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Abstract 

 Herein, we report the use of sterically invariant carborane-based chalcogenols, containing 

exopolyhedral B-Se or B-S bonds, as ligands for the formation of photoluminescent copper(I)-

based metal-organic chalcogenolate assemblies (MOCHAs). We show that precise tuning of the 

carborane dipole by changing the carborane isomer from meta- to ortho- allows for control over 

the MOCHA morphology and regulation of the resulting photophysical properties. Furthermore, 

microcrystal electron diffraction (MicroED) has been demonstrated as a powerful tool for metal 

chalcogenide structure elucidation. Through the use of MicroED, one of the isolated materials is 

determined to consist of zero-dimensional Cu4(Se-C2B10H11)4 clusters with an unprecedented 

Cu4Se4 geometry. 

Introduction 

 Transition metal chalcogenides represent a large class of hybrid materials that have been 

extensively studied in both academic and non-academic research areas due to their promise as 

materials for a variety of applications, including photoluminescence,1-3 electronic devices4-6 and 

electrochemical reactions.7-9 Practitioners have often employed dimensional reduction of bulk 

materials as a facile strategy to tune and diversify material properties.10 This strategy of 

dimensional reduction may utilize either a top down11-13 or bottom up14-19  synthetic approach, 

resulting in the formation of low-dimensional (zero-, one-, or two-dimensional) materials with a 

variety of architectures and surface compositions. One established method for the bottom-up 

dimensional control of metal chalcogenides has made use of the inherent reactivity between 

organic chalcogenols and metal cation-based precursors. The formed structures, more recently 

referred to as metal-organic chalcogenolate assemblies (MOCHAs, Figure 1a), have shown great 

promise in the preparation of low-dimensional metal-chalcogenide materials.20-34 More 
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specifically, some MOCHAs have been synthesized using a biphasic approach from aqueous metal 

cations (e.g. copper(I)20, silver(I)24) layered with chalcogenols (e.g. alkyl thiols, aryl selenols) 

dissolved in an organic solvent. At the solvent-solvent interface, the organic chalcogenols react 

with the metal cations forming intermediary metal complexes which then nucleate and propagate 

the growth of small crystallites. Recently, this approach to MOCHA growth has also been extended 

to methods utilizing metal surfaces and gaseous benzene selenol or diphenyl diselenide reagents, 

where nucleation and growth of the material occurs at the solid-vapor interface.26,32 In all cases, 

while the metal of choice serves as a general framework for MOCHA properties, the overall 

morphological, physical, and electronic properties are largely dictated by the chalcogenolate-based 

ligand chosen to template the material formation. It has been further hypothesized, and shown with 

adamantane and diamantane thiol reagents, that the steric environment of the organic chalcogenols 

plays an important role in the crystallite propagation, and is a determining factor of the overall 

material morphology.20 Furthermore, the intermolecular forces between adjacent chalcogenolate 

ligands are also expected to regulate the growth of the crystallites. Critically, with the current 

ligand scaffolds studied with MOCHAs, it is often impossible to isolate the effect of ligand 

electronics on MOCHA properties without also altering their steric profile in some way, thereby 

inadvertently changing the steric interactions between the chalcogenolate ligands while also 

varying the electrostatic interaction between ligands. 
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Figure 1: a. Selected examples of metal-organic chalcogenolate assemblies (MOCHAs) 
composed of either copper(I) diamondoid thiolates or silver(I) benzene selenolate. b. History of 
functionalized boron clusters (dodecaborates, carboranes) as self-assembled monolayers on bulk 
metal, metal chalcogenide, or super atom surfaces. The approximate dipoles of carborane-based 
ligands have been depicted to the right of the respective ligand. c. This work, utilizing sterically 
invariant carborane-based chalcogenolates to modulate morphology and photophysical properties 
of carborane-containing MOCHAs. 

One unique class of chalcogen-containing ligands that have not yet been widely explored 

in the context of MOCHAs are functionalized boron clusters. This is surprising, considering that 

boron cluster ligands (thiolates, carboxylic acids) have been extensively studied on bulk surfaces 

for the past two decades,35-52 and more recently with metal chalcogenide nanoparticles53-54 as well 

as metallic super atoms.55-57 The attractiveness of boron clusters in these applications is due in large 

part to their propensity to form “defect-free” monolayers as a function of both the steric bulk 

provided by the boron cluster and, in the case of neutral boron clusters (i.e. carboranes), their 

inherent molecular dipole that enables long-range order (Figure 1b).58 Carboranes, with the 
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molecular formula of C2B10H12, exist as three distinct isomers (ortho-, meta-, para-) distinguished 

by the relative orientation of the two carbon vertices. Importantly, the electronic nonuniformity of 

ortho- and meta-carboranes, resulting from the asymmetry introduced by the carbon vertices, has 

allowed for the precise modulation of metal surface35-57 and metal center properties,59-65 as 

determined by the relative positioning of ligating substituents on the sterically invariant boron 

clusters (Figure 1b). This electronic nonuniformity is further exemplified by the regioselective 

chemistry of carboranes that has permitted selective introduction of functional groups to the 

carbon-based vertices and various boron-based vertices of carboranes.66-68 

 Despite the potential for carborane-based ligands to tune MOCHA properties, only two 

recent studies have reported the use of 9-meta-carboranyl thiolates to generate MOCHA-like 

structures with cadmium(I)20 and copper(I).22 In the case of the cadmium(I)-based MOCHA, the 

prepared materials were preliminarily visualized by scanning electron microscopy with no 

additional characterization provided. Conversely, structural characterization of the copper(I)-

based MOCHA was reported though the study focused solely on the mechanical properties of the 

resulting materials. To further develop the understanding of structure-function relationships in the 

context of MOCHAs, and more specifically, the impact a molecular dipole might have on MOCHA 

morphology and electronic properties, we report our investigation on the formation of copper(I)-

based MOCHA materials with sulfur and selenium-containing electron-rich carborane 

chalcogenolates (Figure 1c). Specifically, we show how sterically invariant carborane-based 

chalcogenolate ligands can control the morphology and electronic properties of copper(I)-based 

MOCHAs through differences in the carborane dipole between the ortho- and meta- isomers. The 

morphology, composition, and stability of all reported materials have been determined using 

scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray 
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diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis 

(TGA), and X-ray photoelectron spectroscopy (XPS). Furthermore, critical structural 

characterization was obtained by applying emerging microcrystal electron diffraction (MicroED) 

techniques to determine the unique bonding arrangement between copper(I) and 9-meta-

carboranyl selenolate for the key MOCHA structure synthesized. All prepared materials exhibit 

photoluminescence that further exemplify control of MOCHA properties by tuning key 

photophysical properties, such as quantum yield and emission lifetimes, as a function of both the 

carborane dipole as well as the chalcogenolate (Se, S) used. 

 

Figure 2: a. Synthesis of B(9) substituted meta- and ortho-carborane selenols and thiols following 
literature procedures. Representative characterization (1H, 77Se NMR) of 9-SeH-mCB in THF-d6. 
b. General synthesis of carborane chalcogenolate-containing MOCHAs A-D.  

Results and Discussion 
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In order to understand whether one can form MOCHAs with sterically encumbering 

carborane ligands, we first opted to study the reaction between a copper(I) precursor and 9-meta-

carboranyl selenol (SeH-mCB, A’). Copper(I) was chosen due to the previously reported reactivity 

between copper(I) precursors and sterically encumbered adamantane thiol20 or meta-carboranyl 

thiol22 ligands. Conversely, SeH-mCB was selected as our first ligand of study due to the known 

stability of exopolyhedral B-Se bonds,69-70 the established body of work utilizing meta-carborane 

ligands in self-assembled materials,35-57 and lastly, the anticipated reactivity between the selenolate 

and copper(I). SeH-mCB was synthesized according to literature procedures69-70 (Figure 2a, SI sec. 

3 for full experimental details) and isolated as an air-stable solid that showed little to no oxidation 

after several months when stored at 5 oC in laboratory air, in contrast to oxidatively unstable 

carbon-based selenols. To begin our studies regarding the self-assembly behavior of carborane 

chalcogenols in the presence of copper(I) salts, SeH-mCB and copper(I) acetate were mixed 

together as powders in a 4 mL dram vial equipped with stir bar in a nitrogen-filled glovebox. 

Subsequently, anhydrous iso-propanol was added via syringe and the reaction mixture was 

immediately stirred at 700 rpm in the dark (Figure 2b). This approach takes advantage of gradual 

etching of the copper(I) acetate particles by the dissolved selenol, decreasing the reaction rate that 

has previously resulted in non-crystalline MOCHA phases when using benzene selenol.24 Within 

minutes, an off-white precipitate began to form, ultimately resulting in a milky suspension after 

stirring overnight. To separate the formed precipitate, the suspension was centrifuged and the 

resulting pellet was collected and dried in vacuo to remove all volatiles, affording Cu-[Se-mCB] 

(A) in 76% yield as an analytically pure powder. 



 8 

 

Figure 3: a. Representative bright field TEM image of A crystallite used for MicroED 
experiments. b. Representative frames of MicroED performed of A used for refinement. c. 
MicroED-derived structure of A revealing a tetrameric Cu-Se core sterically protected by meta-
carboranyl ligands. Table provides average bond lengths for relevant bonds. The packing of two 
clusters is also depicted, showing the proximity of the meta-carborane cluster to an adjacent 
selenolate d. PXRD pattern of bulk A at 293 K and 100 K, as well as the simulated71 PXRD pattern 
from the MicroED-derived structure. Hydrogens have been omitted for clarity. 

When visualizing powders of A through electron microscopy (TEM, SEM), the 

morphology of the crystallites was revealed to be square rods, approximately 5-10 µm in length 

and 1-2 µm in width (Figures 3a and 4a, SI sec. 5a), somewhat reminiscent of previously imaged 

MOCHAs composed of Cd-[S-mCB].20 The crystallinity of the A microcrystals present on the 

TEM sample grid was confirmed using selected area electron diffraction (SAED) (Figure 3b). 

After observing single crystal diffraction using SAED, MicroED methods were applied for 

crystallographic analysis of A. Despite being highly crystalline, the crystal morphology of A 

microcrystals (square rods) and low symmetry presented a particular challenge as sampling the 

entirety of reciprocal space was limited due to the range of the TEM sample holder tilt axis. 

However, by combining data sets from five different microcrystals, sufficient unique reflections 
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were obtained for an ab initio solution resulting in successful structural determination (see SI for 

full experimental details). In contrast to previously reported materials with copper(I) diamondoid 

thiolates20 or silver(I) benzene selenolates24 containing an extended metal-chalcogenolate network 

([M-SR/SeR]∞), A crystallites are comprised entirely of isolated tetrameric copper carborane 

selenolate clusters with a Cu4Se4 core surrounded by four meta-carboranyl ligands, indicating a 

zero-dimensional morphology (Figure 3c). Surprisingly, the experimentally determined structure 

of A is highly reminiscent to that observed in the previously reported copper(I) meta-carboranyl 

thiolate material which adopted a Cu4S4 structure.22 While the C-H vertices of the meta-carboranyl 

ligands cannot be immediately distinguished, the positioning of the exopolyhedral B(9)-Se bond 

and anticipated dipole-Se interactions between adjacent meta-carboranyl selenolates have been 

used to determine the exact positioning of the carbon-based vertices (Figure 3c). Notably, the 

Cu4Se4 core in A is the first structurally characterized copper(I) selenide tetramer with a planar 

Cu4 geometry, the formation of which can likely be correlated to the steric bulk of the carboranyl 

ligands (SI sec. 9). To confirm the validity of the crystal structure obtained via MicroED, 

experimental PXRD data of A was compared to the simulated70 PXRD generated from the single 

crystal MicroED structure (Figure 3d). We observed good agreement between the experimental 

and simulated PXRD patterns despite some minor deviations that could likely be attributed to 

thermal contraction of the crystallites while performing MicroED. To confirm that this is the case, 

PXRD experiments were performed while cooling the crystallites to 100 K with liquid nitrogen 

(Figure 3d, SI sec. 5b). Importantly, the cryogenic PXRD pattern more closely matches the 

simulated PXRD pattern, suggesting that the single crystal structure obtained via MicroED is 

characteristic of the bulk material.  
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Figure 4: a. SEM images of A. Inset shows a more general overview of crystallite morphology. 
Scale bar is applied to both SEM images. b. XPS measurements of A, Cu(OAc), and (Se-mCB)2. 
c. FTIR of 9-SeH-mCB (dotted trace) and A (solid trace). d. TGA of A.  

Based on the crystallographic data, all copper atoms in A are assigned to be in formal 

oxidation states of +1. To further corroborate this, XPS measurements of A were performed. The 

XPS measurements of A were then compared with those of the copper(I) acetate starting material 

and (Se-mCB)2 as an analog of SeH-mCB due to the propensity of carborane chalcogenols to 

sublime under vacuum (Figure 4b). The Cu2p1/2 and Cu2p3/2 peaks of A, 952.7 eV and 932.8 eV 

respectively, are shifted to a lower binding energy relative to copper(I) acetate and are consistent 

with the more electron-rich69-70 environment experienced by the copper(I) nuclei when interacting 
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with the meta-carborane selenolate. There are no satellite peaks present adjacent to the Cu2p1/2 

peak, which are commonly found in XPS measurements of copper(II) containing materials,72 

indicating that the copper(I) oxidation state is conserved during the course of the reaction. Peak-

fitting of the Cu2p XPS signals further indicate the presence of a singular copper(I) environment, 

in agreement with the MicroED-derived structure (SI sec. 5e). Between (Se-mCB)2 and A, there is 

no significant change in the Se3d peak binding energies, and peak-fitting again confirms only one 

selenium environment (SI sec. 5e). The XPS measurements further allude to the resistance of the 

copper(I) centers in A to oxidation by atmospheric oxygen despite the electron-rich environment 

imparted by the carborane selenolate,69-70 likely a result of the steric protection provided by the 

meta-carboranyl ligands as illustrated by the MicroED-derived single crystal structure. 

In addition to XPS measurements, FTIR spectroscopy of A was used to confirm the absence 

of any residual starting materials. Specifically, the FTIR spectrum of A revealed a distinct loss of 

signal associated with the Se-H stretch present in the FTIR spectrum of SeH-mCB at 2400 cm-1 

(Figure 4c); though, the remaining cluster structure appears to be intact with only slight deviations 

in signals present in the fingerprint region (1250-600 cm-1). The presence of intact boron clusters 

in powder of A is further confirmed by diagnostic B-H resonances (2600 cm-1) in the spectrum. 

Furthermore, when comparing the FTIR spectrum of A with that of the copper(I) acetate starting 

material, there are no signals present in the formed material that could be correlated to the carbon-

oxygen double bond in copper(I) acetate, indicating that the acetate ligand is not present in the 

resulting hybrid material. Consistent with FTIR, TGA (Figure 4d) also revealed that there are no 

substantial solvent adducts in the A crystallites, as indicated by no significant mass loss until 300 

oC, which is most likely associated with the decomposition of the meta-carborane selenolate and 

agrees with the single crystal MicroED structure. 
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To determine any effects the carborane dipole might impart on the structural behavior of 

the isolated microcrystals as well as the impact of chalcogenide (Se vs. S), we then studied the 

reaction of copper(I) acetate with 9-ortho-carborane selenol (9-SeH-oCB, B’), 9-meta-carborane 

thiol (9-SH-mCB, C’), and 9-ortho-carborane thiol (9-SH-oCB, D’). Notably, the molecular dipole 

in ortho-carborane is significantly larger in magnitude compared to that of meta-carborane.44,48,58 

Following similar procedures used in the synthesis of A, crystalline powders of Cu-[Se-oCB] (B), 

Cu-[S-mCB] (C), and Cu-[S-oCB] (D) were isolated as white/tan powders in 65%, 84%, and 69% 

isolated yields respectively (SI sec. 4) and characterized in a similar fashion to A. Despite the use 

of different carborane-based chalcogenols, FTIR, TGA, and XPS data of powders B, C, and D 

closely resemble the data obtained of A (SI sec. 6c-e, 7c-e, 8c-e), suggesting a molecular similarity. 

FTIR, for example, revealed that there is no starting carborane chalcogenol or copper(I) acetate 

present in the isolated powders B-D, with all materials exhibiting comparable thermal stabilities 

by TGA. While XPS indicates the copper(I) oxidation state is maintained during the formation of 

B-D with similar binding energy for the copper centers measured in A (Figure 5a). Additionally, 

solution-state 1H and 11B NMR spectroscopic measurement of materials A-D in dichloromethane 

further suggested similarities in the molecular structures of the materials and were consistent with 

FTIR and TGA measurements (SI sec. 10). 

When comparing the PXRD data (SI sec. 6b, 7b, 8b) of all four materials, there are clear 

similarities in the molecular structures of A-D due to the closely matching diffractions from 5-25 

2θ regardless of chalcogen or carborane isomer (Figure 5b). When comparing the PXRD patterns 

of materials A and B (same chalcogen, different carborane isomer) there are some deviations, 

though they can be explained by the expected differences in molecular packing as a result of 

differing dipole-dipole interactions within the crystal (Figure 5c, SI sec. 11). In contrast, a closer 
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inspection of PXRD patterns (Figure 5c) for materials containing the same carborane isomer (meta: 

A, C; ortho: B, D) reveals nearly identical diffractions with negligible deviations between the data 

sets (< ±0.5 2θ) that can be explained by the slight changes in d-spacing when the chalcogen is 

changed from selenium to sulfur (SI sec. 11). As expected, this data indicates that the carborane 

dipole plays a critical role in determining molecular packing of the material while the choice of 

chalcogen has a minor impact. 

 

Figure 5: a. Comparison of Cu2p1/2 and Cu2p3/2 XPS measurements for materials A-D. b. Stacked 
PXRD patterns of materials A-D. c. Overlaid peak patterns for materials A and B, A and C, B and 
D. d-f. SEM and TEM (inset) images of B-D, respectively. 

While FTIR, TGA, XPS, and PXRD suggested a molecular similarity between A-D, 

electron microscopy (SEM, TEM, Figure 5d-f, SI sec. 6-8a) revealed a distinct difference in 

crystallite morphology, largely as a function of carborane isomer while also affected by which 

chalcogen was present. C crystallites (Figure 5e) were similar in morphology to A, though would 

be more accurately described as square prisms, being generally thicker (2-3 µm) and significantly 
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shorter (3-5 µm) in length. In contrast, materials B and D, which contain ortho-carborane-based 

chalcogenolates, favored the formation of spherical particles with two major phases present. In the 

case of B, while some larger particle aggregates (1.10 μm ± 0.31) were present (Figure 5d), TEM 

revealed that a significant portion of the material consists of nanoscale particles (92 nm ± 25, 

Figure 5D inset); in contrast, D predominantly favored the formation of larger microscale particles 

(3.47 µm ± 0.72, Figure 5F). MicroED measurements of B and C were attempted (SI sec. 6g, 7g), 

though the crystal morphologies were not easily amenable to electron diffraction. In the case of 

material B, the spherical nature of the particles, ultimately resulted in polycrystalline diffractions, 

while for material C the thickness of the crystallites inhibited electron diffraction, resulting in low-

intensity diffractions.73 The difference in morphologies (rods vs. spheres) between materials A-D 

can primarily be explained by inductive effect of the carborane cluster imparted onto the 

chalcogenolates, as well as the magnitude of the carborane dipole. In other words, the weaker 

dipole of the meta-carborane-containing ligands present in materials A and C unequivocally favors 

the formation of cubic, rod-like microcrystals. Whereas the stronger dipole of the ortho-carborane-

containing ligands present in materials B and D appears to limit long-range crystal growth and 

results in spherical microcrystals. 
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Figure 6: a-b.  Emission (solid trace) and absorption (dotted trace) spectra of materials A-D. Due 
to the excitation wavelength used to obtain emission spectra (280 nm) for A-D, a peak is present 
at ~560 nm in all emission spectra that is not part of the emission of materials A-D. c. Images of 
emissive iso-propanol suspensions of A-D along with their respective emission wavelengths (λmax), 
quantum yields (ɸhigh, ɸlow), lifetimes (τ), and calculated radiative (kr) and nonradiative (knr) rate 
constants. d. HOMO (red, blue) and LUMO (orange, teal) of A, calculated on the 
crystallographically derived structure using B3LYP functional DZP basis set. The calculated 
HOMO-LUMO gap is 4.35 eV, corresponding to 285 nm. aɸhigh and ɸlow are calculated based on 
the relative emission peak integrations for the high energy (low wavelength) and low energy (high 
wavelength) bands, respectively. bCalculated using ɸlow. cCalculated using ɸhigh. 

Materials consisting of metal-chalcogenolates, particularly those that are copper-based, 

often exhibit photoluminescence.74-77 Similar properties are therefore expected for materials A-D. 

Differences in the electronic environment experienced by the copper-chalcogenide core are 

expected to arise as a function of both the carborane isomer (meta-, ortho-) and chalcogenide (Se, 
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S). Consequently, variations in the photophysical properties of each structure are expected. The 

normalized UV-Vis absorption spectra for uniform suspensions of A-D in iso-propanol all show 

two strong absorptions located at 220-240 nm and 280 nm (Figure 6a-b, dotted traces, SI sec. 5-

8f). While the wavelengths of absorption do not vary greatly between compounds, differences in 

relative peak intensity are evident. Using the excitation wavelengths, as indicated by UV-Vis 

spectroscopy (220 nm and 280 nm), fluorescence measurements were subsequently obtained from 

the prepared iso-propanol suspensions. While the higher energy absorption (220 nm) was the most 

intense for all materials, no significant emission was associated with this excitation (SI sec. 5-8f). 

Notably, only the lower energy transition (280 nm) yielded any measurable emission (Figure 6a-

b, solid traces). For all four materials, emission was observed at 340 nm and at 450-650 nm, with 

the latter being significantly broader than the former and distinctly weaker in the case of B. 

Interestingly, when these materials are dissolved in polar aprotic organic solvents, all emissive 

properties are no longer present (SI sec. 12). To confirm the copper(I) selenide core in A was still 

intact upon dissolution, A was precipitated from solution by trituration with pentane and the 

emission of the as-synthesized crystals was fully regained (SI sec. 12), suggesting that 

luminescence is contingent upon restricted molecular motion that can be achieved in the solid state. 

This is further supported by the observation of luminescence in frozen solutions and in polymer 

matrices embedded with the materials. Notably, while the emission properties can be regained 

through these methods, they are red-shifted relative to the emission of the as-synthesized or 

triturated crystals (SI sec. 12). Such effects of temperature and aggregation/crystallization on 

emissive properties are commonly observed phenomena.78-80 

To further understand the photophysical properties of these materials, quantum yield 

(ɸhigh/ɸlow) and lifetime (τ) measurements were performed on A-D as crystalline powders (see SI 
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for full details). The quantum yields associated with the high and low energy emissions (ɸhigh/ɸlow) 

were 0.09/0.11, 0.43/0.00, 0.09/0.64, and 0.33/0.60 for materials A-D, respectively (Figure 6c). 

Furthermore, the long lifetimes associated with the emissions (14, 34, 46, and 44 µs for A-D, 

respectively), indicate that the luminescence is phosphorescent in nature, which is caused by the 

presence of the heavier copper, selenium, and sulfur atoms. Materials A and B exhibited overall 

weaker emission compared to C and D, favoring non-radiative relaxation from the excited state 

(Figure 6c). Furthermore, DFT calculations of A indicate that the emission most likely originates 

from a metal to ligand charge transfer (MLCT) between a copper(I) selenide-centered HOMO and 

a carborane selenolate-centered LUMO (Figure 6d, SI sec. 5h). While the differences in these 

photophysical properties are most closely correlated to the chalcogen present in the material (Se: 

A, B; S: C, D), there is a noticeable trend between materials within the same morphology category 

(rods, spheres) and thus contain the same carborane isomer. Notably, materials containing ortho-

carborane-based chalcogenolates (B, D), exhibited higher quantum yields compared to their meta-

carborane-containing counterparts (A, C). These results suggest that the tunable inductive effect7 

afforded by the carborane-based ligands using different isomers can be used to fine tune the 

electronic properties of copper(I) MOCHAs as demonstrated by the precise control over 

photophysical properties. This is consistent with what has been generally observed with other 

tunable carborane-based ligands in the context of organometallic Pt(II)-based luminescent 

emitters.60  

Conclusion 

In summary, we demonstrate the synthesis and characterization of zero-dimensional 

carborane chalcogenolate-containing microcrystalline MOCHAs with tunable photoluminescent 

properties. We show that the nature of the carborane ligand dictates the crystallite morphology of 
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the resulting MOCHA, and is able to fine tune photophysical properties, such as quantum yield 

and emission lifetimes, without affecting the fundamental emission characteristics (Figure 6). 

Furthermore, MicroED has been used for the first time to structurally characterize this class of 

materials and has provided significant insight into the bonding arrangement between copper(I) and 

meta-carboranyl selenolate. In contrast to other MOCHA materials with an extended metal-

chalcogenide core, MicroED has revealed that the synthesized carborane-structured MOCHAs 

consist of an unprecedented zero-dimensional Cu4Se4 cluster that is representative of the smallest 

building block of bulk CuSe materials. This work therefore further establishes the utility of 

MicroED for hybrid material structure elucidation when reaching the limitations of more 

traditional structural determination methods.81-84 This study furthermore highlights how the use of 

bulky, organomimetic, boron cluster ligands can lead to the formation of hybrid materials with 

unique structures and properties.35-57, 59-65, 85-100 

Experimental Section 

Materials 

Ortho-C2B10H12 (Boron Specialties) was sublimed prior to use. Meta-C2B10H12 (Katchem or Alfa 

Aesar) was used as is. Se2Cl2 was synthesized according to previously reported procedures.101 

Anhydrous dichloromethane was obtained from a Grubbs column with activated alumina and 

copper catalyst. Iso-propanol (200 proof, Certified ACS Quality) was purchased from Fisher Sci. 

and dried over magnesium before use. Anhydrous copper(I) acetate (97%) was purchased from 

Strem Chemical Inc. and stored in a N2-filled glovebox at -30 oC. All other reagents were purchased 

from commercial vendors and used as is. Unless otherwise stated, all reactions were performed 
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under an inert atmosphere of N2 either in a glovebox or using a Schlenk line, and all manipulations 

were performed under ambient laboratory air, exposed to ambient light. 

Synthesis of Chalcogenols (A’-D’) 

All chalcogenols (A’-D’) were prepared following literature procedures.69,70 More detailed 

synthetic procedures and representative 1H and 11B NMR spectra for each chalcogenol are provided 

in SI sec. 3. 

Synthesis and Isolation of Metal-Organic Chalcogenolate Assemblies (A-D) 

In a N2-filled glovebox, chalcogenol (0.11 mmol 1.1 eq) and anhydrous copper(I) acetate (12 mg, 

0.1 mmol, 1 eq) were added to an oven-dried 4 mL dram vial equipped with a stir bar and PTFE 

septa cap. The vial was then sealed and transferred out of the glovebox before the addition of 

anhydrous iso-propanol (1 mL) via syringe. The resulting suspension was immediately stirred at 

~700 rpm and left to stir in the dark for 24 hours. After 24 hours, the as-synthesized materials were 

isolated by sequential centrifugation (10 minutes at 2900xg), removal of supernatant, and 

resuspension in iso-propanol (2 mL). This process was repeated a total of three times to ensure the 

removal of any remaining chalcogenol. In the last cycle, instead of resuspension, the pellet was 

dried on a high-vacuum Schlenk line to remove all volatiles. After drying, materials A-D were 

afforded as analytically pure free-flowing powders of varying fluffiness in 69-84% isolated yields. 

 

ASSOCIATED CONTENT 

Crystallographic data are available from the Cambridge Crystallographic Data Centre, under the 

reference number: CCDC 2121247 (A) 
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The following files are available free of charge. 

Full synthetic procedures, additional materials characterization (PDF) 

MicroED crystallographic data for A (CIF) 
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