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Abstract

For a subgraph G of the blow-up of a graph F, we let δ∗(G) be the smallest minimum degree over all of the

bipartite subgraphs of G induced by pairs of parts that correspond to edges of F. Johansson proved that if

G is a spanning subgraph of the blow-up of C3 with parts of size n and δ∗(G)≥ 2

3
n+

√
n, then G contains n

vertex disjoint triangles, and presented the following conjecture of Häggkvist. If G is a spanning subgraph

of the blow-up of Ck with parts of size n and δ∗(G)≥
(

1+ 1

k

)

n

2
+ 1, thenG contains n vertex disjoint copies

of Ck such that each Ck intersects each of the k parts exactly once. A similar conjecture was also made by

Fischer and the case k= 3 was proved for large n by Magyar and Martin.

In this paper, we prove the conjecture of Häggkvist asymptotically. We also pose a conjecture which

generalises this result by allowing the minimum degree conditions in each bipartite subgraph induced

by pairs of parts of G to vary. We support this new conjecture by proving the triangle case. This result

generalises Johannson’s result asymptotically.
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1. Introduction

For a graph F on [k] := {1, . . . , k}, we say that B is the n-blow-up of F if there exists an ordered
partition (V1, . . . ,Vk) of V(B) such that |V1| = · · · = |Vk| = n and we have that uu′ ∈ E(B) if and
only if u ∈Vi and u

′ ∈Vj for some ij ∈ E(F). For G a spanning subgraph of B, we call the sequence
V1, . . . ,Vk the parts of G and we define

δ∗
F(G) := min

ij∈E(F)
δ
(

G
[

Vi,Vj

])

where G[Vi,Vj] is the bipartite subgraph of G induced by the parts Vi and Vj. We often drop the
subscript F when it is clear from the context. For a graphH, we call T anH-tiling ofG if T consists
of vertex disjoint copies ofH in G. We say that T covers V(T ) :=

⋃

{V(H′) :H′ ∈ T } and say that
T is perfect or an H-factor if it covers every vertex of G. Call a subset of V(G) or a subgraph of G
a transversal if it intersects each part in exactly one vertex and a partial transversal if it intersects
each part in at most one vertex. An H-tiling is a transversal H-tiling if each copy of H in T is a
transversal. We call a perfect transversal H-tiling a transversal H-factor.

Fischer [3] conjectured the following multipartite version of the Hajnal–Szemerédi Theorem:

If G is the n-blow-up of Kk, and δ∗(G)≥
(

1− 1
k

)

n, then G has a Kk-factor. In the same paper,
Fischer proved that, when k ∈ {3, 4}, such a graph G contains a Kk-tiling of size at least n− C,
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where C is a constant that depends only on k. Johansson [4] proved that, for every n, if G is a
spanning subgraph of the n-blow-up of K3 and δ∗(G)≥ 2n/3+

√
n, then G contains a K3-factor,

so Johansson proved the triangle case of the conjecture asymptotically. Later, Lo &Märkstrom [8]
and, independently, Keevash & Mycroft [5] proved the conjecture asymptotically for every k≥ 4.
The following theorem, which was proved for k= 3 by Magyar & Martin [9], for k= 4 by Martin
& Szemerédi [10] and for k≥ 5 by Keevash &Mycroft [5], shows that Fischer’s original conjecture
was nearly true for n sufficiently large. (Keevash & Mycroft actually proved more, see Theorem
1.1 in [5] for details.)

Theorem 1. For every k there exists n0 := n0(k) such that whenever n≥ n0 the following holds for
every spanning subgraph G of the n-blow-up of Kk where

δ∗(G)≥
(

1−
1

k

)

n.

The graph G does not contain a Kk-factor if and only if both n and k are odd, k divides n and G is

isomorphic to a specific spanning subgraph Ŵn,k of the n-blow-up of Kk where δ∗(Ŵn,k)=
(

1− 1
k

)

n.

The following conjecture of Häggkvist, which appeared in [4], can be seen as a different gen-
eralisation of the k= 3 case of Theorem 1. Independently, Fischer made a similar conjecture
in [3].

Conjecture 2. For every k≥ 3, if G is a spanning subgraph of the n-blow-up of Ck and

δ∗(G)≥
(

1+
1

k

)

n

2
+ 1, (1)

then G has a transversal Ck-factor.

Our first result establishes an asymptotic version of Conjecture 2.

Theorem 3. For every ε > 0 and positive integer k≥ 4 there exists n0 := n0(k, ε) such that for every
n≥ n0 the following holds. If G is a spanning subgraph of the n-blowup of Ck and

δ∗(G)≥
(

1+
1

k
+ ε

)

n

2
, (2)

then G has a transversal Ck-factor.

Note that Theorem 1 shows that Conjecture 2 is tight when k= 3. The following example
from [4] shows that, for k≥ 4, the minimum degree condition (1) in Conjecture 2 cannot be
decreased by more than 1. Call Z ⊆V(G) a transversal Ck-cover if every transversal Ck in G
intersects Z and let the transversal Ck-cover number of G be the order of a smallest transversal
Ck-cover. This example relies on the observation that, because every transversal Ck has at least
one vertex in a transversal Ck-cover, the maximum size of a transversal Ck-tiling is bounded
above by the transversal Ck-cover number. (Note that we always view arithmetic on elements
of [k] := {1, . . . , k} modulo k.)

Example 4. For k≥ 3 and m≥ 1, let n := 2km and V1, . . . ,Vk be disjoint sets each of size n.
For i ∈ [k− 1], let {Ui,Wi, Zi} be a partition of Vi such that |Ui| = (k− 1)m, |Wi| = (k− 1)m
and |Zi| = 2m, and let {Uk,Wk, Zk} be a partition of Vk such that |Uk| = (k− 1)m, |Wk| =
(k− 1)m+ 1 and |Zk| = 2m− 1. Let G be the spanning subgraph of the n-blow-up of Ck with
parts V1, . . . ,Vk where E(G) consists of the union of the edges in the following graphs:

• the complete bipartite graphs with parts Zi,Vi−1 and Zi,Vi+1 for each i ∈ [k],

• the complete bipartite graphs with parts Ui,Ui+1 andWi,Wi+1 for each i ∈ [k− 1],

• the complete bipartite graphs with parts Uk,W1 andWk,U1.
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Note that δ∗(G)= (k+ 1)m− 1=
(

1+ 1
k

)

n
2 − 1, and that every transversal Ck has at least one

vertex in Z := Z1 ∪ · · · ∪ Zk, that is., Z is a transversal Ck-cover of G. The fact that |Z| = 2mk−
1< n then implies that G does not contain a transversal Ck-factor.

We make the following conjecture which, if true, would be a strengthening of Theorem 3.

Conjecture 5. For every k≥ 3 and ε > 0, there exists n0 := n0(k, ε) such that for every n≥ n0 the
following holds. Let G be a spanning subgraph of the n-blow-up of Ck with parts V1, . . . ,Vk. If there
exist δ1, δ2, . . . , δk ≥ n/2 such that δ(G[Vi,Vi+1])≥ δi, for every i ∈ [k], and

1

k

∑

i∈[k]
δi ≥

(

1+
1

k
+ ε

)

n

2
, (3)

then G has a transversal Ck-factor.

Note that Theorem 3 is a special, uniform case of Conjecture 5, namely the case when δ1 = δ2 =
. . . = δk. Also, note that the condition δ1, . . . , δk ≥ n/2 is necessary because a transversalCk-factor
in G defines a perfect matching in G[Vi,Vi+1] for every i ∈ [k] and n/2 is the smallest minimum
degree condition necessary to guarantee a perfect matching in a bipartite graph with parts of
size n.

Our second result shows that Conjecture 5 holds for k= 3. Note that this result can also be seen
as a strengthening of an asymptotic version of the k= 3 case of Theorem 1.

Theorem 6. For every ε > 0 there exists n0 := n0(ε) such that for every n≥ n0 the following holds.
Let G be a spanning subgraph of the n-blow-up of a triangle with parts V1,V2,V3. If there exist
δ1, δ2, δ3 ≥ n/2 such that δ(G[Vi,Vi+1])≥ δi, for every i ∈ [3], and

δ1 + δ2 + δ3

3
≥

(

1+
1

3
+ ε

)

n

2
=

2n

3
+

εn

2
,

then G has a triangle factor.

Because of Example 4, the condition on the average of the minimum degrees in Conjecture 5 is
asymptotically sharp. However, it might be possible to weaken the degree condition by only plac-
ing a lower bound on the average of some proper subset of the minimum degrees. For example,
in the triangle case, we do not have an example of a graph without a triangle factor in which all of
the minimum degrees are at least n/2 and the average of only the two largest minimum degrees is
at least 2n/3. Often one tries to find such examples that either have an independent set which is
larger than n or have a triangle cover of size less than n, since either one of these two conditions
imply that the graph cannot contain n vertex disjoint triangles. It is a straightforward exercise to
show that, under these conditions, the independence number must be n. The following theorem
proves that the triangle cover number must be n as well.

Theorem 7. For every n ∈N, the following holds for every spanning subgraph G of the n-blow-up of
C3 with parts V1,V2,V3. If δ1 ≥ δ2 ≥ δ3 ≥ n/2, δ(G[Vi,Vi+1])≥ δi for i ∈ [3], and

δ1 + δ2

2
≥

2n

3
,

then the triangle cover number of G is n.

Moreover, for every rational γ ∈
(

3
4 ,

7
9

]

∪
{

2
3

}

there are infinitely many n ∈N such that when
β = 4/3− γ there exists a spanning subgraph G of the n-blow-up of C3 with parts A, B and C such
that δ(G[A, B])≥ γ n− 1, δ(G[A, C])≥ βn and δ(G[B, C])≥ n/2 that has a triangle cover of order
less than n.

Suppose that for every sufficiently small ε > 0 there exists n0 such that for every n≥ n0 there
exists a subgraph of the n-blow-up of C3 with parts V1,V2,V3 that meets the stronger degree
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conditions δ1 ≥ δ2 ≥ δ3 ≥ (1+ ε)n/2 and (δ1 + δ2)/2≥ (2/3+ ε)n yet does not have a triangle
factor. In Section 2 (Lemma 13 and Proposition 15), we will show that, under these conditions, we
can apply the absorbing method. This would therefore mean that, for some σ > 0 and for every
sufficiently large n, there would exist a subgraph of the n-blow-up of C3 that meets the degree
conditions of first part of Theorem 7 in which every triangle factor has order at most (1− σ )n,
but has triangle cover number n and independence number n.1

1.1 Additional observations and remarks related to Conjecture 5

Let k, δ1, . . . , δk, n and G be as in Conjecture 5.

Observation 8. In the case of δi ≤ (1+ ε)n2 for some i ∈ [k], the problem in Conjecture 5 for k
can be reduced to k− 1. To see this, assume i= k (for convenience) and first note that

∑

i∈[k−1]

δi ≥ k

(

1+
1

k
+ ε

)

n

2
− (1+ ε)

n

2
= (k− 1)

(

1+
1

k− 1
+ ε

)

n

2
. (4)

Because δ(G[V1,Vk])≥ n
2 , Hall’s Theorem implies that we can match every v ∈V1 to a unique

fv ∈Vk that is adjacent to v. Let G′ be the graph derived from G by collapsing each edge vfv into
v for each v ∈V1, that is, G

′ is G−Vk with an edge between v ∈V1 and u ∈Vk−1 if and only if
fv is adjacent to u in G. It is easy to see that G′ is a spanning subgraph of the n-blow-up of Ck−1

with partsV1, . . . ,Vk−1 such that δ(G[Vi,Vi+1])≥ δi for each i ∈ [k− 1], and that any transversal
Ck−1-factor in G′ can be extended to a transversal Ck-factor in G. So, by (4), if the k− 1 case of
Conjecture 5 holds, then G has a Ck-factor.

Repeated applications of Observation 8 and Theorem 6 imply the following.

Remark 9. For every k≥ 3 and sufficiently large n, Conjecture 5 holds if

δi + δj + δℓ

3
≥

(

1+
1

3
+ ε

)

n

2
for three distinct i, j, ℓ ∈ [k],

that is, Conjecture 5 holds in the case when all the excess values of δi compared to n/2 are
concentrated in at most 3 members of δ1, δ2, . . . δk.

To further support Conjecture 5 we now mention a natural extension of Conjecture 5 for the
case when k= 2 which is easily proved with Hall’s Theorem. To motivate this extension, first
consider a spanning subgraph G of the n-blow-up of a triangle with parts V1,V2,V3 that meets
the conditions of the k= 3 case of the conjecture. Since G[V1,V3]≥ n/2, Hall’s Theorem implies
that we can match every v ∈V1 to some fv ∈V3. Similarly to Observation 8, we note that a perfect
matching in the bipartite graphG[V1,V2] that is simultaneously a perfectmatching in the bipartite
graphH with parts V1 andV2 in which v ∈V1 is adjacent to u ∈V2 inH if and only if u is adjacent
to fv in G[V2,V3] corresponds to a triangle factor of G.

This leads to the aforementioned extension of Conjecture 5 for k= 2: Suppose that H and H′

are two balanced bipartite graphs both with the same partite sets V1 andV2 where |V1| = |V2| = n

and that 1
2

(

δ(H)+ δ(H′)
)

≥ 3n
4 . Then there exists M ⊆ E(H)∩ E(H′) that is simultaneously a

perfect matching of both H and H′. Indeed, every vertex in v ∈V1 ∪V2 is incident to at least
dH(v)+ dH′(v)− n≥ n/2 edges in E(H)∩ E(H′), so Hall’s Theorem implies the desired matching
exists.

1It is well known that this assumption would also imply that there would exist a family of examples that meet the degree

conditions of first part of Theorem 7 and do not have a perfect factional triangle tiling. By the duality theorem from linear

programming, such a family of examples then must have a fractional triangle cover of size less than the size of the parts.
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This with Observation 8, implies the following.

Remark 10. For every k≥ 3 and n, Conjecture 5 holds whenever
δi+δj
2 ≥

(

1+ 1
2

)

n
2 = 3n

4 for
distinct i, j ∈ [k].

Using Remark 10, Observation 8, and a straightforward application of the absorbing method
of Rödl, Ruciński and Szemerédi we will show (see Lemma 16 of Section 2) that one only needs
to prove the following weaker conjecture to establish Conjecture 5. We use this reduction in our
proof of Theorem 6.

Conjecture 11. For every k≥ 3, ε > 0 and σ > 0, there exists n0 := n0(k, ε, σ ) such that for every
n≥ n0 the following holds. Let G be a spanning subgraph of the n-blow-up of Ck with parts
V1, . . . ,Vk. If there exist δ1, δ2, . . . , δk ≥ (1+ ε)n/2 such that δ(G[Vi,Vi+1])≥ δi, for every i ∈ [k],
and

1

k

∑

i∈[k]
δi ≥

(

1+
1

k
+ ε

)

n

2
,

then G has a transversal Ck-tiling of size at least (1− σ )n.

1.2 Notation

For a graph G, e(G) denotes the number of edges in G. For S, T ⊆V(G), we let NG(S, T) := T ∩
(
⋂

{NG(v) : v ∈ S}
)

be the common neighbourhood of S in T and we let dG(S, T) := |NG(S, T)|.
For v ∈V(G), we define NG(v, T) := NG({v}, T) and dG(v, T)= dG({v}, T). We typically drop the
subscript from this notation when it is clear from the context. For a tiling T , we let U(T ) :=
V(G) \V(T ) be the vertices uncovered by T and if v ∈U(T ) we say that v is uncovered by T .
Similarly, if e ∈ E(G), and both endpoints of e are uncovered by T , we say that e is uncovered
by T .

2. The absorbing method

We use a straightforward application of the absorbing method of Rödl, Ruciński and Szemerédi
[11]. Propositions 14 and 15 are essentially all that is necessary to derive appropriate absorbing
lemmas in this setting.

Definition 12. For k≥ 3, let G be a subgraph of the n-blow-up of Ck with parts V1, . . . ,Vk. For
vertices v, v′ in the same part, we call a t-tuple of distinct vertices (v1, . . . vt) a (v, v′, t)-linking
sequence if both G[{v, v1, . . . vt}] and G[{v′, v1, . . . , vt}] have a transversal Ck-factor. We allow
v= v′ in this definition.We say thatG is (η, t)-linked if, for every i ∈ [k] and v, v′ ∈Vi, the number
of (v, v′, t)-linking sequences is at least ηnt .

The proof of the following lemma is standard (e.g., it is very similar to Lemma 1.1 in [7]), but
we include a proof in the appendix for completeness.

Lemma 13. The Absorbing Lemma For k≥ 3, t ≥ k− 1, η > 0 and 0< σ ≤ 0.1ηk+1

(k(t+1))2+1
, there exists

n0(k, t, η, σ ) such that for every n≥ n0 the following holds. Suppose that G is a subgraph of the n-
blow-up of Ck with parts V1, . . . ,Vk that is (2η, t)-linked. For some z ≤ σn, there exists A⊆V(G)
where |A∩Vi| = z for every i ∈ [k] such that if G−A has a transversal Ck-tiling of size at least
n− z − σ 2n, then G has a transversal Ck-factor.

Note that the degree condition in the following proposition is weaker than the degree condition
in Conjecture 2.
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Proposition 14. For k≥ 4 and ε > 0, if G is a subgraph of the n-blow-up of Ck and δ∗(G)≥ (1+
ε)n/2, then G is (ε3/2k, k− 1)-linked.

Proof. Let V1, . . . ,Vk be the parts of G. Without loss of generality we can assume that v, v′ ∈
V1. We can construct (v2, . . . , vk) a (v, v′)-linking sequence by first selecting v2 ∈N({v, v′},V2)
and then vk ∈N({v, v′},Vk) each in at least 2δ∗(G)− n≥ εn ways. Iteratively, for i from 3 to
k− 2 we can select vi ∈N(vi−1,Vi) in at least δ∗(G)≥ n/2 ways. Finally, we can select vk−1 ∈
N({vk−2, vk},Vk−1) in at least 2δ∗(G)− n≥ εn ways. �

Proposition 15. For every ε > 0 there exists n0(ε) such that for every n≥ n0 the following holds. Let
G be a subgraph of the n-blow-up of a triangle with parts V1,V2,V3. If δ1 ≥ δ2 ≥ δ3 ≥ (1+ ε)n/2
are such that δ(G[Vi,Vi+1])≥ δi for every i ∈ [3], and

δ1 + δ2

2
≥

(

2

3
+ ε

)

n,

then G is (ε3/100, 5)-linked.

Proof. There are at least n · δ3 · (δ1 + δ2 − n)≥ n3/6 triangles in G, because we can pick any w3 ∈
V3, then any w1 ∈N(w3,V1) and then any w2 ∈N(w1)∩N(w3)∩V2 to form a triangle. We will
also need the following fact:

∀u1, u′
1 ∈V1 there are at least 6ε

2n2 edges u2u3 s.t. \ u1u2u3 and u′
1u2u3 are triangles. (5)

To see (5), note that there are at least 2δ3 − n≥ 2εn ways to pick a vertex u3 ∈V3 adjacent to
both u1 and u′

1 and that then there are at least 2δ1 + δ2 − 2n≥ 3(δ1 + δ2)/2− 2n≥ 3εn ways to
select a vertex u2 ∈V2 that is adjacent to u1, u

′
1 and u3.

The fact that there are at least n3/6 triangles and (5) immediately implies that, for every

v, v′ ∈V1, the number of (v, v′, 5)-linking sequences is at least ε3n5

100 , because the sequence
(u2, u3,w1,w2,w3) is a (v, v

′, 5)-linking sequence whenever vu2u3 and v′u2u3 are both triangles
and w1w2w3 is a triangle disjoint from {v, v′, u2, u3}.

So we are left to consider the case when v, v′ ∈Vi for i ∈ {2, 3}. Let j ∈ {2, 3} so i 
= j. We can pick
uj ∈N(v)∩N(v′)∩Vj in at least 2δ2 − n≥ 2εn ways. Then we can pick u1 ∈N(v)∩N(uj)∩V1

in at least δ1 + δ3 − n≥ n/6 ways. Similarly, we can now pick u′
1 ∈N(v′)∩N(uj)∩V1 distinct

from u1 in at least δ1 + δ3 − n− 1≥ n/6 ways. Observe that vuju1 and v′uju′
1 are both trian-

gles. By (5), there are at least 1
2 · 6ε2n2 ways to now pick u2 and u3 such that u1u2u3 and u′

1u2u3
are both triangles and such that u2 and u3 are disjoint from

{

v, v′, uj
}

. All together there are at
least

2ε ·
1

6
·
1

6
· 3ε2 · n5 ≥

ε3n5

100

ways to make these selection. To complete the proof, we observe that every such selection
(

uj, u1, u2, u3, u
′
1

)

is a (v, v′, 5)-linking sequence, because vuju1 and u′
1u2u3 are both triangles and

v′uju′
1 and u1u2u3 are both triangles. �

Lemma 16. Let k≥ 3. If Conjecture 11 holds for k, then Conjecture 5 holds for k.

Proof. We can assume σ is small enough and n is large enough so that the following holds:

• σ 1/2 < ε and, because Observation 8 implies that if Conjecture 11 holds for k, then
Conjecture 11 holds for every ℓ less than k, we can assume that for every n′ ≥

(

1− σ 1/2
)

n

and for every 3≤ ℓ ≤ k, we can apply Conjecture 11 with ℓ, σ , n′ and ε − σ 1/2 playing the
roles of k, σ , n and ε, respectively;
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• for every 4≤ ℓ ≤ k, we can apply Lemma 13 with ℓ, ℓ − 1, ε3/2ℓ and σ 1/2 playing the roles
of k, t, η and σ , respectively; and

• we can apply Lemma 13 with 3, 5, ε3/100 and σ 1/2 playing the roles of k, t, η and σ ,
respectively.

Let G and δ1, . . . , δk be as in the statement of Conjecture 5. Let I :=
{

i ∈ [k] : δi < (1+ ε)n2
}

,
let ℓ = k− |I| and let i1 < · · · < i|I| be an ordering of the elements of I. In the manner described
after the statement of Theorem 6, iteratively, for j from 1 to |I|, we can match every v ∈Vij to a

unique fv ∈Vij+1 and then collapse the edge vfv into fv. Let G
′ be the resulting graph, so G′ will

be a subgraph of the n-blow-up of Cℓ such that a transversal Cℓ factor of G′ corresponds to a
transversal Ck factor of G. For convenience, we relabel the parts of G

′ as V ′
1, . . . ,V

′
ℓ so that, for

i ∈ [ℓ], we have G′[V ′
i ,V

′
i+1]≥ δ′

i . Note that δ
′
i ≥ (1+ ε)n2 for i ∈ [ℓ] and

ℓ
∑

i=1

δ′
i =

k
∑

i=1

δi −
k−ℓ
∑

j=1

δij > k

(

1+
1

k
+ ε

)

n

2
− (k− ℓ)(1+ ε)

n

2
= ℓ

(

1+
1

ℓ
+ ε

)

n

2
. (6)

Clearly (6) implies ℓ ≥ 2 and that we can assume ℓ ≥ 3 by Remark 10. If ℓ = 3, then
Proposition 15 implies that G is

(

ε3/100, 5
)

-linked and if ℓ ≥ 4, Proposition 14 implies that G

is (ε3/2ℓ, ℓ − 1)-linked. So by the selection of σ and n, we can apply Lemma 13 with G′ and σ 1/2

playing the roles ofG and σ to find a setA⊆V(G′) with z = |V ′
i ∩A| ≤ σ 1/2 for i ∈ [ℓ] guaranteed

by Lemma 13. Conjecture 11 then implies that G′ −A has a transversal Cℓ-tiling of size at least
n− z − σn which implies that G′ has a transversal Cℓ-factor. This in turn implies that G has a
transversal Ck-factor. �

3. Proof of Theorem 3

Informally the proof of Theorem 3 proceeds as follows: Given a spanning subgraph of the
n-blow-up of Ck with parts V1, . . . ,Vk that satisfies the degree condition (2), we independently
select, for every i ∈ k and for large T := T(k, ε), a partition of almost all of Vi into T + 1 parts
Ui,1,Wi,1,Wi,2, . . . ,Wi,T each of sizemk. The Chernoff and union bounds imply that, if n is suffi-
ciently large, there exists an outcome where, for every i ∈ [k] and every v ∈Vi−1 ∪Vi+1, the vertex
v has at least (1+ 1/k+ ε/2)mk/2 neighbours in each of the T + 1 parts of Vi. Therefore, for t
from 1 to T, we can iteratively apply the following lemma (Lemma 17) to find a transversal Ck-
tiling Tt of sizemk contained in

⋃

i∈k
(

Ui,t ∪Wi,t

)

so that, if, for i ∈ [k], we letUi,t+1 be the vertices
in Ui,t ∪Wi,t uncovered by Tt , we can continue with the next iteration. In this way, we can cover
almost all of the vertices, so with absorbing (i.e., Proposition 14 and Lemma 13) we can find a
transversal Ck-factor.

Lemma 17. For ε > 0 and integer k≥ 3, there exists m0 := m0(k, ε) such that for every m≥m0

the following holds for n≥ 2mk. Suppose that G is a subgraph of the n-blow-up of Ck with parts
V1, . . . ,Vk, and that, for every i ∈ [k], there exist disjoint Ui,Wi ⊆Vi where |Ui| = |Wi| =mk and
the following conditions hold for every v ∈Vi−1 ∪Vi+1:

(A) d(v,Ui)≥ (1+ σ)mk/2, and

(B) d(v,Wi)≥
(

1+ 1/k+ σ
)

mk/2.

Then G contains a transversal Ck-tiling T of size mk contained in
⋃

i∈[k] Ui ∪Wi such that for every

i ∈ [k] and every v ∈Vi−1 ∪Vi+1 with U
′
i := (Ui ∪Wi) \V(T ) we have

d
(

v,U ′
i

)

≥ (1+ σ)mk/2.

Proof. For every i ∈ [k], independently and uniformly at random select a partition ofUi into parts
Ui,1, . . . ,Ui,k each of size m. For every i, j ∈ [k] and every v ∈Vi−1 ∪Vi+1, the random variable
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d
(

v,Ui,j

)

is hypergeometrically distributed with expected value d(v,Ui)
|Ui,j|
|Ui| = d(v,Ui)

k
. Therefore,

by (C1) and the Chernoff and union bounds, there exists an outcome such that for every i, j ∈ [k]
and every v ∈Vi−1 ∪Vi+1 we have

d
(

v,Ui,j

)

≥m/2. (7)

This implies that for every i, j ∈ [k], the bipartite graph G[Ui,j,Ui+1,j] is balanced with parts of
size m and minimum degree at least m/2, so, by Hall’s Theorem, it contains a perfect matching
Mi,j. For j ∈ [k], let Hj be the graph with vertex set U1,j ∪ · · · ∪Uk,j such that

E(Hj) :=
k

⋃

i=1

Mi,j \
(

Mj−1,j ∪Mj,j

)

.

Note that Hj consists of a collection Pj of m vertex disjoint paths each on k− 1 vertices such
that

• V(Pj)=V(Hj) \Uj,j;

• every P ∈Pj has exactly one vertex in each of the sets U1,j, . . . ,Uk,j except Uj,j; and

• every P ∈Pj has one end-vertex in Uj−1,j and the other end-vertex in Uj+1,j.

By (C2), the number of common neighbours in Wj of the endpoints of every path in Pj is at
least

2
(

1+ 1/k+ σ
)

mk/2−mk>m= |Pj|.

Therefore, we can greedily select such a common neighbour for every path in Pj to form Tj, a
transversal Ck-tiling of sizem. The union T := T1 ∪ · · · ∪ Tk is a transversal Ck-tiling of G of size
mk. For every i ∈ [k], let U ′

i := (Ui ∪Wi) \V(T )=Ui,i ∪ (Wi \V(T )), so

|U ′
i | = |Ui,i| + |Wi| −m=mk.

With (C2) and (7), for every v ∈Vi−1 ∪Vi+1, we have that

d
(

v,U ′
i

)

≥m/2+
(

1+ 1/k+ σ
)

mk/2−m= (1+ σ)mk/2.
�

Proof of Theorem 3. Define η := k−3 · 2−k and σ := min{ε/4, 0.1ηk+1/(k4 + 1)}. By
Proposition 14, G is (η, k− 1)-linked. Let A be the set guaranteed by Lemma 13, so there

exists z ≤ σn such that |A∩Vi| = z for every i ∈ [k]. Letm :=
⌊

σ 2n
2k

⌋

and let T :=
⌊

n−z
mk

⌋

− 1 and

note that (T + 1)mk≤ n− z ≤ (T + 2)mk and that T is bounded above by a constant that depends
only on k and ε. For every i ∈ [k], let V ′

i ⊆Vi \A where |V ′
i | = (T + 1)mk. We will construct T

disjoint transversal Ck-tilings each of sizemk that each avoid A. Because

mkT = (T + 2)mk− 2mk≥ n− z − σ 2n,

this will imply the theorem by the properties of A from Lemma 13.
Note that, by (2), for every i ∈ [k] and v ∈Vi−1 ∪Vi+1, we have

d
(

v,V ′
i

)

≥ δ∗(G)− (n− |V ′
i |)≥

(

1+ 1/k+ 2σ
)

n/2≥
(

1+ 1/k+ 2σ
)

|V ′
i |/2. (8)

For every i ∈ [k], independently and uniformly at random select a partition of V ′
i into

T + 1 parts Wi,0, . . . ,Wi,T each of size mk. For every i ∈ [k], every 0≤ t ≤ T and every v ∈
Vi−1 ∪Vi+1, the random variable d(v,Wi,t) is hypergeometrically distributed with expected value

d
(

v,V ′
i

) |Wi,t |
|V ′

i |
. Therefore, by (8) and the Chernoff and union bounds, there exists an outcome such

that for every i ∈ [k], 0≤ t ≤ T and v ∈Vi−1 ∪Vi+1 we have

d(v,Wi,t)≥
(

1+ 1/k+ σ
)

mk/2. (9)
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We will now show by induction on t from 1 to T + 1 that there exist t − 1 disjoint transversal

Ck-tilings T1, . . . , Tt−1 each of size mk that are contained in
⋃

i∈k
⋃t−1

s=0 Wi,s, and that, for every

i ∈ [k], if we let Ui,t :=
(

⋃t−1
s=0 Wi,s

)

\
(

⋃t−1
s=1 V(Ts)

)

, then the following holds:

d(v,Ui,t)≥ (1+ σ )mk/2 for every v ∈Vi−1 ∪Vi+1. (10)

This will prove the theorem.
For the base case, note that when t = 1 we have that Ui,t =Ui,1 =Wi,0 for every i ∈ [k] so (10)

holds by (9). Now assume the induction hypothesis holds for some 1≤ t ≤ T. With (9) and (10)
we can apply Lemma 17 to find a tiling Tt of size mk contained in

⋃

i∈[k] Ui,t ∪Wi,t such that, for
every i ∈ [k], we have that

Ui,t+1 =
(

t
⋃

s=0

Wi,s

)

\
(

t
⋃

s=1

V(Ts)

)

=
(

Ui,t ∪Wi,t

)

\V(Tt)

satisfies (10) with t set to t + 1. Therefore, the induction hypothesis holds for t + 1. �

4. Proof of Theorem 6

Because Theorem 18 works for every n and the degree condition is weaker than Theorem 6,
it might have independent interest. Note that Theorem 18 is stronger than the k= 3 case of
Conjecture 11, so Lemma 16 and Theorem 18 together imply Theorem 6.

Theorem 18. The following holds for every n ∈N and every subgraph G of the n-blow-up of C3 with
parts V1,V2,V3. If there exist δ1, δ2, δ3 ≥ n/2 such that δ1 + δ2 + δ3 ≥ 2n and

δ(G[Vi,Vi+1])≥ δi for every i ∈ [3],

then G has a transversal C3-tiling of size at least n− 1.

Proof. For brevity, in this proof we call a transversal C3-tiling a tiling. Let the size of a maximum
tiling of G be m and let us assume for a contradiction that m≤ n− 2. Call a pair of edges e and
f dissimilar if e ∈ E(G[Vi,Vi+1]) and f ∈ E

(

G
[

Vj,Vj+1

])

for distinct i, j ∈ [3]. Call a set F ⊆ E(G)
a dissimilar matching if the edges in F are disjoint and the edges in F are pairwise dissimilar. For
every maximum tiling T , let h(T ) be the maximum size of a dissimilar matching F ⊆ E(G[U(T )])
such that every edge in F is uncovered by T . Recall that an edge e is uncovered by T if both end-
points of e are disjoint from V(T ). Let {α, β , γ } = {δ1/n, δ2/n, δ3/n} and {A, B, C} = {V1,V2,V3}
be labellings such that α ≤ β ≤ γ and

δ(G[B, C])≥ αn, δ(G[A, C])≥ βn, and δ(G[A, B])≥ γ n. (11)

�

Claim 18.1. Let T be a maximum tiling. If e ∈ E(G) is uncovered by T , then d(e,U(T ))= 0.
Furthermore, if e and f are disjoint dissimilar edges that are uncovered by T , then d(e, T)+
d(f , T)≤ 1 for every T ∈ T .

Proof. If e is an edge uncovered by T and x ∈U(T ) is such that d(e, {x})= 1, then ex is triangle,
and adding ex to T creates a tiling of size m+ 1, a contradiction. Similarly, if e and f are disjoint
and dissimilar edges that are uncovered by T and d(e, T)+ d(f , T)≥ 2 for some T ∈ T , then,
because e and f are dissimilar, there exist distinct x, y ∈ T such that ex and fy are both triangles, so
if we replace T with ex and fy in T , then we have a tiling of sizem+ 1, a contradiction. �

Claim 18.2. Let T be a maximum tiling and let F be a dissimilar matching with |F| = 3. Then
either there exists e ∈ F such that d(e,U(T ))≥ 1 or there exists T ∈ T such that

∑

e∈F d(e, T)≥ 2.
Consequently, h(T )≤ 2 for every maximum tiling T .
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Proof. Let {a1, . . . , an}, {b1, . . . , bn} and {c1, . . . , cn} be orderings of A, B and C, respectively,
such that aibici ∈ T for every i ∈ [m] (so, whenm+ 1≤ i≤ n, aibici is not a triangle). By (11), we
have

n
∑

i=1

∑

e∈F
d(e, aibici)=

∑

e∈F
d(e,V(G))≥ (α + β − 1)n+ (α + γ − 1)n+ (β + γ − 1)n≥ n.

Therefore, if 0=
∑

e∈F d(e,U(T ))=
∑n

i=m+1

∑

e∈F d(e, aibici), then there exists 1≤ i≤m
such that

∑

e∈F d(e, aibici)= 2. This proves the first statement.
To see the second statement, assume for a contradiction that there exists a maximum tiling T

such that h(T )= 3. This means that there exists a dissimilar matching F such that |F| = 3 and such
that every edge in F is uncovered by T . By the first part of the statement, there either exists e ∈ F
such d(e,U(T ))≥ 1, or there exist two edges e, f ∈ F and T ∈ T such that d(e, T)+ d(f , T)≥ 1.
Because every edge in F is uncovered by T , this contradicts Claim 18.1. �

Claim 18.3. There exists a maximum tiling T such that h(T )= 2, and for every maximum tiling
T there does not exist e ∈ E(G[B, C]) which is uncovered by T .

Proof. Suppose for a contradiction that the statement is false and assume T and a dissimilar
matching F in G[U(T )] have both been selected so that

(A) there exists e ∈ F such that e ∈ E(G[B, C]) if possible, and,

(B) subject to (A), |F| is as large as possible.

Note that Claim 18.2, implies that |F| ≤ h(T )≤ 2, so if there exists e ∈ F such that e ∈
E(G[B, C]), then F has at most one edge that is contained in E(G[A, B])∪ E(G[A, C]). If there
is no e ∈ F that is in E(G[B, C]), then by the selection of T and F (c.f. (A)), for every maximum
tiling T there does not exist e ∈ E(G[B, C]), so our contrary assumption implies |F| ≤ h(T )≤ 1.
Therefore, in all cases, F has at most one edge that is contained in E(G[A, B])∪ E(G[A, C]). Let
{X, Y} = {B, C} be a labelling such that F does not contain an edge in E(G[A, X]).

Let W ⊆U be the set of vertices that are incident to an edge in F. The fact that
|T | ≤ n− 2, implies that there exist nonadjacent vertices a ∈A \W and x ∈ X \W that are uncov-
ered by T . Let {a1, . . . , an}, {x1, . . . , xn} and {y1, . . . , yn} be orderings of A, X and Y , respectively
such that an = a, xn = x and aixiyi ∈ T for every i ∈ [m]. We can assume that the orderings are
such that W is contained in the set

{

an−1, xn−1, yn−1, yn
}

with xn−1yn−1 ∈ F if F ∩ E(G[X, Y])=
F ∩ E(G[B, C]) 
= ∅.

Since a and x are nonadjacent, d(x, an)+ d(a, xn)+ d(a, yn)= d(x, a)+ d(a, x)+ d(a, yn)≤ 1,
and, by (11) and the fact that α ≤ β ≤ γ , we have

n
∑

i=1

d(x, ai)+ d(a, xi)+ d(a, yi)= d(x,A)+ d(a, X)+ d(a, Y)≥ βn+ βn+ γ n≥ 2n,

so there must exist i ∈ [n− 1] such that d(x, ai)+ d(a, xi)+ d(a, yi)= 3. Note that i 
= n− 1,
because if axn−1 is an edge, then the fact that F ∩ E(G[A, X])= ∅ and the maximality of F
imply that xn−1yn−1 ∈ F, but, because T is a maximum tiling, axn−1yn−1 is not a triangle. Since
F ∩ E(G[A, X])= ∅, the maximality of F also implies that that d(x, aj)= 0 for every m+ 1≤ j≤
n− 2, so it must be that i ∈ [m], that is, that T = aixiyi is a triangle in T . Therefore, we can swap
T for the triangle axiyi in T to form the maximum tiling T ′. Because the edge aix is uncovered by
T ′ andW ⊆U(T ′), we have a contradiction to the selection of T and F (c.f. (B)). �

Claim 18.3 implies that there exists a maximum tiling T such that h(T )= 2. By Claim 18.3, we
can assume that T leaves no edge in E(G[B, C]) uncovered by T . This means that there are disjoint
edges ab ∈ E(G[A, B]) and a′c ∈ E(G[A, C]) with a, a′ ∈A that are uncovered by T . Since |T | =
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m≤ n− 2, there also exists b′ ∈ B \ {b} and c′ ∈ C \ {c} that are uncovered by T . Furthermore, the
fact that no edge in E(G[B, C]) is uncovered implies that

∑

T∈T
d
(

b′, T ∩ C
)

+ d
(

c′, T ∩ B
)

= d
(

b′, C
)

+ d
(

c′, B
)

≥ 2δ(G[B, C])≥ n>m= |T |,

so there exists T ∈ T such that d
(

b′, T ∩ C
)

+ d
(

c′, T ∩ B
)

= 2. Let e be the edge incident to c′ and
T ∩ B and let e′ be the edge incident to b′ and T ∩ C. If we define F := {ab, a′c, e}, then F is a
dissimilar matching, so Claim 18.2 implies that we are in one of the following two cases.

Case 1: There exists f ∈ F such that d(f ,U(T ))≥ 1. By Claim 18.1, the fact that ab and a′c are
uncovered by T implies that f = e. So, there exists a triangle T′ that contains e and a vertex in
U ∩A. This means that we can create a maximum tiling by replacing T with T′ in T that leaves
the edge e′ ∈ E(G[B, C]) uncovered, contradicting Claim 18.3.

Case 2: There exists T′ ∈ T such that
∑

f∈F d(f , T
′)≥ 2. By Claim 18.1, d(ab, T′)+ d(a′c, T′)≤ 1,

so there is f ∈ {ab, a′c} such that d(e, T′)+ d(f , T′)≥ 2. This means that there exist two triangles,
say T′′, T′′′, in the graph induced by the vertices incident to e, f and T′. Therefore, we can create a
new tiling, say T ′, by removing T and T′ from T and replacing them with T′′ and T′′′. Since T is
maximum tiling, we have that T 
= T′ and that T ′ is a maximum tiling. Because T 
= T′, the edge
e′ ∈ E(G[B, C]) is uncovered by T ′ which contradicts Claim 18.3.

5. Proof of Theorem 7

The following example proves the second part of the theorem

Example 19. For the case γ = 2/3, it can be checked that Example 4 for k= 3 satisfies the second
claim of Theorem 7.

For the case γ ∈
(

3
4 ,

7
9

]

, we assume n satisfies the following: γ ≥ 3
4 + 1

n and (1− β)n/2 is an
integer. Clearly, since β is rational and γ > 4/3, there are infinitely many choices for such n. Let

us fix ε ∈
(

0, 1n
]

such that (1− γ + ε)n is an integer.
Take setsA=A0 ∪A1 ∪A2 ∪A3, B= B0 ∪ B1 ∪ B2 ∪ B3 andC = C0 ∪ C1 ∪ C2 ∪ C3, such that:

• |Bi| = (1− γ + ε)n, |Ai| = |Ci| = (1− β)n/2, for i ∈ [3];

• |B0| = n− 3(1− γ + ε)n= (3γ − 2)n− 3εn; and

• |A0| = |C0| = n− 3(1− β)n/2= (3β − 1)n/2.

Let G be the 3-partite graph with parts A, B and C, where E(G) consists of the union of the
edges in the following graphs:

• the complete bipartite graphs with parts A0, B∪ C and B0,A∪ C and C0,A∪ B.

• the complete bipartite graphs with parts A1, B2 ∪ B3 and A2, B1 ∪ B3 and A3, B1 ∪ B2.

• the complete bipartite graphs with parts Bi, Ci and Ai, Ci for each i ∈ [3].

Since γ ≤ 7
9 and ε > 0, we have (1− γ + ε)n> (γ − 1/3)n/2= (1− β)n/2. So,

• δ(G[A, B])= n− (1− γ + ε)n= γ n− εn,

• δ(G[B, C])= n− 2(1− γ + ε)n= (2γ − 1)n− 2εn, and

• δ(G[A, C])= n− 2(1− β)n/2= βn.

Recall that ε ≤ 1
n and γ ≥ 3

4 + 1
n , so δ(G[A, B])≥ γ n− 1 and δ(G[B, C])≥ (2γ − 1)n− 2≥

n/2.
Note that A0 ∪ B0 ∪ C0 is a triangle cover and

|A0| + |B0| + |C0| = (3β − 1)n/2+ (3γ − 2)n− 3εn+ (3β − 1)n/2= (1− 3ε)n< n.
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We now proceed with the proof of the first part of the Theorem 7. We will use the following
definition throughout the proof.

Definition 20. For U,W,U ′ ⊆V(G), let P3(U,W,U ′) be the set of paths on 3 vertices in which
the middle vertex is inW, one endpoint is in U and the other endpoint is in U ′. When a set {u} is
a singleton, we sometimes replace {u} with u in this notation.

Let {α, β , γ } = {δ1/n, δ2/n, δ3/n} and {A, B, C} = {V1,V2,V3} be labellings such that α ≤ β ≤
γ and

δ(G[B, C])≥ αn, δ(G[A, C])≥ βn, and δ(G[A, B])≥ γ n.

We can assume γ + β = 4/3 and α = 1/2. Therefore,

1/2≤ β ≤ 2/3 and 2/3≤ γ ≤ 5/6. (12)

Let U be a triangle cover and let x= |A∩U|/n, y= |B∩U|/n and z = |C ∩U|/n. For a
contradiction, assume that

x+ y+ z < 1. (13)

Let A′ =A \U, B′ = B \U and C′ = C \U.
Using this notation, we now give an informal sketch of the proof. We use the fact that

G[A′, B′, C′] is triangle-free to iteratively improve bounds on x, y and z until we derive a
contradiction.

We start with the simple observation that the common neighbourhood of the endpoints
of every edge in G[A′, B′, C′] must be in U, so x≥ γ + β − 1= 1/3, y≥ γ + α − 1= γ − 1/2
and z ≥ β + α − 1= β − 1/2 (Claim 20.1). Since 1> x+ y+ z and γ ≥ 2/3, these lower bounds
imply that x, y< γ and β < 1/2. We derive that y< 1/2 by noting that if y≥ 1/2, then for every
b ∈ B′ and every a ∈NG(b,A

′) there exists b′ ∈ B′ and a′ ∈A′ such that ab′a′b is a 4-vertex path.

This then implies that |P3(b, C′, a)| ≤ |C′| − d(a′, C)− d
(

b′, C
)

, which further implies an upper
bound on |P3(b, C′,A′)| that contradicts the fact that

∣

∣P3
(

b, C′,A′)∣
∣ =

∑

c∈N(b,C′)

d(c,A′)≥ (α − z)n · (β − x)n.

So y< 1/2 (Claim 20.2). This means every vertex in C′ has a neighbour in B′. We use this to
get an upper bound on G[A′, C′] which we compare to the lower bound given by the minimum
degree. This inequality is then used to prove that there is a 4-vertex path in G[A′, B′] between
every nonadjacent a ∈A′ and b ∈ B′ (Claim 20.3). Using these paths in the same manner as before,
we derive upper and lower bounds on |P3(a, C′, B′)| and |P3(A′, B′, b)| for every a ∈A′ and b ∈ B′.
These bounds and the previous inequality imply that y< 1/3 and x< β (Claim 20.4). A simi-
lar argument implies that there exist non-adjacent a1 ∈A′ and c1 ∈ C′ such that there does not
exist a 4-vertex path between a1 and c1 (Claim 20.5). We fix a2 ∈N(c1,A

′) and c2 ∈N(a1, C
′).

We then observe that, by the selection of a1 and c1, the sets N(a1, C
′) and N(a2, C

′) are dis-
joint and the sets A1 =N(c1,A

′) and A2 =N(c2,A
′) are disjoint. Since a1 and a2 must have a

common neighbour in B′, we get that z ≥ β − 1/4 (Claim 20.6). We can now deduce that, in
G[A′, C′], every a ∈A′ has a 4-vertex path to either c1 or c2 (Claim 20.8). We let B1 and B2 be
subsets of N(c1, B

′) and N(c2, B
′) with cardinality exactly

⌈

(1/2− y)n
⌉

. Note that for every a ∈Ai

every vertex in Bi is a non-neighbour of a and this yields an upper bound on the number of non-
neighbours of a in B \ (B1 ∪ B2). Using the fact that for every a ∈A \ (A1 ∪A2) there is 4-vertex
path in G[A′, C′] from a to ci, we can get an upper bound on the number of non-neighbours of a
in B \ (B1 ∪ B2) (Claim 20.9). There observations lead to a upper bound on the number of non-
neighbours between A′ and B′ \ (B1 ∪ B2). To get a contradiction, we note that every vertex in B′

has a neighbour in C′, which implies a lower bound on the number of non-neighbours between
A′ and B′ \ (B1 ∪ B2) that is in conflict with the previous upper bound.
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We now proceed with the formal proof.

Claim 20.1. x≥ 1/3, y≥ γ − 1/2 and z ≥ β − 1/2.

Proof. Since y+ z ≤ x+ y+ z < 1, one of y or z is less than 1/2, so there exists an edge bc ∈
E(G[B′, C′]). Because G[A′, B′, C′] is triangle-free,

0= |N(b,A′)∩N(c,A′)| ≥ d(b,A)+ d(c,A)− |A| − xn≥ γ n+ βn− n− xn= n/3− xn,

so x≥ 1/3. By considering an edge in E(G[A′, B′]) and an edge in E(G[A′, C′]) the same argument
yields z ≥ β − 1/2 and y≥ γ − 1/2, respectively. �

Claim 20.2. x< γ , y< 1/2 and z < 1/2.

Proof. We first show that both x< γ and y< γ . To this end, note that if x≥ γ , then x+ y≥
γ + γ − 1/2= 2γ − 1/2. If y≥ γ , then, because γ − 1/2≤ 5/6− 1/2= 1/3, we also have x+
y≥ 1/3+ γ ≥ 2γ − 1/2. So, in either case, we have the following contradiction

1> x+ y+ z ≥ 2γ − 1/2+ β − 1/2= 1/3+ γ ≥ 1.

Similarly, it is clear that z < 1/2, since otherwise x+ y+ z ≥ 1/3+ (γ − 1/2)+ 1/2≥ 1, a
contradiction.

Assume y≥ 1/2 and let b ∈ B′. Note that there are at most (1− γ )n vertices a ∈NG(b,A
′).

For every such a we can find a 4-vertex path ab′a′b in G[A′, B′]. Indeed, since y< γ , there exists
b′ ∈N(a, B′). Then, because 2γ + β ≥ 2 and 1> x+ y+ z,

x< 1− y− z ≤ 1/2− z ≤ 1/2− (β − 1/2)= 1− β ≤ 2γ − 1.

Since |N(b,A)∩N(b′,A)| ≥ 2γ n− n> xn, there exists a′ ∈ |N(b,A′)∩N(b′,A′)|, giving us the
4-path ab′a′b. Note that N(a′, C′) and N(b′, C′) are disjoint and that every c ∈ C′ that is adjacent
to both a and b is not adjacent to a′ and not adjacent to b′. Therefore, |P3(b, C′, a)| is at most

|C′ \
(

N(a′, C′)∪N(b′, C′)
)

| ≤ (1− z)n− (β − z)n− (1/2− z)n= (z − β + 1/2)n,

and |P3(b, C′,A′)|/n2 ≤ (1− γ )(z − β + 1/2). On the other hand,

|P3(b, C′,A′)| ≥
∑

c∈N(b,C′)

d(c,A′)≥ (1/2− z)n · (β − x)n.

The claim then follows because there are no solutions to

(1− γ )(z − β + 1/2)≥ (1/2− z)(β − x),

when x≥ 1/3, y≥ 1/2 and z ≥ β − 1/2. (See Appendix B in [2] for a proof of this fact.) �

Note that Claim 20.2 implies that δ(G[A′, B′])≥ 1, δ(G[B′, C′])≥ 1, and that every vertex in A′

has a neighbour in C′. (We do not yet know if every vertex in C′ has a neighbour in A′.) We will
use these facts in the rest of the argument without comment.

In particular, the fact that every c ∈ C′ has a neighbour b ∈ B′ implies that

d(c,A′)≤ |A′ \N(b,A′)| ≤ |A \N(b,A)| ≤ (1− γ )n,

so |E(A′, C′)| =
∑

c∈C′ d(c,A′)≤ |C′|(1− γ )n= (1− z)(1− γ )n2. On the other hand, we have

that |E(A′, C′)| =
∑

a∈A′ d(a, C′)≥ |A′|(β − z)n= (1− x)(β − z)n2. This yields the following use-
ful inequality

(1− γ )(1− z)≥ (1− x)(β − z). (14)

Claim 20.3. For every a ∈A′ and b ∈ B′, there is an (a, b)-path in G[A′, B′] with at most 4 vertices.

Proof. Assume the contrary and let a ∈A′ and b ∈ B′ be such that there is no (a, b)-path in
G[A′, B′] with at most 4 vertices. Let b′ ∈N(a, B′) and a′ ∈N(b,A′). By our contrary assumption,

https://doi.org/10.1017/S0963548322000086 Published online by Cambridge University Press



1044 B. Ergemlidze and T. Molla

we have that N(a, B′)∩N(a′, B′)= ∅ so y≥ |N(a, B)∩N(a′, B)|/n≥ 2γ − 1, By the same argu-
ment, N(b,A′)∩N(b′,A′)= ∅ and x≥ 2γ − 1. Since β ≤ 2/3, we have 2γ − 1= 2(4/3− β)−
1= 5/3− 2β ≥ 1− β , so

z < 1− x− y≤ 1− 2(2γ − 1)≤ 1− 2(1− β)= 2β − 1≤ |N(a, C)∩N(a′, C)|/n,

therefore there exists c ∈N(a, C′)∩N(a′, C′). But then N(c, B′) cannot intersect N(a, B′)∪
N(a′, B′), so

(1/2− y)+ 2(γ − y)≤ |N(c, B′)∪N(a, B′)∪N(a′, B′)|/n≤ 1− y

which implies that y≥ γ − 1/4, therefore y≥ 5/12. But (14) has no solutions when y≥ 5/12, x≥
1/3 and z ≥ β − 1/2. (See Appendix B in [2] for a proof of this fact.) This is a contradiction. �

Claim 20.4. y< 1/3 and x< β .

Proof. Let a ∈A′. We first get an upper bound on |P3(a, C′, B′)|. Note that there are at most (1−
γ )n ways to select b ∈ B′ that is not adjacent to a. By Claim 20.3, there exists a′ ∈A′ and b′ ∈ B′

such that ab′a′b is a path. Note that every vertex c ∈ C′ that is adjacent to both a and b cannot
be in N(a′, C′)∪N(b′, C′). Since N(a′, C′) and N

(

b′, C
)

are disjoint, we have the cardinality of
P3(a, C

′, b) is at most

|C′| − d(a′, C′)− d(b′, C′)≤ (1− z)n− (β − z)n− (1/2− z)n= (z − β + 1/2)n

Therefore, |P3(a, C′, B′)|/n2 ≤ (1− γ )(z − β + 1/2). We also have that |P3(a, C′, B′)| ≥
∑

c∈N(a,C′) d(c, B
′)≥ (β − z)n(1/2− y)n, so

(1− γ )(z − β + 1/2)≥ |P3(a, C′, B′)|/n2 ≥ (β − z)(1/2− y). (15)

By considering b ∈ B′ and estimating P3(A
′, C′, b), the same arguments yield that

(1− γ )(z − β + 1/2)≥ |P3(A′, C′, b)|/n2 ≥
∑

c∈N(b,C′)

d(c,A′)/n2 ≥ (β − x)(1/2− z). (16)

But (15), (16) and (14) cannot hold simultaneously when x≥ 1/3, y≥ 1/3 and z ≥ β − 1/2.
(See Appendix B in [2] for a proof of this fact.) Therefore y< 1/3.

Now we will show that x< β . Indeed, if β ≤ x, we have

y≥ γ − 1/2= 5/6− β ≥ 5/6− x> y+ z − 1/6,

so z < 1/6. With (15) we get (β − 1/3)(1/6− β + 1/2)≥ (β − 1/6)(1/2− y). Plugging y< 1/3
we get that −β2 + (5/6)β − 1/4> 0 which does not have a solution, a contradiction. �

Note that Claims 20.2 and 20.4 together imply δ(G[A′, B′]), δ(G[B′, C′]), δ(G[C′,A′])≥ 1.

Claim 20.5. There exists a1 ∈A′ and c1 ∈ C′ such that there is no (a1, c1)-path in G[A′, C′] with at
most 4-vertices.

Proof. Assume the contrary and let a1 ∈A′. Then, for every c1 ∈ C′ \N(a′, C′), there exists a2 ∈A′

and c2 ∈ C′ such that a1c2a2c1 is a path, so, since G[A
′, B′, C′] is triangle-free, |P3(a1, B′, c1)| is at

most

|B′ \ (N(a2, B
′)∪N(c2, B

′)| ≤ |B′| − (d(a2, B)− yn+ d(c2, B)− yn)≤
(

y− γ + 1/2
)

n.

Since a1 has at most (1− β)n non-neighbours in C′, we have that

(1− β)
(

y− γ + 1/2
)

≥ |P3(a1, B′, C′)|/n2 =
∑

b∈N(a1,B′)

d(b, C′)/n2 ≥ (γ − y) (1/2− z)

which is impossible when x≥ 1/3, 1/3> y≥ γ − 1/2 and z ≥ β − 1/2. (See Appendix B in [2] for
a proof of this fact.) �
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By Claim 20.5, there exists a1 ∈A′ and c1 ∈ C′ such that there is no (a1, c1)-path in G[A′, C′]
with at most 4-vertices. Fix such vertices a1 and c1. By Claims 20.2 and 20.4, we can also fix c2 ∈
N(a1, C

′) and a2 ∈N(c1,A
′). Note that, by the selection of a1 and c1,

N(a1, C
′)∩N(a2, C

′)= ∅ and N(c1,A
′)∩N(c2,A

′)= ∅. (17)

Claim 20.6. z ≥ β − 1/4.

Proof. Since |N(a1, B)∩N(a2, B)|/n≥ 2γ − 1≥ 1/3> y, there exists b ∈ B′ that is adjacent to
both a1 and a2. Since G[A

′, B′, C′] is triangle-free (17) implies that

1/2− z ≤ d(b, C′)/n≤ |C′ \ (N(a1, C
′)∪N(a2, C

′))|/n≤ 1− z − 2(β − z)= 1− 2β + z,

so z ≥ β − 1/4. �

Claim 20.7. At least one of the following statements is true.

• For every a ∈A′, we have that N(a, C′) intersects N(a1, C
′)∪N(a2, C

′).

• For every c ∈ C′, we have that N(c,A′) intersects N(c1,A
′)∪N(c2,A

′).

Proof. Assume the contrary, so there exists a3 ∈A′ such that N(a1, C
′), N(a2, C

′) and N(a3, C
′)

are pairwise disjoint and that there exists c3 ∈ C′ such that N(c1,A
′), N(c2,A

′) and N(c3,A
′) are

pairwise disjoint. This implies that

(1− x)n= |A′| ≥ d(c1,A
′)+ d(c2,A

′)+ d(c3,A
′)≥ 3(β − x)n,

so x≥ (3β − 1)/2, and, by considering the sets N(a1, C
′), N(a2, C

′) and N(a3, C
′), we similarly

have that z ≥ (3β − 1)/2. This implies that

y< 1− x− z ≤ 1− (3β − 1)= 2− 3(4/3− γ ) = 3γ − 2.

Note that |N(a1, B)∩N(a2, B)∩N(a3, B)| ≥ 3γ n− 2|B| = (3γ − 2)n> yn, so there exists b ∈
N(a1, B

′)∩N(a2, B
′)∩N(a3, B

′). Note thatN(b, C′) must be disjoint fromN(a1, C
′)∪N(a2, C

′)∪
N(a3, C

′) so, since N(a1, C
′), N(a2, C

′) and N(a3, C
′) are pairwise disjoint,

(1− z)n= |C′| ≥ d(b, C′)+ d(a1, C
′)+ d(a2, C

′)+ d(a3, C
′)≥ (1/2− z + 3(β − z))n,

so z ≥ β − 1/6. But then 1> x+ y+ z ≥ 1/3+ γ − 1/2+ β − 1/6= 1, a contradiction. �

Claim 20.8. For every a ∈A′ there exists i ∈ {1, 2} such that there is an (a, ci)-path in G[A′, C′] with
at most 4 vertices.

Proof. Since c1a2 and c2a1 are edges, we have the desired path if N(a, C′) intersects either
N(a1, C

′) or N(a2, C
′). So assume otherwise, that is, assume that the sets N(a, C′), N(a1, C

′) and
N(a2, C

′) are pairwise disjoint. By Claim 20.2, there exists c ∈N(a, C′). Because N(c1,A
′) and

N(c2,A
′) are disjoint, Claim 20.7 implies that N(c,A′) must intersect one of N(c1,A

′) or N(c2,A
′)

and this gives us the desired path. �

For i ∈ {1, 2}, let Ai =N(ci,A
′), let Bi ⊆N(ci, B

′) such that |Bi| =
⌈

(1/2− y)n
⌉

, and let B0 =
B′ \ (B1 ∪ B2). Define ζ = |B1|/n= |B2|/n, so |B0| ≥ (1− y− 2ζ )n.

Claim 20.9. Every a ∈A1 ∪A2 has at most (1− γ − ζ )n non-neighbours in B0. Every a ∈A′ \
(A1 ∪A2) has at most 2(1− γ − ζ )n non-neighbours in B0.

Proof. Let a ∈A′. First suppose a ∈Ai =N(ci,A
′) for some i ∈ {1, 2}, then a has no neighbours in

Bi, so

|NG(a, B0)| ≤ |NG(a, B)| − |Bi| ≤ (1− γ − ζ )n.
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Now assume that a ∈A′ \ (A1 ∪A2). By Claim 20.8, there exists i ∈ {1, 2}, c′ ∈ C′ and a′ ∈A′

such that ac′a′ci is a path. Because ac′ is an edge, a has no neighbours in NG(c
′, B′), thus the

number of non-neighbours of a in B \NG(c
′, B′) is at most

|NG(a, B)| − |NG(c
′, B′)| ≤ |NG(a, B)| −

⌈

(1/2− y)n
⌉

≤ (1− γ − ζ )n,

so the number of non-neighbours of a in B0 \NG(c
′, B0)⊆ B \NG

(

c′, B
)

is at most (1− γ − ζ )n.
To see that the number of non-neighbours of a inNG(c

′, B0) is at most (1− γ − ζ )n (which proves
the claim), note that NG(c

′, B0)⊆NG(a
′, B0) (because G is triangle-free) and, by the first part of

the claim, the fact that a′ ∈N(ci,A
′)=Ai implies that |NG(a

′, B0)| ≤ (1− γ − ζ )n. �

Now we will estimate e
(

G[A′, B0]
)

from both sides. Recall that A1 and A2 are disjoint, so |A1 ∪
A2| ≥ 2(β − x)n. This with Claim 20.9 implies

e
(

G[A′, B0]
)

≤ |A1 ∪A2| · (1− γ − ζ )n+ |A′ \ (A1 ∪A2)| · 2(1− γ − ζ )n

≤ 2(β − x)(1− γ − ζ )n2 + (1− 2β + x) · 2(1− γ − ζ )n2

= 2(1− β)(1− γ − ζ )n2. (18)

(In (18), we used that 1− γ − ζ ≥ 0, which is implied by Claim 20.9.) By Claim 20.2, for every
b ∈ B0 there exists c ∈N(b, C′). Since NG(b,A

′)⊇N(c,A′),

e
(

G[A′, B0]
)

≥ |B0|(β − x)n≥ (1− y− 2ζ )(β − x)n2. (19)

The conclusion then follows because (18) and (19) together yield

(1− y− 2ζ )(β − x)≤ 2(1− β)(1− γ − ζ )

which has no solutions when x≥ 1/3, 1/3> y≥ γ − 1/2, z ≥ β − 1/4 and ζ ≥ 1/2− y. (See
Appendix B in [2] for a proof of this fact.)
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A. Proof of Lemma 13

LetV1, . . . ,Vk be the parts ofG, let ℓ := k(t + 1), and letA be the set of all nℓ sequences a1, . . . , aℓ

such that aj ∈Vi if j is equivalent to imodulo k. Note that we do not require the vertices a1, . . . , aℓ

to be distinct in this definition, so |A| = nℓ.
For every transversal U, define AU to be the set of sequences in A such that if A is the set of

vertices in AU , the graph induced by A and the graph induced by A∪U both have a transversal
Ck-factor. The probabilistic argument below relies critically on the fact that, for every transversal
U, the set AU is sufficiently large, and this follows from the fact that G is (2η, t)-linked. To see
this, first label the vertices in U as u1, . . . , uk so that ui ∈Vi for i ∈ [k]. Because G is (2η, t)-linked
we easily have that there are at least ηnk ways to select vertices c1, . . . , ck where ci ∈Vi \ {ui} for
i ∈ [k] that induce a transversal Ck in G. Because G is (2η, t)-linked, iteratively, for i from 1 to
k, we can select a (ci, ui, t)-linking sequence Li that avoids all previously selected vertices in at
least ηnt ways. Since the graph induced by ci and the vertices in Li contains a transversal Ck-
factor we have that (t + 1) is divisible by k and that there exists Si an ordering of these (t + 1)
vertices so that the jth vertex is in Vi if j is equivalent to i modulo k. Finally, because each Li is
a (ci, ui, t)-linking sequence, the concatenation of the sequences S1, . . . , Sk is in AU , and we have

that |AU | ≥ ηnk ·
(

ηnt
)k = ηk+1nℓ.

Let p := 0.2 · σ · n−ℓ+1 and select the elements of A independently with probability p to form
the random setArand. The Chernoff and union bounds imply that with high probability

|Arand| ≤ σn and |Arand ∩AU | ≥ 0.1 · σηk+1n≥
(

ℓ2 + 1
)

σ 2n (20)

for every transversalU ⊆V(G). Note that the number of pairs of sequences inA in which a vertex

is repeated is less than n ·
(2ℓ
2

)

· n2ℓ−2 =
(2ℓ
2

)

n2ℓ−1, so the expected number of pairs of sequences

in Arand in which a vertex is repeated is less than p2 ·
(2ℓ
2

)

n2ℓ−1 ≤ (ℓ2σ 2n)/4. So, by Markov’s
inequality, with probability at least 1/2, if we add both elements from every such pair to form the
setArep we have that

|Arep| ≤ ℓ2σ 2n. (21)

Therefore, there exists an outcome in which both (20) and (21) hold.We form the collectionA′

fromArand by removing all sequences that are in Arep and all sequences for which there does not
exists a transversal U for which it is a linking sequence. Note that, by (20), z:= |A′| ≤ σn and, by
(20) and (21), |A′ ∩AU | ≥ σ 2n for every transversal U ⊆V(G). Let A be the vertices that appear
in a sequence ofA′. Because no vertex is repeated inA′ we have that |A∩Vi| = z for every i ∈ [k],
nd, because every sequence inA′ is a linking sequence for some transversal U, for every sequence
inA′ the graph induced by the vertices in the sequence has a transversal Ck-factor.

Suppose that there exists a transversal Ck-tiling of G−A that covers all of the vertices in
V(G−A) except a set W such that |W| ≤ kσ 2n. We can arbitrarily partition W into transversals
U1, . . . ,Um wherem= |W|/k≤ σ 2n. Since for every i ∈ [m], we have that |AUi ∩A′| ≥ σ 2n≥m,
we can greedily select distinct sequences A1, . . . ,Am such that Ai ∈AUi ∩A′ for every i ∈ [m].
This implies that there is a transversal Ck-factor of G[W ∪A] and, therefore, a transversal
Ck-factor of G.
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