e j

Calculates the controll signal for the robot

The bold “e” refer to the embeddings as introduced in Sec. 4.2. the bold “r” refers to the registers as introduced

in Equation 1

arg maxθ qi kT
j . This process is equivalent to maximizing

the corresponding attention map element M i j , where M i =
softmax(

Qi K T

√
dk

). Since each element M i j < 1, we mini-

mize the distance between M i j and 1 according to Eq. 2. We

assume that N supervision pairs are provided in a set S, indi-

cating the query and key tokens that should pay attention to

each other. Each pair (i, j) ∈ S contains the indices defining

which queries qi should attend to which corresponding keys

k j . Individual supervision pairs in this set can be addressed

by S(p) = (i p, jp). We then define the cost function for

supervised attention as follows:

L(S) =
N

∑

n=0

(

softmax

(

qr kT
s√

dk

)

− 1

)2

(2)

where (r , s) correspond to the indices held by the n-th super-

vision pair (r , s) = S(n). While Eq. 2 defines the loss as a

minimization problem with a mean squared error loss, other

cost functions such as the cross-entropy (de Boer et al., 2004)

can also be applied, but have empirically resulted in lower

performance.

Fig. 6 Hierarchy of the modules used in our method

4.2.2 Hierarchical modularity

In this section, we describe hierarchical modularity—an

algorithm for training hierarchies of modules which is

inspired by curriculum learning (Bengio et al., 2009).

The previously introduced supervised attention mechanism

enables the training of modules or building blocks relevant

to the task. However, such modules also have to be stacked

and cascaded together in other to realize the overall goal

of the policy. In that sense, one module’s output becomes

the subsequent module’s input. This can be represented as a

directed graph, as shown in Fig. 6 (top), in which a cascade

of specialized modules implements the overall control pol-

icy. Here, each module is represented by a node, while edges

represent the information flow between nodes.

Table 1 formally defines each of the modules (nodes)

by introducing their functionality, queries, keys, and super-

vised attention mask. Broadly speaking, each module follows
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Algorithm 1 Hierachical Modularity: training algorithm

returns network weights θ .

Input:
(

D, {Sk}K
k=1, {Lk}K

k=1, {�k}K
k=1

)

Output: Weights θ

for subtask k ← 1 to K do

while not converged do

Ek ←
∑k

t=0 Lt (St ) + �t

θ ← Train (D, {S1, . . . , Sk}, Ek)

end while

end for

return θ

equation Eq. 1 with keys being the set of original sensor

modalities, as well as registers. In the first layer of Fig. 6, the

LANG module identifies the target object, as referred to in

the verbal command, and stores the result in the rLANG reg-

ister. Subsequently, in the second layer, the fTAR2D module

utilizes the rLANG register as a query while the fEE2D mod-

ule utilizes a new, previously unused register as a query. This

chain continues until the final control output of the robot is

generated in the CTRL module.

Recall that sub-modules address intermediate tasks in the

overarching control problem, making the output register r

suitable for human interpretation and allowing for super-

vised training of the resulting embedding. To achieve this,

we employ small multi-layer perceptron (MLP) decoders to

convert the module outputs into their respective numeric out-

puts. For example, we train a small MLP on top of the rEE2D

register that predicts the end-effector location (eex , eey) via

a single linear transformation. This approach enables our

policy to predict intermediate module outputs, enhancing

training accuracy and allowing monitoring and debugging

during inference, which is particularly valuable when trans-

ferring the policy to different robots or scenarios.

Training Cascaded Modules

Intuitively, the cascaded modules can be trained in a man-

ner inspired by curriculum learning, wherein each component

is trained before further layers of the hierarchy are added

to the training objective. This ensures that each module is

trained until convergence before being employed for more

sophisticated decision-making processes, ultimately leading

to the prediction of robot control parameters. Algorithm 1

outlines the training procedure for our hierarchical approach

in further detail. The algorithm trains each module of the

hierarchy one after another, until the currently trained mod-

ule is converged according to its respective loss function.

After that, we progressively incorporate additional modules

in a manner reminiscent of curriculum learning. Each module

k is trained with an attention loss Lk given the supervision

signal S of our proposed supervised attention approach, as

well as a task-specific loss functions �k which trains the

MLP decoder for every module. Thus, each module is opti-

mized with regard to two targets. Note that the policy loss for

the robot controller CTRL is also implemented as an MLP

decoder, which also represents the overall prediction target

of our training process. Notably, in our scenario, this decoder

predicts the next ten goal positions at each timestep instead

of predicting only the next action. This choice is inspired

by Jang et al. (2022), which also allows for a fair comparison

in the subsequent evaluation sections.

While the modular approach requires manually defining

loss terms for each module, it is essential to note that all mod-

ules form a single overarching neural network implementing

the robot policy, inherently learning necessary features in an

end-to-end manner. Modularization arises solely from train-

ing the network with various supervised attention targets and

a cost function that successively integrates more sub-tasks.

4.3 Use-cases and extensions of hierarchy

We present our model as a cascade of sub-modules, trained

hierarchically, enabling seamless integration of additional

modules. In this section, we discuss the incorporation of

obstacle avoidance, tracking a predefined obstacle, and

describe the generalization of this approach to arbitrary

“referential objects” that let users specify commands that

reference any other object. These enhancements are imple-

mented by introducing new modules, as depicted in Fig. 8.

4.3.1 Runtime introspection

All sub-modules retain their functionality, even after training.

Consequently, they can be used at runtime to query indi-

vidual outputs (e.g., LANG, TAR2D, EE3D). This feature

allows users to monitor the intermediate computations of

the end-to-end network to identify potential deviations and

misclassifications. Figure 7 visually depicts the outputs of

each model during the execution on a real robot. A textual

description (left upper corner) shows the currently identified

object name, as well as the displacement (in cm) between

the end-effector and the target object. The current attention

map is visualized in yellow, whereas the end-effector posi-

tion and the target position are highlighted by red and blue

points. Computing these intermediate outputs of the network

generates negligible to no computation overhead. In our spe-

cific system, we implemented a real-time visualization tool

that can be used at all times to monitor the above features.

Such tools for introspection can help in debugging and trou-

bleshooting of the language-conditioned policy. For example,

they can be used to detect when individual modules need to be

retrained, or where in the hierarchy a problem is manifesting.

In addition, such outputs can be used with formal runtime

monitoring and verification systems, e.g., Yamaguchi and

Fainekos (2021) and Pettersson (2005), to improve the safety

of the neural network policy.
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Fig. 7 Sequence of real-time outputs of the network modules: the object

name (white) and visual attention (yellow region), the length of the dis-

placement (white text), the object pos (blue), and end-effector pos (red).

All values are generated from a single network that also produces robot

controls (Color figure online)

Fig. 8 Extensions of hierarchy. a The hierarchy used for obstacle avoid-

ance. 3 new modules, OBST2D, OBST3D and DISP2 are plugged in

post-training for detecting the obstacle and avoiding collision with it.

b The hierarchy for the relational tasks. These tasks involve 2 objects

in a sentence, e.g., “Put the apple right to the orange”, where “orange”

is the referral object. We add LANG2D, REF2D, REF3D and DISP2

for detecting the referral object and generating the according trajectory

(Color figure online)

4.3.2 Adding new behaviors

An important benefit of the modular architecture of our

approach is the ability to add new modules into a neural

network, even after successful training. To demonstrate this

functionality, we add an obstacle avoidance behavior into the

system, i.e., the robot is expected to detect an obstacle and

generate controls to avoid any collisions.

In our specific scenario, we introduce an obstacle in the

form of an orange basketball that must be avoided when

approaching the target object. To incorporate this ability into

the existing system, we add new modules into the previous

hierarchy. This can be seen in Fig. 8 (top).

In particular, we add OBST2D and OBST3D, which iden-

tify the obstacle’s position, and DISP2, which computes the

displacement between the end-effector and obstacle. Simi-

lar to target object detection, the obstacle is identified from

object embeddings and ultimately results in a displacement

value. The controller module incorporates the additional dis-

placement as an additional input. In general, new modules

can be added or existing modules removed according to the

needs of the task.

4.3.3 Creating new types of behaviors by interconnecting

modules

The modular approach also enables new types of behaviors

to be incorporated; in particular, behaviors that interconnect

multiple existing modules. For example, we may want to

learn a robot policy that allows for relational queries, e.g.,

“Put the coke can in front of the pepsi can.”. Such a fea-

ture would require the dynamic identification of a secondary

object and its desired relationship to the target object. In

the previous example, the model must infer the target object

(“coke can”), the reference object (“pepsi can”), and their

relation (“in front of”).

Figure 8 (bottom) shows the new hierarchy for this use

case. Similar to the object avoidance case, we can incor-

porate additional modules REF2D, REF3D, and DISP2 for

this purpose. However, in contrast to the obstacle avoid-

ance case, an additional module LANG2 is added to extract

the object reference from the user’s instruction and sub-

sequently informs the REF2D for further processing. This

process of adding and removing modules allows for extensi-

ble language-conditioned policies whose complexity can be

increased or reduced according to the necessities of the task.

In the evaluation section, we will see that such an incremen-

tal approach has advantages over a complete retraining of the

entire policy.

5 Evaluation

In this section, we present a set of experiments designed to

evaluate various aspects of our approach. We firstly elabo-

rate on the data collection process in Sect. 5.1. In Sect. 5.2,

we investigating basic performance metrics of our approach

123



Autonomous Robots

and compare them to other state-of-the-art methods. To this

end, we carry out ablation studies in order to probe the impact

of our hierarchical modularity and supervised attention mod-

ules, as well as structure of the hierarchy itself. Thereafter, we

study the robustness of our approach when exposed to occlu-

sions (Sect. 5.2.2) and linguistic variability (Sect. 5.2.3). In

Sect. 5.3, we focus on the ability of our approach to transfer

existing policies between different robots in simulation, but

also demonstrate the transfer to real-world robots in a sample

efficient manner. Section 5.4 examines the policy’s ability to

generalize to novel objects. Lastly, we explore the possibility

of incorporating new modules into an existing hierarchy for

the purposes of obstacle avoidance and relational instructions

(Sect. 5.5).

We evaluate our method on a tabletop manipulation task

of six Robosuite (Zhu et al., 2020) and up to 100 automati-

cally generated objects across five different tasks. Our tasks

include three basic objectives namely picking objects, push-

ing them across the table, and rotating them. Further, we have

two obstacle avoidance task, focusing on a single object, or all

non-target objects simultaniously. In addition, we also inves-

tigate a more complex placing task in which objects need

to be placed in relation to other objects in the environment,

thus requiring the understanding and correct interpretation of

relational instructions. Tasks are performed on three differ-

ent robots in simulation and one robot in the real world. Our

simulated robots include a Franka Emika, Kinova Jaco, and

Universal Robot UR5 compliant robot arm. In the real world

scenario, we utilize a UR5 robot. The following sections will

first provide the details of our experimental setup and data

collection strategy and then discuss evaluation results.

Training Resources To train our method from scratch,

a single Quadro P5000 GPU takes approximately 48 h until

convergence. In conjunction with this paper, we will release

our final code base (and dataset) which is capable of leverag-

ing multi-GPU setups, thereby resulting in further speed-ups

with regards to the absolute training time.

5.1 Data generation

We perform a series of simulated experiments in MuJoCo

(Todorov et al., 2012), employing three distinct robotic plat-

forms (Kinova, UR5, and Franka) that closely resemble our

real-world experimental setup with a UR5 robot.

Figure 9 illustrates all four configurations, along with the

six Robosuite objects utilized in our investigations, includ-

ing a red cube, a Coke can, a Pepsi can, a milk carton, a

green bottle, and a loaf of bread. Further, our comprehen-

sive set of 100 procedurally generated objects is depicted in

Fig. 3. Demonstrations are collected using a heuristic motion

planner that orchestrates fundamental motion planning tech-

niques to control each target robot. By contrast, real-world

demonstrations are collected via kinesthetic teaching utiliz-

Fig. 9 A human instruction is turned into robot actions via a learned

language-conditioned policy. The neural network is then successfully

transferred to different robots in simulation and real-world

ing a gravity-compensated robot arm. Beyond the robots’

motion, we store each action’s respective command (e.g.,

“Pick up the green bottle!”) and the corresponding RGB

video stream captured by an overhead camera from the same

angle as shown in Fig. 9 with a resolution of 224×224 pixels.

As a simple data augmentation technique, we utilize a tem-

plating system that generates syntactically correct sentences

during the collection of training, validation, and testing data.

These templates are derived from two human annotators

who, after watching pre-recorded robot behavior videos,

were assigned the task of providing instructions on what the

robot was executing in the video. This small dataset served

as the foundation for extracting command templates, as well

as a collection of the used nouns, verbs, and adjectives. This

collection is then extended with commonly available syn-

onyms to allow the creation of an automated system for

command generation during data collection. The template

initially selects a random verb phrase in accordance with

Table 10. Subsequently, a noun phrase is determined through

random selections from Adj and Noun, as outlined in Table 9.

Table 2 presents the datasets utilized in our experimen-

tal setup. Each sample is collected with 125 Hz, resulting in

trajectories containing 100–500 steps, depending on the dis-

tance between the robot’s initial position and the target object,

as well as the task being executed. The smaller datasets in

rows three to five are for transferring a previously trained

policy from one robot or task to another. The transfer learn-

ing datasets are purposefully over-provisioned, as we assess

the minimal size required to achieve performance compa-

rable to a policy trained from scratch in Sect. 5.3. Finally,

the datasets in rows 4, 6, 7, 8, and 9 undergo evaluation in

an interactive, live setting in which a user engages with a

deployed policy, either within a simulation or the real world;

thus, these datasets do not have a formal test split.
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Table 2 Utilized dataset during our experiments

Dataset Samples Objects Tasks Env. Robot Purpose

Train/val/test Robosuite Gen. Base Place

DUR5 1600/400/400 � � Simulation UR5 Training from scratch

DKinova 1600/400/400 � � Simulation Kinova Training from scratch

DUR5
TF 320/80/80 � � Simulation UR5 Transfer Kinova → UR5

DUR5
RW 260/80/live � � Real-World UR5 Transfer UR5 → real-world

DFranka
TF 320/80/80 � � Simulation Franka Transfer Kinova → Franka

DUR5
OBST 200/400/live � � Simulation UR5 Extend skill obstacle-avoidance

DUR5
M-OBST 200/400/live � � Simulation UR5 Multiple-obstacle-avoidance

DUR5
NO 3000/600/live � � Simulation UR5 Training 100 novel objects

DUR5
ET 3000/600/live � � Simulation UR5 Training relational task

A “live” designation indicates that testing has been conducted interactively and no formal test dataset exists

Table 3 Comparison with the state-of-the-art baseline as well as ablations in Mujoco

Model Success rate (%) Prediction error (cm)

Pick Push Putdown Overall TAR3D EE3D DISP

LP 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 – – –

Vanilla attention 17.7 ± 1.8 8.3 ± 0.0 12.5 ± 4.2 13.3 ± 0.7 – – –

BC-Z 81.6 ± 6.2 85.6 ± 7.9 49.1 ± 5.8 73.1 ± 4.5 – – –

Ours (UR5 sim) 91.3 ± 5.3 97.2 ± 2.0 55.6 ± 8.6 82.4 ± 4.9 2.24 ± 0.48 0.51 ± 0.09 2.42 ± 0.52

Ours: no S. Attn 88.9 ± 4.2 92.6 ± 4.7 55.1 ± 11.6 79.9 ± 5.8 3.18 ± 1.80 0.42 ± 0.10 3.10 ± 1.64

Ours: no H. Mod 44.4 ± 3.8 39.4 ± 7.1 22.7 ± 7.9 36.4 ± 3.3 22.96 ± 0.99 0.59 ± 0.16 23.16 ± 1.05

Ours: TAR 87.5 ± 4.8 93.8 ± 2.3 59.3 ± 11.5 80.9 ± 6.0 2.77 ± 0.80 0.71 ± 0.08 3.24 ± 1.45

Ours: no TAR 20.8 ± 1.8 13.9 ± 2.4 8.3 ± 4.2 15.0 ± 1.3 32.23 ± 0.05 0.81 ± 0.01 32.29 ± 0.29

Ours: no DISP 65.6 ± 3.1 83.3 ± 4.2 33.3 ± 8.3 61.3 ± 3.3 3.37 ± 0.17 0.69 ± 0.01 27.49 ± 0.20

Ours: Extra 94.8 ± 1.8 98.6 ± 2.4 62.5 ± 7.2 86.3 ± 2.5 1.53 ± 0.14 0.68 ± 0.13 2.25 ± 0.22

Ours: Joint 10.9 ± 2.2 25.0 ± 5.9 2.1 ± 2.9 12.5 ± 3.5 6.19 ± 0.35 1.71 ± 0.01 10.83 ± 0.53

The bold numbers are the ones with top 2 performance within all methods

5.2 Model performance and baseline comparison

In this section, we evaluate our model on the three basic

actions across the six Robosuite objects, utilizing the DUR5

dataset. We also compare our method to two state-of-the-art

baselines, specifically BC-Z (Jang et al., 2022) and LP (Step-

puttis et al., 2020). As our third baseline, we investigate

vanilla, unsupervised attention. In this scenario, the same

network as before is trained, but without supervision of the

attention process as introduced in this paper.

Table 3 summarizes these results in which each training

and testing procedure was executed three times to provide a

better understanding of the stability of the compared meth-

ods. We evaluate not only the overall success rates but also the

performance of each individual module within our language-

conditioned policy. Specifically, we employ the following

metrics: (1) Success Rate describes the percentage of suc-

cessfully executed trials among the test set, (2) Target Object

Position Error (TAR3D) measures the Euclidean 3D distance

between the predicted target object position and the ground

truth, (3) End Effector Position Error (EE3D) quantifies the

Euclidean 3D distance between the predicted end effector

position and the ground truth, (4) Displacement Error (DISP)

calculates the 3D distance between the predicted 3D displace-

ment vector and corresponding ground truth vector.

Our method (line 4) outperformed BC-Z (line 3) on

all basic tasks with an average success rate of 82.4%, as

compared to 73.1% for BC-Z. Furthermore, we separately

assessed the prediction error of the proposed network’s com-

ponents, namely EE3D, TAR3D, and DISP. We note that

the end-effector pose prediction accuracy (approximately

0.5 cm) surpasses the target object’s accuracy, which could

be attributed to the presence of the robot’s joint state infor-

mation. The target object’s position estimation deviates by

around 2–3, possibly due to the absence of depth information

in our input dataset (solely consisting of RGB).

By contrast, the LP model (line 1) is not able to success-

fully complete any of the tasks. We hypothesize that this

low performance is due to the training dataset’s significantly

smaller size compared to the LP’s usual training data size,
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as indicated by Stepputtis et al. (2020). Finally, the vanilla,

unsupervised attention approach (line 2) achieves a success

rate of 13.3%. Qualitatively, we observe in this scenario that

the vanilla attention model is not able to recognize the cor-

rect object. Similarly to the LP approach, we hypothesize that

the issue could potentially be resolved with a larger dataset.

However, for the sake of a fair comparison within this paper,

we utilize the same dataset DUR5 across all methods.

5.2.1 Ablations

In order to evaluate the impact of our two main contributions—

supervised attention and hierarchical modularity—we con-

duct an ablation study to investigate the impact of each

contribution on training performance. In addition, we also

ablate the structure of the hierarchy itself in order to investi-

gate its resiliency to structural changes.

Results of the ablation experiments can be found in

Table 3. Our model (line 3) has an overall success rate of

82.4% across three seeds. When ablating the usage of hier-

archical modularity, performance drops to 36.4% (line 5).

Utilizing our runtime introspection approach to investigate

potential issues in the modules (Sect. 4.3.1), we find that the

target and displacement errors increased to over 20 cm, which

is likely the cause for the reduced performance. When remov-

ing the supervision signal (line 4) for the attention inside our

modules (and instead relying on end-to-end training), we see

a drop of ≈ 2.5% in performance to about 80%.

When ablating the hierarchy itself, we merged the TAR2D

and TAR3D module (line 7) into a single module instead of

maintaining two. The underlying rationale is that the sepa-

ration of the target detection between 2D and 3D detection

is not strictly necessary and thus a single target module may

be sufficient. The resulting success rate in this case is 80.9%

which is only slightly below the original rate of 82.4%. Next

we removed the displacement module DISP (line 9) alto-

gether, which results in a performance of about 61.3% (a

loss of around 20%). Finally, we added spurious modules

that are not necessary for the policy’s success in these tasks

(line 10). In particular, we added a specific module that only

detects the “Coke” can. In this case, we achieved a success

rate of 86.3% which is slightly higher than the original result.

As a general observation, the approach seems to be

favorable to superfluous modules, combined modules, or

variations of a hierarchy. However, the absence of certain

critical modules, e.g., the DISP or TAR modules (lines 9 and

8 respectively), may have a more drastic effect on perfor-

mance. In the above case of removing the DISP module (line

9), the performance reduces to about 61.3% which is below

the corresponding value for BC-Z (73.1%).

Fig. 10 Success rate when part of the target object is occluded

5.2.2 Occlusion

Next, we evaluate the robustness of our approach to partial

occlusions of the target objects during task execution. To this

end, occlusions are introduced by removing image patches

in the camera feed of the simulated experiments. This step is

performed by covering approximately 20%, 42%, 68% and

80% of the target object’s total area; calculated via a pixel-

based segmentation approach of the input image provided

by the simulator. All experiments are conducted on all six

Robosuite objects across all three basic tasks. The results are

shown in Fig. 10. We observe that our method is robust to

occlusions of up to 20% of the target object, while our base-

line model, BC-Z, already experiences a significant drop in

accuracy. While our model only loses about 1.1% in per-

formance, BC-Z drops by 9.35%. However, for occlusions

greater than 40%, our method performs on-par with BC-Z.

We argue that our robustness to 20% occlusions is signifi-

cant since small, partial, occlusions are more likely to occur

during tabletop manipulation tasks.

5.2.3 Synonyms

Our final robustness experiment is concerned with the vari-

ability of free-form spoken language. While our system is

trained with sentences from a template-based generator, we

evaluate its performance when exposed to a set of addi-

tional synonyms, as well as free-form spoken language from

a small set of human subjects. When replacing synonyms,

as shown in Table 8, in the single-word and short-phrase

case, we observe that our model achieves a 82.5% success

rate on the pushing task. When using BC-Z, on the same

task with the same synonyms, performance drops to 28.57%,

indicating the robustness of our methods to variations in the

language inputs. Finally, we also evaluate the performance

on 30 examples of free-form natural language instructions

that were collected from human annotators and report a suc-

cess rate of 73.3%. The sentences used by the annotators can

be found in Table 11 and show that our model can work with

unconstrained language commands.
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5.3 Transfer to different robots and real-world

In this section, we evaluate the ability of our approach to

efficiently transfer policies between different robots that

may have different morphologies. Rather than retraining our

model from scratch to accommodate the altered dynamics

between different robots, we posit that our modular approach

enables the transfer of substantial portions of the prior pol-

icy. This necessitates only minimal fine-tuning, consequently

resulting in a reduced demand for data collection on the dif-

ferent robots. In particular, we evaluate fine-tuning of the

entire policy, and fine-tuning of only the modules affected

by a change in visual appearance of robot morphology.

5.3.1 Transfer in simulation

Our initial policy is trained from scratch on the DKinova

dataset while the transfer of the trained policy to the Franka

and UR5 robot is realized with the DFranka
TF and DUR5

TF datasets

respectively.

As noted earlier, the DTF datasets are intentionally over-

provisioned to allow an evaluation regarding how much data

is required in order to match the performance of the trans-

ferred policy to a policy that is trained from scratch on the

same robot. In order to shed some light on this, we sub-

sampled the transfer datasets to a total size of 80, 160, 240 and

320 demonstrations and conducted the training. Figure 11

shows the results of this analysis (reported as “Ours”) given

the varying dataset sizes when fine-tuning the entire policy

initialized with the Kinova weights. With 160 demonstra-

tions, our model achieves a success rate of 80%, which is

only slightly below the policy’s performance when trained

on the full 1600 demonstrations from scratch. Further, given

the full 320 demonstrations of the transfer dataset, the pol-

icy reaches a performance that is on-par with one trained

from scratch. When fine-tuning BC-Z with the same dataset

splits, we observe that our model consistently outperforms

Fig. 11 Results of transferring policies from Kinova (K) robot to UR5

(U) and Franka (F) robots. “Ours-f” refers to freezing parts of our model

during transferring. Experiments are performed in Mujoco simulator

BC-Z. Interestingly, we also observe that our model performs

similarly when transferring to the Franka and UR5 robots

across the dataset splits, while BC-Z seems to initially per-

form worse when transferring the Franka robot. Note here

that Franka is a 7 degree of freedom (DoF) robot while the

source policy, which operates over the Kinova robot, only has

six. This discrepancy likely affects robot dynamics thereby

affecting the transfer process.

Further, we conducted experiments in which we froze

parts of our model during transfer of a pre-trained policy

from the Kinova to the UR5 and Franka robot. In particular,

the TAR3D, EE3D, and DISP prediction modules are unaf-

fected by the change in visual appearance and morphology

of the new robot and, thus, do not need to be retrained. Note,

however, that we retrain TAR2D since partial occlusions by

the new robot could lead to false positives for target objects.

We have conducted further experiments with the same fine-

tuning datasets and report their results in Fig. 11 (reported as

“Ours-f”). In this setting, with a dataset of only 80 demon-

strations, the partially frozen module produces a result of

60% and 72.5% when transferring to the Franka and UR5

respectively. This poses a substantial performance improve-

ment of up to 18% in the case of transfer to the UR5 robot

while utilizing less data than fine-tuning the entire model.

This result further underlines the gains in data-efficiency that

can be achieved through the hierarchical modularity.

5.3.2 Real-world transfer

Having demonstrated the ability of our approach to efficiently

transfer policies between robots in simulation, we demon-

strate that a policy can also be transferred to the real world

(Sim2Real Transfer) in a sample-efficient way. To this end,

we first trained a policy for the UR5 robot in simulation uti-

lizing the DUR5 dataset and subsequently transferred it with a

substantially smaller real-world dataset DUR5
RW . More specifi-

cally, 260 demonstrations on the real-robot are collected for

transfer—this corresponds to about 1
6
-ththe size of the origi-

nal training set. The overall robot setup can be seen in Fig. 12.

The scene is observed via an external RGB camera and robot

actions are calculated in a closed-loop fashion by provid-

ing the current camera image and language instruction to the

policy.

To investigate the contributions of our proposed methods,

we conduct experiments under 3 different baseline settings.

These include directly applying the simulated policy on

the real robot, fine-tuning the simulated policy using the

real-world dataset DUR5
RW , and transferring the simulated pol-

icy to the real world using our proposed method. Image

sequences of real-robot executions can be seen in Figs. 7

and 9. As expected, the policy trained in simulation is unable

to complete any task when being directly applied to the real

robot despite coordinate systems and basic dynamics being

123



Autonomous Robots

Fig. 12 Experimental setup of real-robot experiments. Objects are seen

through an external camera and actions are generated in a closed-loop

Fig. 13 Robot performing a task with objects which are generated auto-

matically generated. The top row is the robot picking up an object, while

the second row is the robot pushing an object

matched between the simulation and the real world. This

failure is due to the substantial variation in visual appear-

ance of the robot and objects. When using a naive fine-tuning

approach that does not use our core contributions, the result-

ing success rate is 56.7% over 30 trials, thus demonstrating

partial success. However, we observe that the noise in the

attention maps is unusually high, which we attribute to the

intricacies of real-world vision and dynamics. Finally, when

training the system with our approach, including supervised

attention and hierarchical modularity, the approach achieve

a success rate of 80% in the real world when prompted with

30 commands issued by a human operator.

5.4 Generalization to novel objects

To investigate the importance of modularity for general-

ization, we extend the experiment setup to include a more

challenging scenario. In particular, we incorporate a total of

100 objects, which are automatically generated following the

approach outlined in Sect. 2. They are comprised of 10 unique

classes, each with 10 objects. We utilize 3 objects from each

class for training, while the remaining 7 objects, which were

previously unobserved by the model, are reserved for testing.

For this experiment, we utilize the DUR5
NO dataset and perform

an evaluation with 100 trials (Fig. 13).

Fig. 14 Test results of simulated experiments with 70 unseen objects

from 10 classes which are generated automatically using the data

pipeline proposed in Sect. 2

As before, we compare our model’s performance to BC-Z,

as well as an ablated version of our model without supervised

attention or hierarchical modularity. The results are shown

in Fig. 14 on the 100 object generalization task. During this

study, we removed either one or both of our components

from the model during training to examine their individ-

ual and combined contributions. The most basic version

of the model, identified as “Base” and not using super-

vised attention, nor hierarchical modularity, demonstrates

poor performance with a score of 47%. Models without

Supervised Attention (“w/ Sup. Attn”) and those without

Hierarchical Modularity (“w/ Hier. Mod.”) each exhibit sig-

nificantly better performance compared to the base model.

Notably, the optimal model is our proposed full model

(“Ours”), which combines both Supervised Attention and

Hierarchical Modularity, resulting in an impressive success

rate of 87%. For comparison, the baseline model BC-Z attains

a 76% success rate, which is surpassed by our proposed

model by 9%.

5.5 Hierarchy extension

In this section, we explore two extension to our hierarchy

by introducing new models that allow the policy to conduct

new tasks. As we have shown in prior sections, our modular

approach allows for easy transfer between different robots;

however, this approach can also be utilized to introduce novel

tasks to the policy. The following sections introduce an obsta-

cle avoidance task in which an object is placed in the path

between the robot and the described target object which has

to be detected and avoided. In a subsequent experiment, we

further extend the hierarchy by not only focusing on a fixed

“obstacle object”, but allow the user to specify a secondary

reference object, ultimately affording a novel placement task

that allows objects to be placed in relation to others objects

in the environment.
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Fig. 15 Robot trained to avoid all obstacles in the scene. On the way to the Coke can, the robot first avoids a basketball and then the green bottle.

We move the bottle in front of the robot to generate an instantaneous response

Fig. 16 Robot performing a task while avoiding a basketball. The top

row shows a pick action and the bottom row shows a push action. In both

cases, the robot changes its course to avoid collision with the obstacle

5.5.1 Obstacle avoidance

In this experiment, we demonstrate a seamless way to inte-

grate new modules into an existing trained hierarchy by

introducing an obstacle avoidance task. First, we discuss a

setup wherein a single, specific object needs to be avoided,

before extending the approach to avoid any obstacle in the

scene (Figs. 15, 16).

In our first setting, a basketball is placed between the

end-effector and the objects that are to be manipulated, serv-

ing as an obstacle. The robot must first identify the obstacle

and subsequently formulate a trajectory to navigate around it

effectively. In this task, new modules OBST2D and OBST3D

are added to the hierarchy and trained to generate the loca-

tion of the obstacle in image space and world space. More

specifically, OBST2D identifies image patches that belong

to the object. In turn, these patches are fed into OBST3D

to generate a 3D world coordinate. We relate the obstacle’s

position to the robot by calculating a second displacement

DISP2 which utilizes EE3D and OBST3D. Figure 8 shows

the updated hierarchy. The output of DISP2 feeds into the

calculation of the control value where it is combined with

the output of DISP (the displacement of the end-effector to

the target object).

The expert trajectories which avoid the obstacle are gen-

erated by using a potential field approach (Khatib, 1986).

More specifically, the basketball is a repulsor that pushes the

end-effector away from it. Using this approach, 200 train-

ing demonstrations are collected, forming the dataste DUR5
OBST.

The policy for this task has been trained from a UR5 policy

by utilizing the above datatet that introduces the novel task.

For evaluation, we define a successful trial as the absence

of any collision between the robot and the obstacle. After

training, our method achieves a success rate of 88% where

failure cases mostly revolve around premature contact with

the target object.

We further extend the capabilities of the proposed hierar-

chical approach by avoiding any object in the environment.

To this end, we utilize a single module that is trained to focus

on all objects with exception of the target object. This mod-

ule can viewed as the inverse of the target detection module,

i.e., all but the target object are highlighted. In this multiple-

obstacle case, the trained network achieves a success rate

of 83%. An image sequence of the resulting behavior can

be seen in Fig. 15. Notice the robot response after a second

obstacle (green bottle) is moved in front of it. The image

sequence also highlights the closed-loop control underly-

ing our approach—robot actions are constantly recalculated

based on the current environmental conditions.

5.5.2 Relational reference

While the obstacle avoidance tasks showed the basic pipeline

of adding a secondary object and defining a desired behavior

for it, the approach can be extended to also allow the user to

verbally specify this secondary object. For this purpose, we

introduce a relational placing task in which a user specifies a

reference object, requiring the system to identify the two task

related objects and generating a control signal in accordance

to it. Relational tasks involve instructions that not only spec-

ify a target object for manipulation (e.g., an “apple”) but also

mention an additional referential object (e.g., an “orange”),

such as “Place the apple to the right of the orange.” In these

scenarios, the robot must identify the two objects and under-

stand the intention behind the given language. We aim to

demonstrate that our model can effectively handle such tasks

even under generalization constraints. For this purpose we

again utilize our 100 automatically generated objects and

train a policy over 30 of them, which are composed of 3

objects per class, while evaluating it’s generalization capa-

bilities on the remaining 70 objects. For this experiment, we

utilize the DUR5
ET dataset (Fig. 17).

For this task, we have made modifications to the orig-

inal hierarchies. Firstly, we introduce a LANG2 module
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Fig. 17 Robot performing relational tasks with 2 objects involved in 1 command. The top row is the robot putting an avocado left to a hamburger,

while the second row is the robot putting a donut right to a hamburger

to determine the referential object based on the language

input. Besides that, we add TAR2D2 and TAR3D2 mod-

ules to identify the image patch corresponding to the second

object and generate its 3D world coordinate, respectively. We

also include a DISP2 module to calculate the displacement

between the end-effector and the second object.

In this scenario, the robot is directed by a verbal sentence

to identify the first object, pick it up, recognize the second

object, and then place the first object either to the left or right

of the second object according to the command given.

The entire process is carried out in the MuJoCo environ-

ment, evaluated on 100 test trials. For comparison, we also

train and evaluate the BC-Z model. Our model achieves a

success rate of 76%, which is a 7% improvement over the

BC-Z performance. Considering the increased complexity

of this task compared to previous ones—due to the need to

identify two objects from both the sentence and image, and

the more extended manipulation steps required—a 76% suc-

cess rate and a 7% increment compared to the baseline are

commendable results.

6 Discussion and limitations

The above experiments show a variety of benefits of the intro-

duced modular approach. On one hand, it allows for new

components and behaviors to be incorporated into an exist-

ing policy. This property is particularly appealing in robotics,

since many popular robot control architectures are based

on the concept of modular building-blocks, e.g., behavior-

based robotics (Arkin, 1998) and subsumption architecture

(Brooks, 1986). Modularity also enables the user to employ

modern verification and runtime monitoring tools to better

understand and debug the decision-making of the system. At

the same time, the overall system is still end-to-end differ-

entiable and was shown in the above experiments to yield

practical improvements in sample-efficiency, robustness and

extensibility.

However, a major assumption made in our approach is that

a human expert correctly identifies the logical flow of com-

ponents and subtasks into which a task can be divided. This

process requires organizing these subtasks into a hierarchical

cascade. Early results indicate that an inadequate decomposi-

tion can hamper, rather than improve, learning. Furthermore,

the approach does not incorporate memory and therefore can-

not perform sequential actions. In a few cases we observed

a failure to stop after finishing a manipulation - the robot

continues with random actions. Another open question is the

scalability of the approach. In our investigations, we looked

at behaviors with a small number of sub-tasks. Is it possible

to scale the approach to hierarchies with hundreds or thou-

sands of nodes? The prospect is appealing since this would

bridge the divide between the expressiveness and plasticity of

neural networks and the ability to create larger robot control

systems which require the interplay of many subsystems.

For future work, we are particularly interested in using

unsupervised and supervised attention side-by-side, i.e., sev-

eral modules may be supervised by the human expert whereas

other modules are adjusted in an unsupervised fashion. This

would combine the best of both worlds, namely the abil-

ity to provide human structure and knowledge while at the

same time maximally profiting from the network’s plasticity.

This is a particularly promising direction, since the ablation

experiments indicate that having superfluous modules does

not drastically alter the network performance. Further, we

would like to investigate the potential of inferring a suitable

hierarchy in a data-driven manner.

7 Conclusions

In this paper, we present a data-efficient approach for

language-conditioned policies in robot manipulation tasks.

We introduce a novel method called Hierarchical Modular-

ity, and adopt supervised attention, to train a set of reusable

sub-modules. This approach maintains the end-to-end learn-

ing advantages while promoting the reusability of the learned

sub-modules. As a result, we are able to customize the hier-

archy according to the specific task demand, or integrating

new modules to an existing hierarchy for new tasks. Our

123



Autonomous Robots

method demonstrates high performance in a comprehensive

set of experiments including training manipulation policies

with limited data, transferring between multiple robots, and

extension of module hierarchies. We also develop an auto-

mated data generation pipeline for creating simulated objects

to manipulate with, and show our model’s generalization

capability on unseen objects generated by such pipeline.

Furthermore, we demonstrate that the learned hierarchy of

sub-modules can be employed for introspection and visual-

ization of the robot’s decision-making processes.
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Appendix A: Training details

A.1: Network architectures and hyperparameters

We use a convolutional neural network for image encod-

ing, as shown in Table 4. We use fully connected layers

for joint encoders, target position decoders, displacement

Table 4 Image encoder architecture

Layer Kernel Channel Stride Padding

CNN 7 64 1 3

CNN 3 128 2 1

CNN 3 256 2 1

CNN 3 256 2 1

ResBlock 3 256 1 1

ResBlock 3 256 1 1

ResBlock 3 256 1 1

Table 5 Joint encoder

architecture
Layer Dimension

FC 256

FC 128

FC 192

Table 6 Position and

displacement decoder

architecture

Layer Dimension

FC 128

FC 9

Table 7 Controller architecture Layer Dimension

FC 2048

FC 1024

FC 256

FC 120

decoders and controllers, which are shown in Tables 5, 6 and

7 respectively. We use 4 eight-head attention layers of 192

dimensions for modality fusing and interaction. The Adam

optimizer with learning rate of 1e−4 is adopted for training

(Tables 8, 9, 10, 11).
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Table 8 Synonyms used in test
Milk carton Bottle Coke Cube Bread

Skimmed milk package Soda Coke zero Brick Cinnamon roll

Goat milk carton Perrier Round container Block Sourdough

Milk case Tonic Can Cuboid Brown bread

White packet Flask Coca cola Bar Loaf

Milk parcel Pitcher Red soda Solid lump Naan

Cream carton Container Cola Rectangular object Rye bread

Cream package Decanter Metal container Solid piece Toast

Heavy milk carton Vial Small soft drink Slab Gluten free food

Almond milk box Vessel Fizzy drink Cuboidal slice Light bread

Goat milk packs Cruet Diet coke Square object Food

Table 9 The noun phrase template

Object Adj Noun

Coke Red Can

Coke Bottle

Cocacola

Pepsi Blue Can

Pepsi Bottle

Pepsi coke

Bottle green Bottle

Glass

‘’

Green glass

Carton Milk Carton

White Box

Cube Red Object

Maroon Cube

Square

Bread ‘’ Bread

Yellow object

Brown object

Table 10 The verb phrase template

Verb pick Verb push Verb put

Pick Push Put down

Pick up Move Place down

Raise

Table 11 Sentences collected from annotators for evaluation purposes

Annotator labeled sentences Success

Grab the loafs F

Put down the lime soda T

Lay down the red block T

Tip over the azure can T

Lift the white carton F

Knock over the pastry T

Lift the coke can T

Put down the sprite T

Grab the pepsi T

Elevate the red cube T

Pick up the red cube T

Lift up the blue cylinder T

Move away the brown object T

Push away the white object T

Lift the blue object T

Put down the green sprite T

Push the green sprite T

Push the reddish can T

Pick up the milk container F

Hold up the milk carton F

Please pick up the green thing F

Lift the red colored coke can T

Push the yellow bread T

Grab the blue colored can T

Nudge that green bottle F

Put down the red colored cuboid T

Lift the white box T

Take the pepsi off the table F

Push the green object forward F

Put down the zero coke on the desk T

Our model achieves 73.3% success rate on variations of languages
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