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Abstract

In this paper, we present a fractional decoding algorithm for a new family of codes which are constructed
from the Hermitian curve, called r-Hermitian codes. These codes of length n are defined over an extension
field F 21 of 2 and the fractional decoding algorithms that we present are algorithms for error correction that
use only aln symbols of a subfield of size ¢ as input into the decoding algorithm, where o < 1, meaning a
fraction of the subsymbols that are typically utilized. We demonstrate that collaborative decoding of interleaved
codes supports fractional decoding of the r-Hermitian codes, allowing for improved bounds on the fractional
decoding radius.
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1 Introduction

Distributed storage systems [1] are the infrastructure for cloud computing service providers. In a distributed storage
system, a data file is encoded and distributed to n nodes in such a way that a data collector can decode the original
file by downloading from & nodes. The common coding schemes employed in distributed storage systems include
replication schemes in Google File Systems [3], erasure codes in Oceanstore [6] and locally reparable codes in
Windows Azure [5].

Recently, Tamo, Ye, and Barg [12] considered error correction by maximum distance separable (MDS) codes
based on part of the received codeword, defining the fractional decoding problem and the a-decoding radius of
an array code over a finite field ;. The fractional decoding problem is motivated by the fact that in distributed
systems there is usually a limitation on the disk operation as well as on the amount of information transmitted for
the purpose of decoding. Sometimes thought of as error correction with partial information, fractional decoding
considers codes defined over an extension field and algorithms for error correction that use fewer symbols from
the base field than is typical, thus operating using a restricted amount of information in the decoding process.

In this paper, we present a fractional decoding algorithm for a new family of codes, called -Hermitian codes,
which are constructed from a particular higher genus curve, the Hermitian curve. To our knowledge, it is the
first fractional decoding algorithm for codes from curves of positive genus. In [9] Santos provided a connection
between fractional decoding of Reed-Solomon codes, which can be considered as codes from a curve of genus
0, the projective line, and collaborative decoding of interleaved Reed-Solomon codes. The codes considered in
this paper are defined using the Hermitian curve 39 +y = 297! over g2, an integer r < ¢, and a constant field
extension of the Riemann-Roch space of a divisor on this curve. They may be considered as evaluation codes with
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evaluation points whose coordinates lie in the subfield 2. Taking evaluation points in a base field to define a
family of codes for particular purpose is an idea utilized by Guruswami and Xing [4] and Gao, Yue, Huang, and
Zhang [2] among others (including [7]). The r-Hermitian codes are described in Section 2.

Both r-Hermitian codes and those considered in [12] have length ¢, over alphabet sizes ¢%' and ¢3! respec-
tively. While both are shorter than Reed-Solomon codes over the same alphabets for [ > 1, both allow for
fractional decoding with o < 1 whereas Reed-Solomon codes themselves do not. Several approaches are utilized
to provide probabilistic algorithms for fractional decoding of r-Hermitian codes. The first, given in Section 3, is
rather naive but sets the notation to be used for more sophisticated approaches later in the paper. The remain-
ing algorithms, featured in Section 4 are based on collaborative decoding of interleaved codes. It is important
to note that these results are different from collaborative decoding of interleaved Hermitian codes. The codes
considered in this paper are subcodes of a constant field extension of the traditional one-point Hermitian code
to F 2 but are not interleaved Hermitian codes. Algorithm 3 employs homogeneous interleaved Reed-Solomon

codes and can correct — "~ (q — g) errors by downloading an a-proportion of the received word. This upper

m+1

2 o . . . . . g
bound is improved to % (q — Z;) if the errors are well distributed. In comparison, Algorithm 4 utilizes het-
erogeneous interleaved Reed-Solomon codes and can correct #ﬂ [mq — g(m; 1) =+ 7"(’;)] errors. This bound is

. 2 . . . .
improved to mq7+1 [mq - (m; 1) +r (T;)] if the errors are well distributed. We prove that the approach via hetero-
geneous interleaved Reed-Solomon codes (Algorithm 4) corrects more errors than via homogeneous interleaved

Reed-Solomon codes (Algorithm 3) if and only if rm > v+l V;“‘l. The paper ends with a conclusion in Section 5.

2 Codes with evaluation points in a subfield and r-Hermitian codes

Guruswami and Xing [4] considered Reed-Solomon codes whose evaluation points belong to a subfield and pro-
vided a list decoding algorithm for those codes that can correct a fraction of errors approaching the code minimum
distance. Those codes are defined as follows.

Let [ a positive integer and n, k be positive integers satisfying 1 < k < n < ¢g. The Reed-Solomon code
RS@D[n, k] is a code over the alphabet IF that encodes a polynomial f € IF[z] of degree at most k — 1 as

f(l')’—> (f(w1)7f(w2)77f(wn))7 (21)
where £ = {w1,...,wp} € F,. Note thatif C C Iy is an [n, k] linear code, then C can be seen as an (n, k, 1) array
code ' C IE‘fIX”. An (n, k, 1) array code C over a finite field F, maps an [ x k data matrix D = (D1,...,Dy) €
(Ff])k to an [ x n codeword matrix C' = (C1,...,Cy) € (Fé)n The array code C may be seen as the image of a
map

. Xk !
¢: FJE — F" .
D — C
Each column vector C; of the matrix corresponds to a codeword coordinate so that the coordinates are indexed
by [n] := {1,...,n}. The parameter [ is called the sub-packetization of C, and the code is said to have length
n. Indeed, given a basis {(p, ..., (1} of F over Fy, let {vo,v1,...,11} be its trace-dual basis. Then every

element 3 € F; can be written as

-1
B=> tr(GiB)v
i=0

where t7 denotes the trace relative to the extension IF i /F;. The codeword ¢ = (c1,...,¢,) € C C ng can be
viewed as
tr(Coc1)  tr(Goc2) o tr(Cocn)
o tT(gilcl) tr(g“.lc2) . t?“(éilCn) e c quX".
tr(G-1c1) tr(G-ic2) - tr(G-1cn)



Taking this into account, Tamo, Ye, and Barg [12] show that RS () [n, k| codes are optimal for fractional decoding

in the sense that V 2“J errors may be corrected by downloading «ln of F,. Because a received word has n

coordinates in [F i, which can be expressed using n/ symbols of F; and a/n symbols that depend on these received
symbols are downloaded, we say here (and in similar situations throughout) that an a-proportion of symbols are
used in decoding.

Also in [4], V. Guruswami and Xing considered algebraic-geometric codes whose evaluation points belong
to a subfield and provided a list decoding algorithm to those codes. Here, we focus our attention on codes from
the Hermitian curve, which has produced the best understood family of algebraic geometry codes beyond Reed-
Solomon codes.

Let H, be the Hermitian curve given by y? +y = 29t over Fgo. Let Poo, P1, ..., Py beits n + 1 distinct
[F 2-rational places so that n = ¢>. Given a € F 2, consider I, := {b EFp : 01+b= adtt } It is well known
that for all @ € F 2, |I'4| = ¢ and that the affine points of H, over 2 are of the form Py, := (a,b) with a € F 2
and b € I'y; that is, the set of [F 2-rational places of H, is

Hq(Fp2) = {Pup:a€Fp,bely} U{Px},

g%

where P, denotes the unique point at infinity which has projective coordinates (0 : 1 : 0). It is useful to partition
Hy(Fp2) \ {Px} as
Hg(F2) \ {Poc} = U

a€lF 2

where P, := {Py,: be Ty}
Next, we consider functions that will be useful in the code constructions. Recall that the Riemann-Roch space
of a divisor 3P, on H, is

L(BPx) = (2'y’ :0<i,0<j <q—1,ig+j(qg+1) < B) CFplr,y].
Let £;(3P) be the Riemann-Roch space of the divisor 5Py, on Hy over F 2. It is well-known that
Li(BPx) = L(BPx) ® F .

This implies that dimg ,, L1(BPx) = dimp , L(BPx) and a basis of L(3P,) over I 2 is a basis of £;(8Px)
over quz ; that is,

Ly(BPx) = (2'y’ : 0<i,0<j < q—1,iqg+j(q+1) < B) CFalz,y.

Define the constant extension to IF i of the Hermitian code C(8Px) C IFZQ to be

C(BPs) = {(f(P1), f(Pa), .-, f(Pn)) - f € Li(BPoo)} € Fip-

According to [4, Lemma 4.6], if ¢(¢ — 1) < 8 < ¢°, C/(BPx) is an IF 21-linear code over I 2:, with dimension at

least 5+ 1 — @ and minimum distance at least n — (.
Forafixedr € Z,1 < r < q we define

<
|

[y

»
<

El(ﬂpoo, ’I") = aija:iyj D Qi € qu - El(ﬁpoo),

<
Il
=)
-
Il
=)

where s; = Liﬁfj(qqﬂ) )
Note that if » = 1, then
5]
L1(BPx,1) = aijxi tag; € qul - quz [z]
i=0

Q@



and if r = q,
EI(BPOO7q) = ﬁl(ﬁpoo)

Moreover, there is a nesting
L1(BPooy1) C L1(BPoo,2) C -+ C L(BPso,q—1) C L1(BPo,q) = L1(SPso).
Now, we are set to define the 7-Hermitian codes.
Definition 1. Letr,l € Z, 1 < r < q. An r-Hermitian code over F o1 is defined as
C(BPser) = {(F(P1).- . [(Pn)) : | € La(BPoo,r)} C Fil.

It is immediate that C(5 P, ) is the image of the evaluation map

ev: Li(BPx,r) — IFZQZ
f = (f(P), - f(P))
It is convenient to enumerate the elements of 2 : ay, . .., a,2. We fix this ordering in the discussion that follows.

In addition, we assume that the evaluation points of C (3P, ) are ordered so that

q2

(P,...,P,) = ((Paib)bel“ai)izl ’

Note that given (ci, ..., ¢,) € C(8Px, ), there exists

r—1 $Sj

fly) =" aya'y € L(BPx,T) 22)

§=0 i=0

such that ¢; = f(P;) for all i € [n]. Moreover, by a slight abuse of notation, (f(P), ..., f(FP,)) can be viewed as

(a0/ (Car)sas S(Taz)s - sae (D) (23)
where . f := f(a,y) € F a[y]<, and

aif(ra,-) = (f(aiv bi1)7 sy f(ai7 blq))
This means that the codeword (f(Py), ..., f(FPn)) € C(B8Ps, ) can be recovered by recovering each , f (I, ) for
i € [¢%].
The r-Hermitian codes over quz are nested, such that

For r = 1, we have that

C(B-Poml) = {(f(a1)7 7f(a1)7f(a2)7"‘7f(a2)7"‘ 7f(aq2)7"‘7f(aq2)) : f € E(/Bpoml)}?

where {al, ce aqz} are all the elements of I 2; that is, C(Px, 1) is a kind of repetition Reed-Solomon code
over an extension field IF 2 whose the evaluation set is the base field ;2. Meanwhile, for 7 = ¢, C (BPx, q) is the
constant extension code to IF 2i of the one-point Hermitian code Cz(D, 8Px).

Remark 2. Note that C(3Ps,7) is a code of length ¢ over o2t whereas the codes considered in [12] are of
length q* over F 42> said differently, an r-Hermitian code of length q> is constructed over an alphabet of size ¢
whereas the codes of length ¢ considered in [12] employ a field of size ¢3'. Both of these families of codes are
shorter than Reed-Solomon codes over the same fields. However, they allow for fractional decoding (as proven in
[12] and below for the r-Hermitian codes) whereas Reed-Solomon codes of length q over a field of size q do not.

4



Proposition 3. Let r,l € Z,1 < r < q. The r-Hermitian code C(3Px,7) is a F a-linear code over Fo of
dimension given by

8-+
dim C(BPuc, ) = dimC(BPs) — Y {Jqu — g+
j=r
where C(8Px) C FV'; is the one-point Hermitian code over F ;2.
Proof. Note that
dimC(BPs,r) = Wig+jlg+1):0<j <r—1lyig+j(g+1) < B}

= dimC(BPx) — {ig+j(g+1):7<j<q—1;ig+j(g+1) < B}

= dimC(BPx) — [{ig+7(g+1):r<j<q—1l;ig+37(qg+1) < B}
q—1 .

= dimC(fPx) —Z {WJ —q+r.

j=r

3 The fractional decoding problem

In this section, we introduce the fractional decoding problem. Then, as an example and to set the notation for more
substantial results in Section 4, we consider fractional decoding of r-Hermitian codes via Reed-Solomon codes.

3.1 Preliminaries

Given an (n, k, ) array code C over a finite field IF;, we may consider C as a code over the alphabet Ffl and then
one error amounts to an incorrect column Cj;. Then correcting up to ¢ errors means correcting any combination of
errors £ = (Ey,...,E,)in (Fé)n with Hamming weight w(E) := [{i : E; # 0}| < t, where the received word
is the matrix R = C' + E. Note that the Hamming weight of a matrix counts the number of nonzero columns not
the number of nonzero entries.

Motivated by applications in distributed storage, Tamo, Barg, and Ye [12], assume that each coordinate is
stored on a separate node in the system and introduced the concept of fractional decoding where error correction
by maximum distance separable codes based on part of the received word is considered. The idea of fractional
decoding is that the decoder is allowed to download an a-proportion of each received word’s coordinates. Below
we will formally describe the fractional decoding problem.

Consider an (n, k, ) array code C over the field Fy. The code C can correct up to ¢ errors from an a-proportion
of (the nl received) symbols of I, if for each ¢ € [n] there exists a function

n
fi: Fé — Fg‘il with Zai < no
i=1

and a function . l
g: F((IZ":l ol _, IFZZ

such that for any codeword (C1,...,C,) € C and any error vector £ = (Ey,...,E,) € (Fé)n of Hamming
weight w(FE) < t,

g(f1(C1+ En), fo(Ca + Ea), ..., fu(Ch + Ep)) = (C1,Ca, ..., Cy).

The a-decoding radius r,,(C) is the maximum number of errors that the code C can correct from an a-proportion
of nl symbols of F,. The a-decoding radius of (n, k) codes is

ro(n,k) = Cgl/\z/lxxk ro(C),



where M,, ;. is the set of all (n, k) codes.
Since the information content of a codeword C' € C is kl symbols of the field I, the inequality o > % forms
a necessary condition for decoding, even without errors. Hence, r,,(C) > 0 if and only if o > % This condition is

assumed throughout the fractional decoding problem. For any k£ < n and % < a < 1 we have the following naive
bound:

3.1

ra(n, k) > r‘” - kJ .

2

Notice that « = 1 is the standard decoding problem. Consequently, the goal of fractional decoding is to study
error correction for « in the range % < a < 1. Combining (3.1) with a result of [12], we see that the a-decoding
radius of a (n, k) codes satisfies

{anQ—kJ ) < V;QJ :Han;kJ

where the upper bound é times the naive bound (3.1). A linear code C with a-decoding radius r,(C) = 7, is said
to have optimal a-decoding radius.

3.2 A basic fractional decoding algorithm for r-Hermitian codes

We begin by describing objects which support fractional decoding of r-Hermitian codes by harnessing fractional
decoding of Reed-Solomon codes. In doing so, it is sometimes convenient to use indices in the set [m]y :=
{0,...,m — 1} for an integer m. This subsection should be viewed as establishing the notation and a foundation
to be used in the later, more powerful fractional decoding algorithms for r-Hermitian codes. There are some ideas
similar to those in [8].

Given m pairwise disjoint sets Ao, ..., A1 C F 2, define the annihilator polynomial of the set A;, j € [m]o,
to be

pi(@) = ] (@ —w) € Fpelal.

LUEAJ'

Note that deg p;(z) = |A;|, Vj € [m]o. Consider F' = F i as an extension of B = [ of degree [. Recall that
the field trace of 3 € I relative to this extension is

2(1—1)

trp/p(B) =B+ B+ 47 €F,p.

Let {Co,C1,- -, (-1} beabasis of F'over B, and let {1, 11, . .., 1} beits trace dual basis, meaning tr /5 ((sv;)

ds,j forall s, j € [l]o. Then
-1

B = Z trF/B(Csﬂ)Vs-
s=0

In other words, any element 3 in F' can be calculated from its [ projections {tr F/B(Cs B)}i;t on B.

Definition 4. Given a polynomial h(x) = aj_12* ' + ap_ o2 2+ .-+ ag € F21[x] and m pairwise disjoint
subsets Ao, ..., Aym—1 C Fp2. Define

[—m—1

Tj(h)(x) = Moy (2) (03 (2)) 7™+ ha(@) (9 ()"

u=0

forall j € [m]o, where

hs(@) := tr(Csap—1)a" " + tr(Cap—2)a" 2 + - + tr((sap) € Fplz].



For f(z,y) € Fya[z,y] given by
fla,y) = aiz'y’ € Falz,y] 3.2)
and a € quz, let

Furthermore, set

Lemma 5. Let

r—1 $8j
Fla,y) =YY aga'y € Fpalr,y,
§=0 i=0
a€lF g2 and Ag, ..., Ap_1 CF e be m pairwise disjoint subsets. Then,

deg P](f) < |4;|(1 =m) +r —1for j € [mlo.
Moreover, if {(a, b1), (a,b2),...,(a,by)} CFp2 x Fp2 and By = {b1,...,by,}, then

PI()(Ba) = (PI(f)(b1), PL(f)(b2), .., PL(f)(bn)) € RS@V [, k)],

where kj = r +|A;j|(l —m) and evaluation set B, C F 2. Meaning it is a codeword of a Reed-Solomon code over
Fe.
q

Proof. Note that

l-m—1
deg PJ(f)(y) = max {deg afimri () (pi(¥) ™ deg Y afu(y)(pj(y))“} -
u=0

In addition,

deg o ficm+i () ;)™ = deg o fimis(y) + deg(pj(y))(l —m)

= r—1+4;[(l—m)
and
l—m—1
deg > ofu@) (i) < deg aficm1 ()i ()"
u=0

= r—1+4;|(l-m-1)

< =144/l —m),
proving that deg P! (f)(y) < |A;|(1—m)+7r—1. ' ' '

Now, we must check that Py (f)(B,) € F}>. By definition, PI(f)(Ba) = (PL(f)(b1),..., Pi(f)(by)), so we

just need to prove that P2 (f)(b;) € IF,2 forall i € [n]. For any j € [m]o, we have

l—m—1

PI(F) 1) =a fiomrj (0 (p5(0) ™ + Y afulb) (0 (0:))". (3.3)

u=0

It is clear that P2 (f)(b;) 62 F,2 forall i € [n] since o fu(y),pj(y) € Fpe[y] and b; € F 2, proving that PI(f)(Ba)
is a codeword of the RS\ Y) [n, k;] code over F .2 With evaluation set B, C F . O



Theorem 6. Let

r—1 $j o
flz,y) = aijz'y’ € Falz,y],
7=0 =0
a € Fp2 and Ay, ..., Am—1 C Fy2 be m pairwise disjoint subsets. If 37" |A | > r, then {afs(y) : s € [l]o} can
be recovered from {P1(f)(y) : j € [m]o}. Consequently, o f(y) can be recoveredfrom {PI(f)() : j € [m]o}.

Proof. Note that P2 (f)(w) = 4fo(w) forall w € Aj; of course, we can rewrite PJ(f)(y) as

l-m—1
Pg(f)(y) - aflferj(y)(pj(y))(lim)"i_ Z afu(y)<pj(y))u
u=0
l-m—1
= afimsi @i )T™ + wfoly) O+ Z afu(y)(pi ()"

Hence, P (f)(w) = 4 fo(w) forall w € Aj;. Since we know the evaluations of 4 fo(y) at all the points of U7", oA

and Z;’:Ol |A;| > r > deg qfo(y), the 4 fo(y) can be recovered. Now from , fo(y) and {PI(f)(y) T:ol’ we can
calculate the polynomials

PL(H)(y) — afo(y)

Jy(D _
(B () o 0)
l-m—1
= afiems )TV + AW+ DY afu) i)Y,
u=2

Thus, (P))D(f)(w) = ofi(w) forall w € Aj, and again, we know the evaluation of , fi(y) at all points of
U;-”:_Ol Aj. Thus, we can recover q f1(y). From o fo(y),q f1(y) and {PJ(f)(y) 9”:_01 we can calculate the polynomi-

als )
(PHY () = afr(y)
pi(y) '

Since (P))@(f)(w) = ofo(w) forall w € Aj;, by the previous argument we can recover  f2(y). Generally, the
polynomials {4 fi—n+; (y)}T;(]l can be recovered by

Pi()) = Sus " afu®)pi(®)"
afi- m—l—](y) (pj(y(;)(l*m) :

(PHP(f)(y) =

This shows that we can recover the polynomials {, fj(y)}gn;01 from the polynomials { P/ (f )W)}, ! and conse-
quently recover , f (). O]

The next proposition gives the relationship between the number of errors in coordinates corresponding to
a;f (Ta,) and the impact on the codewords P2, (f)(T,,) of Lemma 5.

Proposition 7. Let C(3Px, 1) be an r-Hermitian code over F 21 and (4, f(Tay ), - - - ag f(I’an)) be a codeword
as in (2.3) transmitted over a noisy channel. Assume that

h:= (alh(ral)7 cr a2 h(ra 2)) = (mf(ral)?' ca2 f(Fa 2)) + (ale(ra1)7 crsag2 e(ra 2))

q q q q q q

41 €y then P1.(h)(Dy,) is a corrupted

codeword of the RS [q,7 + |Aij|(I = m)] code with evaluation set Ty, C T 2. Moreover, P.(h)(Ty,) has
most t; errors at the positions S1, 82, . . ., St,-

Proof. Note that PJ, (h)(Ty,) = PJ,(f)(Ta;) + P, (€)(Ta,). Clearly, if e}, = 0 thatis u ¢ {s1,..., s}, then the
respective coordinate in Py, (€)(T'y,) is zero. If u € {s1,..., s} then the respective coordinate in Py, (e)(I'y,)
may be nonzero, so P3,(h)(T,,) has at most ¢; errors. O

. . _ '3 '3 7
is received. If q,e(Ta,) = (€}, €5,.. ., €}) has t; nonzero entries €., ,¢e.,, .. ., €5,



Now we are set to describe the fractional decoding procedure. Let C(/3Px,7) be an r-Hermitian code over
F 2 and o = 7 < 1, where m is a positive integer with m/|r. For each i € [¢?], let Ajo, Aiq, ... s Ajm—1) € Fpe
be m pairwise disjoint subsets of cardinality .- such that

m—1 m—1
Fai g U Aij g qu and Z |A1J| Z T.
7=0 7=0

Remember that any codeword (f(Py), ..., f(P3)) € C(8Px,r) can be viewed as
(a0 f (Cas s SCaz)s sz (T y)):

Since |A;;| = - and o = 7, r + | A;5](I —m) = ~. Hence, Lemma 5 implies that PL(f)(Ty,) € RS (4, Z]

T
m
and {P4,(f)(y) : j € [m]o} can be recovered as long as there are no more than [q;EJ errors in the received

vector. Finally, by Theorem 6, the ., f(y) can be recovered from {PZ,(f)(y) : j € [m]o}. It remains to determine
f. Notice that the number of terms of f is at most

—

r—1 $Sj

(=}

D) DEREIRVIETEE ) O
j=0 i=0 E—
q2
= aq3+q—5<aq3<q3.

From 4, f(y), i € [¢%], ¢ interpolation points can be determined since 4, f(y) = f(a;i,y) and
aif(b) = f(a’ia b) S qu

for all b € T',,. As aresult, f can be recovered from . f(y), i € [¢*]. This decoding procedure is summarized in
the Algorithm 1.

Algorithm 1: Fractional decoding of r-Hermitian code via Reed-Solomon codes
input: Received word 1 := (q,A(T'a; ), - - 50, M(Ta ) = ev(f) + € € C(BPoo, ) where
f € L(BPx,r)asin(2.2) and o = T < 1, m|r.
for: i € [¢?] and j € [m]o do A
Download the g2 sets of vectors { P4, (h)(T,)} as in Lemma 5.
For each set { P2, (h)(I',)} apply any decoding algorithm of RS codes to recover the set { PZ, (f)(Ia,)}
and apply Theorem 6 to recover , f.

if ,, f is successfully recovered for all i € [¢?] then
for each s € [g] do

Calculate the points
(ai?Gi f(bls))
Use the pairs of the field elements obtained in the previous step to determine f € L(5Px, 7).
else
| decoding failure
output: f € L(SPx,r) or decoding failure.
If y.e(Ty,) = (el, e, ..., ez) has t; nonzero entries ¢’ , €% ..., eiti and t; < nggJ for all i € [g?], then we

say that the errors are well distributed.

q—= q—=

Theorem 8. Algorithm I can correct [ 3 J errors. Moreover, Algorithm 1 can correct ¢° { 5 J errors provided

they are well distributed.



Proof. Suppose that a codeword (a, f(La; )sa5 f(Ta), - - a2 f(La ) € C(BPoo, ) Was transmitted over a noisy
channel and that (4, 2(T'a, )sae R(Tay), - - - a2 h(I‘aq2 )) was received. Each ,, f(I',,) can be recovered via Algo-

i

rithm 1 if the corresponding received vector 4, h(I'5,) has no more than Lq_QEJ errors. Hence, it is possible to

recover the original codeword if it has no more than VEEJ errors. Moreover, if each 4,h(I'y,) has no more than

V—TEJ errors, then each ,, f (T, ) can be recovered. Hence, in the case of well distributed errors, Algorithm 1 can

correct up to g2 L%J eITors. O
Note that to correct at least one error we must have ¢ — g > 2 and this is true if and only if @ > q_%. That
is, Algorithm 1 works for 11%2 < a =T < 1. Moreover, given an o < 1 there is a trade-off beteween 7 and the
number of errors that we can correct by downloading an a-proportion of a corrupted codeword: The smaller 7 is,
the greater the number of errors we can correct by downloading an a-proportion of the corrupted codeword. Of
course, this is not surprising given that larger values of r give codes of larger dimensions.
In the next section, we will see better ways to address fractional decoding of r-Hermitian codes.

4 Improving the fractional error correcting capability

In this section, we present algorithms to perform fractional decoding of r-Hermitian codes over F 2 which result in
improved bounds on the fractional decoding radius. Some necessary background is provided in Subsection 4.1. In
Subsections 4.2 and 4.3, we employ techniques from collaborative decoding for interleaved Reed-Solomon codes
to ensure fractional decoding of r-Hermitian codes. We note that this approach is different from collaborative
decoding of interleaved Hermitian codes. Indeed, the codes considered in this paper are constructed from the
Hermitian curve. They are subcodes of the constant extension code to IF 2 of the traditional one-point Hermitian
code but are not interleaved Hermitian codes.

4.1 Interleaved Reed-Solomon codes and collaborative decoding

An interleaved code of order m induced by codes Cy, . ..,Cp—1 C IFZ is the array code
€o,1 €0,2 cee Con—1 Co,n
1,1 €12 ...  Clp-1 Cln Cily---yCin) €C;
IC(C())"'aCm—l) = . . . : ( 1’17- ’ l’n) v
0<1<m-1
Cm—1,1 Cm-12 --- Cm—-1n—-1 Cm—-1n
Sometimes we write a codeword C' € ZC(Cy, . ..,Crm—1) as
c(0)
) .
C= , where ¢ € ¢
C(m_l)

In particular, when the underlying codes are Reed-Solomon codes, the resulting interleaved code is said to be an
interleaved Reed-Solomon code. More formally, it can be defined as follows.

Let £ = {wi1,...,wn} C Fgand K = {ko, k1,...,km—1} C Z" where k; <n < gforany 0 < j <m — 1.
An interleaved Reed-Solomon code ZRS (g, n, K, m) of order m is given by

fo(L)

f1(£)

IRS(q,n,K,m) = : fi(z) € Fylz],deg(fj) < kj —1

Fro1 (L)

10



where f(L) := (f(w1),..., f(wn)). The codewords f;(L) € RS@D[n, k;] are called elementary codewords of
the ZRS (g, n, K, m) code. If the dimensions k; = k for all j € [m]o, the interleaved Reed-Solomon code is called
a homogeneous interleaved Reed-Solomon code and is denoted by ZRS (g, n, k, m). Otherwise, it is said to be a
heterogeneous interleaved Reed-Solomon code.

The most common procedure to decode an interleaved code is to decode each row codeword ¢ € C;

separately. Using this decoding process, the maximum number of column errors that can be corrected in an
n—max{dim(Ci):iG[m]O}J
5 .

interleaved code ZC(Cy,...,Cmn—1) is upper bounded by L In particular, for an inter-

leaved Reed-Solomon code ZRS(g,n, KC,m) the maximum number of column errors that can be corrected is
n—max{ko,...,km—1}
5 .

Schmidt, Sidorenko, and Bossert introduced the concept of collaborative decoding for interleaved Reed-
Solomon codes [11]. This decoder is based on the fact that the errors occur in the same positions of each elementary
codeword of the interleaved Reed-Solomon code. We summarize some key results from [11] in preparation for
applying them to r-Hermitian codes.

Consider a received word R = C + E where C € ZRS(q,n,K,m) and E = (Ey,..., E,) denotes an
error vector with ¢ erroneous columns, meaning, w(E) := [{i : E; # 0}| = t. The m elementary codewords
of the interleaved Reed-Solomon code are affected by m elementary error words e(?), e(1) .. e(™m=1) of weight
w H(e(j )) =t; <t Let& (4) denote the set of error positions for the j-th elementary received word (/). Since we
are considering column errors, the union of the m sets of error positions £ = £ UEM U .. .UEM=D) is a subset
of [n] :={1,...,n} with cardinality |£| = t.

Assuming that the codewords of the interleaved Reed-Solomon code are transmitted over a ¢"*-ary channel, the
first step of collaborative decoding is to calculate the m syndrome polynomials S (z),..., S Y (z) € F,[z]
of degree less than n — k; where the j-th syndrome polynomial is

with coefficients:

n
S@'(j) _ T(j)(wfj) _ ngj)wl{ﬂj(h%)
h=1
foralli € [n — k;] and j € [m]o.

The Shift-Register Synthesis Algorithm [10, Algorithm 3] applied to the syndromes S, ..., S(m=1) yields a
polynomial A(x) € Fy[x] with A(w; ') = 0 forall i € £&. We may assume that this polynomial is normalized so
that it is monic: A(x) = Ay +Agz+-- -+ Azt~ + 2. Asin the classical case, these syndromes are used to form
a linear system of equations SA =V,

5(0) Ay 1 (0)
S As 1748))
) S ) ; 4.1)
sm-1 | | A, V1)

where each submatrix S\ is a (n — k; —t) x t matrix and each V1) is a column vector of length n — k; —t:

W B [
S(j) _ SQJ 53J St-]kl V(j) _ - t—]&-2
ng)kjft szjzkjft+l e ng)kjfl _szjzkj
m—1
The system of equations (4.1) has Z (n — k; — t) equations and ¢ unknowns. In order to guarantee unambiguous
§=0

decoding, the number of linearly independent equations has to be greater than or equal to the number of unknowns.

11



Under the assumption that all equations in (4.1) are linearly independent,

m—1

dn—kj—t)>t
J=0

which can be rewritten as
m 1 m—1
< —|n—-— kil .
m—+1 m 4
Jj=0

The number
m 1 m—1
= - — k;
TIRS m—+1 " m JZ:(:) J

is called the joint-error-correcting capability of the interleaved Reed-Solomon code. However, there is a certain
probability that some of the equations (4.1) are linearly dependent. In this case, there is no unique solution to the
system of equations, and decoding failure is declared.

The collaborative decoding algorithm from [11] is outlined in Algorithm 2. It can correct ¢ errors where
t < Trrs with a failure probability

t
gn— 1+ —(m+1)(rzrs—1)
Pp(t) < e 1
qm—1 q—1
Algorithm 2: Collaborative ZRS Decoder
r0)
1)
input: Received word R = . . Calculate syndromes S O ..., 5m=1)
,,,,(771:—1)

Compute ¢ and A(x) by Algorithm 4 in [10].
if t < 7rrs and A(z) is t-valid then
for each j from 0 to m — 1 do
evaluate errors, and calculate e(/)
calculate ¢9) = () 4 ()
else
| decoding failure

output: C' € ZRS(q,n, K, m) or decoding failure

4.2 Fractional decoding via homogeneous interleaved Reed-Solomon codes

Recall that Algorithm 1 downloads m symbols from each ,, h(I',, ), which is a corrupted codeword of RS (¢%1) [q, g] .
Those m symbols can be arranged to form the following matrix

O (1)(Ta,)

Pl (1)(T) .
e = :l S (Fm ) ;
PP (B)(T,)

that is, the downloaded symbols may be viewed as a codeword of a homogeneous interleaved Reed-Solomon code

fO(FU«i)

T,
IRS (¢%q. = m) = M) ) € Falal deg(fy) < = — 1

Q1=

Froor(Ta)

12



We take this perspective and consider their projections.

Definition 9. Let h = (a,7(T'a;) a0 M(Tay) - - sa 0 h(Lap)) € o and Pi.(h) be as in Definition 4. Then

q
the matrix 7;(h) € (FZ@) is called the i-th projection of h to a homogeneous interleaved Reed-Solomon code.
Moreover, the matrix

w(h) = [m(h) | ma(h) | -+ | m2(h)] € (F;ﬂ)
is called the homogeneous virtual projection of h.

Now, Proposition 7 can be recast in this setting as follows, with a similar proof.

Proposition 10. Let (f(P1), f(P2), ..., f(P,)) € C(BPx,r) be a codeword as in (2.3) transmitted over a noisy
channel. Assume that

(a1 h(Tay)s -+ sao MTa 5)) = (a1 f(Lay)s - 10,2 f(raqz)) + (@€(Tar); -+ va0 €(Tays))

q q q q
is received. If q,e(Da,) = (€}, €, ..., el) has t; nonzero entries €} €., ..., eiti, then 7;(h) is a corrupted code-
word of the homogeneous IRS(qQ, q, g, m) code with at most t; erroneous columns at the positions si, sa, . . . , St,.

Due to Proposition 10, we can use collaborative decoding as in Algorithm 2 and Theorem 6 to recover , f
from ¢; errors with failure probability given by

2m 1\ ti
q — = —2(m~41) (1% —t;)
pp(ms( q2> q 4.2)

qzm_l q2_1

where 7, := mlﬂ (q — g) since

t'<L( Z)
T m+1 1=5)

The resulting fractional decoding algorithm is outlined in Algorithm 3.

Algorithm 3: Fractional decoding of r-Hermitian code via virtual projection to a homogeneous inter-
leaved Reed-Solomon code
input: Received word h = ev(f) + e € C(8Px,r) where f € L(8Py,r) as in (2.2) and
a="T<1,mlr.
for: i € [¢?], and j € [m]o do

q
Download the entries of the virtual projection 7w(h) € (IF;%) .
For each submatrix 7;(h) of 7(h) apply Algorithm 2 and Theorem 6 to recover 4, f.
if ., f is successfully recovered for all i € [¢*] then
for each s € [¢] do
Calculate the points

(@isa; [(bi,))-

Use the pairs of the field elements obtained in the previous step to determine f € L(5Px, 7).
else
| decoding failure

output: f € L(5P,r) or decoding failure.

Recall that Algorithm 1 corrects up to ¢t < % (q — g) errors. The next result captures the improvement of the
perspective provided by interleaved codes.

Theorem 11. Algorithm 3 corrects up to mL-H (q - g) errors. Moreover, if the errors are well distributed, Algo-

rithm 3 can correct up to q2ml_i_1 (q — g) errors.
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Proof. Suppose that a codeword f = (a, f(las)saz f(Taz)s - 500 f(Ta ) € C(BPso, ) is transmitted over a
noisy channel and that h = (4, h(Ly,),ay A(Tay), - - a2 h(Faqz)) is received. Each ,, f can be recovered with
failure probability Pg(t;) via Algorithm 3 if the corresponding i-th projection m;(h) has no more than ¢; errors

t; < Tx. So, it is always possible to recover the original codeword if it has no more than -~ (q — 1) errors.
m+1 o

Moreover, note that if the error positions in the received word are such that for each i € [¢?] the number of errors
in the corresponding i-th projection 7;(h) has no more than ¢; = 7 errors, the original codeword can be recovered.
Hence, in the case of well distributed errors, Algorithm 3 can correct up to QQWLH (q — g) errors. Ul

As indicated by Theorem 11, Algorithm 3 improves the a-error correcting capability of Algorithm 1. Indeed,

a5z 5 -0
m+1 B o _2q Q

forallm > 1.

4.3 Fractional decoding via heterogeneous interleaved Reed-Solomon codes

Next, we consider a slight modification of the operator 7} of Definition 4 that when coupled with an additional
condition on the r-Hermitian code makes it possible to use collaborative decoding of heterogeneous interleaved
Reed-Solomon codes to present a new fractional decoding algorithm.

Definition 12. Given a polynomial h(z) = aj_ 1251 + ap_o2* 2 4+ ... 4 ap € F 21 [z] and m pairwise disjoint
subsets Ag, A1, ..., A1 C Fpa. Forall j € [m]o, define

l—m—1

R;(h)(x) = hl—mﬂ'(x)(pj(x))(l_m)(j"'l) + Z hu(x)(pj(x))u(j+l),
u=0

where
hs(x) = tr(Cap—1)2" 1 + tr(Gar—2)x" 2 + ... + tr(Csao) € Fpela].

For f(x,y) € Fa(r,y] as in (3.2), define
Hi(H)(y) = Rjaf () 4.3)
Using ideas similar to Lemma 5 and Theorem 6, one may verify the following results.

Lemma 13. Consider

r—1 $8j
Fla,y) =) aga'y € Fealz,y,
7=0 i=0
a € F 21 and m pairwise disjoint subsets Ao, Ay, ..., Ay—1 C F2. Then

deg HJ(f)(y) < [A41(1 = m)(j +1) + 7 — 1.
Furthermore, if {(a,b1), (a,b2),...,(a,bn)} € Fp2 X Fp2 and B, = {b1,...,by}, then

H(f)(Ba) = (HJ(f)(b1), HL(f)(b2), ... HI(f) (bn))
is a codeword of the Reed-Solomon code
RSCD [n,r + | A;|(1 — m)(j +1)].

Theorem 14. Let

r—1 $j

flz,y) = Z Z aga'y’ € Folz,y),

=0 i=0
a € Fp2and Ao, ..., Ay—1 C Fy2 be m pairwise disjoint subsets. Ifzg-n:_ol |Aj| >, then {ofs(y) : s € [l]o} can
be recovered from {H(f)(y) : j € [m]o}. Consequently, o f(y) can be recovered from {H3(f)(y) : j € [m]o} -

14



Next, we consider heterogeneous projections.

Definition 15. Consider f = (a,f(Tai)as f(Taz)s-- 500 f(Taz)) € C(BPus,7). For each i € [¢%], let

Aio; - -, Ain—1 be m pairwise disjoint subsets of F ;> such that Z;-n;()l |A; j| > r. The matrix
H% (f)Ta,)
Ha, (f)(Ta;) q
= e ()

is called the i-th projection of f to a heterogeneous interleaved Reed-Solomon code.
Further, the i-th projection of C(3Pxo, 1) to a heterogeneous interleaved Reed-Solomon code is given by

7€) = {m () = (S Car)uas F(Ta)s -0 F(Ta ) € CBPo,m) b € (B

The heterogeneous virtual projection of C(8 Pso, ) is the array code Cl*jm/l = C}Sm/l (¢%,n,m, K) given by

G = { () = O] 1752 () ¢ (e FCan)s 0,0 (L)) € CBP, 1) |
where K = {r + |A; ;|(l —m)(j + 1),Vj € [m]o}.

Assume that (o, f(Tay)say f(Tay), - - a2 f(Fan)) € C(BPx,r) is transmitted over a noisy channel, which
adds t errors in such a way that the word

h:= (alh(ral)7 crsa2 h(Fa 2)) = (a1f(ra1)a Cra f(Fan)) + (U«le(ral)? ERRT G(Fa 2))

q q q q

is observed at the channel output. Using the observed word h, we can calculate the g%m polynomials H2, (h)(y)
and create the matrix

m(h) = [m(R)|m3(R)] .. - [mg2 (h)].
The matrix 7*(h) can be considered as a corrupted received word of the heterogeneous virtual projection code

C]*Dm/l (¢%,n,m,K) of C(3Pxs, 7). The next theorem shows how errors in C(3Ps, ) affect Cl*gm/l (¢®,n,m,K).

Proposition 16. Let f = (o, f(Tay)yan f(Tay), - - age (Faqz)) be a codeword of an r-Hermitian code C trans-
mitted over a noisy channel. Assume that

hi= (h(Tay)o- o ap BTa)) = (o F )y FTa) + (06T €T )

is received. If 4,¢(Ta;) = (€(i1),€(i,2), - - - » €(iq)) has t; nonzero entries e sy, ..., €(;s, ) then 7 (h) is a cor-

rupted codeword of the C}m/l (g%, n,m, K) code with at most t; erroneous columns at positions (i, s1), . . ., (i, s4,).

Proof. Note that 77 (h) = 7/ (f +e) = 77 (f) + 7} (e). Clearly, if e;,,) = 0, meaning u ¢ {s1,...,sy}, then
the respective coordinate in Hj,(e) is zero. If u € {sy, ..., sy, }, then the respective coordinate in H7,(e) may be
nonzero. Hence, 7} (h) has at most ¢; erroneous columns at positions (4, 1), . . ., (4, 5¢,). O

Next, we will provide a fractional decoding procedure an r-Hermitian code via its heterogeneous virtual pro-
jection.
Let C(3Px,7) be an r-Hermitian code over F 2, a = J* < 1, where m is a positive integer such that m|r.

For each i € [¢?], let Ajo, A1, . . ., Ajm—-1) € Fy2 be m pairwise disjoint subsets of same cardinality -, such that
m—1 m—1
Fai g U Alj g ]FqQ and Z |A”| Z r.
3=0 j=0
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According to Theorem 14, . f(y) can be recovered from {H2.(f)(y) : j € [m]o}. By Lemma 13, H} (T',,) €
RS g7+ Z(l—=m)(j +1)] = RS> [q,7+ (£ —r) (j +1)]. Hence, the i-th virtual projection of f,
75 (f) € IRS (¢*,q,K,m), where K = {k; =r + (£ —r) (j + 1), j € [m]o}. Hence, we can recover 7} from
t; < 7* errors with failure probability

¢ —1

T*'_;m—Z m—+1 +rm
1| A\ 2 2

and consequently recover 4, f(y). It remains to determine f. Notice that the number of terms of f is at most

—1 kj 1
Zgzoziiol < agd+q-— q;;— P 0z

= a?+q-% <o’ <’

¢ - E)t" g2+ —t)

where

From 4, f(y), i € [¢%], ¢ interpolation points can be determined since 4, f(y) = f(a;,y) and

aif(b) = f(az’7 b) S quz

forall b € T',,. As aresult, f can be recovered from 4, f(y), i € [¢?].
This decoding procedure is summarized in Algorithm 4.

Algorithm 4: Fractional decoding of r-Hermitian code via virtual projection to a heterogeneous inter-
leaved Reed-Solomon code
input: Received word h = ev(f) + e € C(BPx,r) where f € L(8Px,r)asin(22)and a = 7 < 1.
for: i € [¢°], and j € [m] do

n
Download the entries of the virtual projetion 7*(h) € <IE‘Z’%> .

For each submatrix 7} (h) of 7*(h) apply Algorithm 2 and Theorem 14 to recover 4, f.
if ,, f is successfully recovered for all i € [¢?] then
for each s € [g] do

Calculate the points

(a’i7ai f(bls ))

Use the pairs of the field elements obtained in the previous step to determine f € L(5Px, 7).

else
| decoding failure

output: f € L(SPx,r) or decoding failure.

Theorem 17. Algorithm 4 can correct —~ [mq z (mH) + 7“( )] errors. Moreover, Algorithm 4 can correct

up to mqg— L= (mH) + r( )} errors lf they are well distributed.

m+1 [
Proof. Suppose that a codeword (a, f(La; )sa5 f(Ta), - - - sa,2 f(La ) € C(BPoo, ) Was transmitted over a noisy
channel and that (o, 2(I'a; )yay h(Lay), - - - a2 h(Faq2 )) was received. Each ,, f can be recovered via Algorithm 4

with failure probability
om _ 1\ b *
g — = q—2(m+1)(T —t;)
Pr(t;) < 4
F(’)—<q2m1> q271

if the corresponding i-th projection 7 (k) has no more than ¢; < 7* errors. Hence, it is possible to recover the
original codeword if no more than 7* errors have occurred. Moreover, note that if the error positions in the received
word are such that for each i € [¢] the number of errors in the corresponding i-th projection 7} (h) has no more
than 7* errors, the original codeword will be recovered. Thus, in this situation, Algorithm 4 can correct ¢*7*
erTors. O
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Next, we consider when Algorithm 4 provides an improvement over Algorithm 1 or Algorithm 3.

Proposition 18. Consider the r-Hermitian code C(3 P, 1) over F 21, a = T such that m|r. Fractional decoding
of C(B8 P, r) via virtual projection to heterogeneous interleaved Reed-Solomon codes (Algorithm 4) corrects more
errors than via Reed-Solomon codes (Algorithm 1) if and only if

(07

S U a)mt1)

r
q
Fractional decoding of C (8 Px,, 1) via heterogeneous interleaved Reed-Solomon codes (Algorithm 4) corrects more
errors than via homogeneous interleaved Reed-Solomon codes (Algorithm 3) if and only if

1+V1+4
mzf.

Proof. The proof follows from direct computation. First, it can be verified that

g—=
* > [0
T
if and only if
r o
- <
g~ l—-—am+1
Second, one may check that
T > m (q - I) = Tx
m+1 o
if and only if
1+vV1+4
m>——.

2

5 Conclusion

In this paper, we define a family of codes, called r-Hermitian codes, and provide fractional decoding algorithms
for them. Several approaches are provided, including via Reed-Solomon codes as well as via homogeneous and
heterogeneous interleaved Reed-Solomon codes. Because the algorithms may output decoding failure if errors are
concentrated in particular blocks, it is an interesting research problem to consider how other possible partitions of
the evaluation points may support successful decoding.
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