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Abstract

In this paper, we present a fractional decoding algorithm for a new family of codes which are constructed
from the Hermitian curve, called r-Hermitian codes. These codes of length n are defined over an extension
field Fq2l of Fq2 and the fractional decoding algorithms that we present are algorithms for error correction that
use only αln symbols of a subfield of size q2 as input into the decoding algorithm, where α < 1, meaning a
fraction of the subsymbols that are typically utilized. We demonstrate that collaborative decoding of interleaved
codes supports fractional decoding of the r-Hermitian codes, allowing for improved bounds on the fractional
decoding radius.
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1 Introduction

Distributed storage systems [1] are the infrastructure for cloud computing service providers. In a distributed storage
system, a data file is encoded and distributed to n nodes in such a way that a data collector can decode the original
file by downloading from k nodes. The common coding schemes employed in distributed storage systems include
replication schemes in Google File Systems [3], erasure codes in Oceanstore [6] and locally reparable codes in
Windows Azure [5].

Recently, Tamo, Ye, and Barg [12] considered error correction by maximum distance separable (MDS) codes
based on part of the received codeword, defining the fractional decoding problem and the α-decoding radius of
an array code over a finite field Fq. The fractional decoding problem is motivated by the fact that in distributed
systems there is usually a limitation on the disk operation as well as on the amount of information transmitted for
the purpose of decoding. Sometimes thought of as error correction with partial information, fractional decoding
considers codes defined over an extension field and algorithms for error correction that use fewer symbols from
the base field than is typical, thus operating using a restricted amount of information in the decoding process.

In this paper, we present a fractional decoding algorithm for a new family of codes, called r-Hermitian codes,
which are constructed from a particular higher genus curve, the Hermitian curve. To our knowledge, it is the
first fractional decoding algorithm for codes from curves of positive genus. In [9] Santos provided a connection
between fractional decoding of Reed-Solomon codes, which can be considered as codes from a curve of genus
0, the projective line, and collaborative decoding of interleaved Reed-Solomon codes. The codes considered in
this paper are defined using the Hermitian curve yq + y = xq+1 over Fq2 , an integer r < q, and a constant field
extension of the Riemann-Roch space of a divisor on this curve. They may be considered as evaluation codes with
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evaluation points whose coordinates lie in the subfield Fq2 . Taking evaluation points in a base field to define a
family of codes for particular purpose is an idea utilized by Guruswami and Xing [4] and Gao, Yue, Huang, and
Zhang [2] among others (including [7]). The r-Hermitian codes are described in Section 2.

Both r-Hermitian codes and those considered in [12] have length q3, over alphabet sizes q2l and q3l respec-
tively. While both are shorter than Reed-Solomon codes over the same alphabets for l > 1, both allow for
fractional decoding with α < 1 whereas Reed-Solomon codes themselves do not. Several approaches are utilized
to provide probabilistic algorithms for fractional decoding of r-Hermitian codes. The first, given in Section 3, is
rather naive but sets the notation to be used for more sophisticated approaches later in the paper. The remain-
ing algorithms, featured in Section 4 are based on collaborative decoding of interleaved codes. It is important
to note that these results are different from collaborative decoding of interleaved Hermitian codes. The codes
considered in this paper are subcodes of a constant field extension of the traditional one-point Hermitian code
to Fq2l but are not interleaved Hermitian codes. Algorithm 3 employs homogeneous interleaved Reed-Solomon
codes and can correct m

m+1

(
q − r

α

)
errors by downloading an α-proportion of the received word. This upper

bound is improved to q2m
m+1

(
q − r

α

)
if the errors are well distributed. In comparison, Algorithm 4 utilizes het-

erogeneous interleaved Reed-Solomon codes and can correct 1
m+1

[
mq − r

α

(
m+1

2

)
+ r
(
m
2

)]
errors. This bound is

improved to q2

m+1

[
mq − r

α

(
m+1

2

)
+ r
(
m
2

)]
if the errors are well distributed. We prove that the approach via hetero-

geneous interleaved Reed-Solomon codes (Algorithm 4) corrects more errors than via homogeneous interleaved
Reed-Solomon codes (Algorithm 3) if and only if m ≥ 1+

√
1+4l
2 . The paper ends with a conclusion in Section 5.

2 Codes with evaluation points in a subfield and r-Hermitian codes

Guruswami and Xing [4] considered Reed-Solomon codes whose evaluation points belong to a subfield and pro-
vided a list decoding algorithm for those codes that can correct a fraction of errors approaching the code minimum
distance. Those codes are defined as follows.

Let l a positive integer and n, k be positive integers satisfying 1 ≤ k < n ≤ q. The Reed-Solomon code
RS(q,l)[n, k] is a code over the alphabet Fql that encodes a polynomial f ∈ Fql [x] of degree at most k − 1 as

f(x) 7→ (f(ω1), f(ω2), . . . , f(ωn)) , (2.1)

where L = {ω1, . . . , ωn} ⊆ Fq. Note that if C ⊆ Fn
ql

is an [n, k] linear code, then C can be seen as an (n, k, l) array
code C′ ⊆ Fl×nq . An (n, k, l) array code C over a finite field Fq maps an l × k data matrix D = (D1, . . . , Dk) ∈(
Flq
)k to an l × n codeword matrix C = (C1, . . . , Cn) ∈

(
Flq
)n. The array code C may be seen as the image of a

map
φ : Fl×kq → Fl×nq

D 7→ C
.

Each column vector Ci of the matrix corresponds to a codeword coordinate so that the coordinates are indexed
by [n] := {1, . . . , n}. The parameter l is called the sub-packetization of C, and the code is said to have length
n. Indeed, given a basis {ζ0, . . . , ζl−1} of Fql over Fq, let {ν0, ν1, . . . , νl−1} be its trace-dual basis. Then every
element β ∈ Fql can be written as

β =

l−1∑
i=0

tr(ζiβ)νi

where tr denotes the trace relative to the extension Fql/Fq. The codeword c = (c1, . . . , cn) ∈ C ⊆ Fn
ql

can be
viewed as

C =


tr(ζ0c1) tr(ζ0c2) · · · tr(ζ0cn)
tr(ζ1c1) tr(ζ1c2) · · · tr(ζ1cn)

...
...

. . .
...

tr(ζl−1c1) tr(ζl−1c2) · · · tr(ζl−1cn)

 ∈ C′ ⊆ Fl×nq .
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Taking this into account, Tamo, Ye, and Barg [12] show thatRS(q,l)[n, k] codes are optimal for fractional decoding

in the sense that
⌊
n− k

α
2

⌋
errors may be corrected by downloading αln of Fq. Because a received word has n

coordinates in Fql , which can be expressed using nl symbols of Fq and αln symbols that depend on these received
symbols are downloaded, we say here (and in similar situations throughout) that an α-proportion of symbols are
used in decoding.

Also in [4], V. Guruswami and Xing considered algebraic-geometric codes whose evaluation points belong
to a subfield and provided a list decoding algorithm to those codes. Here, we focus our attention on codes from
the Hermitian curve, which has produced the best understood family of algebraic geometry codes beyond Reed-
Solomon codes.

Let Hq be the Hermitian curve given by yq + y = xq+1 over Fq2 . Let P∞, P1, . . . , Pn be its n + 1 distinct
Fq2-rational places so that n = q3. Given a ∈ Fq2 , consider Γa :=

{
b ∈ Fq2 : bq + b = aq+1

}
. It is well known

that for all a ∈ Fq2 , |Γa| = q and that the affine points of Hq over Fq2 are of the form Pab := (a, b) with a ∈ Fq2
and b ∈ Γa; that is, the set of Fq2-rational places ofHq is

Hq(Fq2) :=
{
Pab : a ∈ Fq2 , b ∈ Γa

}
∪ {P∞} ,

where P∞ denotes the unique point at infinity which has projective coordinates (0 : 1 : 0). It is useful to partition
Hq(Fq2) \ {P∞} as

Hq(Fq2) \ {P∞} =
·⋃
a∈Fq2

Pa

where Pa := {Pab : b ∈ Γa}.
Next, we consider functions that will be useful in the code constructions. Recall that the Riemann-Roch space

of a divisor βP∞ onHq is

L(βP∞) =
〈
xiyj : 0 ≤ i, 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ β

〉
⊆ Fq2 [x, y].

Let Ll(βP∞) be the Riemann-Roch space of the divisor βP∞ onHq over Fq2l . It is well-known that

Ll(βP∞) = L(βP∞)⊗ Fq2l .

This implies that dimF
q2l
Ll(βP∞) = dimFq2 L(βP∞) and a basis of L(βP∞) over Fq2 is a basis of Ll(βP∞)

over Fq2l ; that is,

Ll(βP∞) =
〈
xiyj : 0 ≤ i, 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ β

〉
⊆ Fq2l [x, y].

Define the constant extension to Fq2l of the Hermitian code C(βP∞) ⊂ Fnq2 to be

Cl(βP∞) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ Ll(βP∞)} ⊆ Fnq2l .

According to [4, Lemma 4.6], if q(q − 1) ≤ β < q3, Cl(βP∞) is an Fq2l-linear code over Fq2l , with dimension at

least β + 1− q(q+1)
2 and minimum distance at least n− β.

For a fixed r ∈ Z, 1 ≤ r ≤ q we define

Ll(βP∞, r) :=


r−1∑
j=0

sj∑
i=0

aijx
iyj : aij ∈ Fq2l

 ⊆ Ll(βP∞),

where sj =
⌊
β−j(q+1)

q

⌋
.

Note that if r = 1, then

Ll(βP∞, 1) =


bβ
q
c∑

i=0

aijx
i : aij ∈ Fq2l

 ⊆ Fq2l [x]
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and if r = q,
Ll(βP∞, q) = Ll(βP∞).

Moreover, there is a nesting

Ll(βP∞, 1) ⊆ Ll(βP∞, 2) ⊆ · · · ⊆ Ll(βP∞, q − 1) ⊆ Ll(βP∞, q) = Ll(βP∞).

Now, we are set to define the r-Hermitian codes.

Definition 1. Let r, l ∈ Z, 1 ≤ r ≤ q. An r-Hermitian code over Fq2l is defined as

C(βP∞, r) = {(f(P1), . . . , f(Pn)) : f ∈ Ll(βP∞, r)} ⊆ Fnq2l .

It is immediate that C(βP∞, r) is the image of the evaluation map

ev : Ll(βP∞, r) → Fn
q2l

f 7→ (f(P1), . . . , f(Pn)).

It is convenient to enumerate the elements of Fq2 : a1, . . . , aq2 . We fix this ordering in the discussion that follows.
In addition, we assume that the evaluation points of C(βP∞, r) are ordered so that

(P1, . . . , Pn) =
(

(Paib)b∈Γai

)q2
i=1

.

Note that given (c1, . . . , cn) ∈ C(βP∞, r), there exists

f(x, y) =
r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ L(βP∞, r) (2.2)

such that ci = f(Pi) for all i ∈ [n]. Moreover, by a slight abuse of notation, (f(P1), . . . , f(Pn)) can be viewed as(
a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )

)
(2.3)

where af := f(a, y) ∈ Fq2l [y]<r and

aif(Γai) = (f(ai, bi1), . . . , f(ai, biq)).

This means that the codeword (f(P1), . . . , f(Pn)) ∈ C(βP∞, r) can be recovered by recovering each aif(Γai) for
i ∈ [q2].

The r-Hermitian codes over Fq2l are nested, such that

C(βP∞, 1) ⊆ C(βP∞, 2) ⊆ · · · ⊆ C(βP∞, q).

For r = 1, we have that

C(βP∞, 1) =
{

(f(a1), . . . , f(a1), f(a2), . . . , f(a2), . . . , f(aq2), . . . , f(aq2)) : f ∈ L(βP∞, 1)
}
,

where
{
a1, . . . , aq2

}
are all the elements of Fq2 ; that is, C(βP∞, 1) is a kind of repetition Reed-Solomon code

over an extension field Fq2l whose the evaluation set is the base field Fq2 . Meanwhile, for r = q, C(βP∞, q) is the
constant extension code to Fq2l of the one-point Hermitian code CL(D,βP∞).

Remark 2. Note that C(βP∞, r) is a code of length q3 over Fq2l whereas the codes considered in [12] are of
length q2 over Fq2; said differently, an r-Hermitian code of length q3 is constructed over an alphabet of size q2l

whereas the codes of length q3 considered in [12] employ a field of size q3l. Both of these families of codes are
shorter than Reed-Solomon codes over the same fields. However, they allow for fractional decoding (as proven in
[12] and below for the r-Hermitian codes) whereas Reed-Solomon codes of length q over a field of size q do not.
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Proposition 3. Let r, l ∈ Z, 1 ≤ r ≤ q. The r-Hermitian code C(βP∞, r) is a Fq2l-linear code over Fq2l of
dimension given by

dim C(βP∞, r) = dim C(βP∞)−
q−1∑
j=r

⌊
β − j(q + 1)

q

⌋
− q + r,

where C(βP∞) ⊆ Fnq2 is the one-point Hermitian code over Fq2 .

Proof. Note that

dim C(βP∞, r) = |{iq + j(q + 1) : 0 ≤ j ≤ r − 1; iq + j(q + 1) ≤ β}|
= dim Cl(βP∞)− |{iq + j(q + 1) : r ≤ j ≤ q − 1; iq + j(q + 1) ≤ β}|
= dim C(βP∞)− |{iq + j(q + 1) : r ≤ j ≤ q − 1; iq + j(q + 1) ≤ β}|

= dim C(βP∞)−
q−1∑
j=r

⌊
β − j(q + 1)

q

⌋
− q + r.

3 The fractional decoding problem

In this section, we introduce the fractional decoding problem. Then, as an example and to set the notation for more
substantial results in Section 4, we consider fractional decoding of r-Hermitian codes via Reed-Solomon codes.

3.1 Preliminaries

Given an (n, k, l) array code C over a finite field Fq, we may consider C as a code over the alphabet Flq and then
one error amounts to an incorrect column Ci. Then correcting up to t errors means correcting any combination of
errors E = (E1, . . . , En) in

(
Flq
)n with Hamming weight ω(E) := |{i : Ei 6= 0}| ≤ t, where the received word

is the matrix R = C + E. Note that the Hamming weight of a matrix counts the number of nonzero columns not
the number of nonzero entries.

Motivated by applications in distributed storage, Tamo, Barg, and Ye [12], assume that each coordinate is
stored on a separate node in the system and introduced the concept of fractional decoding where error correction
by maximum distance separable codes based on part of the received word is considered. The idea of fractional
decoding is that the decoder is allowed to download an α-proportion of each received word’s coordinates. Below
we will formally describe the fractional decoding problem.

Consider an (n, k, l) array code C over the field Fq. The code C can correct up to t errors from an α-proportion
of (the nl received) symbols of Fq if for each i ∈ [n] there exists a function

fi : Flq −→ Fαilq with
n∑
i=1

αi ≤ nα

and a function
g : F(

∑n
i=1 αi)l

q −→ Fnlq

such that for any codeword (C1, . . . , Cn) ∈ C and any error vector E = (E1, . . . , En) ∈
(
Flq
)n of Hamming

weight ω(E) ≤ t,

g(f1(C1 + E1), f2(C2 + E2), . . . , fn(Cn + En)) = (C1, C2, . . . , Cn).

The α-decoding radius rα(C) is the maximum number of errors that the code C can correct from an α-proportion
of nl symbols of Fq. The α-decoding radius of (n, k) codes is

rα(n, k) = max
C∈Mn,k

rα(C),
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whereMn,k is the set of all (n, k) codes.
Since the information content of a codeword C ∈ C is kl symbols of the field Fq, the inequality α ≥ k

n forms
a necessary condition for decoding, even without errors. Hence, rα(C) > 0 if and only if α ≥ k

n . This condition is
assumed throughout the fractional decoding problem. For any k ≤ n and k

n ≤ α ≤ 1 we have the following naive
bound:

rα(n, k) ≥
⌊
αn− k

2

⌋
. (3.1)

Notice that α = 1 is the standard decoding problem. Consequently, the goal of fractional decoding is to study
error correction for α in the range k

n ≤ α < 1. Combining (3.1) with a result of [12], we see that the α-decoding
radius of a (n, k) codes satisfies⌊

αn− k
2

⌋
≤ rα(n, k) ≤ τα :=

⌊
n− k

α

2

⌋
=

1

α

⌊
αn− k

2

⌋
where the upper bound 1

α times the naive bound (3.1). A linear code C with α-decoding radius rα(C) = τα is said
to have optimal α-decoding radius.

3.2 A basic fractional decoding algorithm for r-Hermitian codes

We begin by describing objects which support fractional decoding of r-Hermitian codes by harnessing fractional
decoding of Reed-Solomon codes. In doing so, it is sometimes convenient to use indices in the set [m]0 :=
{0, . . . ,m − 1} for an integer m. This subsection should be viewed as establishing the notation and a foundation
to be used in the later, more powerful fractional decoding algorithms for r-Hermitian codes. There are some ideas
similar to those in [8].

Givenm pairwise disjoint setsA0, . . . , Am−1 ⊆ Fq2 , define the annihilator polynomial of the setAj , j ∈ [m]0,
to be

pj(x) =
∏
ω∈Aj

(x− ω) ∈ Fq2 [x].

Note that deg pj(x) = |Aj |, ∀j ∈ [m]0. Consider F = Fq2l as an extension of B = Fq2 of degree l. Recall that
the field trace of β ∈ Fq2l relative to this extension is

trF/B(β) = β + βq
2

+ · · ·+ βq
2(l−1) ∈ Fq2 .

Let {ζ0, ζ1, . . . , ζl−1} be a basis ofF overB, and let {ν0, ν1, . . . , νl−1} be its trace dual basis, meaning trF/B(ζsνj) =
δs,j for all s, j ∈ [l]0. Then

β =

l−1∑
s=0

trF/B(ζsβ)νs.

In other words, any element β in F can be calculated from its l projections
{
trF/B(ζsβ)

}l−1

s=0
on B.

Definition 4. Given a polynomial h(x) = ak−1x
k−1 + ak−2x

k−2 + · · · + a0 ∈ Fq2l [x] and m pairwise disjoint
subsets A0, . . . , Am−1 ⊆ Fq2 . Define

Tj(h)(x) = hl−m+j(x)(pj(x))(l−m) +

l−m−1∑
u=0

hu(x)(pj(x))u

for all j ∈ [m]0, where

hs(x) := tr(ζsak−1)xk−1 + tr(ζsak−2)xk−2 + · · ·+ tr(ζsa0) ∈ Fq2 [x].
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For f(x, y) ∈ Fq2l [x, y] given by

f(x, y) =

r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ Fq2l [x, y] (3.2)

and a ∈ Fq2l , let
af := f(a, y) ∈ Fq2l [y].

Furthermore, set
P ja (f) := Tj(af).

Lemma 5. Let

f(x, y) =
r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ Fq2l [x, y],

a ∈ Fq2l and A0, . . . , Am−1 ⊆ Fq2 be m pairwise disjoint subsets. Then,

degP ja (f) ≤ |Aj |(l −m) + r − 1 for j ∈ [m]0.

Moreover, if {(a, b1), (a, b2), . . . , (a, bn)} ⊆ Fq2 × Fq2 and Ba = {b1, . . . , bn}, then

P ja (f)(Ba) =
(
P ja (f)(b1), P ja (f)(b2), . . . , P ja (f)(bn)

)
∈ RS(q2,1) [n, kj ] ,

where kj = r+ |Aj |(l−m) and evaluation set Ba ⊆ Fq2 . Meaning it is a codeword of a Reed-Solomon code over
Fq2 .

Proof. Note that

degP ja (f)(y) = max

{
deg afl−m+j(y)(pj(y))(l−m), deg

l−m−1∑
u=0

afu(y)(pj(y))u

}
.

In addition,

deg afl−m+j(y)(pj(y))(l−m) = deg afl−m+j(y) + deg(pj(y))(l −m)

= r − 1 + |Aj |(l −m)

and

deg
l−m−1∑
u=0

afu(y)(pj(y))u ≤ deg afl−m−1(y)(pj(y))l−m−1

= r − 1 + |Aj |(l −m− 1)

≤ r − 1 + |Aj |(l −m),

proving that degP ja (f)(y) ≤ |Aj |(l −m) + r − 1.
Now, we must check that P ja (f)(Ba) ∈ Fnq2 . By definition, P ja (f)(Ba) = (P ja (f)(b1), . . . , P ja (f)(bn)), so we

just need to prove that P ja (f)(bi) ∈ Fq2 for all i ∈ [n]. For any j ∈ [m]0, we have

P ja (f)(bi) =a fl−m+j(bi)(pj(bi))
(l−m) +

l−m−1∑
u=0

afu(bi)(pj(bi))
u. (3.3)

It is clear that P ja (f)(bi) ∈ Fq2 for all i ∈ [n] since afu(y), pj(y) ∈ Fq2 [y] and bi ∈ Fq2 , proving that P ja (f)(Ba)

is a codeword of theRS(q2,1) [n, kj ] code over Fq2 with evaluation set Ba ⊆ Fq2 .
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Theorem 6. Let

f(x, y) =
r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ Fq2l [x, y],

a ∈ Fq2 and A0, . . . , Am−1 ⊆ Fq2 be m pairwise disjoint subsets. If
∑m−1

j=0 |Aj | ≥ r, then {afs(y) : s ∈ [l]0} can

be recovered from {P ja (f)(y) : j ∈ [m]0}. Consequently, af(y) can be recovered from {P ja (f)(y) : j ∈ [m]0}.

Proof. Note that P ja (f)(ω) = af0(ω) for all ω ∈ Aj ; of course, we can rewrite P ja (f)(y) as

P ja (f)(y) = afl−m+j(y)(pj(y))(l−m) +
l−m−1∑
u=0

afu(y)(pj(y))u

= afl−m+j(y)(pj(y))(l−m) + af0(y)(pj(y))0 +
l−m−1∑
u=1

afu(y)(pj(y))u.

Hence, P ja (f)(ω) = af0(ω) for all ω ∈ Aj . Since we know the evaluations of af0(y) at all the points of ∪m−1
j=0 Aj

and
∑m−1

j=0 |Aj | ≥ r ≥ deg af0(y), the af0(y) can be recovered. Now from af0(y) and {P ja (f)(y)}m−1
j=0 , we can

calculate the polynomials

(P ja )(1)(f)(y) =
P ja (f)(y)− af0(y)

pj(y)

= afl−m+j(y)(pj(y))(l−m−1) + af1(y) +

l−m−1∑
u=2

afu(y)(pj(y))(u−1).

Thus, (P ja )(1)(f)(ω) = af1(ω) for all ω ∈ Aj , and again, we know the evaluation of af1(y) at all points of
∪m−1
j=0 Aj . Thus, we can recover af1(y). From af0(y),a f1(y) and {P ja (f)(y)}m−1

j=0 we can calculate the polynomi-
als

(P ja )(2)(f)(y) =
(P ja )(1)(f)(y)− af1(y)

pj(y)
.

Since (P ja )(2)(f)(ω) = af2(ω) for all ω ∈ Aj , by the previous argument we can recover af2(y). Generally, the
polynomials {afl−m+j(y)}m−1

j=0 can be recovered by

afl−m+j(y) =
P ja (f)(y)−

∑l−m−1
u=0 afu(y)(pj(y))u

(pj(y))(l−m)
.

This shows that we can recover the polynomials {afj(y)}m−1
j=0 from the polynomials {P ja (f)(y)}m−1

j=0 and conse-
quently recover af(y).

The next proposition gives the relationship between the number of errors in coordinates corresponding to
aif(Γai) and the impact on the codewords P jai(f)(Γai) of Lemma 5.

Proposition 7. Let C(βP∞, r) be an r-Hermitian code over Fq2l and (a1f(Γa1), . . . ,aq2 f(Γaq2 )) be a codeword
as in (2.3) transmitted over a noisy channel. Assume that

h := (a1h(Γa1), . . . ,aq2 h(Γaq2 )) = (a1f(Γa1), . . . ,aq2 f(Γaq2 )) + (a1e(Γa1), . . . ,aq2 e(Γaq2 ))

is received. If aie(Γai) = (ei1, e
i
2, . . . , e

i
q) has ti nonzero entries eis1 , e

i
s2 , . . . , e

i
sti

, then P jai(h)(Γai) is a corrupted

codeword of the RS(q2,1) [q, r + |Aij |(l −m)] code with evaluation set Γai ⊆ Fq2 . Moreover, P jai(h)(Γai) has
most ti errors at the positions s1, s2, . . . , sti .

Proof. Note that P jai(h)(Γai) = P jai(f)(Γai) + P jai(e)(Γai). Clearly, if eiu = 0 that is u /∈ {s1, . . . , sti}, then the
respective coordinate in P jai(e)(Γai) is zero. If u ∈ {s1, . . . , sti} then the respective coordinate in P jai(e)(Γai)
may be nonzero, so P jai(h)(Γai) has at most ti errors.
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Now we are set to describe the fractional decoding procedure. Let C(βP∞, r) be an r-Hermitian code over
Fq2l and α = m

l < 1, where m is a positive integer with m|r. For each i ∈ [q2], let Ai0, Ai1, . . . , Ai(m−1) ⊆ Fq2
be m pairwise disjoint subsets of cardinality r

m such that

Γai ⊆
m−1⋃
j=0

Aij ⊆ Fq2 and
m−1∑
j=0

|Aij | ≥ r.

Remember that any codeword (f(P1), . . . , f(Pq3)) ∈ C(βP∞, r) can be viewed as

(a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )).

Since |Aij | = r
m and α = m

l , r+ |Aij |(l−m) = r
α . Hence, Lemma 5 implies that P jai(f)(Γai) ∈ RS(q2,1)

[
q, rα

]
and {P jai(f)(y) : j ∈ [m]0} can be recovered as long as there are no more than

⌊
q− r

α
2

⌋
errors in the received

vector. Finally, by Theorem 6, the aif(y) can be recovered from {P jai(f)(y) : j ∈ [m]0}. It remains to determine
f . Notice that the number of terms of f is at most

r−1∑
j=0

sj∑
i=0

1 ≤ αq3 + q − q + 1

q

q−1∑
i=0

i

= αq3 + q − q2

2
< αq3 < q3.

From aif(y), i ∈ [q2], q3 interpolation points can be determined since aif(y) = f(ai, y) and

aif(b) = f(ai, b) ∈ Fq2l

for all b ∈ Γai . As a result, f can be recovered from aif(y), i ∈ [q2]. This decoding procedure is summarized in
the Algorithm 1.

Algorithm 1: Fractional decoding of r-Hermitian code via Reed-Solomon codes
input: Received word h := (a1h(Γa1), . . . ,aq2 h(Γaq2 )) = ev(f) + e ∈ C(βP∞, r) where
f ∈ L(βP∞, r) as in (2.2) and α = m

l < 1,m|r.
for: i ∈ [q2] and j ∈ [m]0 do
Download the q2 sets of vectors {P jai(h)(Γai)} as in Lemma 5.
For each set {P jai(h)(Γai)} apply any decoding algorithm ofRS codes to recover the set {P jai(f)(Γai)}
and apply Theorem 6 to recover aif .

if aif is successfully recovered for all i ∈ [q2] then
for each s ∈ [q] do
Calculate the points

(ai,ai f(bis)).

Use the pairs of the field elements obtained in the previous step to determine f ∈ L(βP∞, r).
else

decoding failure
output: f ∈ L(βP∞, r) or decoding failure.

If aie(Γai) = (ei1, e
i
2, . . . , e

i
q) has ti nonzero entries eis1 , e

i
s2 , . . . , e

i
sti

and ti <
⌊
q− r

α
2

⌋
for all i ∈ [q2], then we

say that the errors are well distributed.

Theorem 8. Algorithm 1 can correct
⌊
q− r

α
2

⌋
errors. Moreover, Algorithm 1 can correct q2

⌊
q− r

α
2

⌋
errors provided

they are well distributed.
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Proof. Suppose that a codeword (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r) was transmitted over a noisy
channel and that (a1h(Γa1),a2 h(Γa2), . . . ,aq2 h(Γaq2 )) was received. Each aif(Γai) can be recovered via Algo-

rithm 1 if the corresponding received vector aih(Γai) has no more than
⌊
q− r

α
2

⌋
errors. Hence, it is possible to

recover the original codeword if it has no more than
⌊
q− r

α
2

⌋
errors. Moreover, if each aih(Γai) has no more than⌊

q− r
α

2

⌋
errors, then each aif(Γai) can be recovered. Hence, in the case of well distributed errors, Algorithm 1 can

correct up to q2
⌊
q− r

α
2

⌋
errors.

Note that to correct at least one error we must have q − r
α ≥ 2 and this is true if and only if α ≥ r

q−2 . That
is, Algorithm 1 works for r

q−2 ≤ α = m
l < 1. Moreover, given an α < 1 there is a trade-off beteween r and the

number of errors that we can correct by downloading an α-proportion of a corrupted codeword: The smaller r is,
the greater the number of errors we can correct by downloading an α-proportion of the corrupted codeword. Of
course, this is not surprising given that larger values of r give codes of larger dimensions.

In the next section, we will see better ways to address fractional decoding of r-Hermitian codes.

4 Improving the fractional error correcting capability

In this section, we present algorithms to perform fractional decoding of r-Hermitian codes over Fq2l which result in
improved bounds on the fractional decoding radius. Some necessary background is provided in Subsection 4.1. In
Subsections 4.2 and 4.3, we employ techniques from collaborative decoding for interleaved Reed-Solomon codes
to ensure fractional decoding of r-Hermitian codes. We note that this approach is different from collaborative
decoding of interleaved Hermitian codes. Indeed, the codes considered in this paper are constructed from the
Hermitian curve. They are subcodes of the constant extension code to Fq2l of the traditional one-point Hermitian
code but are not interleaved Hermitian codes.

4.1 Interleaved Reed-Solomon codes and collaborative decoding

An interleaved code of order m induced by codes C0, . . . , Cm−1 ⊆ Fnq is the array code

IC(C0, . . . , Cm−1) =




c0,1 c0,2 . . . c0,n−1 c0,n

c1,1 c1,2 . . . c1,n−1 c1,n
...

...
. . .

...
...

cm−1,1 cm−1,2 . . . cm−1,n−1 cm−1,n

 :
(ci,1, . . . , ci,n) ∈ Ci,
0 ≤ i ≤ m− 1

 .

Sometimes we write a codeword C ∈ IC(C0, . . . , Cm−1) as

C =


c(0)

c(1)

...
c(m−1)

 , where c(i) ∈ Ci.

In particular, when the underlying codes are Reed-Solomon codes, the resulting interleaved code is said to be an
interleaved Reed-Solomon code. More formally, it can be defined as follows.

Let L = {ω1, . . . , ωn} ⊆ Fq and K = {k0, k1, . . . , km−1} ⊆ Z+ where kj < n < q for any 0 ≤ j ≤ m− 1.
An interleaved Reed-Solomon code IRS (q, n,K,m) of order m is given by

IRS(q, n,K,m) =




f0(L)
f1(L)

...
fm−1(L)

 : fj(x) ∈ Fq[x], deg(fj) ≤ kj − 1


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where f(L) := (f(ω1), . . . , f(ωn)). The codewords fj(L) ∈ RS(q,1)[n, kj ] are called elementary codewords of
the IRS(q, n,K,m) code. If the dimensions kj = k for all j ∈ [m]0, the interleaved Reed-Solomon code is called
a homogeneous interleaved Reed-Solomon code and is denoted by IRS (q, n, k,m). Otherwise, it is said to be a
heterogeneous interleaved Reed-Solomon code.

The most common procedure to decode an interleaved code is to decode each row codeword c(i) ∈ Ci
separately. Using this decoding process, the maximum number of column errors that can be corrected in an
interleaved code IC(C0, . . . , Cm−1) is upper bounded by

⌊
n−max{dim(Ci):i∈[m]0}

2

⌋
. In particular, for an inter-

leaved Reed-Solomon code IRS(q, n,K,m) the maximum number of column errors that can be corrected is⌊
n−max{k0,...,km−1}

2

⌋
.

Schmidt, Sidorenko, and Bossert introduced the concept of collaborative decoding for interleaved Reed-
Solomon codes [11]. This decoder is based on the fact that the errors occur in the same positions of each elementary
codeword of the interleaved Reed-Solomon code. We summarize some key results from [11] in preparation for
applying them to r-Hermitian codes.

Consider a received word R = C + E where C ∈ IRS(q, n,K,m) and E = (E1, . . . , En) denotes an
error vector with t erroneous columns, meaning, w(E) := |{i : Ei 6= 0}| = t. The m elementary codewords
of the interleaved Reed-Solomon code are affected by m elementary error words e(0), e(1), . . . , e(m−1) of weight
wH(e(j)) = tj ≤ t. Let E(j) denote the set of error positions for the j-th elementary received word r(j). Since we
are considering column errors, the union of the m sets of error positions E = E(0) ∪E(1) ∪ . . .∪E(m−1) is a subset
of [n] := {1, . . . , n} with cardinality |E| = t.

Assuming that the codewords of the interleaved Reed-Solomon code are transmitted over a qm-ary channel, the
first step of collaborative decoding is to calculate the m syndrome polynomials S(0)(x), . . . , S(m−1)(x) ∈ Fq[x]
of degree less than n− kj where the j-th syndrome polynomial is

S(j)(x) =

n−kj∑
i=1

S
(j)
i xi−1

with coefficients:

S
(j)
i = r(j)(ω

kj
i ) =

n∑
h=1

r
(j)
h ω

kj(h−1)
i

for all i ∈ [n− kj ] and j ∈ [m]0.
The Shift-Register Synthesis Algorithm [10, Algorithm 3] applied to the syndromes S(0), . . . , S(m−1) yields a

polynomial Λ(x) ∈ Fq[x] with Λ(ω−1
i ) = 0 for all i ∈ E . We may assume that this polynomial is normalized so

that it is monic: Λ(x) = Λ1 + Λ2x+ · · ·+λtx
t−1 +xt. As in the classical case, these syndromes are used to form

a linear system of equations SΛ = V ,
S(0)

S(1)

...
S(m−1)




Λ1

Λ2
...

Λt

 =


V (0)

V (1)

...
V (m−1)

 , (4.1)

where each submatrix S(j) is a (n− kj − t)× t matrix and each V (j) is a column vector of length n− kj − t:

S(j) =


S

(j)
1 S

(j)
2 · · · S

(j)
t

S
(j)
2 S

(j)
3 · · · S

(j)
t+1

...
...

. . .
...

S
(j)
n−kj−t S

(j)
n−kj−t+1 · · · S

(j)
n−kj−1

 , V (j) =


−S(j)

t+1

−S(j)
t+2
...

−S(j)
n−kj

 .

The system of equations (4.1) has
m−1∑
j=0

(n− kj − t) equations and t unknowns. In order to guarantee unambiguous

decoding, the number of linearly independent equations has to be greater than or equal to the number of unknowns.
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Under the assumption that all equations in (4.1) are linearly independent,
m−1∑
j=0

(n− kj − t) ≥ t

which can be rewritten as

t ≤ m

m+ 1

n− 1

m

m−1∑
j=0

kj

 .

The number

τIRS :=
m

m+ 1

n− 1

m

m−1∑
j=0

kj


is called the joint-error-correcting capability of the interleaved Reed-Solomon code. However, there is a certain
probability that some of the equations (4.1) are linearly dependent. In this case, there is no unique solution to the
system of equations, and decoding failure is declared.

The collaborative decoding algorithm from [11] is outlined in Algorithm 2. It can correct t errors where
t ≤ τIRS with a failure probability

PF (t) ≤

(
qm − 1

q

qm − 1

)t
q−(m+1)(τIRS−t)

q − 1
.

Algorithm 2: Collaborative IRS Decoder

input: Received word R =


r(0)

r(1)

...
r(m−1)

. Calculate syndromes S(0), . . . , S(m−1).

Compute t and Λ(x) by Algorithm 4 in [10].
if t < τIRS and Λ(x) is t-valid then

for each j from 0 to m− 1 do
evaluate errors, and calculate e(j)

calculate ĉ(j) = r(j) + e(j)

else
decoding failure

output: C ∈ IRS(q, n,K,m) or decoding failure

4.2 Fractional decoding via homogeneous interleaved Reed-Solomon codes

Recall that Algorithm 1 downloadsm symbols from each aih(Γai), which is a corrupted codeword ofRS(q2,1)
[
q, rα

]
.

Those m symbols can be arranged to form the following matrix

πi(h) =


P 0
ai(h)(Γai)
P 1
ai(h)(Γai)
...

Pm−1
ai (h)(Γai)

 ∈ (Fmq2)q ;

that is, the downloaded symbols may be viewed as a codeword of a homogeneous interleaved Reed-Solomon code

IRS
(
q2, q,

r

α
,m
)

=



f0(Γai)
f1(Γai)

...
fm−1(Γai)

 : fj(x) ∈ Fq2 [x], deg(fj) ≤
r

α
− 1

 .
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We take this perspective and consider their projections.

Definition 9. Let h = (a1h(Γa1),a2 h(Γa2), . . . ,aq2 h(Γaq2 )) ∈ Fn
q2l

and P jai(h) be as in Definition 4. Then

the matrix πi(h) ∈
(
Fmq2
)q

is called the i-th projection of h to a homogeneous interleaved Reed-Solomon code.
Moreover, the matrix

π(h) :=
[
π1(h) | π2(h) | · · · | πq2(h)

]
∈
(
Fmq2
)n

is called the homogeneous virtual projection of h.

Now, Proposition 7 can be recast in this setting as follows, with a similar proof.

Proposition 10. Let (f(P1), f(P2), . . . , f(Pn)) ∈ C(βP∞, r) be a codeword as in (2.3) transmitted over a noisy
channel. Assume that

(a1h(Γa1), . . . ,aq2 h(Γaq2 )) = (a1f(Γa1), . . . ,aq2 f(Γaq2 )) + (a1e(Γa1), . . . ,aq2 e(Γaq2 ))

is received. If aie(Γai) = (ei1, e
i
2, . . . , e

i
q) has ti nonzero entries eis1 , e

i
s2 , . . . , e

i
sti

, then πi(h) is a corrupted code-
word of the homogeneous IRS(q2, q, rα ,m) code with at most ti erroneous columns at the positions s1, s2, . . . , sti .

Due to Proposition 10, we can use collaborative decoding as in Algorithm 2 and Theorem 6 to recover aif
from ti errors with failure probability given by

PF (ti) ≤

(
q2m − 1

q2

q2m − 1

)ti
q−2(m+1)(τ?−ti)

q2 − 1
(4.2)

where τ? := m
m+1

(
q − r

α

)
since

ti ≤
m

m+ 1

(
q − r

α

)
.

The resulting fractional decoding algorithm is outlined in Algorithm 3.

Algorithm 3: Fractional decoding of r-Hermitian code via virtual projection to a homogeneous inter-
leaved Reed-Solomon code

input: Received word h = ev(f) + e ∈ C(βP∞, r) where f ∈ L(βP∞, r) as in (2.2) and
α = m

l < 1,m|r.
for: i ∈ [q2], and j ∈ [m]0 do
Download the entries of the virtual projection π(h) ∈

(
Fmq2
)q

.
For each submatrix πi(h) of π(h) apply Algorithm 2 and Theorem 6 to recover aif .
if aif is successfully recovered for all i ∈ [q2] then

for each s ∈ [q] do
Calculate the points

(ai,ai f(bis)).

Use the pairs of the field elements obtained in the previous step to determine f ∈ L(βP∞, r).
else

decoding failure
output: f ∈ L(βP∞, r) or decoding failure.

Recall that Algorithm 1 corrects up to t ≤ 1
2

(
q − r

α

)
errors. The next result captures the improvement of the

perspective provided by interleaved codes.

Theorem 11. Algorithm 3 corrects up to m
m+1

(
q − r

α

)
errors. Moreover, if the errors are well distributed, Algo-

rithm 3 can correct up to q2 m
m+1

(
q − r

α

)
errors.
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Proof. Suppose that a codeword f = (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r) is transmitted over a
noisy channel and that h = (a1h(Γa1),a2 h(Γa2), . . . ,aq2 h(Γaq2 )) is received. Each aif can be recovered with
failure probability PF (ti) via Algorithm 3 if the corresponding i-th projection πi(h) has no more than ti errors
ti ≤ τ?. So, it is always possible to recover the original codeword if it has no more than m

m+1

(
q − r

α

)
errors.

Moreover, note that if the error positions in the received word are such that for each i ∈ [q2] the number of errors
in the corresponding i-th projection πi(h) has no more than ti = τ? errors, the original codeword can be recovered.
Hence, in the case of well distributed errors, Algorithm 3 can correct up to q2 m

m+1

(
q − r

α

)
errors.

As indicated by Theorem 11, Algorithm 3 improves the α-error correcting capability of Algorithm 1. Indeed,

m

m+ 1

(
q − r

α

)
≥ 1

2

(
q − r

α

)
for all m ≥ 1.

4.3 Fractional decoding via heterogeneous interleaved Reed-Solomon codes

Next, we consider a slight modification of the operator Tj of Definition 4 that when coupled with an additional
condition on the r-Hermitian code makes it possible to use collaborative decoding of heterogeneous interleaved
Reed-Solomon codes to present a new fractional decoding algorithm.

Definition 12. Given a polynomial h(x) = ak−1x
k−1 + ak−2x

k−2 + . . . + a0 ∈ Fq2l [x] and m pairwise disjoint
subsets A0, A1, . . . , Am−1 ⊆ Fq2 . For all j ∈ [m]0, define

Rj(h)(x) = hl−m+j(x)(pj(x))(l−m)(j+1) +

l−m−1∑
u=0

hu(x)(pj(x))u(j+1),

where
hs(x) = tr(ζsak−1)xk−1 + tr(ζsak−2)xk−2 + . . .+ tr(ζsa0) ∈ Fq2 [x].

For f(x, y) ∈ Fq2l [x, y] as in (3.2), define

Hj
a(f)(y) := Rj(af(y)). (4.3)

Using ideas similar to Lemma 5 and Theorem 6, one may verify the following results.

Lemma 13. Consider

f(x, y) =

r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ Fq2l [x, y],

a ∈ Fq2l and m pairwise disjoint subsets A0, A1, . . . , Am−1 ⊆ Fq2 . Then

degHj
a(f)(y) ≤ |Aj |(l −m)(j + 1) + r − 1.

Furthermore, if {(a, b1), (a, b2), . . . , (a, bn)} ⊆ Fq2 × Fq2 and Ba = {b1, . . . , bn}, then

Hj
a(f)(Ba) = (Hj

a(f)(b1), Hj
a(f)(b2), . . . ,Hj

a(f)(bn))

is a codeword of the Reed-Solomon code

RS(q2,1) [n, r + |Aj |(l −m)(j + 1)] .

Theorem 14. Let

f(x, y) =
r−1∑
j=0

sj∑
i=0

aijx
iyj ∈ Fq2l [x, y],

a ∈ Fq2 and A0, . . . , Am−1 ⊆ Fq2 be m pairwise disjoint subsets. If
∑m−1

j=0 |Aj | ≥ r, then {afs(y) : s ∈ [l]0} can

be recovered from {Hj
a(f)(y) : j ∈ [m]0}. Consequently, af(y) can be recovered from {Hj

a(f)(y) : j ∈ [m]0} .
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Next, we consider heterogeneous projections.

Definition 15. Consider f = (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r). For each i ∈ [q2], let

Ai,0, . . . , Ai,m−1 be m pairwise disjoint subsets of Fq2 such that
∑m−1

j=0 |Ai,j | ≥ r. The matrix

π?i (f) =


H0
ai(f)(Γai)

H1
ai(f)(Γai)
...

Hm−1
ai (f)(Γai)

 ∈ (Fmq2)q

is called the i-th projection of f to a heterogeneous interleaved Reed-Solomon code.
Further, the i-th projection of C(βP∞, r) to a heterogeneous interleaved Reed-Solomon code is given by

π?i (C) =
{
π?i (f) : f = (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r)

}
⊆
(
Fmq2
)q
.

The heterogeneous virtual projection of C(βP∞, r) is the array code C?Pm/l = C?Pm/l(q
2, n,m,K) given by

C?pm/l :=
{
π?(f) = [π?1(f)| . . . |π?q2(f)] : (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r)

}
,

where K = {r + |Ai,j |(l −m)(j + 1), ∀j ∈ [m]0}.

Assume that (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r) is transmitted over a noisy channel, which
adds t errors in such a way that the word

h := (a1h(Γa1), . . . ,aq2 h(Γaq2 )) = (a1f(Γa1), . . . ,aq2 f(Γaq2 )) + (a1e(Γa1), . . . ,aq2 e(Γaq2 ))

is observed at the channel output. Using the observed word h, we can calculate the q2m polynomials Hj
ai(h)(y)

and create the matrix
π?(h) = [π?1(h)|π?2(h)| . . . |π?q2(h)].

The matrix π?(h) can be considered as a corrupted received word of the heterogeneous virtual projection code
C?Pm/l(q

2, n,m,K) of C(βP∞, r). The next theorem shows how errors in C(βP∞, r) affect C?Pm/l(q
2, n,m,K).

Proposition 16. Let f = (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) be a codeword of an r-Hermitian code C trans-
mitted over a noisy channel. Assume that

h := (a1h(Γa1), . . . ,aq2 h(Γaq2 )) = (a1f(Γa1), . . . ,aq2 f(Γaq2 )) + (a1e(Γa1), . . . ,aq2 e(Γaq2 ))

is received. If aie(Γai) = (e(i,1), e(i,2), . . . , e(i,q)) has ti nonzero entries e(i,s1), . . . , e(i,sti )
, then π?(h) is a cor-

rupted codeword of the C?Pm/l(q
2, n,m,K) code with at most ti erroneous columns at positions (i, s1), . . . , (i, sti).

Proof. Note that π?i (h) = π?i (f + e) = π?i (f) + π?i (e). Clearly, if e(i,u) = 0, meaning u /∈ {s1, . . . , sti}, then
the respective coordinate in Hj

ai(e) is zero. If u ∈ {s1, . . . , sti}, then the respective coordinate in Hj
ai(e) may be

nonzero. Hence, π?i (h) has at most ti erroneous columns at positions (i, s1), . . . , (i, sti).

Next, we will provide a fractional decoding procedure an r-Hermitian code via its heterogeneous virtual pro-
jection.

Let C(βP∞, r) be an r-Hermitian code over Fq2l , α = m
l < 1, where m is a positive integer such that m|r.

For each i ∈ [q2], let Ai0, Ai1, . . . , Ai(m−1) ⊆ Fq2 be m pairwise disjoint subsets of same cardinality r
m , such that

Γai ⊆
m−1⋃
j=0

Aij ⊆ Fq2 and
m−1∑
j=0

|Aij | ≥ r.
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According to Theorem 14, aif(y) can be recovered from {Hj
ai(f)(y) : j ∈ [m]0}. By Lemma 13, Hj

ai(Γai) ∈
RS(q2,1)

[
q, r + r

m(l −m)(j + 1)
]

= RS(q2,1)
[
q, r +

(
r
α − r

)
(j + 1)

]
. Hence, the i-th virtual projection of f ,

π?i (f) ∈ IRS
(
q2, q,K,m

)
, where K =

{
kj = r +

(
r
α − r

)
(j + 1), j ∈ [m]0

}
. Hence, we can recover π?i from

ti ≤ τ? errors with failure probability

PF (ti) ≤

(
q2m − 1

q2

q2m − 1

)ti
q−2(m+1)(τ?−ti)

q2 − 1

where

τ? :=
1

m+ 1

[
mq − r

α

(
m+ 1

2

)
+ r

(
m

2

)]
and consequently recover aif(y). It remains to determine f . Notice that the number of terms of f is at most∑r−1

j=0

∑kj
i=0 1 ≤ αq3 + q − q+1

q

∑q−1
i=0 i

= αq3 + q − q2

2 < αq3 < q3.

From aif(y), i ∈ [q2], q3 interpolation points can be determined since aif(y) = f(ai, y) and

aif(b) = f(ai, b) ∈ Fq2l

for all b ∈ Γai . As a result, f can be recovered from aif(y), i ∈ [q2].
This decoding procedure is summarized in Algorithm 4.

Algorithm 4: Fractional decoding of r-Hermitian code via virtual projection to a heterogeneous inter-
leaved Reed-Solomon code

input: Received word h = ev(f) + e ∈ C(βP∞, r) where f ∈ L(βP∞, r) as in (2.2) and α = m
l < 1.

for: i ∈ [q2], and j ∈ [m] do

Download the entries of the virtual projetion π?(h) ∈
(
Fmq2
)n

.
For each submatrix π?i (h) of π?(h) apply Algorithm 2 and Theorem 14 to recover aif .
if aif is successfully recovered for all i ∈ [q2] then

for each s ∈ [q] do
Calculate the points

(ai,ai f(bis)).

Use the pairs of the field elements obtained in the previous step to determine f ∈ L(βP∞, r).
else

decoding failure
output: f ∈ L(βP∞, r) or decoding failure.

Theorem 17. Algorithm 4 can correct 1
m+1

[
mq − r

α

(
m+1

2

)
+ r
(
m
2

)]
errors. Moreover, Algorithm 4 can correct

up to q2

m+1

[
mq − r

α

(
m+1

2

)
+ r
(
m
2

)]
errors if they are well distributed.

Proof. Suppose that a codeword (a1f(Γa1),a2 f(Γa2), . . . ,aq2 f(Γaq2 )) ∈ C(βP∞, r) was transmitted over a noisy
channel and that (a1h(Γa1),a2 h(Γa2), . . . ,aq2 h(Γaq2 )) was received. Each aif can be recovered via Algorithm 4
with failure probability

PF (ti) ≤

(
q2m − 1

q2

q2m − 1

)ti
q−2(m+1)(τ?−ti)

q2 − 1

if the corresponding i-th projection π?i (h) has no more than ti ≤ τ? errors. Hence, it is possible to recover the
original codeword if no more than τ? errors have occurred. Moreover, note that if the error positions in the received
word are such that for each i ∈ [q2] the number of errors in the corresponding i-th projection π?i (h) has no more
than τ? errors, the original codeword will be recovered. Thus, in this situation, Algorithm 4 can correct q2τ?

errors.
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Next, we consider when Algorithm 4 provides an improvement over Algorithm 1 or Algorithm 3.

Proposition 18. Consider the r-Hermitian code C(βP∞, r) over Fq2l , α = m
l such that m|r. Fractional decoding

of C(βP∞, r) via virtual projection to heterogeneous interleaved Reed-Solomon codes (Algorithm 4) corrects more
errors than via Reed-Solomon codes (Algorithm 1) if and only if

r

q
≤ α

(1− α)(m+ 1)
.

Fractional decoding of C(βP∞, r) via heterogeneous interleaved Reed-Solomon codes (Algorithm 4) corrects more
errors than via homogeneous interleaved Reed-Solomon codes (Algorithm 3) if and only if

m ≥ 1 +
√

1 + 4l

2
.

Proof. The proof follows from direct computation. First, it can be verified that

τ? ≥
q − r

α

2

if and only if
r

q
≤ α

(1− α)m+ 1
.

Second, one may check that
τ? ≥ m

m+ 1

(
q − r

α

)
= τ?

if and only if

m ≥ 1 +
√

1 + 4l

2
.

5 Conclusion

In this paper, we define a family of codes, called r-Hermitian codes, and provide fractional decoding algorithms
for them. Several approaches are provided, including via Reed-Solomon codes as well as via homogeneous and
heterogeneous interleaved Reed-Solomon codes. Because the algorithms may output decoding failure if errors are
concentrated in particular blocks, it is an interesting research problem to consider how other possible partitions of
the evaluation points may support successful decoding.
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