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Abstract

The FENE-P (Finitely-Extensible Nonlinear Elastic) dumbbell constitutive equation is widely used in simulations and stability
analyses of free and wall-bounded viscoelastic shear flows due to its relative simplicity and accuracy in predicting macroscopic
properties of dilute polymer solutions. The model contains three independent material parameters, which expressed in dimension-
less form correspond to a Weissenberg number (Wi), i.e., the ratio of the dumbbell relaxation time scale to a characteristic flow
time scale, a finite extensibility parameter (L), corresponding to the ratio of the fully extended dumbbell length to the root mean
square end-to-end separation of the polymer chain under equilibrium conditions, and a solvent viscosity ratio, commonly denoted
β. An exact solution for the rheological predictions of the FENE-P model in steady simple shear flow is available [Sureshkumar et
al., Phys Fluids (1997)], but the resulting nonlinear and nested set of equations do not readily reveal the key shear-thinning physics
that dominates at high Wi as a result of the finite extensibility of the polymer chain. In this note we review a simple way of evalu-
ating the steady material functions characterizing the nonlinear evolution of the polymeric contributions to the shear stress and first
normal stress difference as the shear rate increases, provide asymptotic expansions as a function of Wi , and show that it is in fact
possible to construct universal master curves for these two material functions as well as the corresponding stress ratio. Steady shear
flow experiments on three highly elastic dilute polymer solutions of different finite extensibilities also follow the identified master
curves. The governing dimensionless parameter for these master curves is Wi/L and it is only in strong shear flows exceeding
Wi/L ≳ 1 that the effects of finite extensibility of the polymer chains dominate the evolution of polymeric stresses in the flow field.
We suggest that reporting the magnitude of Wi/L when performing stability analyses or simulating shear-dominated flows with the
FENE-P model will help clarify finite extensibility effects.
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1. Introduction

Dilute solutions of flexible polymer chains are one of the
most common subclasses of non-Newtonian fluids, with a prin-
cipal characteristic known to be the pronounced nonlinear vis-
coelasticity generated at high deformation rates. The poly-
mer chains at equilibrium relax to a random coil configuration.
These polymer coils, however, can be unravelled and attain
stretched configurations based on the strength and type of an
imposed flow. Two canonical flow types have been studied ex-
tensively for dilute polymer solutions: steady extensional flow
and steady shear flow. Here, we focus on steady shear flow.

The simplest way to model the deformation of a dilute sus-
pension of polymer chains in a solution is to treat each iso-
lated chain as a non-interacting dumbbell composed of a pair of
beads that are connected to each other by an entropic spring
[1]. The Hookean spring exerts a restoring force to prevent
separation of the two beads in the dumbbell, and a relaxation
time scale can be defined based on the spring constant and the
friction coefficient of the beads. A force balance based on the
viscous drag and linear spring forces characterizes the evolution
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of the dumbbell connector vector, i.e., the vector connecting the
two beads [2]. Ensemble averaging of the conformation of each
dumbbell leads to an evolution equation for the second moment
of the dumbbell connector vector (i.e., the dumbbell conforma-
tion tensor) in terms of the upper convected derivative. The
resulting closed-form constitutive equation for the total stress
(including both polymer and solvent contributions) is identical
to the constitutive equation suggested by Oldroyd [3] from con-
tinuum mechanical considerations that is commonly referred to
as the Oldroyd-B [2, 4] model. This Hookean dumbbell model
was later modified to recognize the finite extensibility of a poly-
mer chain by making the spring connecting the two beads of
the dumbbell finitely extensible and nonlinearly elastic (FENE)
[5–8]. A closed form constitutive equation for the ensemble
average of the second moment tensor FENE model was devel-
oped by Peterlin (FENE-P) [9] using a pre-averaging assump-
tion. The resulting FENE-P constitutive equation, in combina-
tion with the continuity equation and Cauchy momentum equa-
tion provide a set of non-linearly coupled equations that can
be solved to find the velocity and and stress fields in steady or
time-dependent flows. This feature makes the FENE-P model a
popular choice for continuum mechanics simulations of dilute
polymer solutions in complex mixed flows [10–17]. When re-
porting the results of simulations with the FENE-P model, three
dimensionless numbers are important; (i) the Weissenberg num-
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ber (Wi), the ratio of the relaxation time scale of the dumbbell to
the advection time scale of the flow, (ii) the finite extensibility
(L), the ratio of the dumbbell length at its fully extended state to
the root mean squared polymer size at equilibrium, and (iii) the
viscosity ratio (β), the ratio of the solvent viscosity contribution
to the total zero shear rate viscosity of the solution.

The asymptotic response of the FENE dumbbell model can
be readily evaluated in an irrotational extensional flow (see for
example chapter 13.5 of [1]). The polymer chains orient with
the elongational axis and approach full stretch at high exten-
sion rates, in good agreement with experimental observations
and numerical simulations [18]. The picture is more complex
in strong shear flows due to the presence of vorticity. Bead-rod
[19, 20] and bead-spring [21–25] simulations show that indi-
vidual chains partially align and stretch in the flow direction
but also tumble continuously due to the presence of vorticity.
Tumbling was first predicted by Lumley [26] and de Gennes
[27] and later directly observed in experiments on deoxyribonu-
cleic acid (DNA) macromolecules [24, 28]. Experiments and
Brownian dynamics simulations show that a partially elongated
polymer chain has a non-zero mean orientation angle with re-
spect to the streamwise direction. In this state, the shear flow
stretches the polymer and progressively aligns it with the flow
(reducing the orientation angle). If the flow is not strong enough
(low Weissenberg number), the polymer chain’s entropic restor-
ing force overcomes the shearing force and the polymer chain
starts to recoil. In strong flows (high Weissenberg number),
the mean orientation angle scales as 1/Wi and approaches zero
as the polymer chains becomes more and more aligned with
the flow. However, Brownian fluctuations of parts of the chain
can make the local angle with the flow momentarily negative,
which is enough to cause the polymer chain to tumble [24]. As
the Weissenberg number increases from small to moderate val-
ues, the probability of recoil motion decreases and instead the
probability of tumbling motion increases.

Repeated stretching, tumbling, and recoiling of polymer
chains in a strong shear flow give rise to shear thinning and
shear-rate-dependent normal stresses in the solution [9]. These
macroscopic rheological features can be modeled by both
closed form constitutive equation dumbbell models such as the
FENE-P model and also evaluated by Brownian dynamics mod-
els of freely jointed bead-rod [19, 20] and bead-spring [21–25]
chains. They can be most clearly quantified by calculating the
rate-dependence of the polymer contribution to the solution vis-
cosity (ηp) and the first normal stress coefficient (Ψ1). Simple
fluid theory and bead-spring simulations show that both ηp and
Ψ1 are independent of Weissenberg number for small Weis-
senberg numbers (Wi ≲ 1), however, they both experience a
power-law decay as Weissenberg number increases to moder-
ate and high values. For moderate values of Weissenberg num-
ber (10 ≲ Wi ≲ 100), the bead-spring model predicts power-
laws of −1/2 and −14/11 for the polymer viscosity and first
normal stress coefficient, respectively [19, 21, 22, 24, 25]. At
high values of Weissenberg number (Wi ≳ 100), however, the
numerical simulations approach the classical FENE dumbbell
result [23] and the power-laws change to −2/3 and −4/3 for
the polymer viscosity and first normal stress coefficient, respec-

tively [19, 21, 22, 24, 25]. It is generally observed that at high
Weissenberg numbers, the rheological response of the solution
is dominated by the finite extensibility of the springs and other
parameters such as hydrodynamic interactions between beads
and excluded volume do not play a significant role [18].

In this work, we examine the predictions of the FENE-P con-
stitutive equation for finitely extensible dumbbells in steady
shear flow. Using asymptotic analysis for low and high limits
of the Weissenberg number, we show that there is a previously
unreported master curve that collapses the model predictions
for material functions such as the polymer viscosity and first
normal stress coefficient for all values of the Weissenberg num-
ber and independent of the finite extensibility parameter. Our
analysis shows that Wi/L is the governing dimensionless num-
ber that characterizes the flow conditions when the rheological
properties of a FENE-P fluid are dominated by finite extensi-
bility. Steady shear experiments with dilute polymer solutions
in viscous solvents are then carried out showing results that
are in reasonable agreement with the FENE-P master curves
even though the FENE-P dumbbell model is a greatly simpli-
fied model of real flexible polymer chains.

2. Governing equations

In this study, we focus on understating the behavior of the
FENE-P constitutive model [9] in steady simple shear flow,
shown schematically in Fig. 1. The streamwise velocity is
v1 = 0 at spanwise position x2 = 0 and linearly grows to v1 = V
at spanwise position x2 = h. A homogeneous state shear rate
can thus be defined as γ̇ = V/h.

Figure 1: Velocity profile in steady simple shear flow.

The governing equations of the FENE-P fluid in steady shear
flow are the continuity equation for an incompressible fluid
and the Cauchy momentum equation. The stress tensor in the
Cauchy momentum equation is decomposed into the stress con-
tribution from the solvent, assumed to be a Newtonian incom-
pressible fluid, and the stress contribution from the polymer
molecules that are modeled by the FENE-P constitutive model.
The Cauchy momentum equation can be written as,

ρ
D
Dt

v = −∇P + βη0∇
2v + ∇ · τ, (1)

where Dv/Dt = ∂v/∂t + v · ∇v is the material derivative of the
velocity vector, v [9]. In Eq. (1), P is the pressure, ρ is the fluid
density, η0 is the zero shear rate viscosity of the fluid, β = ηs/η0
is the ratio of the solvent viscosity to the zero shear rate viscos-
ity of the solution, commonly termed the viscosity ratio, and ηs

is the solvent viscosity such that η0 = ηs + ηp(0), where ηp(0)
is the polymer viscosity in the limit of zero shear rate, γ̇ → 0,
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in the FENE-P model. The polymer stress contribution to the
Cauchy momentum equation (τ) is a function of the polymer
chain conformation tensor A = ⟨rr⟩/

(
⟨r2

0⟩/3
)
, where r is the

dumbbell connector vector and ⟨r2
0⟩ is the mean squared end-to-

end distance of a dumbbell at equilibrium. The polymer stress
tensor can be written as,

τ = −ηpA(1), (2)

where A(1) is the upper convected derivative of the polymer con-
formation tensor, A. The upper convected derivative of A is by
definition,

A(1) =
D
Dt

A − (∇v)T · A − A · (∇v) , (3)

and describes the rate of change of the polymer chain conforma-
tion tensor seen by an observer advecting and also rotating and
deforming with the flow [2]. After incorporating an equilibrium
pre-averaging closure approximation, the FENE-P constitutive
relation can be written in terms of the dimensionless dumbbell
conformation tensor in the form,

A(1) = −
1
λ

[
f (tr(A)) A − I

]
, (4)

where

f (tr(A)) =
L2 − 3

L2 − tr(A)
, (5)

L = rmax/⟨r2
0⟩

1/2 is the finite extensibility, rmax is the length of
a dumbbell at its fully extended state, I is the identity matrix,
and λ is the relaxation time of the polymer chain, such that the
dimensionless Weissenberg number can be written as Wi = λγ̇.
Combining the FENE-P constitutive equation, i.e., Eq. (4) and
(5), with Eq. (2), the polymer stress tensor for FENE-P fluids
can also be written as,

τi j = −ηpA(1)i j = G
[

L2 − 3
L2 − tr(A)

Ai j − δi j

]
, (6)

where G = ηp(0)/λ is the elastic modulus, tr(A) =
∑

i Aii, and
δi j is the Kronecker delta. It should be noted that there are
several variants of the FENE-P model available, as reviewed
in [29]. Similar to [30], we choose the FENE-P variant given
above (Eq.(4) and (5)) as the polymer chain conformation ten-
sor reduces to the identity tensor at equilibrium and there is a
one-to-one mapping between this variant of the FENE-P con-
stitutive model and the simplified linear Phan-Thien–Tanner
(sPTT) model in steady shear flow [30].

We are interested in understanding the evolution of the poly-
mer conformation tensor (A) and polymer stress tensor (τ) with
the change in two dimensionless parameters: (i) the Weis-
senberg number and (ii) the finite extensibility, L. To this end,
we non-dimensionalize the polymer stress tensor with the elas-
tic modulus such that τ̂ = τ/G.

3. Analytical, numerical, and asymptotic solutions

For steady simple shear flow, symmetry arguments allow the
polymer conformation tensor to be simplified to,

A =

A11 A12 0
A21 A22 0
0 0 A33

 . (7)

The upper convected derivative defined in Eq. (3) can also be
simplified to,

A(1) =
D
Dt

A − γ̇

2A12 A22 A23
A22 0 0
A23 0 0

 =
−2γ̇A12 −γ̇A22 0
−γ̇A22 0 0

0 0 0

 .
(8)

Substituting this into the FENE-P constitutive equation
(Eq. (4)) provides a set of four nonlinear coupled equations.
Solving this set of equations provides the components of the
polymer conformation tensor which can then be used to calcu-
late the polymer stress tensor:

A12 =
1

2Wi

[(
L2 − 3

L2 − tr(A)

)
A11 − 1

]
, (9)

A12 =Wi
(

L2 − tr(A)
L2 − 3

)
A22, (10)

A33 = A22 =

(
L2 − tr(A)

L2 − 3

)
, (11)

where tr(A) = A11 +A22 +A33 = A11 + 2A22. This set of nonlin-
ear coupled equations can be solved analytically or numerically.
An analytical solution has been reported as follows [31],

A11 =
1
F

(
1 +

2Wi2

F2

)
, (12)

A22 = A33 =
1
F
, (13)

and
A12 =

Wi
F2 , (14)

where

F =

√
3Ω

2 sinh (ϕ/3)
, (15)

ϕ = sinh−1
3

√
3

2
Ω

 , (16)

and
Ω =

√
2

Wi
L
. (17)

This analytical solution can also be directly derived from the
form of the FENE-P constitutive equation based on the poly-
meric extra stress tensor instead of the conformation tensor, as
shown in equation (13.5-60) of [1]. The existence of an analytic
solution for the FENE-P model is helpful for computing base
flows to be used in turbulent flow simulations or stability analy-
ses. However, it can be hard to understand the asymptotic func-
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tional form of the viscoelastic shear thinning or normal stress
response and their dependence on the model parameters from
this set of equations. To calculate the asymptotic responses
of the polymer conformation and the polymer stress tensor at
low and high Weissenberg numbers, we first outline a conve-
nient method to solve Eqs. (9)-(11) numerically and then eval-
uate their asymptotic response. We suggest a variable change
such that T = tr(A) = A11 +A22 +A33 and D = A11 −A22. Thus,
A11 = (T + 2D)/3 and A22 = A33 = (T − D)/3. Substituting the
values of A11, A22, and A33 into Eqs. (9)-(11), and solving for
D, Wi, and A12 results in the following expressions:

D = T − 3
(

L2 − T
L2 − 3

)
=

L2 (T − 3)
L2 − 3

, (18)

Wi =
1
√

2

(
L2 − 3
L2 − T

) [(
L2 − 3
L2 − T

) (
T + 2D

3

)
− 1

]1/2

, (19)

and

A12 =Wi
(

L2 − T
L2 − 3

)2

. (20)

Equations (18)-(20) represent three nonlinear coupled equa-
tions with four unknowns, i.e., T , D, A12, and Wi. A simple
way of evaluating them is to recognize that from the physics of
the FENE-P model, the trace of the dimensionless polymer con-
formation tensor spans over the range 3 ≤ T ≤ L2. Defining an
equally log-spaced vector for all values that T can take and sub-
stituting it in Eq. (18), we find a vector for D. Substituting the
vectors for T and D in Eq. (19) provides a vector for the corre-
sponding range of Weissenberg numbers. Finally, substituting
the vectors for T and Wi in Eq. (20) provides the corresponding
values for A12. Plots of T vs. Wi, A12 vs. Wi, and D vs. Wi
can readily be made. From these solutions, we can also readily
find the components of the polymer stress tensor. The dimen-
sionless polymer shear stress τ̂12 can be found from Eq. (6) by
substituting for A12 based on Eq. (20) as,

τ̂12 =Wi
(

L2 − T
L2 − 3

)
. (21)

Using Eq. (21), the dimensionless polymer viscosity
ηp(γ̇)/ηp(0), where ηp(0) = Gλ, can be evaluated from
the dimensionless polymer shear stress and Weissenberg
number as,

ηP(γ̇)
ηp(0)

=
τ12

γ̇

1
Gλ
=
τ̂12

Wi
. (22)

Using Eq. (18), the dimensionless first normal stress differ-
ence N̂1 can be written as,

N̂1 = (τ̂11 − τ̂22) =
(

L2 − 3
L2 − T

)
(A11 − A22) =

L2 (T − 3)
L2 − T

. (23)

Dividing N̂1 by Wi2 gives the dimensionless first normal stress
coefficient Ψ̂1 = Ψ1/(Gλ2), where Ψ1 is the dimensional first

normal stress coefficient,

Ψ̂1 =
N̂1

Wi2
=
τ11 − τ22

γ̇2

1
Gλ2 . (24)

Given these analytical expressions and numerical solutions,
we can also determine the asymptotic limits connecting the
trace of the polymer conformation tensor and different compo-
nents of polymer stress tensor. We know that T = 3 at Wi = 0
and consider the ansatz that for a small perturbation from equi-
librium, the trace of the conformation tensor has the form,

T ≃ 3 +C1Wim, for Wi ≪ 1. (25)

Combining Eq. (9) and (11), we can write,

2WiA12 =
L2 (T − 3)

L2 − T
. (26)

Substituting for A12 from Eq. (20), considering that L2 ≫ 3,
and keeping terms to the leading order, the low Weissenberg
number asymptote for T , D, and A12 are,

lim
Wi≪1

T = 3 + 2Wi2 + O(Wi4) + · · · , (27a)

lim
Wi≪1

D = 2Wi2 + O(Wi4) + · · · , (27b)

lim
Wi≪1

A12 =Wi + O(Wi3) + · · · , (27c)

respectively. From these results, the low Weissenberg number
asymptotes for ηp(γ̇)/ηp(0) and Ψ̂1 are,

lim
Wi≪1

ηP(γ̇)
ηp(0)

=
τ̂12

Wi
= 1 −

2
L2 − 3

Wi2 + O(Wi4) + · · · , (28a)

lim
Wi≪1
Ψ̂1 =

N̂1

Wi2
= 2 −

8
L2 Wi2 + O(Wi4) + · · · , (28b)

respectively. The low Weissenberg number asymptotes are in-
dependent of finite extensibility to the leading order making
them universal and equivalent to the results of the Oldroyd-B
model.

As Wi → ∞, T → L2. To find the asymptotic limit of the
trace of the conformation tensor in the high Weissenberg num-
ber limit, we consider an ansatz of the form,

T ≃ L2 −
C2

(
L2 − 3

)
Win

. (29)

The advantage of considering this ansatz is that one can write

(T − 3)(
L2 − 3

) ≃ 1 −
C2

Win
, (30)

and (
L2 − T

)
(
L2 − 3

) ≃
C2

Win
. (31)

To find the values of C2 and n, we multiply Eq. (9) and (10)
to eliminate Wi and write A12 solely based on L, T and other
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components of the conformation tensor,

2A2
12 = A22

(
L2 − T
L2 − 3

) [(
L2 − 3
L2 − T

)
A11 − 1

]
. (32)

To eliminate A11 and A22 from Eq. (32) and write it solely based
on L and T , we use a combination of Eq. (11), which provides
an expression for A22 based on L and T , and Eq. (18), which
provides an expression for D = (A11 − A22) based on L and
T . Substituting for A11 and A22 based on Eq. (11) and (18) in
Eq. (32) gives,

2A2
12 = L2

(
T − 3
L2 − 3

) (
L2 − T
L2 − 3

)
. (33)

Substituting the high Weissenberg number asymptote ansatz
shown in Eq. (29) in Eq. (33) gives,

2A2
12 ≃ L2

(
1 −

C2

Win
) ( C2

Win

)
. (34)

To leading order, Eq. (34) gives an expression for A12 of the
form,

A12 ≃

(
C2L2

2Win

)1/2

. (35)

Substituting for A12 in Eq. (26) using Eq. (35) and using the
ansatz shown in Eq. (29) for T and simplifying it to leading
order gives,

2Wi
(
C2L2

2Win

)1/2

=
L2

C2/Win
. (36)

Matching terms requires 1 − n/2 = n and
√

C2L2/2 = L2/C2

leading to n = 2/3 and C2 =
(
L/

√
2
)2/3

. Hence the high Weis-
senberg number asymptotes of T , D, and A12 are:

lim
Wi≫1

T = L2 −
(
L2 − 3

) ( L
√

2Wi

)2/3

+ O(Wi−4/3) + · · · , (37a)

lim
Wi≫1

D = L2 −

(
L4

√
2Wi

)2/3

+ O(Wi−4/3) + · · · , (37b)

lim
Wi≫1

A12 =

(
L4

4Wi

)1/3

+ O(Wi−1) + · · · , (37c)

respectively.

Figure (2) shows the evolution of the trace of the polymer
conformation tensor as the Weissenberg number increases from
small to large values and for different values of the finite ex-
tensibility parameter, L. The dashed and the dash-dotted lines
show the low and high Weissenberg number asymptotes, re-
spectively. The curves superpose at low Weissenberg number
and only start to deviate from each other based on their cor-
responding extensibility parameter, L, when Wi ≫ 1. The
dependence of the deviation from the Oldroyd-B limit on L
can also be understood by considering Eq. (27) more carefully.
The higher order term in Equation (27a) is not just a function
of Wi but a function of both Wi and L. A more formal way
of proceeding would be to recognize that we seek a perturba-

tion away from the known Oldroyd-B solution (L → ∞) so
that T = 3 + 2Wi2(1 + C3(Wi/L)p + · · · ). After some alge-
bra one finds C3 = −6 and p = 2, showing that the higher order
term represented as O(Wi4) in Eq. (27a) is in fact more precisely
−12Wi4/L2. Thus, this term is smaller for FENE-P fluids with
higher L resulting in their deviation from the Oldroyd-B result
at higher values of Weissenberg number, as shown in Fig. 2.

Figure 2: Evolution of the trace of the conformation tensor A with Weissenberg
number in steady shear flow for different values of finite extensibility, L. The
dashed and the dash-dotted lines show the low and high Weissenberg number
asymptotes of tr(A), respectively.

Considering the asymptote of T at high Weissenberg num-
bers, replacing for T in Eq. (21) and Eq. (23) based on Eq. (37a),
and keeping the terms to leading order, the high Weissenberg
number asymptotes for ηp/ηp(0) and Ψ̂1 are,

lim
Wi≫1

ηP(γ̇)
ηp(0)

=
τ̂12

Wi
= 2−1/3

(
Wi
L

)−2/3

+ O(Wi−4/3) + · · · , (38a)

lim
Wi≫1
Ψ̂1 =

N̂1

Wi2
= 21/3

(
Wi
L

)−4/3

+ O(Wi−2) + · · · , (38b)

respectively.
Figures 3(a) and (b) show the evolution of the dimensionless

viscosity and the first normal stress coefficient as the Weis-
senberg number increases, and for different values of the fi-
nite extensibility parameter, L. The dashed and the dash-dotted
lines show the low and high Weissenberg number asymptotes,
respectively. Rescaling the abscissa of Fig. 3(a) and (b) by the
finite extensibility, L, collapses the curves shown in Fig. 3(a)
and (b) for different values of L providing master curves for the
polymer viscosity and first normal stress coefficient of FENE-P
fluids in steady shear flow, as shown in Figs. 3(c) and (d). The
ordinate of Fig. 3(c) and (d), however, does not require rescal-
ing as the maximum values of the dimensionless viscosity and
the first normal stress coefficient are constants and not a func-
tion of Weissenberg number or finite extensibility. The results
of our numerical approach are identical to the results of the an-
alytical solution [31]. The low and high Weissenberg number
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Figure 3: Evolution of (a) the dimensionless polymer viscosity, ηp(γ̇)/ηp(0), and (b) the dimensionless first normal stress coefficient Ψ̂1 as the Weissenberg number
increases for different values of finite extensibility, L. The dashed and the dash-dotted lines show the low and high Weissenberg number asymptotes, respectively.
(c) and (d) Master curves collapsing the data shown in (a) and (b), respectively. The solid line shows the analytical solution of Sureshkumar et al. [31], which
is faithfully reproduced by our numerical solution. The intersection of the low and high Weissenberg asymptotes (intersection of dashed and dash-dotted lines) at
Wi/L ≃ 0.707 is marked with a red circle.

asymptotes, i.e., dashed and dash-dotted lines, respectively, are
also accurate approximations in these limits. The master curves
presented in Fig. 3(c) and (d) show that the governing dimen-
sionless number in shear flow is not the Weissenberg number
per se but the ratio of the Weissenberg number to the finite
extensibility parameter, i.e., Wi/L. Figures 3(c) and (d) also
show that the low and high Weissenberg number asymptotes
intersect at Wi/L ∼ 1, marking the beginning of the region
where finite extensibility plays a significant role. At “high”
Weissenberg numbers, Brownian dynamics simulations using
a bead-spring model with FENE springs [21, 22, 24, 25] have
reported polymer viscosity and first normal stress coefficient
following power-law decays with slopes −2/3 and −4/3, re-
spectively. The FENE-P results are consistent with the Brow-
nian dynamics simulations and the master curves identified for
the FENE-P asymptotics show these power-law decays are con-
sistent with a region where Wi/L ≫ 1, hence providing a more

precise definition for “high” Weissenberg number. At “mod-
erate” Weissenberg numbers, the Brownian dynamics simula-
tions have also reported a less steep power-law decay with slope
−1/2 and −14/11 for polymer viscosity and first normal stress
coefficient, respectively [21, 22, 24, 25]. These weaker power-
law decays can be viewed as locally-valid approximations to
the master curve when Wi/L ∼ 1, hence providing a clearer
specification of “moderate” Weissenberg number.

Following the same approach, low and high Weissenberg
number asymptotes and master curves can be obtained for
(A11 − A22), A12, (τ̂11 − τ̂22), τ̂12, and the stress ratio (τ̂11 −

τ̂22)/τ̂12. Similar to Fig. 3(c) and (d), these master curves also
have Wi/L for their abscissa. Unlike Fig. 3(c) and (d), where
the maximum values are approached as Wi → 0, (A11 − A22)
asymptotically approaches a maximum of L2 as Wi → ∞. In
addition, A12 passes through a maximum of L/(2

√
2) ∼ L at

Wi =
√

2L. Thus the master curves for (A11 − A22) and A12
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need their ordinates to be rescaled with L2 and L, respectively.
The dimensionless first normal stress difference and shear stress
are (τ̂11 − τ̂22) = f (tr(A))(A11 − A22) and τ̂12 = f (tr(A))A12, re-
spectively. The ordinate of the master curves for the first normal
stress difference and shear stress need to be rescaled similar to
the ordinate of the master curves for (A11 − A22) and A12, i.e.,
with L2 and L, respectively. Subsequently, the master curve for
the stress ratio (τ̂11 − τ̂22)/τ̂12 has its ordinate rescaled with L
and has low and high Weissenberg number asymptotes of

lim
Wi≪1

τ̂11 − τ̂22

τ̂12L
=

2Wi
L
+ O(Wi3) + · · · , (39a)

lim
Wi≫1

τ̂11 − τ̂22

τ̂12L
=

(
4Wi

L

)1/3

+ O(Wi−1/3) + · · · , (39b)

respectively. While it is not trivial to identify Wi/L as the
governing dimensionless number in the analytical solution [31],
Eq. (17) shows that the ratio Wi/L plays an important role in
understanding the simple steady shear flow of FENE-P fluids.

As reviewed in detail by [29], the FENE-P model is not the
only constitutive equation used for modeling dilute polymer so-
lutions. Previous studies using the Phan-Thien–Tanner (PTT)
model in channel and pipe flows have shown that ϵ0.5De is the
important characteristic dimensionless parameter, where De is
equivalent of Wi in our work and ϵ is the (small) parameter reg-
ulaizing the response in uniaxial elongation [32, 33]. Hence, for
the specific case of ϵ = 1/L2, ϵ0.5De ≡ Wi/L. It was recently
shown that by setting ϵ = 1/L2, the sPTT model in steady shear
flow provides identical results to the FENE-P model [30]. Thus,
the master curves shown in this work can also be extended to
the sPTT model for the specific case of ϵ = 1/L2.

4. Experimental results

In this section, we compare the master curves calculated
in Sec. 3 to experimental measurements in steady shear flow
using three dilute polymer solutions with different finite ex-
tensibility parameters. We first consider the experimental re-
sults shown in [34]. The viscosity and the first normal stress
coefficient of a dilute solution of narrow-molecular-weight-
distribution polystyrene in oligomeric stryrene were measured
in steady shear flow over several decades of shear rate and
at several temperatures. Table 1 shows the composition and
rheological properties of this solution that we refer to as PS.
The narrow molecular weight distribution of the polystyrene
used in PS results in a low polydispersity index (PDI) of 1.03.
Hence, a well-defined, single radius of gyration can be written
for the polymer molecules of this solution. Knowing Rg and the
length of the polymer chain at its fully extended state and given
⟨r2

0⟩
1/2 =

√
6Rg [18], a single finite extensibility parameter L

can be calculated for PS. The longest relaxation time λ of the
polymer molecules in this solution was measured using a capil-
lary breakup extensional rheometer (CaBER) [35], and the zero
shear rate viscosity η0 and first normal stress coefficient Ψ10
were calculated by fitting the Zimm model [9, 36] to the ex-
perimentally measured dynamic moduli of the dilute polymer

solution [34]. It should be noted that the difference between the
finite extensibility parameter reported for PS in our work and in
[34] is due to the subtle but important numerical differences in
the definition of this parameter. Specifically, the finite extensi-
bility parameter in [34] was defined as LAnna = (

√
3rmax)/Rg.

Using the result Rg = ⟨r2
0⟩

1/2/
√

6 and the definition below
Eq. (5), we obtain our definition of the finite extensibility pa-
rameter L = LAnna/(3

√
2).

In addition to PS, we have carried out steady shear flow
experiments for two dilute polymer solutions with different
solvent and solutes compared to PS. Solutions of hydrolyzed
polyacrylamide (HPAM) with 30% carboylated monomers
(Poly(acrylamide/sodium acrylate) [70:30], Polysciences) with
reported molecular weight Mw = 18 × 106 g/mol in a mixture
of glycerol, water, and dimethyl sulfoxide (DMSO) are stud-
ied. The composition of the two solutions are summarized in
Table 2. We refer to these samples as HPAM-1 and HPAM-2,
and more details on their preparation and rheological proper-
ties can be found in [37] and [38], respectively. For HPAM,
given 71.07 g/mol as the average molecular weight of the re-
peat unit, the number of repeat units in each polymer chain is
n ≃ 250, 000. Each repeat unit has four C-C bond with length
ℓ = 1.54 Å for each C-C bond. Thus the length of fully ex-
tended polymer chain is rmax = 0.82×4× ℓ×n = 128 µm. Note
that the numerical factor is due to the tetrahedral configuration
of the C-C bonds at the fully extended state. Dynamic light scat-
tering is used to measure the equilibrium radius of gyration, Rg

of the polymer chains. Unlike PS, HPAM is polydisperse re-
sulting in the measured radii of gyration having a broad distri-
bution, i.e., 133 nm < Rg < 423 nm and 57 nm < Rg < 387 nm
for HPAM-1 and HPAM-2, respectively. This polydispersity
results in a distribution in values of the finite extensibility pa-
rameter, i.e., 123 < L < 392 and 135 < L < 917 for samples
HPAM-1 and HPAM-2, respectively. In this work, we use the
mean radius of gyration of each sample to calculate an aver-
age finite extensibility parameter. These average values are re-
ported in Table 2. In addition, the longest relaxation time, λ, of
the samples are directly measured using a capillary breakup ex-
tensional rheometer (CaBER) [39] and reported in Table 2. The
errors reported in the table for extensional relaxation time are
calculated based on multiple CaBER measurements (five tests
for each sample). Steady shear flow experiments are carried
out on the samples with a 60 mm 1.02◦ acrylic cone and plate
geometry using a controlled stress rheometer (DHR3, TA In-
struments). Shear stress and first normal stress difference are
measured for 10 s−1 < γ̇ < 1000 s−1. The choice of a viscous
solvent for both samples allows for rheological measurements
with cone and plate geometry over two decades of shear rate.

Figure 4 compares the experimental results with the FENE-
P master curve for the ratio of first normal stress difference
to the shear stress, shown with solid line. The symbols show
this stress ratio for the three solutions and for different values
of Weissenberg number, Wi = λγ̇, where λ is the relaxation
time measured by CaBER and reported in Tables 1 and 2. The
normal stress difference measured by the axial force transducer
of the rheometer is divided by the polymer contribution to the
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Table 1: Chemical composition and rheological properties of the dilute solution of polystyrene in oligomeric styrene.

Sample ID Polystyrene (ppm) Mw (g/mol) PDI Rg (nm) L λ (ms) η0 (Pa · s) ηs (Pa · s) Ψ10 (Pa · s2) G (Pa)
PS 500 2 × 106 1.03 41 21 3190 39.2 34 20.3 1.63

Table 2: Chemical composition and rheological properties of dilute solutions of HPAM in different solvents.

Sample ID HPAM (ppm) NaCl (%wt.) Glycerol (%wt.) Water (%wt.) DMSO (%wt.) R̄g (nm) L̄ λ (ms) η0 (Pa · s) G (Pa)
HPAM-1 300 1 89.0 10.0 0.0 278 188 3461 ± 139 0.20 ± 0.01 0.02 ± 0.01
HPAM-2 300 1 82.6 6.0 10.4 222 235 498 ± 6 0.17 ± 0.01 0.04 ± 0.01

Figure 4: Comparison of experimental measurements with the FENE-P mas-
ter curve for the ratio of the first normal stress difference to the shear stress
when scaled with the finite extensibility parameter (shown as solid line). The
inset shows the comparison of the dimensional viscosity and the first normal
stress coefficient for sample HPAM-2 with the predictions of the FENE-P model
based on the fitting parameters shown in Table2.

shear stress, τ12 and by the FENE parameter L to get the ordi-
nate. To find the polymer shear stress for HPAM-1 and HPAM-
2, the viscosity of the solvent is multiplied by the shear rate
to provide the solvent contribution to the shear stress. This
is then subtracted from the total shear stress measured by the
rheometer to find the polymer contribution, τ12. In addition
to this dimensionless comparison, the inset of Fig. 4 compares
the dimensional properties of one of the HPAM solutions with
the predictions of the FENE-P model. The measured value of
the zero shear rate viscosity is used as the fitting parameter,
together with the relaxation time and the solvent viscosity to
redimensionalize the dimensionless FENE-P predictions. The
inflection point that is noticeable in the first normal stress coef-
ficient of HPAM-2 is due to additional effects associated with
anisotropic drag on the polymer molecules not captured by the
FENE model [40, 41] and has previously been observed for
other Boger fluids [42].

The three sets of experimental data, which correspond to
three different values of relaxation time and finite extensibil-
ity, collapse quite well on the master curve calculated from the
FENE-P theory. Despite the simplicity of the FENE-P model,
the agreement between experiments and the FENE-P master

curve illustrates the model’s utility in capturing the macro-
scopic dynamics of dilute solutions of high molecular weight
flexible polymers.

5. Governing dimensionless number

Our theoretical and experimental results show that the gov-
erning dimensionless number for the master curves of FENE-P
fluids in steady shear flow is the ratio of the Weissenberg num-
ber to the finite extensibility parameter, Wi/L. In this section
we provide a physical picture illustrating why Wi/L is the gov-
erning dimensionless number in shear flows but not in purely
extensional flows. While the FENE-P is only an ensemble-
averaged spring-dumbbell model, it is able to emulate the key
features of the physical picture outlined below.

The key additional characteristic of shear flow is a non-zero
vorticity. The existence of vorticity results in tumbling of the
individual polymer chains [26–28]. Tumbling motion changes
the relative locations of the two ends from which the polymer
chain is stretched. The polymer chain thus continuously tum-
bles and then stretches again in the shear field. This is in con-
trast to purely extensional flows, which are vorticity-free and
hence tumbling does not occur. Under an extensional strain, the
ends of the of the polymer chain continually separate in time un-
til stretching ceases or a Weissenberg-number-dependent steady
state is reached. The lack of internal degrees of freedom in the
dumbbell model means it cannot capture polymer chain tum-
bling. The FENE-P force law, however, mimics the key result
by making the first normal stress difference grow as L4/3 in a
steady shear flow, as shown in Eq. (38b) and predicted by bead-
rod [19, 20] and bead-spring [21–24] simulations, only when
Wi/L ≫ 1. The ratio Wi/L is thus the governing dimensionless
number distinguishing “weak linear shearing flows” in which
the nonlinear effects of finite chain extensibility are not im-
portant and “strong nonlinear shearing flows” in which finite
extensibility and chain tumbling play a role. In contrast, the
steady state extensional stress difference in purely extensional
flow grows as L2 for all Weissenberg numbers beyond the coil-
stretch transition at Wi = 1/2 [1] making the ratio Wi/L irrele-
vant. The slower power-law growth with finite extensibility of
the first normal stress difference in shear flow compared to ex-
tensional flow is a result of the asymptotic form of the FENE-
P equations at Wi/L ≫ 1, which prevents the dumbbell from
reaching a fully stretched state and increasingly aligns it in the
flow direction.
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As the Weissenberg number increases, the increasingly
strong flow stretches the polymer chains and progressively
aligns them with the flow direction, reducing the mean orien-
tation angle. In this flow-aligned state, small Brownian fluc-
tuations can make the local angle with the flow momentar-
ily negative and induce a molecular tumbling event [24]. As
Weissenberg number increases, polymer chains thus experience
higher stretch (when the orientation angle is positive), with a
maximum achievable stretch that depends on L. At the same
time the frequency of tumbling also increases [28]. These two
effects are in competition, as tumbling changes the relative loca-
tions of the two ends from which the polymer chain is stretched
and resets the chain stretch. This simple physical picture and a
more detailed analysis of the physics of repeated tumbling and
stretching show that the parameter Wi/L controls the relative
magnitude of the two effects.

6. Conclusions

We have calculated the polymer contributions to the stresses
in steady shear flow and their asymptotic forms at low and
high Weissenberg numbers using the FENE-P model. These
stresses are dependent on the finite extensibility of the poly-
mer chains at high Weissenberg numbers and exhibit different
power-laws compared to purely extensional flows. We iden-
tify master curves that collapse the polymer stresses and cor-
responding material properties such as the viscosity and first
normal stress coefficient plots independent of the finite exten-
sibility parameter when plotted against Wi/L. Previous direct
Navier-Stokes simulations using the FENE-P model in shear-
dominated flows have studied the effect of changes in Weis-
senberg number and the finite extensibility parameter on the
flow independently [43–46]. We show that the governing di-
mensionless number for FENE-P fluids in shear flows is the
ratio of the Weissenberg number to the finite extensibility. This
ratio of parameters emulates how much stretch a polymer chain
can accumulate between its tumbling motions compared with
the maximum stretch that a polymer chain possesses due to
its finite extensibility. In the limit Wi/L ≪ 1 the expected
Oldroyd-B scalings for N̂1 and τ̂12 are recovered. The finite
extensibility parameter, however, plays a significant role in con-
trolling the asymptotic form of the polymer stress tensor when
Wi/L ≳ 1. The FENE-P model has been widely used in re-
cent computations of viscoelastic free and wall-bounded shear
flows, especially at moderate to high Reynolds numbers [10–
17] where molecular dynamics simulations are computationally
expensive and an ensemble-averaged closure equation is needed
to calculate the polymer stress tensor. Based on our results, it
would seem to be helpful to report the value of the key govern-
ing dimensionless number Wi/L when using the FENE-P model
in shear flow computations to clarify whether the shear rate is
high enough for the finite extensibility of the polymer chains to
have a significant impact on the polymer stress tensor.
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