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Abstract—Large pre-trained generative models are
known to occasionally output undesirable samples,
which undermines their trustworthiness. The common
way to mitigate this is to re-train them differently from
scratch using different data or different regularization
– which uses a lot of computational resources and does
not always fully address the problem.

In this work, we take a different, more compute-
friendly approach and investigate how to post-edit a
model after training so that it “redacts”, or refrains
from outputting certain kinds of samples. We show
that redaction is a fundamentally different task from
data deletion, and data deletion may not always lead
to redaction. We then consider Generative Adversar-
ial Networks (GANs), and provide three different
algorithms for data redaction that differ on how
the samples to be redacted are described. Extensive
evaluations on real-world image datasets show that
our algorithms out-perform data deletion baselines,
and are capable of redacting data while retaining high
generation quality at a fraction of the cost of full re-
training.

Index Terms—Data redaction, post-editing, pre-
trained GANs

I. INTRODUCTION

Generative Adversarial Networks (GANs) are
large neural generative models that learn a com-
plicated probability distribution from data and then
generate samples from it. These models have been
immensely successful in many large scale tasks from
multiple domains, such as images [Zhu et al., 2020,
Karras et al., 2020, 2021], point clouds [Zhang
et al., 2021], video [Tulyakov et al., 2018], text
[de Masson d’Autume et al., 2019], and speech
[Kong et al., 2020].

However, it is also well-known that many deep
generative models frequently output undesirable

samples, which makes them less reliable and trust-
worthy. Image models generate blurred samples
[Kaneko and Harada, 2021] or checkerboard artifacts
[Odena et al., 2016, Zhang et al., 2019, Wang et al.,
2020, Schwarz et al., 2021], speech models produce
unnatural sound [Donahue et al., 2018, Thiem et al.,
2020], and language models emit offensive text
[Abid et al., 2021, Perez et al., 2022]. Thus, an
important question is how to mitigate these artifacts,
which would improve the trustworthiness of these
models.

One way to mitigate undesirable samples is to
re-design the entire training pipeline including data
augmentation, model architecture and loss functions,
and then re-train the entire model from scratch
[Isola et al., 2017, Aitken et al., 2017, Kaneko and
Harada, 2021] – a strategy that has been used in prior
work. This approach is very compute-intensive as
modern GANs can be extremely expensive to train.
In addition, other problems may become apparent
after training, and resolving them may require
multiple re-trainings. To address this challenge, we
consider post-editing, which means modifying a pre-
trained model in a certain way rather than training
it differently from scratch. This is a much more
computationally efficient process that has shown
empirical success in many supervised learning tasks
[Frankle and Carbin, 2018, Zhou et al., 2021, Taha
et al., 2021], but has not been studied much for
unsupervised learning. In particular, we propose
a post-editing framework to redact undesirable
samples that might be generated by a GAN, which
we call data redaction.

A second plausible solution for mitigating unde-
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sirable samples is to use a classifier to filter them out
after generation. This approach, however, has several
drawbacks. Classifiers can take a significant amount
of space and time after deploymen. Additionally, if
the generative model is handed to a third party, then
the model trainer has no control over whether the
filter will ultimately be used. Data redaction via post-
editing, on the other hand, offers a cleaner solution
which does not suffer from these limitations.

A third plausible solution is data deletion or
machine unlearning – post-edit the model to ap-
proximate a re-trained model that is obtained by re-
training from scratch after removing the undesirable
samples from the training data. However, this does
not always work – as we show in Section IV-B,
deletion does not necessarily lead to redaction in
constrained models. Additionally, the undesirable
samples may simply due to inductive biases of
the neural generative model and may not exist
in the training data; examples include unnatural
sounds emitted by speech models and blurred images
from image models. Data redaction, in contrast, can
address all these challenges.

There are two major technical challenges that
we need to resolve in order to do effective data
redaction. The first is how to describe the samples
to be redacted. This is important as data redaction
algorithms need to be tailored to specific descriptions.
The second challenge is that we need to carefully
balance data redaction with retaining good genera-
tion quality, which means the latent space and the
networks must be carefully manipulated.

In this work, we propose a systematic framework
for redacting data from pre-trained generative models
(see Section II). We model data redaction as learning
the data distribution restricted to the complement of
a redaction set Ω. We then formalize three ways of
describing redaction sets, namely data-based (where
a pre-specified set is given), validity-based (where
there is a validity checker), and classifier-based
(where there is a differentiable classifier).

Then, we introduce three data redaction algo-
rithms, one for each description (see Section III).
Prior works have looked at avoiding negative sam-
ples in the re-training setting with different descrip-
tions and purposes [Sinha et al., 2020, Asokan and

Seelamantula, 2020]. They introduce fake distribu-
tions to penalize the generation of negative samples.
We extend this idea to data redaction by defining
the fake distribution as a mixture of the generative
distribution and a redaction distribution supported on
Ω. We prove the optimal generator can recover the
target distribution when label smoothing [Salimans
et al., 2016, Szegedy et al., 2016, Warde-Farley and
Goodfellow, 2016] is used.

Based on our theory, we introduce the data-based
redaction algorithm (Alg. 1). We then combine
this algorithm with an improper active learning
algorithm by Hanneke et al. [2018] and introduce the
validity-based redaction algorithm (Alg. 2). Finally,
we propose to use a guide function to guide
the discriminator via a classifier, and introduce the
classifier-based redaction algorithm (Alg. 3).

Finally, we empirically evaluate these redaction
algorithms via experiments on real-world image
datasets (see Section IV). We show that these
algorithms can redact quickly while keeping high
generation quality. We then investigate applications
of data redaction, and use our algorithms to remove
different biases that may not exist in the training
set but are learned by the pre-trained model. This
demonstrates that data redaction can be used to
reduce biases and improve generation quality, and
hence improve the trustworthiness of generative
models.

In summary, our contributions are as follows:
• We formalize the problem of post-editing gen-

erative models to prevent them from outputting
undesirable samples as “data redaction” and
establish its differences with data deletion.

• We propose three data augmentation-based
algorithms for redacting data from pre-trained
GANs as a function of how the inputs to be
redacted are described.

• We theoretically prove that data redaction can
be achieved by the proposed algorithms.

• We extensively evaluate our algorithms on real
world image datasets. We show these algo-
rithms can redact data quickly while retaining
high generation quality. Moreover, we find data
redaction performs better than data deletion in
a de-biasing experiment.



II. A FORMAL FRAMEWORK FOR DATA
REDACTION

Let pdata be the data distribution on Rd and
X ∼ pdata be i.i.d. training samples. Let A be
the learning algorithm of generative modelling and
M = A(X) be the pre-trained model on X , which
learns pdata. In this paper, we consider A to be a
GAN learning algorithm [Goodfellow et al., 2014a],
and M contains two networks, D (discriminator)
and G (generator), which are jointly trained to
optimize

min
G

max
D

Ex∼pdata
logD(x)

+ Ex∼pG log(1−D(x)), (1)

where pG is the push-forward distribution
G#N (0, I) defined as the distribution of G(Z)
where Z ∼ N (0, I).

A. Data Redaction Framework

Let the redaction set Ω ⊂ Rd be the set of samples
we would like the model to redact. Formally, the
goal is to develop a redaction algorithm D such
that M′ = D(M,Ω) learns the data distribution
restricted to the complement Ω̄ = Rd \ Ω, i.e.
pdata|Ω̄. Examples of Ω include inconsistent, blurred,
unrealistic, or banned samples that are possibly
generated by the model.

The redaction set Ω, in addition to the pre-trained
model, is considered as an input to the redaction
algorithm. We consider three kinds of Ω, namely
data-based, validity-based, and classifier-based.

B. Redaction Set Descriptions

We propose three different descriptions for the
redaction set Ω. First, the data-based Ω is a pre-
defined set of samples in Rd, such as a transforma-
tion applied on all training samples [Sinha et al.,
2020]. Second, the validity-based Ω is defined as
all invalid samples according to a validity function
v : Rd → {0, 1}, where 0 means invalid and 1
means valid. This is similar to the setting in Hanneke
et al. [2018]. Finally, let f : Rd → [0, 1] be a soft
classifier that outputs the probability that a sample
belongs to a certain binary class, and τ ∈ (0, 1) be a
threshold. Then, the classifier-based Ω is defined as
{x : f(x) < τ}. For example, f can be an offensive

text classifier in language generation tasks [Pitsilis
et al., 2018]. These descriptions are general and
apply to any kind of generative models.

C. Data Deletion versus Data Redaction

Motivated by privacy laws such as the GDPR and
the CCPA, there has been a recent body of work on
data deletion or machine unlearning [Cao and Yang,
2015, Guo et al., 2019, Schelter, 2020, Neel et al.,
2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah
et al., 2021]. In data deletion, we are given a subset
set X ′ ⊂ X of the training set to be deleted from an
already-trained model, and the goal is to approximate
the re-trained model A(X \ X ′). While there are
some superficial similarities – in that the goal is to
post-edit models in order to “remove” a few data
points, there are two very important differences.

The first is that data redaction requires the model
to assign zero likelihood to the redaction set Ω in
order to avoid generating samples from this region;
this is not the case in data deletion – in fact, we
present an example below which shows that data
deletion of a set X ′ may not cause a generative
model to redact X ′.

Specifically, in Fig. 1, the entire data distribution
pdata = N (0, 1) (blue line) is the standard Gaussian
distribution on R. We set the redaction set Ω =
(−∞,−1.5]∪[1.5,∞), so the blue samples fall in Ω
and orange samples outside. The learning algorithm
A is the maximum likelihood Gaussian learner that
fits the mean and variance of the data. With n = 80
samples, the learnt density A(X) is shown in green.
If the blue samples were deleted, and the model re-
fitted, the newly learnt density A(X \X ′) would be
the red line. Notice that this red line has considerable
density on the blue points – and so these points
are not redacted. In contrast, the correct redaction
solution that redacts samples in Ω would be the
orange density. Thus deletion does not necessarily
lead to redaction.

The second difference is that the redaction set Ω
may have a zero intersection with the training data,
but may appear in the generated data due to artifacts
of the model. Examples include unnatural sounds
emitted by speech models, and blurred images from



image models. Data redaction, in contrast to data
deletion, can address this challenge.
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Fig. 1: An example showing difference between
data redaction and data deletion. The goal of data
deletion is to approximate the re-trained model (red
density), while the goal of data redaction is to
approximate the restricted density (orange density).

III. METHODS

In this section, we describe algorithms for each
kind of redaction set described in Section II. We also
provide theory on the optimality of the generator
and the discriminator. Finally, we generalize the
algorithms to situations where we would like the
model to redact the union of multiple redaction sets.

A. Data-based Redaction Set

The data-based redaction set Ω is a pre-defined
set of samples we would like the model to redact.
One example is a transformation function NegAug
applied to all training samples, where NegAug
makes realistic images unrealistic or inconsistent
[Sinha et al., 2020]. Another example can be visually
nice samples outside data manifold when the training
set is small [Asokan and Seelamantula, 2020].

In our framework, the redaction set Ω can be
any set of carefully designed or selected samples
depending on the purpose of redacting them –
which includes but does not limit to improving the
generation quality of the model. For example, we
expect the model to improve on fairness, bias, ethics
or privacy when Ω is properly constructed with
unfair, biased, unethical, or atypical samples.

To redact Ω, we regard both generated samples
and Ω to be fake samples, and all training samples

that are not in Ω to be real samples [Sinha et al.,
2020, Asokan and Seelamantula, 2020]. Let pΩ be
a redaction distribution such that supp(pΩ) = Ω.
Then, the fake data distribution pfake is a mixture
of the generative distribution pG and the redaction
distribution pΩ:

pfake = λ · pG + (1− λ) · pΩ, (2)

where λ ∈ (0, 1) is a hyperparameter. We also apply
the common label smoothing [Salimans et al., 2016,
Szegedy et al., 2016, Warde-Farley and Goodfellow,
2016] technique to the minimax loss function in
order to improve robustness of the discriminator.
Let α+ ∈ ( 1

2 , 1] be the positive target (such as 0.9)
and α− ∈ [0, 1

2 ) be the negative target (such as 0.1).
Then, the loss function is

L(G,D) = Ex∼pdata|Ω̄ [α+ logD(x)
+(1− α+) log(1−D(x))]

+ Ex∼pfake
[α− logD(x)

+(1− α−) log(1−D(x))] .
(3)

Theorem 1. The optimal solution to
minG maxD L(G,D) is

D∗ =
α+pdata|Ω̄ + α−(λpG + (1− λ)pΩ)

pdata|Ω̄ + λpG + (1− λ)pΩ

pG∗ = pdata|Ω̄
.

(4)

We provide the proof and theoretical extension
to the more general f -GAN [Nowozin et al., 2016]
setting in Appendix A. In the data-based setting,
we let pΩ = U(Ω), the uniform distribution on Ω.
We assume Ω has positive, finite Lebesgue measure
in Rd so that U(Ω) is well-defined. The proposed
method is summarized in Alg. 1.

Our objective function is connected to Sinha et al.
[2020] and Asokan and Seelamantula [2020] in
the sense that pΩ is an instance of the negative
distribution described in their frameworks. However,
there are several significant differences between our
method and theirs: (1) we start from a pre-trained
model, (2) we aim to learn pdata|Ω̄ rather than pdata

and therefore do not require Ω ∩ supp(pdata) to
be the empty set, and (3) we consider the common
label smoothing technique and provide theory for



this setting. These differences are also true in the
following sections.

B. Validity-based Redaction Set

Let v : Rd → {0, 1} be a validity function that
indicates whether a sample is valid. Then, validity-
based redaction set Ω is the set of all invalid samples
{x : v(x) = 0}. For example, M is a code
generation model, and v is a compiler that indicates
whether the code is free of syntax errors [Hanneke
et al., 2018]. Different from the data-based setting,
the validity-based Ω may have infinite Lebesgue
measure, such as a halfspace, and consequently U(Ω)
may not be well-defined.

To redact Ω, we let pΩ in (2) to be a mixture of
pdata|Ω and pG|Ω. This corresponds to a simplified
version of the improper active learning algorithm
introduced by Hanneke et al. [2018] with our Alg.
1 as their optimization oracle. The idea is to apply
Alg. 1 for R rounds. After each round, we query
the validity of T newly generated samples and use
invalid samples to form a data-based redaction set
Ω′. In contrast to the data-based approach, this
active algorithm focuses on invalid samples that
are more likely to be generated, and therefore
efficiently penalizes generation of invalid samples.
The proposed method is summarized in Alg. 2.

The total number of queries to the validity func-
tion v is |X| + T × R. In case v is expensive to
run, we would like to achieve better data redaction
within a limited number of queries. From the data-
driven point of view, we hope to collect as many
invalid samples as possible. This is done by setting
R = 1 and T maximized if we assume less invalid
samples are generated after each iteration. However,
this may not be the case in practice. We hypothesis
some samples are easier to redact while others
harder. By setting R > 1, we expect an increasing
fraction of invalid generated samples to be hard to
redact after each iteration. Focusing on these hard
samples can potentially help the generator redact
them. Since it is hard to directly analyze neural
networks, we leave the rigorous study to future
work. In Appendix B, we study a much simplified
dynamical system corresponding to Alg. 2, where we

show the invalidity (the mass of pG on Ω) converges
to zero, and provide optimal T and R values.

C. Classifier-based Redaction Set

We would like the model to redact samples
with certain (potentially undesirable) property. Let
f : Rd → [0, 1] be a soft binary classifier on the
property (0 means having the property and 1 means
not having it), and τ ∈ (0, 1) be a threshold. The
classifier-based redaction set Ω is then defined as
{x : f(x) < τ}. For example, the property can be
being offensive in language generation, containing no
speech in speech synthesis, or visual inconsistency
in image generation. We consider f to be a trained
machine learning model that is fully accessible and
differentiable.

To redact Ω, we let pΩ be a mixture of pdata|Ω
and pG|Ω, similar to the validity-based approach. We
use f to guide the discriminator and make it able to
easily detect samples from Ω. Let guide(D, f) be
a guided discriminator that assigns small values to
x when f(x) < τ or D(x) is small (i.e. x ∼ pfake),
and large values to x when f(x) > τ and D(x)
is large (i.e. x ∼ pdata|Ω̄). Instead of optimizing
L(G,D) in (3), we optimize L(G,guide(D, f)).
This will effectively update G by preventing it from
generating samples in Ω. According to Theorem 1,
the optimal discriminator is the solution to

guide(D∗, f)

=
α+pdata|Ω̄ + α−(λpG + (1− λ)pΩ)

pdata|Ω̄ + λpG + (1− λ)pΩ
. (5)

Therefore, the design of the guide function must
make (5) feasible. In this paper, we let

guide(D, f)(x) ={
D(x) if f(x) ≥ τ

α− + (D(x)− α−)f(x) otherwise . (6)

The feasibility of (5) is discussed in Appendix C.
The proposed method is summarized in Alg. 3. The
classifier-based Ω generalizes the validity-based Ω.
First, any validity-based Ω can be represented by a
classifier-based Ω if we let f = v and τ = 1

2 . Next,
we note there is a trivial way to deal with classifier-
based Ω via the validity-based approach – by setting



Algorithm 1 Redaction Algorithm for Data-based Redaction Set

Inputs: Pre-trained model M = (G0, D0), train set X , redaction set Ω.
Initialize G = G0, D = D0.
Define the fake data distribution pfake according to (2) with pΩ = U(Ω).
Train G,D to optimize (3): minG maxD L(G,D).
return M′ = (G,D).

Algorithm 2 Redaction Algorithm for Validity-based Redaction Set

Inputs: Pre-trained model M = (G0, D0), train set X , validity function v.
Initialize Ω′ = {x ∈ X : v(x) = 0}, M0 =M.
for i = 0, · · · , R− 1 do

Initialize G = Gi, D = Di. Draw T samples X(i)
gen from Gi.

Query v and add invalid samples to Ω′: Ω′ ← Ω′ ∪ {x ∈ X(i)
gen : v(x) = 0}.

Define the fake data distribution pfake according to (2) with pΩ = U(Ω′).
Let Mi+1 = (Gi+1, Di+1) optimize (3): minG maxD L(G,D).

end for
return M′ = (GR, DR)

Algorithm 3 Redaction Algorithm for Classifier-based Redaction Set

Inputs: Pre-trained model M = (G0, D0), train set X , differentiable classifier f .
Initialize G = G0, D = D0.
Define the fake data distribution pfake according to (2) with pΩ = U({x ∈ X : f(x) < τ}).
Train G,D to optimize (3): minG maxD L(G,guide(D, f)), where guide(·, ·) is defined in (6).
return M′ = (G,D).

v(x) = 1{f(x) < τ}. However, potentially useful
information such as values and gradients of f are
lost, and we will evaluate this effect in experiments.
In addition, the classifier-based approach does not
maintain the potentially large set of invalid generated
samples, as this step is automatically done in the
guide function.

D. Generalization to Multiple Redaction Sets

Let {Ωk}Kk=1 be disjoint sets in Rd, and we would
like the model to redact Ω =

⋃K
k=1 Ωk. In the data-

based setting, we let pΩ = U(Ω) = U(
⋃K
k=1 Ωk). In

the validity-based setting, each Ωk is associated with
a validity function vk. We let the overall validity
function to be v(x) = mink vk(x). In the classifier-
based setting, each Ωk is associated with a classifier
fk. Similar to the validity-based setting, we let the
overall f to be f(x) = mink fk(x).

IV. EXPERIMENTS

In this section, we aim to answer the following
questions.
• How well can the algorithms in Section III

redact samples in practice?
• Can these algorithms be used to de-bias pre-

trained models?
• Can these algorithms be used to understand

training data?
In this section, we examine these questions by focus-
ing on several real-world image datasets, including
MNIST (28 × 28) [LeCun et al., 2010], CIFAR
(32×32) [Krizhevsky et al., 2009], CelebA (64×64)
[Liu et al., 2015] and STL-10 (96×96) [Coates et al.,
2011] datasets. In Section IV-A, we investigate how
well these algorithms can redact samples with a
specific label. In Section IV-B, we investigate how
well these algorithms can de-bias pre-trained models



and improve generation quality. In Section IV-C, we
use these algorithms to understand training data
through the lens of data redaction.

The pre-trained model for each dataset is a
DCGAN [Radford et al., 2015] trained for 200
epochs (see details in Appendix D). We use one
NVIDIA 3080 GPU to train these models and run
experiments.

Evaluation Metrics: invalidity and generation
quality. The invalidity is defined as the mass of
the generation distribution on the redaction set Ω:
Inv(pG) =

∫
x∈Ω

pG(x)dx. In practice, we measure
invalidity by generating 50K samples and computing
the fraction of these samples that fall into Ω.

The generation quality is measured in Inception
Score (IS) [Salimans et al., 2016] and Frechet
Inception Distance (FID) [Heusel et al., 2017].
Higher IS or lower FID indicates better quality. We
compute IS for grey-scale images and FID for RGB
images. When measuring quality, we compute IS
or FID between 50K generated samples and X ∩ Ω̄.
Therefore, this score is not comparable with the
score w.r.t. the pre-trained model if the redaction set
includes samples in the training set, such as samples
with a specific label in Section IV-A. Detailed setup
is in Appendix D.

A. Redacting Labels

Question. How well can the algorithms in Section
III redact samples in practice?

Methodology. We investigate how well the pro-
posed algorithms can redact samples with a specific
label y. In the data-based setting (Alg. 1), we express
this as Ω = {x ∈ X : label(x) = y}. In
the validity-based setting (Alg. 2), we express this
by setting v(x) = 1{arg maxi logit(x)i 6= y},
where logit is the output of the softmax layer
of a pre-trained label classifier [Chen, 2020]. In
the classifier-based setting (Alg. 3), we set f(x) =
1− logit(x)y .

In Table I, we compare invalidity and generation
quality among different algorithms and datasets
when we redact label 0. We plot invalidity during
data redaction in Fig. 2. We also compare invalidity
after one epoch of data redaction in Appendix E-A2.
Mean and standard errors for 5 random runs are

reported. Results for different hyper-parameters and
redacting other labels are in Appendix E.

Results. We find all the algorithms in Section III
work quite well with a much fewer number of epochs
used for training the pre-trained model (which is
200). These algorithms are generally comparable.
Therefore, we conclude that the simplest data-based
algorithm is good enough to redact samples when
those training samples to be redacted (X ∩ Ω) can
characterize the redaction set (Ω) well.

We also find invalidity rapidly drops after only one
epoch of data redaction, indicating these algorithms
are very efficient in penalizing invalidity. While
different algorithms perform better on different
datasets, they are highly comparable with each
other. The reason why the classifier-based algorithm
performs the best on MNIST is possibly that the
label classifier on MNIST is almost perfect so its
gradient information is accurate.

Visualization. We sample latents z ∼ N (0, I)
and choose those corresponding to invalid samples,
i.e. G0(z) ∈ Ω where G0 is the pre-trained generator.
We select visually good G0(z) for demonstration.
We visualize G(z) during data redaction in Fig. 3,
and more visualizations are in Appendix E-C. This
demonstrates how the latent space is manipulated:
the label to be redacted is gradually pushed to
other labels, and there is high-level visual similarity
between the final G(z) and the original G0(z).

Effects of other hyper-parameters. In Table
II, we compare different T (#queries after each
epoch) in the validity-based redaction algorithm (Alg.
2). We fix the total number of queries by setting
T×#epochs to be a constant. Results indicate that a
large T may lead to worse invalidity, and there is
trade-off between invalidity and quality when setting
T to be small or moderate.

In Appendix E-A4, we compare different λ (hy-
perparameter in (2)) in the classifier-based redaction
algorithm (Alg. 3). We find there exists a clear trade-
off between invalidity and quality when alternating
λ: a larger λ tends to produce better quality, and a
smaller λ tends to have better invalidity.

Comparison to data deletion. In Table III, we
compare data redaction to a data deletion baseline
where we re-train the model after deleting correlated



TABLE I: Invalidity and generation quality of different redaction algorithms on redacting label zero within
different datasets. Mean and standard errors are reported for five random seeds. Note that quality measure
after data redaction is not directly comparable with the pre-trained model. The invalidity drops in magnitude
after data redaction. Different redaction algorithms are highly comparable to each other.

Dataset Evaluation Pre-trained Data-based Validity-based Classifier-based
MNIST Inv(↓)(×10−5) 1.1× 104 8.0± 2.2 6.4± 0.8 5.2± 3.7

(8 epochs) IS(↑) 7.82 7.20± 0.08 7.19± 0.04 7.16± 0.04
CIFAR-10 Inv(↓)(×10−3) 1.3× 102 7.5± 1.1 7.6± 1.0 11.6± 1.0

(30 epochs) FID(↓) 36.2 34.8± 1.5 34.8± 1.4 33.2± 0.6
STL-10 Inv(↓)(×10−4) 6.2× 102 8.8± 4.5 7.7± 1.3 11.6± 3.6

(40 epochs) FID(↓) 79.1 77.8± 2.2 77.0± 2.3 77.2± 1.5

0 1 2 3 4 5 6 7 8
epoch

0.00

0.02

0.04

0.06

0.08

0.10

in
va

lid
ity

method
data-based
validity-based
classifier-based

(a) MNIST

0 5 10 15 20 25 30
epoch

0.00

0.02

0.04

0.06

0.08

0.10

0.12
in
va

lid
ity

method
data-based
validity-based
classifier-based

(b) CIFAR-10

0 5 10 15 20 25 30 35 40
epoch

0.00

0.01

0.02

0.03

0.04

0.05

0.06

in
va

lid
ity

method
data-based
validity-based
classifier-based

(c) STL-10

Fig. 2: Invalidity during data redaction when redacting label zero. Mean and standard errors are plotted
for five random seeds. Standard errors may be too small to spot. Invalidity drops quickly at the beginning
of data redaction, and different algorithms are highly comparable to each other.

TABLE II: Study on the effect of T in Alg. 2 when the total number of queries is fixed. R refers to the
number of epochs of data redaction. A large T may lead to worse invalidity.

T
MNIST CIFAR-10 STL-10

R Inv(↓) IS(↑) R Inv(↓) FID(↓) R Inv(↓) FID(↓)
400 20 0.0× 10−4 7.10 75 0.45× 10−2 35.1 100 1.0× 10−3 75.1

1000 8 0.6× 10−4 7.19 30 0.76× 10−2 34.8 40 0.8× 10−3 77.0
2000 4 2.8× 10−4 7.11 15 1.00× 10−2 31.9 20 1.0× 10−3 75.1

samples to Ω. Correlated samples are defined as
those having a cosine similarity ≤ 0.25 with some
sample in Ω. We find data redaction has better
invalidity and generation quality than the data
deletion baseline. For several labels, data deletion
does not successfully prohibit samples with these
labels to be generated.

Redacting multiple sets. We then investigate
how well the proposed algorithms can generalize to
multiple redaction sets with methods in Section III-D.
We focus on the CelebA dataset [Liu et al., 2015],
which has 40 labeled attributes. We use proposed
algorithms to redact a combination of these attributes:
Ω1 = {Black_hair and Blurry}, Ω2 =

{Brown_hair and Wear_eyeglasses}, and
Ω = Ω1∪Ω2. These attributes are randomly selected
from those easy to capture. See detailed setup in
Appendix E-D. Results after 1 or 5 epochs are
reported in Table IV. Consistent with results on
redaction just one label, all algorithms can reduce
invalidity and retain generation quality and are
comparable, while the classifier-based algorithm
achieves the best invalidity after one epoch.

B. Model De-biasing

There can be different artifacts in GAN generated
samples, and these could harm the overall generation
quality. These artifacts may not exist in training
samples, but are caused by inductive biases of



Fig. 3: Visualization of the data redaction process of invalid samples when redacting label zero. The first
column is generated by the pre-trained generator, and the i-th column is generated after k · (i− 1) epochs
of data redaction. Left: MNIST with k = 1. Right: top is CIFAR-10 and bottom is STL-10, both with
k = 4 and label zero being airplanes. We can see samples associated with invalid labels are gradually
pushed to other labels, but a high-level visual similarity is kept.

TABLE III: Comparing (classifier-based) data redaction to correlated data deletion on CIFAR-10. Data
redaction has better invalidity and generation quality than the data deletion baseline.

Label 0 1 2 3 4 5 6 7 8 9

Inv(↓) Data redaction (30 epochs) 1.1% 0.08% 1.6% 2.5% 1.6% 1.5% 0.8% 1.3% 0.5% 0.2%
Data deletion (200 epochs) 6.2% 0.14% 5.6% 9.3% 10.1% 2.9% 5.8% 3.4% 3.5% 2.4%

FID(↓) Data redaction (30 epochs) 33.2 33.4 28.3 28.1 29.7 31.4 29.6 34.2 34.6 36.8
Data deletion (200 epochs) 40.0 40.5 40.0 39.5 40.0 39.3 49.3 41.3 40.3 40.5

TABLE IV: Invalidity and generation quality of different redaction algorithms on redacting a combination
of attributes within CelebA. There is a significant drop of invalidity, indicating that different redaction
algorithms can all generalize to multiple redaction sets.

Evaluation Pre-trained Epochs Data-based Data-based (sequentially) Validity-based Classifier-based
Inv(↓) 1.66× 10−3 1 9.0× 10−4 - 7.6× 10−4 7.0× 10−4

Inv(↓) 1.66× 10−3 5 3.8× 10−4 6.0× 10−4 6.8× 10−4 6.8× 10−4

FID(↓) 36.4 5 29.3 28.6 29.9 27.9

the model, and become obvious after training. We
can post-edit a pre-trained model to remove these
artifacts, which we call model de-biasing. In this
section, we investigate how well Alg. 2 and Alg. 3
apply to this task. We assume training samples are
not biased so Alg. 1 does not apply to de-biasing.

To use these algorithms for de-biasing, we assume
the target artifact or bias can be automatically
detected by a classifier f or a validity function v.
Specifically, we survey two kinds of biases: boundary
artifacts and label biases.

Boundary artifacts. A GAN trained on MNIST

might generate samples that have numerous white
pixels on the boundary (see Appendix F-A). We
call this phenomenon the boundary artifact. We
use the validity-based algorithm (Alg. 2) to de-bias
boundary artifacts. The validity function is defined as
v(x) = 1{

∑
(i,j)∈boundary pixels xij < τb}, where

boundary pixels are those within a certain margin to
the boundary, and threshold τb satisfies no training
image is invalid.

Results are reported in Table V. It is clear that
the invalidity reduces in order after data redaction,
indicating boundary artifacts are largely removed.



Consistent with Table II, a small or moderate T
leads to better results. We visualize samples before
and after de-biasing in Appendix F-A.

Label biases. Neural networks may generate
visually smooth but semantically ambiguous
samples [Kirichenko et al., 2020], e.g. samples
that look like multiple objects (see Appendix F-B).
We call this phenomenon the label bias. We use
the classifier-based algorithm (Alg. 3) to de-bias
label biases. The classifier is defined as f(x) =
1 − Entropy(logit(x))/ log (#classes),
where the logit function is the same as in Section
IV-A. We also compare to a data deletion baseline,
where we delete invalid samples and fully re-train
the model. Results are reported in Table VI and VII.
After de-biasing, we can improve the generation
quality by a significant gap (∼ 0.3 in IS and ∼ 10
in FID). There is also a clear drop in terms of
invalidity. In contrast, we find that data deletion
does not help removing label biases.

C. Understanding Training Data through the Lens
of Data Redaction

Large datasets can be hard to analyze. In this
section, we investigate how data redaction can help
us understand these data. Specifically, we ask: which
samples are easy or hard to redact?

In order to quantify the difficulty to redact a
sample, we define the redaction score RS to be
the difference of discriminator outputs before and
after data redaction. Formally, let x ∈ Ω be a
sample to redact, M = (G0, D0) be the pre-
trained model, and M′ = (G′, D′) be a model
after data redaction. Then, the redaction score is
RS(x) = D0(x)−D′(x). A larger RS means it is
easier to redact x.

To investigate sample-level redaction difficulty,
we redact a particular label at one time using Alg. 1.
We then demonstrate scatter plots of redaction scores
RS(x) versus pre-trained discriminator outputs
D0(x) for all samples x with this label. We also
fit linear regression and report R2 values (larger
means stronger linear relationship). Scatter plots
for some labels in MNIST and CIFAR-100 and
distribution of R2 for all labels are shown in Fig.
4. We also visualize the most and least difficult-

to-redact samples in Appendix G. We find there
is positive correlation between RS(x) and D0(x),
indicating on-manifold (large D0(x)) samples are
easier to be redacted, while off-manifold (small
D0(x)) ones are harder to be redacted. This analysis
further provides a way to investigate label-level
redaction difficulty. By averaging redaction scores
for samples associated with each label, we can
survey which labels are easy or hard to redact in
general. The results are in Appendix G. We find
some labels are harder to redact than others.

D. Discussion: Relationship to Adversarial Samples

An adversarial sample for a classifier f and a
sample x is another sample x̃ ≈ x but f(x̃) 6= f(x).
Generating and defending these samples have be-
come one of the most important directions of deep
learning [Goodfellow et al., 2014b, Madry et al.,
2018]. In this section, we show a variant of Alg. 3
can potentially be used to define a specific type of
adversarial samples. In detail, we fix the discrim-
inator D and only update the generator G while
running Alg. 3. Then, G is trained to fool D and
the classifier f at the same time. Notice that fooling
D means generating on-manifold (visually similar
to training data) samples, and fooling f means
finding adversarial samples of f . By combining these
objectives we can force G to produce on-manifold
adversarial samples, which may be significant in
many real-world applications. We visualize some
samples in Appendix H.

V. RELATED WORK

Although deep generative models have been
highly successful at many domains, it has long been
known that they often emit undesirable samples
and samples with different types of artifacts that
make them untrustworthy. Examples include blurred
image samples [Kaneko and Harada, 2021], fairness
issues [Tan et al., 2020, Karakas et al., 2022], and
checkerboard artifacts [Odena et al., 2016, Zhang
et al., 2019, Wang et al., 2020, Schwarz et al.,
2021] in image generation, offensive text in language
models [Abid et al., 2021, Perez et al., 2022], and
unnatural sound in speech models [Donahue et al.,
2018, Thiem et al., 2020].



TABLE V: Invalidity after de-biasing boundary artifacts of generated MNIST samples. We run the validity-
based redaction algorithm (Alg. 2) for 4 epochs. The invalidity drops significantly, and a small or moderate
T leads to slightly lower (better) invalidity.

Pre-trained T = 5K T = 10K T = 20K T = 40K T = 80K
Margin = 1 3.1× 10−3 6.0× 10−5 8.0× 10−5 2.0× 10−4 2.0× 10−4 7.0× 10−4

Margin = 2 1.1× 10−3 1.6× 10−4 4.0× 10−5 6.0× 10−5 3.2× 10−4 2.8× 10−4

TABLE VI: Invalidity and Inception scores after de-biasing label biases of generated samples from MNIST.
We run the classifier-based redaction algorithm (Alg. 3) for 8 epochs with λ = 0.8, and compare to
the data deletion baseline with 200 epochs of full re-training. The arrow means improvement from the
pre-trained model to after data redaction. There is a clear improvement of generation quality, indicating
the proposed algorithm can help GANs generate better samples. In contrast, data deletion does not help
improve invalidity or quality.

τ
Redaction (8 epochs) Data deletion baseline (200 epochs)

Inv(↓) IS(↑) Inv(↓) IS(↑)
0.3 8.19× 10−4 → 2.60× 10−4 7.82→ 8.10 8.19× 10−4 → 1.14× 10−3 7.82→ 7.75
0.5 2.07× 10−2 → 1.70× 10−2 7.82→ 7.92 2.07× 10−2 → 2.17× 10−2 7.82→ 7.79
0.7 1.35× 10−1 → 1.22× 10−1 7.82→ 7.95 1.35× 10−1 → 1.32× 10−1 7.82→ 7.82

TABLE VII: Invalidity and FID scores after de-biasing label biases of generated samples from CIFAR-10.
We run the classifier-based redaction algorithm (Alg. 3) for 30 epochs with λ = 0.9. The arrow means
improvement from the pre-trained model to after data redaction. There is a clear improvement of generation
quality, indicating the proposed algorithm can help GANs generate better samples. Note that there is no
invalid sample in the training set, so the data deletion baseline is identical to the pre-trained model.

τ Inv(↓) FID(↓)
0.5 2.28× 10−2 → 1.67× 10−2 36.2→ 26.6
0.7 1.72× 10−1 → 1.49× 10−1 36.2→ 26.8
0.3 5.79× 10−4 → 2.20× 10−4 36.2→ 27.1
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Fig. 4: (a) and (b) Redaction scores of invalid training samples (RS(x)) versus the pre-trained discriminator
outputs of them (D0(x)). There is positive correlation between these two scores, indicating on-manifold
samples are easier to redact. (a) Redacting 0 in MNIST. (b) Redacting aquarium_fish in CIFAR-100.
(c) Distributions of R2 scores of linear regression between RS(x) and D0(x) for all labels. The correlation
in (a) and (b) is universal and stronger in CIFAR-100.

Some prior works have used post-editing to
remove artifacts and improve GANs. Examples
include improving fairness [Tan et al., 2020, Karakas
et al., 2022], rule rewriting [Bau et al., 2020],

discovering interpretability [Härkönen et al., 2020],
and fine-tuning [Mo et al., 2020, Li et al., 2020,
Zhao et al., 2020]. The purpose, use cases, and
editing methods of these papers are different from



our paper, where we focus on data redaction.
While our problem definition and formalization

is novel, the technical solutions that we propose
are related to three prior works that use these
techniques in different contexts. These are NDA
[Sinha et al., 2020], Rumi-GAN [Asokan and See-
lamantula, 2020], and Hanneke et al. [2018]. The
first two papers look at how to avoid generating
negative samples while training a generative model
from scratch. This is done by defining new fake
distributions to penalize the generation of these
samples. However, their purposes are different from
us: NDA is used to characterize the boundary of the
support of the generative distribution more precisely,
and Rumi-GAN is used to handle unbalanced data.
We extend their idea and theory to data redaction
in Section III. 1 Hanneke et al. [2018] propose an
active learning approach to avoid generating invalid
samples, also while training a generative model from
scratch. Their work however is entirely theoretical
and apply to discrete distributions. In our paper, the
validity-based redaction algorithm (Alg. 2) is based
on a simplified version of their algorithm. We also
use their definition of invalidity as an evaluation
method.

Our work is also related to data deletion or
machine unlearning [Cao and Yang, 2015, Guo et al.,
2019, Schelter, 2020, Neel et al., 2021, Sekhari
et al., 2021, Izzo et al., 2021, Ullah et al., 2021,
Bourtoule et al., 2021]. However, there are two
important differences between data deletion and data
redaction. First, data deletion aims to approximate
the re-trained model when some training samples are
removed – mostly due to privacy reasons – while in
data redaction we penalize the model from knowing
samples that should be redacted. Another difference
is that in data redaction, the redaction set Ω may
have a zero intersection with training data. These
two differences are discussed in Section II-C in
detail. In addition, most data deletion techniques are
for supervised learning or clustering, and is much
less studied for generative models.

There is also a related line of work on catastrophic
forgetting in supervised learning [Kirkpatrick et al.,

1The loss functions in NDA and Rumi-GAN are similar.

2017] and generative models [Thanh-Tung and Tran,
2020]. This concept is different from data redaction
in that we would like the generative model to
redact certain data after training, while catastrophic
forgetting means knowledge learned in previous
tasks is destroyed during continual learning.

VI. CONCLUSION

In this paper, we propose a systematic framework
for redacting data from pre-trained generative mod-
els. We provide three different algorithms for GANs
that differ on how the samples to be redacted are
described. We provide theoretical results that data
redaction can be achieved. We then empirically in-
vestigate data redaction on real-world image datasets,
and show that our algorithms are capable of redact-
ing data while retaining high generation quality at a
fraction of the cost of full re-training. One limitation
or our paper is that the proposed framework only
applies to unconditional generative models. It is an
important future direction to define data redaction
and propose algorithms for conditional generative
models, which are more widely used in downstream
deep learning applications.
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APPENDIX A
PROOF OF THEOREM 1 AND EXTENSION TO f -GAN

a) Background of f -GAN [Nowozin et al., 2016].: Let φ be a convex, lower-semicontinuous function
such that φ(1) = 0. In f -GAN, the following φ-divergence is minimized:

Dφ(P‖Q) =

∫
x∈Rd

Q(x)φ

(
P (x)

Q(x)

)
dx.

According to the variational characterization of φ-divergence [Nguyen et al., 2010],

Dφ(P‖Q) = sup
T

[Ex∼PT (x)− Ex∼Qφ∗(T (x))] ,

where the optimal T is obtained by T = φ′
(
P
Q

)
.

b) The objective function (3) corresponds to an f -GAN.: Let α = α− + α+. We can rewrite (3) as

L(G,D) = α · Ex∼P logD(x) + (2− α) · Ex∼Q log(1−D(x)),

where

P =
α+

α
pdata|Ω̄ +

α−
α
pfake; Q =

1− α+

2− α
pdata|Ω̄ +

1− α−
2− α

pfake.

Let
C = α logα+ (2− α) log(2− α)− 2 log 2,

φ(u) = (αu) log(αu)− (αu− α+ 2) log(αu− α+ 2) + (2− α) log(2− α)− C.

Then, φ(1) = 0, and φ′′(u) = α(2−α)
u(αu−α+2) > 0 so φ is convex. Its convex conjugate function φ∗ is

φ∗(t) := sup
u

(ut− φ(u)) = −(2− α) log
(

1− e tα
)

+ C.

Let T (x) = α logD(x). Then,

max
D

L(G,D) = sup
T

[Ex∼PT (x)− Ex∼Qφ∗(T (x))] + C = Dφ(P‖Q) + C.

c) Optimal D.: We have

φ′(u) = α log
αu

αu− α+ 2
.

Therefore, the optimal discriminator is

α logD = φ′
(
P

Q

)
,

or

D =
αP

αP + (2− α)Q
=
α+pdata|Ω̄ + α−pfake

pdata|Ω̄ + pfake
.

Finally, the optimal discriminator in (4) is obtained by inserting (2) into the above equation.



d) Optimal G.: For conciseness, we let

P1 = pdata|Ω̄, P2 = pG, P3 = pΩ,

β1 =
α+

α
, β2 =

α−λ

α
, β3 =

α−(1− λ)

α
,

γ1 =
1− α+

2− α
, γ2 =

(1− α−)λ

2− α
, γ3 =

(1− α−)(1− λ)

2− α
.

Then, we have

P =

3∑
i=1

βiPi, Q =

3∑
i=1

γiPi.

We also have
β1

γ1
>
β2

γ2
=
β3

γ3
.

Because supp(P1) ∩ supp(P3) is the empty set, we have

Dφ(P‖Q) =

∫
x∈Rd

(
3∑
i=1

γiPi

)
φ

(∑3
i=1 βiPi∑3
i=1 γiPi

)
dx

=

∫
x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 + β2P2

γ1P1 + γ2P2

)
dx

+

∫
x∈Ω

(γ2P2 + γ3P3)φ

(
β2P2 + β3P3

γ2P2 + γ3P3

)
dx

Let ∫
x∈Ω

P2dx = η.

We have ∫
x∈Ω

(γ2P2 + γ3P3)φ

(
β2P2 + β3P3

γ2P2 + γ3P3

)
dx = (γ2η + γ3)φ

(
β3

γ3

)
.

Let
ζ =

β2(γ1 + γ2)

γ2(β1 + β2)
.

According to Jensen’s inequality,∫
x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 + β2P2

γ1P1 + γ2P2

)
dx

= (γ1 + γ2(1− ζη))

∫
x/∈Ω

(
γ1P1 + γ2P2

γ1 + γ2(1− ζη)

)
φ

(
β1P1 + β2P2

γ1P1 + γ2P2

)
dx

≥ (γ1 + γ2(1− ζη))φ

(∫
x/∈Ω

β1P1 + β2P2

γ1 + γ2(1− ζη)
dx

)
= (γ1 + γ2(1− ζη))φ

(
β1 + β2(1− η)

γ1 + γ2(1− ζη)

)
= (γ1 + γ2(1− ζη))φ

(
β1 + β2

γ1 + γ2

)
.



Therefore, we have

Dφ(P‖Q) ≥ (γ1 + γ2)φ

(
β1 + β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
+

[
γ2φ

(
β3

γ3

)
− β2(γ1 + γ2)

β1 + β2
φ

(
β1 + β2

γ1 + γ2

)]
η.

Now, we show the η term is non-negative. We write

γ2φ

(
β3

γ3

)
− β2(γ1 + γ2)

β1 + β2
φ

(
β1 + β2

γ1 + γ2

)
= β2

(
γ2

β2
φ

(
β3

γ3

)
− (γ1 + γ2)

β1 + β2
φ

(
β1 + β2

γ1 + γ2

))
= β2

(
γ3

β3
φ

(
β3

γ3

)
− 1− γ3

1− β3
φ

(
1− β3

1− γ3

))
.

It suffices to prove the function ψ(u) = φ(u)/u satisfies

ψ

(
β3

γ3

)
≥ ψ

(
1− β3

1− γ3

)
.

We use the Mathematica software [Inc.] to compute the difference:

ψ

(
β3

γ3

)
− ψ

(
1− β3

1− γ3

)
=− α

α−
log

2− α
1− α−

+ αα− log
α−(2− α)

1− α−
+
α(1− α−)

2− α
(log 4− α logα)

− α

2− α

(
λ+ 1

λα− + α+
− 1

)
(log 4− α logα)

− α log
(2− α)(λα− + α+)

λ(1− α−) + 1− α+
+

α(λ+ 1)

λα− + α+
log

(λ+ 1)(2− α)

λ(1− α−) + 1− α+
.

The minimum value of the above difference for α− ∈ [0, 1
2 ], α+ ∈ [0, 1

2 ], and λ ∈ [0, 1] is obtained at
α− = α+ = 1

2 , where the difference equals zero. This makes us able to conclude

Dφ(P‖Q) ≥ (γ1 + γ2)φ

(
β1 + β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
.

Finally, we let P2 = P1. In this case,

Dφ(P‖Q) =

∫
x∈Rd

(
3∑
i=1

γiPi

)
φ

(∑3
i=1 βiPi∑3
i=1 γiPi

)
dx

=

∫
x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 + β2P2

γ1P1 + γ2P2

)
dx

+

∫
x∈Ω

γ3P3φ

(
β3P3

γ3P3

)
dx

= (γ1 + γ2)φ

(
β1 + β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
.

Therefore, the optimal generator is pG = pdata|Ω̄.
e) Extension to f -GAN.: We can extend the objective (3) to any type of f -GAN. Let φ be a convex,

lower-semicontinuous function such that φ(1) = 0. Let

P =
α+

α
pdata|Ω̄ +

α−
α
pfake; Q =

1− α+

2− α
pdata|Ω̄ +

1− α−
2− α

pfake.

We jointly optimize
min
G

max
D

L(G,D) = Ex∼PD(x)− Ex∼Qφ∗(D(x)).



Then, the optimal discriminator is D = φ′
(
P
Q

)
. If ψ

(
β3

γ3

)
≥ ψ

(
1−β3

1−γ3

)
, then the optimal generator is

pG = pdata|Ω̄.

Remark 1. When α− = 0 and α+ = 1 (i.e. there is no label smoothing), Theorem 1 in Sinha et al. [2020]
implies the above optimal generator. Our theorem also extends their theorem to the label smoothing setting.



APPENDIX B
THEORETICAL ANALYSIS OF A SIMPLIFIED DYNAMICAL SYSTEM ON INVALIDITY

In this section, we provide theoretical analysis to a simplified, ideal dynamical system that corresponds
to Alg. 2 and Section III-B. In this dynamical system, we assume there are only two types of invalid
samples: those easy to redact, and those hard to redact. We assume after each iteration, the generator will
generate a less but positive fraction of invalid samples. Formally, let {Ωeasy,Ωhard} be a split of Ω, where
Ωeasy is the set of invalid samples that are easy to redact, and Ωhard is the set of invalid samples that are
hard to redact. We let

measy =

∫
Ωeasy

pG(x)dx,

mhard =

∫
Ωhard

pG(x)dx,

mratio =
measy

measy +mhard
.

Then, measy is the fraction of invalid generated samples that are easy to redact, and mhard is the fraction
of invalid generated samples that are hard to redact. measy +mhard is the fraction of invalid generated
samples over all generated ones, which we call invalidity. We use superscript to represent each iteration.
We consider the following dynamical system:

mi+1
easy = mi

easy · ηeasy(mi
ratio, T ),

mi+1
hard = mi

hard · ηhard(mi
ratio, T ).

In other words, the improvement of measy and mhard (in terms of multiplication factor) is only affected
by mratio and T . We make this assumption because in practice, the number of invalid samples to optimize
the loss function is always fixed. As for boundary conditions, we assume m0

easy > m0
hard. We assume for

η ∈ {ηeasy, ηhard}, 0 < η(m,T ) ≤ 1, where equality holds only in these situations:

η(m, 0) = 1, ηeasy(0, T ) = 1, ηhard(1, T ) = 1.

We also assume a larger T leads to smaller η, but this effect degrades as T increases:

∂

∂T
η(m,T ) < 0,

∂2

∂T 2
η(m,T ) > 0.

To distinguish between samples that are easy or hard to redact, we assume
1

m
· ∂
∂T

ηeasy(m,T ) <
1

1−m
· ∂
∂T

ηhard(m,T ) < 0.

We can now draw some conclusions below.
a) As i→∞, invalidity converges to 0.: Because ηeasy(T ) < 1 and ηhard(T ) < 1 when T > 0, we

have mi+1
easy ≤ mi

easy and mi+1
hard ≤ mi

hard. According to the monotone convergence theorem, there exists
m∞easy ≥ 0 and m∞hard ≥ 0 such that

lim
i→∞

mi
easy = m∞easy, lim

i→∞
mi

hard = m∞hard.

We now prove m∞easy = m∞hard = 0. If otherwise, there exists m∞ratio =
m∞easy

m∞easy+m∞hard
such that mi

ratio →
m∞ratio. We then have

m∞easy = m∞easy · ηeasy(m∞ratio, T ),

m∞hard = m∞hard · ηhard(m∞ratio, T ).



If m∞easy > 0, then m∞ratio > 0, and ηeasy(m∞ratio, T ) < 1, contradiction. Similarly, if m∞hard > 0, then
m∞ratio < 1, and ηhard(m∞ratio, T ) < 1, contradiction. Therefore, we conclude both mi

easy and mi
hard

converge to 0. This indicates the invalidity converges to zero.
b) Simplifying the dynamical system.: To further simplify the problem, we make a strong assumption

that η is linear in m. Then, we must have

ηeasy(m,T ) = 1− ξeasy(T ) ·m,
ηhard(m,T ) = 1− ξhard(T ) · (1−m),

where ξ ∈ [0, 1], ξ(0) = 0, ξ′ > 0, ξ′′ < 0 for ξ ∈ {ξeasy, ξhard}. We also have ξ′easy > ξ′hard and therefore
ξeasy > ξhard.

c) Optimal T and R from bounds.: We have

mi+1
easy +mi+1

hard = mi
easy +mi

hard −
ξeasy(T )(mi

easy)2 + ξhard(T )(mi
hard)2

mi
easy +mi

hard

.

Because ξeasy(T ) ≥ ξhard(T ), we have

ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )
(mi

easy+mi
hard) ≤

ξeasy(T )(mi
easy)2 + ξhard(T )(mi

hard)2

mi
easy +mi

hard

≤ ξeasy(T )(mi
easy+mi

hard).

This leads to

1− ξeasy(T ) ≤
mi+1

easy +mi+1
hard

mi
easy +mi

hard

≤ 1− ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )
,

and therefore

(1− ξeasy(T ))
R ≤

mR
easy +mR

hard

m0
easy +m0

hard

≤
(

1− ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )

)R
.

Assume the number of queries, T ×R, is fixed. Then, the optimal T from the lower bound is

T ∗low = arg min
T

1

T
log(1− ξeasy(T )).

By setting the derivative to be zero, we have T ∗low is the solution to

−Tξ′easy(T ) = (1− ξeasy(T )) log(1− ξeasy(T )).

Similarly, the optimal T from the upper bound is

T ∗upp = arg min
T

1

T
log

(
1− ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )

)
.

By setting the derivative to be zero, we have T ∗upp is the solution to

−T ·
ξ′easy(T )ξhard(T )2 + ξ′hard(T )ξeasy(T )2

(ξeasy(T ) + ξhard(T ))2
=

(
1− ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )

)
log

(
1− ξeasy(T )ξhard(T )

ξeasy(T ) + ξhard(T )

)
.

APPENDIX C
FEASIBILITY OF DISCRIMINATOR IN THE CLASSIFIER-BASED SETTING

The solution to (5) and (6) is:

D∗(x) =

{
α+pdata|Ω̄+α−(λpG+(1−λ)pΩ)

pdata|Ω̄+λpG+(1−λ)pΩ
if f(x) ≥ τ

α− if f(x) < τ
,

which satisfies D∗ ∈ [0, 1]. Therefore, (5) is feasible with the guide function defined in (6).



APPENDIX D
EXPERIMENTAL SETUP

Pre-training. We use DCGAN [Radford et al., 2015] with latent dimension = 128 as the model. The
pre-trained model is trained with label smoothing (α+ = 0.9, α− = 0.1):

min
G

max
D

Ex∼X [α+ logD(x) + (1− α+) log(1−D(x))]

+ Ez∼N (0,I) [α− logD(G(z)) + (1− α−) log(1−D(G(z)))] .

We use Adam optimizer with learning rate = 2×10−4, β1 = 0.5, β2 = 0.999 to optimize both the generator
and the discriminator. The networks are trained for 200 epochs with a batch size of 64. For each iteration
over one mini-batch, we let KD be the number of times to update the discriminator, and KG the number
of times to update the generator. We use KD = 1 and KG = 5 to train.

Data redaction. The setup is similar to the pre-training except for two differences. The number of
epochs is much smaller: 8 for MNIST, 30 for CIFAR, and 40 for STL-10. We let KG = 1 for MNIST
and CIFAR and KG = 5 for STL-10.

Evaluation. To measure invalidity, we generate 50K samples, and compute the fraction of these samples
that are not valid (e.g., classified as the label to be redacted, or with pre-defined biases). It is the lower
the better. The invalidity for redacting labels is measured based on label classifiers. We use pre-trained
classifiers on these datasets. 2

The other evaluation metric is generation quality. The inception score (IS) [Salimans et al., 2016] is
computed based on logit distributions from the above pre-trained classifiers. It is the higher the better. The
Frechet Inception Distance (FID) [Heusel et al., 2017] is computed based on an open-sourced PyTorch
implementation. 3 It is the lower the better.

When computing these quality metrics, we generate 50K samples, and compare to the set of valid
training samples: {x ∈ X : x /∈ Ω}. Therefore, when X ∩Ω is not the empty set (such as redacting labels
in Section IV-A), the quality measure of the model after data redaction is not directly comparable to the
pre-trained model, but these scores among different redaction algorithms are comparable and give intuition
to the generation quality. When X ∩ Ω is the empty set (such as de-biasing in Section IV-B), the quality
measures of the pre-trained model and the model after data redaction are directly comparable.

2https://github.com/aaron-xichen/pytorch-playground (MIT license)
3https://github.com/mseitzer/pytorch-fid (Apache-2.0 license)

https://github.com/aaron-xichen/pytorch-playground
https://github.com/mseitzer/pytorch-fid


APPENDIX E
REDACTING LABELS

A. Redacting Label 0

1) Main results: We include results for redacting label 0 in this section. We look at MNIST, CIFAR-10,
and STL-10 datasets with different sets of hyper-parameters. With the base set of hyper-parameters, while
different redaction algorithms perform better on different datasets, they are highly comparable with each
other. We find the results are worse when there is no label smoothing (α+ = 1, α− = 0), indicating label
smoothing is important for data redaction. We discuss results after one epoch in Appendix E-A2, the effect
of λ in Appendix E-A4, and the effect of T in Table II.

Results for MNIST:

TABLE VIII: Data-based redaction algorithm.

Model Epochs Inv(↓) IS(↑)
pre-trained 200 1.095× 10−1 7.82

Base: α+ = 0.95, α− = 0.05, λ = 0.85 8 0 7.19
α+ = 0.9, α− = 0.1 8 2× 10−5 7.02
α+ = 1.0, α− = 0.0 8 4× 10−5 6.97

λ = 0.8 8 2× 10−5 7.18
λ = 0.9 8 4× 10−5 7.16
λ = 0.95 8 5.2× 10−4 7.19
λ = 0.8 1 2.98× 10−3 7.09

TABLE IX: Validity-based redaction algorithm.

Model Epochs Inv(↓) IS(↑)
pre-trained 200 1.095× 10−1 7.82

Base: α+ = 0.95, α− = 0.05, λ = 0.85, T = 1000 8 8× 10−5 7.17
α+ = 0.9, α− = 0.1 8 3.4× 10−4 7.06
α+ = 1.0, α− = 0.0 8 3.72× 10−3 4.81

λ = 0.8 8 0 7.23
λ = 0.9 8 2.2× 10−4 7.07
λ = 0.95 8 8.8× 10−4 7.12
T = 400 20 0 7.10
T = 2000 4 2.8× 10−4 7.11
λ = 0.8 1 2.80× 10−3 6.99

TABLE X: Classifier-based redaction algorithm.

Model Epochs Inv(↓) IS(↑)
pre-trained 200 1.095× 10−1 7.82

Base: α+ = 0.95, α− = 0.05, λ = 0.85, τ = 0.5 8 4× 10−5 7.19
α+ = 0.9, α− = 0.1 8 1.4× 10−4 7.09
α+ = 1.0, α− = 0.0 8 2.06× 10−3 6.08

λ = 0.8 8 6× 10−5 7.15
λ = 0.9 8 8× 10−5 7.18
λ = 0.95 8 7.2× 10−4 7.24
τ = 0.3 8 1.2× 10−4 7.12
τ = 0.7 8 6× 10−5 7.22
λ = 0.8 1 2.54× 10−3 7.11



Results for CIFAR-10:

TABLE XI: Data-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 1.291× 10−1 36.2

Base: α+ = 0.9, α− = 0.05, λ = 0.8 30 7.4× 10−3 35.8
α+ = 0.9, α− = 0.1 30 8.0× 10−3 34.4
α+ = 0.9, α− = 0.0 30 8.9× 10−3 34.2

λ = 0.9 30 2.10× 10−2 29.2
λ = 0.95 30 4.21× 10−2 26.2

Base 1 3.99× 10−2 37.1

TABLE XII: Validity-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 1.291× 10−1 36.2

Base: α+ = 0.9, α− = 0.05, λ = 0.8, T = 1000 30 7.9× 10−3 35.3
α+ = 0.9, α− = 0.1 30 8.1× 10−3 33.8
α+ = 0.9, α− = 0.0 30 8.1× 10−3 34.1

λ = 0.9 30 2.54× 10−2 28.1
λ = 0.95 30 3.57× 10−2 27.8
T = 400 75 4.5× 10−3 35.1
T = 2000 15 1.00× 10−2 31.9

Base 1 3.85× 10−2 36.2

TABLE XIII: Classifier-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 1.291× 10−1 36.2

Base: α+ = 0.9, α− = 0.05, λ = 0.8, τ = 0.5 30 1.28× 10−2 33.7
α+ = 0.9, α− = 0.1 30 1.04× 10−2 32.9
α+ = 0.9, α− = 0.0 30 6.3× 10−3 32.8

λ = 0.9 30 2.25× 10−2 28.6
λ = 0.95 30 4.26× 10−2 26.9
τ = 0.3 30 9.6× 10−3 34.8
τ = 0.7 30 1.05× 10−2 35.2

Base 1 3.47× 10−2 37.8



Results for STL-10:

TABLE XIV: Data-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 6.23× 10−2 79.1

Base: α+ = 0.9, α− = 0.05, λ = 0.8 40 7.8× 10−4 74.3
α+ = 0.9, α− = 0.1 40 7.6× 10−4 75.8
α+ = 0.9, α− = 0.0 40 1.42× 10−3 82.7

λ = 0.9 40 2.88× 10−3 76.9
λ = 0.95 40 6.71× 10−3 78.2

Base 1 6.97× 10−3 75.1

TABLE XV: Validity-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 6.23× 10−2 79.1

Base: α+ = 0.9, α− = 0.05, λ = 0.8, T = 1000 40 4.8× 10−4 79.3
α+ = 0.9, α− = 0.1 40 8.2× 10−4 76.5
α+ = 0.9, α− = 0.0 40 1.44× 10−3 77.0

λ = 0.9 40 4.52× 10−3 75.9
λ = 0.95 40 8.95× 10−3 75.3
T = 400 100 1.00× 10−3 75.1
T = 2000 20 1.00× 10−3 75.1

Base 1 8.99× 10−3 79.5

TABLE XVI: Classifier-based redaction algorithm.

Model Epochs Inv(↓) FID(↓)
pre-trained 200 6.23× 10−2 79.1

Base: α+ = 0.9, α− = 0.05, λ = 0.8, τ = 0.5 40 8.6× 10−4 75.4
α+ = 0.9, α− = 0.1 40 9.2× 10−4 74.8
α+ = 0.9, α− = 0.0 40 1.62× 10−3 82.0

λ = 0.9 40 3.10× 10−3 77.2
λ = 0.95 40 6.89× 10−3 76.2
τ = 0.3 40 8.8× 10−4 73.8
τ = 0.7 40 1.34× 10−3 76.1

Base 1 6.81× 10−3 75.6



2) Invalidity after one epoch: We compare invalidity after only one epoch of data redaction. These
redaction algorithms are highly comparable to each other. We hypothesis that the classifier-based algorithm
performs the best on MNIST because a label classifier on MNIST (and its gradient information) can be
very accurate, while this may not be true for CIFAR-10 and STL-10.

TABLE XVII: Invalidity after one epoch of data redaction.

Dataset Scale Pre-trained Data-based Validity-based Classifier-based
MNIST ×10−3 1.1× 102 4.7± 0.8 5.6± 0.9 3.9± 0.9

CIFAR-10 ×10−2 1.3× 101 3.7± 0.5 3.7± 0.8 3.8± 0.3
STL-10 ×10−3 6.2× 101 9.1± 0.9 8.6± 0.9 10.6± 1.2

3) Quality during data redaction: We plot quality measure of different data redaction algorithms on
different datasets during the redaction process, complementary to the invalidity in Fig. 2. We find the
variances of quality measure is higher than the invalidity, but different redaction algorithms are generally
comparable.
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Fig. 5: Quality measure during data redaction. Mean and standard errors are plotted for five random seeds.



4) Trade-off by alternating λ: We study the effect of λ (hyper-parameter in (2)) in Table XVIII and
Fig. 6. There is a trade-off by alternating λ: a larger λ (less fake data from the redaction set) leads to
better quality measure, and a smaller λ (more fake data from the redaction set) leads to better invalidity.

TABLE XVIII: Invalidity after data redaction for different λ in the classifier-based redaction algorithm.

λ
MNIST CIFAR-10 STL-10

Inv(↓) IS(↑) Inv(↓) FID(↓) Inv(↓) FID(↓)
0.8 0.6× 10−4 7.15 1.28× 10−2 33.7 0.86× 10−3 75.4
0.9 0.8× 10−4 7.18 2.25× 10−2 28.6 3.10× 10−3 77.2
0.95 7.2× 10−4 7.24 4.26× 10−2 26.9 6.89× 10−3 76.2
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Fig. 6: Invalidity during data redaction for different λ in the classifier-based redaction algorithm.



B. Redacting Other Labels

We also demonstrate results for redacting other labels with our data redaction algorithms. We use the
base set of hyper-parameters in Appendix E-A. Similar to redacting label 0, all redaction algorithms can
largely reduce invalidity, and they are highly comparable to each other. The classifier-based redaction
algorithm achieves slightly better generation quality on MNIST and CIFAR-10. In terms of different labels,
we find some labels are harder to redact in the sense that the invalidity scores for these labels are higher
than other scores, such as label 9 in MNIST, and label 3 in CIFAR-10 and STL-10.

TABLE XIX: Redacting other labels on MNIST.

Label Pre-trained Data-based Validity-based Classifier-based
Inv(↓) IS(↑) Inv(↓) IS(↑) Inv(↓) IS(↑) Inv(↓) IS(↑)

1 10.2% 7.81 0.002% 7.01 0.000% 7.21 0.008% 7.13
2 8.6% 7.81 0.022% 7.22 0.012% 7.20 0.028% 7.28
3 11.5% 7.81 0.126% 7.20 0.136% 7.24 0.134% 7.19
4 9.9% 7.81 0.138% 7.19 0.092% 7.21 0.104% 7.26
5 8.7% 7.81 0.048% 7.22 0.046% 7.21 0.056% 7.24
6 9.0% 7.81 0.020% 7.04 0.022% 7.07 0.010% 7.12
7 11.4% 7.81 0.114% 7.24 0.124% 7.34 0.088% 7.32
8 9.1% 7.81 0.198% 7.48 0.248% 7.35 0.302% 7.51
9 10.7% 7.81 0.486% 7.30 0.414% 7.36 0.545% 7.26

TABLE XX: Redacting other labels on CIFAR-10.

Label Pre-trained Data-based Validity-based Classifier-based
Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓)

1 1.5% 36.24 0.032% 35.06 0.014% 35.23 0.082% 33.40
2 11.0% 36.24 1.311% 31.67 1.537% 31.65 1.564% 28.34
3 15.8% 36.24 3.013% 30.10 3.491% 31.01 2.534% 28.06
4 16.8% 36.24 1.752% 30.36 1.754% 31.26 1.590% 29.72
5 6.7% 36.24 0.799% 30.76 0.985% 30.90 1.461% 31.36
6 9.3% 36.24 0.797% 29.81 1.071% 31.65 0.755% 29.64
7 8.6% 36.24 0.789% 33.48 0.496% 33.40 1.325% 34.15
8 10.3% 36.24 0.218% 38.96 1.451% 38.59 0.496% 34.56
9 7.1% 36.24 0.138% 38.13 0.186% 37.74 0.216% 36.85

TABLE XXI: Redacting other labels on STL-10.

Label Pre-trained Data-based Validity-based Classifier-based
Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓)

1 9.0% 79.00 1.273% 74.89 2.168% 73.91 1.900% 75.34
2 6.2% 79.00 0.158% 72.22 0.132% 72.39 0.176% 75.75
3 14.9% 79.00 3.772% 77.24 3.732% 76.80 4.412% 75.19
4 8.2% 79.00 1.634% 81.91 1.345% 82.82 1.425% 83.25
5 15.1% 79.00 2.072% 76.85 3.383% 80.40 5.041% 77.74
6 8.7% 79.00 0.462% 80.82 0.518% 78.17 0.745% 79.63
7 10.7% 79.00 2.973% 77.53 1.838% 78.57 2.180% 77.58
8 9.5% 79.00 0.304% 79.56 0.272% 78.06 0.352% 77.07
9 11.6% 79.00 0.817% 76.70 0.947% 78.37 0.941% 76.37



C. Visualization

Fig. 7: Visualization of the data redaction process of invalid samples when redacting labels. The first
column is generated by the pre-trained generator, and the i-th column is generated after k · (i− 1) epochs
of data redaction. Left: MNIST with k = 1. Right: top is CIFAR-10 and bottom is STL-10, both with
k = 4. We can see samples associated with invalid labels are gradually pushed to other labels, but a
high-level visual similarity is kept.



D. Detailed Setup of Redacting Multiple Sets

We use 30K images from CelebA-64 as the training set. All other hyper-parameters are the same as the
base set for STL-10 in Appendix E-A, except that we run data redaction algorithms for only 5 epochs.
We train attribute classifiers for each attribute separately. The attribute classifiers are fine-tuned from
open-sourced pre-trained ResNet [He et al., 2016]. 4 We fine-tune the network for 20 epochs using the
SGD optimizer with learning rate = 1× 10−3, momentum = 0.9, and a batch size of 64.

4https://pytorch.org/vision/stable/models.html

https://pytorch.org/vision/stable/models.html


APPENDIX F
MODEL DE-BIASING

A. Boundary Artifacts

Let the image size be W ×H (the number of channels is 1 for MNIST). For an integer margin, the
boundary pixels are defined as

{(i, j) : 1 ≤ i ≤ margin or W −margin < i ≤W, 1 ≤ j ≤ margin or H −margin < j ≤ H}.

Then, the validity function for boundary artifacts is defined as

v(x) = 1

 ∑
(i,j)∈boundary pixels

xij < τb

 ,

where τb = 4.25 for margin = 1 and 10.0 for margin = 2. For these values, no training data has the
boundary artifact. Quantitative results are in Tabel V. We visualize some samples with boundary artifacts
in Fig. 8a. We run the validity-based redaction algorithm with λ = 0.98, α+ = 0.95, α− = 0.05 for 4
epochs. After de-biasing via data redaction, these samples have less boundary pixels, as shown in Fig. 8b.

(a) Samples with boundary artifacts. (b) Samples after de-biasing via data redaction.

Fig. 8: De-biasing boundary artifacts with the validity-based data redaction algorithm. Margin = 1 and
T = 40K.



B. Label Biases

We use classifier-based redaction algorithm to de-bias label biases. For MNIST, we use λ = 0.8, α+ =
0.95, α− = 0.05 and run for 8 epochs. For CIFAR-10, we use λ = 0.9, α+ = 0.9, α− = 0.05 and run for
30 epochs. Quantitative results are in Table VI and VII. We visualize semantically ambiguous samples
generated by the pre-trained model in Fig. 9a. After de-biasing via data redaction, these samples become
less semantically ambiguous, as shown in Fig. 9b.

(a) Samples with label-biases. (b) Samples after de-biasing via data redaction.

Fig. 9: De-biasing label biases with the classifier-based data redaction algorithm (τ = 0.7).



APPENDIX G
UNDERSTANDING TRAINING DATA

A. Sample-level redaction difficulty

We visualize some most and least difficult-to-redact samples according to the redaction scores in
Fig. 10 and Fig. 11. We find the most difficult-to-redact samples are visually atypical, while the least
difficult-to-redact samples are visually more common.

(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Fig. 10: Samples that are most and least difficult-to-redact in MNIST.



(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Fig. 11: Samples that are most and least difficult-to-redact in CIFAR-100.



B. Label-level redaction difficulty

We sort all labels according to their average redaction scores. This tells us which labels are easier or
harder to redact. The results for MNIST are in Fig. 12. Consistent with Table XIX, label 9 is the most
difficult label to redact. The most and least difficult-to-redact labels for CIFAR-100 are shown in Fig. 13a
and 13b.

0.0 0.2 0.4 0.6 0.8

9

D output (pretrained) D output (after redaction) redaction score

3

1

6

4

8

0

2

7

5

Fig. 12: Label-level redaction difficulty for MNIST. Top: the most difficult to redact. Bottom: the least
difficult to redact. A large redaction score means a label is easier to be redacted. We find some labels are
more difficult to redact than others.
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(a) Label-level redaction difficulty for CIFAR-100 (10 most difficult-to-redact labels). Top: the most difficult to redact.
Bottom: the least difficult to redact.
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(b) Label-level redaction difficulty for CIFAR-100 (10 least difficult-to-redact labels). Top: the most difficult to redact.
Bottom: the least difficult to redact.

Fig. 13: Label-level redaction difficulty for CIFAR-100. A large redaction score means a label is easier to
be redacted. We find some labels are more difficult to redact than others.



C. Relative redaction score

We also study the relative redaction score RSrel(x) = (D0(x)−D′(x))/D0(x), and find results are
similar to the redaction scores. Some visualizations are shown below:

(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Fig. 14: Samples that are most and least difficult-to-redact in MNIST with the relative score.



(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Fig. 15: Samples that are most and least difficult-to-redact in CIFAR-100 with the relative score.



APPENDIX H
RELATIONSHIP TO ADVERSARIAL SAMPLES

Consider the classifier-based redaction algorithm. We fix the discriminator and only update the generator.
Then, the generator is trained to fool both the discriminator and the classifier at the same time. We may
define generated samples from this generator as on-manifold adversarial samples to (D, f). Note that
on-manifold samples are not necessarily visually clear samples; instead, they could be high likelihood
samples according to the inductive bias of the generative model.

When training, we use the classifier-based redaction algorithm with τ = 0.5, α+ = 0.95, α− = 0.05, λ =
0.85, and a batch size of 64. We “redact” one label at a time, similar to experiments in Appendix E-B.
After each iteration over one mini-batch, we generate samples with the same latents. The visualization
is shown below. There are several interesting findings shown in the figures. First, the generated samples
tend to have less pixels. Second, the generated samples tend to be dis-connected. Third, there are some
general patterns across these generated samples (for each label): for example, there are pixels in the middle
of zeroes, the bottom of sevens vanish, and nines are split from the middle. We conjecture that these
observations correspond to the inductive bias of the discriminator and adversarial samples of the classifier.



Fig. 16: Generated samples when we only train the generator and fix the discriminator and the classifier
with the classifier-based redaction algorithm. The first column is generated by the pre-trained generator,
and the i-th column is generated after i− 1 iterations (up to 20 iterations).
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