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ABSTRACT: This work demonstrates the first successful electrochemical cycling of a redox-17 

active boron cluster-based material in the solid state. Specifically, we designed and synthesized an 18 

ether-functionalized dodecaborate cluster, B12(OCH3)12, which is the smallest redox-active 19 

building block in the B12(OR)12 family. This species can reversibly access four oxidation states in 20 

solution, ranging from a dianion to a radical cation. We show that a chemically isolated and 21 

characterized neutral [B12(OCH3)12]0 cluster can be utilized as a cathode active material in a PEO-22 

based rechargeable all-solid-state cell with a lithium metal anode. The cell exhibits an impressive 23 

active material utilization close to 95% at C/20 rate, a high Coulombic efficiency of 96%, and 24 

reversibility, with only 4% capacity fade after 16 days of cycling. This work represents a 25 

conceptual departure in the development of redox-active components for electrochemical storage 26 

and serves as an entry point to a broader class of borane-based materials.  27 

INTRODUCTION: In the past several decades, many researchers have advanced our knowledge 28 

of how carbon-based organic redox-active molecules can be incorporated into solid state battery 29 

materials.1-8 Through solubility modifications via molecular weight, the addition of 30 

hydrophobic/hydrophilic groups, or impregnation in porous/polymeric materials, a number of 31 

redox-active small molecules (e.g., carbonyls, nitroxides, imides, disulfides, etc.) have been 32 

observed to retain their solution-phase redox activity in the solid state. Despite these advances, the 33 

incorporation of other well-defined covalent-based systems into electrochemically active materials 34 

in the solid state has been fundamentally underexplored. For example, polyhedral boron clusters, 35 

which are often described as three-dimensional aromatic analogues of benzene, can exhibit well-36 

defined redox properties in solution, as seen for boranes ([BnHn]2-
 ; n ≤12), carboranes, and their 37 

numerous functionalized derivatives.9-45 Historically, a number of boron-based clusters have been 38 

deemed redox-inert species with wide electrochemical stability windows, prompting early studies 39 



 

of Li2B12Cl12 and Li2B10Cl10 as novel electrolytes, first in SOCl2
23, 46 and later in ethereal solvents.47-40 

49 More recently, there have been extensive efforts in developing some of these clusters for solid 41 

state electrolyte applications.50-87 42 

Recent advances in boron cluster chemistry44-45, 88-98 show that judicious exopolyhedral 43 

modifications of these species can result in the emergence of boron-centered redox events in 44 

solution, which in many cases can be tunable. In particular, ether-functionalized dodecaborate 45 

clusters [B12(OR)12; R = alkyl, aryl] demonstrate the richest solution-based redox behavior 46 

exhibited by boron clusters studied to date.14, 95-97, 99-112 Due to the enhanced electronic stabilization 47 

provided by the ether groups, the majority of these boron clusters have access to four stable 48 

oxidation states in solution (Figure 1A). Their redox potentials can be tuned over a wide voltage 49 

range through simple modification of the electron-donating or withdrawing nature of the carbon-50 

based substituent (Figure 1B). Specifically, our research group has studied these clusters as redox-51 

active polymer dopants,113-114 photooxidants,103, 111 and electroactive species for redox-flow 52 

batteries.108 Surprisingly, however, there have been no reports so far demonstrating that boron 53 

clusters in general have the ability to undergo redox processes in the solid state.  54 

Due to their robustness59-60, 115 and chemical tunability, polyhedral boron clusters present a 55 

potentially appealing platform for translating solution-phase redox behavior into solids. In this 56 

work, we describe for the first time the development of a model boron cluster-based system that 57 

can undergo reversible redox in the solid state. As a result, we show the successful incorporation 58 

of redox-active B12(OCH3)12 into an electrochemical cell to demonstrate the feasibility of boron 59 

clusters for energy storage applications (Figure 1C). 60 



 

 61 

Figure 1. (A) Known reversible electronic transitions of B12(OR)12 clusters (B) Redox potentials 62 

of two representative B12(OR)12 clusters; cyclic voltammogram of B12(O-3-methylbutyl)12 (inset) 63 

(C) Depiction of a solid state electrochemical cell containing B12(OR)12 in a PEO matrix. 64 



 

RESULTS & DISCUSSION: From a chemical design perspective, the ideal redox-active 65 

B12(OR)12 building block for electrochemical storage requires access to reversible, multi-electron 66 

redox, as well as a low molecular weight to ensure sufficient specific capacity. Furthermore, we 67 

hypothesize that in order to facilitate lithiation/delithiation, the oxygen atoms on the OR groups of 68 

the B12(OR)12 species should be sterically accessible to allow reversible metal ion coordination. 69 

All of these criteria exclude the previously developed alkylated and benzylated B12(OR)12 clusters 70 

studied thus far.  71 

We hypothesized that the B12(OCH3)12 cluster would serve as an ideal synthetic target for 72 

potential incorporation into a redox-active solid state material. Hawthorne and coworkers have 73 

previously reported the synthesis of this cluster99 using a high-pressure reactor, starting from the 74 

tetrabutylammonium (TBA) salt of [B12(OH)12]2- and a large excess of methyl tosylate as a 75 

methylating agent. Importantly, the use of super stoichiometric amounts of methyl tosylate renders 76 

the purification of the final product cumbersome and reduces its overall purity. As such, we 77 

established a new facile microwave-assisted method to synthesize B12(OCH3)12 (Figure 2A) using 78 

trimethylsulfoxonium bromide (TMSO-Br), which does not produce difficult to remove 79 

byproducts, allowing the cluster to be easily isolated. In a typical reaction, 60 mg of 80 

TBA2B12(OH)12 is stirred with Hünig’s base and 100 equivalents of TMSO-Br in air for 1 hour at 81 

120°C in a microwave reactor, producing perfunctionalized [B12(OCH3)12]2-/1-, as judged by in situ 82 

11B NMR spectroscopy and mass spectrometry (SI, Figure S1-S4). Full methoxylation of all twelve 83 

boron vertices is confirmed when numerous peaks in the 11B NMR spectrum (indicating partial 84 

substitution/desymmetrization of the cluster) coalesce to a broad singlet at -17 ppm.  85 



 

 86 

 87 

Figure 2. (A) Microwave-assisted synthesis of [B12(OCH3)12]1-/2-, followed by chemical oxidation. 88 

(B) 11B, 1H, and 13C NMR spectra, respectively, of [B12(OCH3)12]0 in CDCl3 (asterisk represents 89 

solvent) (C) Cyclic voltammogram of B12(OCH3)12 in DCM. 90 

Upon mixing [B12(OCH3)12]2-/1- with an aqueous solution of Ce(IV), the original 11B NMR 91 

signal at -17 ppm disappears, with a concomitant emergence of a new signal at 38 ppm (Figure 92 

2B), consistent with the formation of a neutral B12(OCH3)12 species, which immediately 93 

precipitates as an orange solid. This material is then subjected to a simple purification via filtration 94 

and solvent washes. The complete removal of cerium salts is confirmed by XPS (SI, Figure S18) 95 



 

and electrochemical characterization of the resulting product (Figure 2C). The chemical structure 96 

and oxidation state assignment of B12(OCH3)12 were confirmed through multiple characterization 97 

methods, including solution-phase NMR spectroscopy (11B, 13C, 1H) (Figure 2B), mass 98 

spectrometry (SI, Figure S1 and S2), and single crystal and powder X-ray crystallography (Figure 99 

3). The high symmetry of the dodecaborate cluster is exemplified by the single resonance observed 100 

via 11B, 13C, and 1H NMR spectroscopy (Figure 2B; SI, Figure S3-S6). As determined from the 101 

single crystal structure, B12(OCH3)12 crystallizes in a trigonal R3" space group. Considering that the 102 

single crystal measurements were collected at 100 K, we performed additional X-ray diffraction 103 

measurements on powder samples at room temperature in order to elucidate structural features 104 

under more relevant ambient conditions. An ab initio structure solution was obtained via Rietveld 105 

refinement of experimental powder data of B12(OCH3)12. Temperature has a significant effect on 106 

the unit cell of B12(OCH3)12, as evident by the 0.6% lattice expansion when comparing the structure 107 

as determined from powder data (295 K) versus single crystal data (100 K).  Despite this, the 108 

structure determined via refinement of the powder data shows excellent agreement with the single 109 

crystal structure (Figure 3; SI, Figure S30 and Table S1-S8). In the single crystal data, the cluster 110 

shows average bond distances of 1.85 Å (B-B), 1.39 Å (B-O), and 1.42 Å (O-C), in line with 111 

observed bond distances for other B12(OR)12 clusters96-97, 104 and simulated values116 for neutral 112 

B12(OCH3)12. 113 

 114 



 

 115 

Figure 3. (A) Single crystal structure of B12(OCH3)12 (non-hydrogen atoms depicted as 50% 116 

probability ellipsoids; hydrogens depicted as spheres) (B) Extended packing of boron clusters 117 

(hydrogens omitted for clarity). (C) Simulated and experimental powder diffraction patterns of 118 

B12(OCH3)12. 119 

The packing motif of B12(OCH3)12 as a powder (Figure 3B) shows ample interstitial space 120 

(~3 Å cavities between clusters; SI, Figure S32), suggesting the possibility of metal ion insertion. 121 

Furthermore, this cluster also shows access to multiple oxidation states in solution (Figure 2C), as 122 

well as a radical cationic state, a phenomenon recently observed102, 107 by our group for many other 123 

B12(OR)12 clusters. B12(OCH3)12 shows redox activity over a wide voltage window in solution, with 124 

half-wave potentials (E1/2) spanning a range of more than 1 V, from -0.79 V vs Fc/Fc+ (2- à 1-) up 125 

to +0.89 V (0 à 1+), in good agreement with previous observations of the effect of the R substituent 126 

on the redox potentials of B12(OR)12 clusters.96-97, 102, 107 Elucidation of the atomic-level structure 127 



 

of B12(OCH3)12, in combination with the rich redox behavior in solution, further prompted us to 128 

test our original hypothesis and explore whether this material would be a viable candidate for a 129 

solid state electrochemical cell. 130 

A model solid state Li-ion cell was constructed with B12(OCH3)12 as the active cathode 131 

material (see SI for details), and cyclic voltammetry of the B12(OCH3)12/PEO-SPE/Li cell was 132 

performed (Figure 4A). PEO was chosen as the solid electrolyte owing to its high Li-ion 133 

conductivity at moderate temperature, flexibility, easy cell fabrication, excellent chemical 134 

stability, and high electrochemical stability in the potential window of interest. The cell was first 135 

subjected to a cathodic scan starting from its open circuit potential (OCP) of 3.4 V to 1.5 V, 136 

followed by an anodic sweep to 4.15 V. The lower and upper voltage limits were chosen to avoid 137 

contributions from lithium intercalation into carbon and oxidative decomposition of PEO, 138 

respectively. During the cathodic sweep (Figure 4A), significant Faradaic current flow started 139 

around 3.40 V to form a broad reduction peak centered around 3.30 V. During the anodic sweep, 140 

the corresponding oxidation peak appeared at 3.60 V. Thus, the half wave potential is roughly 3.45 141 

V vs. Li+/Li, in excellent agreement with the expected value for the 142 

[B12(OCH3)12]0/[B12(OCH3)12]1- redox couple, suggesting successful lithiation and delithiation (SI, 143 

Figure S27).  144 

The phenomenon suggested by this data is unprecedented for boron clusters in the solid 145 

state. Namely, that Li-ions can reversibly intercalate into the cathode during discharge, reducing 146 

neutral B12(OCH3)12 clusters to their monoanionic state, followed by a reversal of this process 147 

during charging. E1/2 remained the same in the subsequent cycles, although a gradual increase of 148 

the peak current in the first few cycles was noted. This data suggested a steady increase in the 149 

utilization of the active material with cycling due to a gradual wetting of the electrode with the 150 



 

polymer electrolyte, as observed in PEO-based solid state cells.117-118 Additionally, the ratio of 151 

integrated charge under the reduction and oxidation peaks (i.e., Coulombic efficiency) increased 152 

from 78% to 95%. The lower efficiency in the initial cycle can be attributed to the formation of a 153 

solid electrolyte interface (SEI) on both the positive and negative electrodes. Once a stable SEI 154 

was formed, however, a remarkable Coulombic efficiency of 95% was achieved, signifying highly 155 

reversible redox behavior of the boron cluster in the solid state, a crucial prerequisite for use as a 156 

battery-active material. 157 

 158 

Figure 4. (A) Cyclic voltammetry of a B12(OCH3)12/PEO-SPE/Li cell at 0.1 mV s-1. (B) 159 

Galvanostatic cycling at C/20 rate. (C) Variation in specific capacity and Coulombic efficiency 160 

with cycle number. (D) Nyquist plots at 30% DOD and (E) 70% DOD. (F) Variation in series and 161 

charge transfer resistances with DOD during the first two discharge steps. All measurements were 162 

performed at 60°C. 163 



 

To further demonstrate the utility of this boron cluster for solid state battery applications, 164 

galvanostatic cycling was carried out at a C/20 rate (C-rate is based on 1 e- transfer per formula 165 

unit). The specific capacity based on a 1 e- redox process was 53 mAh g-1. Although only 50% of 166 

the theoretical capacity was obtained in the first discharge, a theoretical capacity of 95% and a 167 

high coulombic efficiency of 96% were observed in the second cycle (Figure 4B and 4C), 168 

consistent with the gradual rise of peak current observed during cyclic voltammetry (Figure 4A). 169 

The cell also showed high cycling stability, retaining 48 mAh g-1 even after ~16 days of cycling 170 

(10 cycles at C/20 rate). Measurements were also performed at numerous C-rates and for more 171 

cycles (SI, Figure S25 and S26). The charge and discharge curves maintained similar voltage 172 

plateaus and sloped regions in all cycles, indicating similar reaction pathways throughout the 173 

cycling. Post-mortem XPS of a discharged cell suggests the presence of intact B12(OCH3)12-based 174 

clusters in a reduced oxidation state (SI, Figure S24). Unlike traditional all-solid-state cells, which 175 

often show significant capacity decay in the first few cycles,119 the high interfacial stability and 176 

intimate contact between the boron cluster electrode and the flexible polymer solid electrolyte is 177 

primarily responsible for the remarkable reversibility and capacity retention. 178 

Electrochemical impedance spectroscopy (EIS) was carried out at different depths of 179 

discharge (DOD) during the first and second discharge steps to probe the variation in the internal 180 

resistance of the cell during cycling. Nyquist plots in the range of 100 kHz to 0.1 Hz show a 181 

depressed semicircle at high to medium frequency and an inclined line in the low frequency region 182 

(Figure 4D and 4E). The diameter of the semicircle is smaller in the second discharge at both 30% 183 

and 70% DOD, indicating a lowered resistance for the charge transfer process at the 184 

electrode/electrolyte interface. We also modeled the Nyquist plots using an equivalent circuit, 185 

Rs(Qdl(RctQmt)) where Rs is series resistance, Rct is charge transfer resistance, Qdl and Qmt are the 186 



 

constant phase elements representing double layer capacitance and mass transfer process, 187 

respectively (Figure 4D, inset). The constant phase element (Q) substituted an ideal capacitor (C), 188 

in consideration of the distributed capacitive elements of the porous electrode.120 The series 189 

resistance (Rs) included the sum of resistance contributions from the electrolyte, current collectors, 190 

and electrodes. Rs = ~120 Ω at all values of DOD in the first discharge and is reduced to ~90 Ω in 191 

the second discharge (Figure 4F). This decrease in Rs with cycle number indicates improved 192 

interfacial contact and electrode wetting during cycling.117-118 Similarly, the charge transfer 193 

resistance (Rct) at all levels of lithiation in the second cycle is lower than that of the first cycle. For 194 

instance, at 50% DOD, Rct = 800 Ω in the first discharge, whereas it is only 550 Ω in the second 195 

cycle (Figure 4F). The lower values of both Rs and Rct in the second cycle reduce the overall 196 

internal resistance of the cell, leading to better utilization of the electrode and higher capacity. 197 

In order to probe the structure and electrochemistry of the lithiated boron cluster, which 198 

was presumably formed during cycling as an electrochemically derived intermediate, we 199 

independently synthesized the reduced cluster in the dianionic state with a lithium cation, 200 

Li2[B12(OCH3)12], and tested it in an identical electrochemical cell (see SI for details). The lithiated 201 

cluster was synthesized in good yield through a simple reduction of the neutral cluster in solution 202 

with methyl lithium, which proceeded to the fully reduced dianionic cluster. Solution-phase 11B, 203 

1H, and 7Li NMR confirmed the presence of [B12(OCH3)12]2- with lithium cations (SI, Figure S11-204 

13). Additionally, the reduction of the cluster from 0 to 2- could be observed via X-ray 205 

photoelectron spectroscopy (XPS) as a decrease of 1.0 eV in the binding energy of boron 1s 206 

electrons (SI, Figure S22), in excellent agreement with our previous observations of an ~0.5 eV 207 

shift per each one electron reduction of B12(OR)12.97, 107 Unfortunately, the cell containing 208 

Li2[B12(OCH3)12] showed inferior electrochemical performance compared to that using neutral 209 



 

B12(OCH3)12 (Figure S28). Attempts were made to refine the synchrotron data of Li2[B12(OCH3)12], 210 

but a LiOH×H2O impurity phase was identified which precluded thorough analysis (SI, Figure 211 

S31). There are a number of potential reasons for the observed poor solid state cycling behavior 212 

and large voltage hysteresis when the chemically lithiated cluster is used as a cathode material. It 213 

is anticipated that the presence of the ionically and electronically insulating impurity phase could 214 

reduce the overall crystallinity, as well as impede the electron and Li-ion mobility in the lattice, 215 

leading to poor electrochemical performance.  216 

CONCLUSION: We have demonstrated the first example of a boron cluster undergoing reversible 217 

redox processes in the solid state. Through careful consideration of desirable properties, including 218 

low molecular weight, multiple redox events, and sterically accessible ether groups, a methoxy-219 

functionalized boron cluster—B12(OCH3)—was identified as an ideal candidate and synthesized 220 

using a microwave reactor. After observing electrochemical behavior in solution, this cluster was 221 

then incorporated into an all-solid-state Li-ion cell with a PEO solid electrolyte. The cell could be 222 

cycled to utilize 95% of the active material at C/20 rate, with high Coulombic efficiency of 96% 223 

and reversibility, retaining 96% of the initial capacity even after 16 days of cycling. Overall, this 224 

work represents an important departure from the status quo in cathode material design, opening up 225 

a new class of materials for this application. Further improvements for this class of materials can 226 

be achieved either by incorporating redox-active cations121 or reducing the molecular weight of 227 

the cluster through the use of smaller polyhedral borane cores.13, 15, 19, 38 The continued success of 228 

this approach will rely on further reducing the molecular weight of the redox-active boron clusters, 229 

as well as developing well-defined design rules that govern the interactions between the redox-230 

active anions and cations.  231 

 232 
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