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Proximal tubules energetically internalize and metabolize solutes filtered
through glomerulibut are constantly challenged by foreign substances
duringthelifespan. Thus, it is critical to understand how proximal tubules

stay healthy. Here we report a previously unrecognized mechanism of
mitotically quiescent proximal tubular epithelial cells for eliminating
gold nanoparticles that were endocytosed and even partially transformed
into large nanoassemblies inside lysosomes/endosomes. By squeezing

~5 um balloon-like extrusions through dense microvilli, transporting
intact gold-containing endocytic vesicles into the extrusions along with
mitochondria or other organelles and pinching the extrusions off the
membranes into the lumen, proximal tubular epithelial cells re-eliminated
>95% of endocytosed gold nanoparticles from the kidneys into the urine
within amonth. While this organelle-extrusion mechanism represents
anew nanoparticle-elimination route, it is not activated by the gold
nanoparticles butis anintrinsic ‘housekeeping’ function of normal proximal
tubular epithelial cells, used to remove unwanted cytoplasmic contents
and self-renew intracellular organelles without cell division to maintain

homoeostasis.

Driven by glomerular hydrostatic pressure' and regulated by the glo-
merular filtration membrane as a bandpass filter?, renal clearance is
often viewed as a passive process torapidly eliminate engineered nano-
particlesout of thebody and reduce their systemic toxicity. However,
thefiltered nanoparticles canstill actively interact with a variety of renal
tubules (Fig.1a), inwhich the proximal tubules (PTs) packed with dense
mitochondria playacentralrolein the active uptake, reabsorption and
metabolism of filtered substances'. With a dense brush boader com-
posed of negatively charged microvilliand extending into the tubular
cavities, proximal tubular epithelial cells (PTECs) canretain the filtered
substances through contractile motions and effectively take them up’.
Consequently, both endogenous low-molecular-weight proteins and
exogenous substances including ultrasmall nanoparticles have been
foundinside PTECs**. For proteins, they could be reabsorbed back into

thebloodstream as either intact entities through transcytosis® oramino
acids after degradationinside the lysosomes®. Althoughinorganic nan-
oparticles such as polysiloxane nanoparticles and gold nanoparticles
(AuNPs) are not biodegradable in the lysosomes, their accumulation
inthe PTECs and entire kidneys was still found to decrease with time?>’.
Suchagradual removal of intracellular nanoparticles from the PTECs
hasbeen along-standing mystery in the understanding of nanoparticle
elimination in the kidneys’.

Elimination of endocytosed nanoparticles at the cellular level is
attributed to exocytosis mediated by different intracellular vesicles®.
Lysosome-mediated exocytosis is the most common mechanism®.
By fusing with the plasma membrane, the lysosomes release indi-
vidual endocytosed nanoparticles back into the extracellular envi-
ronment’. However, this process can be hindered once nanoparticles

Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.

jiezheng@utdallas.edu

e-mail: mengxiao.yu@utdallas.edu;

Nature Nanotechnology


http://www.nature.com/naturenanotechnology
https://doi.org/10.1038/s41565-023-01366-7
http://orcid.org/0000-0001-8546-1882
http://crossmark.crossref.org/dialog/?doi=10.1038/s41565-023-01366-7&domain=pdf
mailto:mengxiao.yu@utdallas.edu
mailto:jiezheng@utdallas.edu

https://doi.org/10.1038/s41565-023-01366-7

. N Glomerulus

Distal tubule

Proximal tubular lumen

"e————o

2 e

Microvilli

Endocytosis

Extruded vesicle __

Traditional passive elimination

PT-mediated active re-elimination _Extrusion

N e

ER

--- Biotransformed gold
nanoassemblies

§ Endosome Lysosome
) ' =
==
r -' e "
PT == [ =
Z 7=
PTEC el //
1 A—
T s e e e

" Loop of Henle

PTC

Fig.1| Elimination process and interaction of renal-clearable engineered
nanoparticlesin thekidneys. a, Renal-clearable engineered nanoparticles
(for example, AuNPs) will be first filtered through the glomerulus. The filtered
nanoparticles will then enter the PTs, followed by travel through the loop of
Henle, the distal tubules and the collecting ducts, and eventually entering the
bladder through the ureters. Among all the components of the nephron, the PT
isthe most active site of uptake of the filtered nanoparticles due to the densely
packed microvilli onits luminal surface. b, In addition to the traditional passive
elimination of nanoparticles through the kidneys, with little involvement of
cellular internalization and metabolism (1), we discovered a PT-mediated active
re-elimination pathway of AuNPs involving endocytosis, biotransformation in

the endosomes/lysosomes and cellular elimination through organelle extrusion
on the luminal membrane of PTs (2). The 2-3 nm AuNPs can be internalized

by PTECs through endocytosis. The endocytosed AuNPs are then partially
biotransformed into 200-300 nm, large nanoassemblies inside endosomes/
lysosomes. By squeezing ~5 pm balloon-like extrusions through dense microvilli,
transporting intact gold-containing endosomes or lysosomes into the extrusions
along with mitochondria or other organelles and pinching off the extrusions
from the cellmembrane into the lumen, PTECs re-eliminated endocytosed
AuNPs, including those large biotransformed nanoassemblies, into the urine, and
they were further cleared out of the body afterward. PTC, peritubular capillary.

are biochemically transformed into large nanoassemblies inside the
lysosomes'®™. Additionally, nanoparticles in early endosomes could
also be translocated into multivesicular bodies first, followed by
beingreleased into the extracellular space through membrane fusion
between the multivesicular bodies and plasma membrane'>", The
released nanoparticles are encapsulatedin either exosomes (~100 nm)
orextracellular microvesicles (-1-2 pm). Moreover, some nanoparticles
could also take advantage of secretion machineriesin the gland cells to
enter the extracellular spaces'. However, the detailed mechanism for
eliminating endocytosed nanoparticlesin the PTs down to the subcel-
lular level s still largely unknown.

Using renal-clearable AuNPs as multimodality probes that can
be filtered through the kidneys and readily detected with inductively
coupled plasmamass spectrometry (ICP-MS) and optical and electron
microscopies, we discovered an unrecognized mechanism of PTECs
for eliminating endocytosed 2-3 nm AuNPs and their 200-300 nm
nanoassemblies backinto the urine (Fig. 1b). We found that PTECs were
able to directly eject entire gold-containing lysosomes/endosomes
along with other organelles (mitochondria, lysosomes without gold,
smooth endoplasmic reticulum, apical vacuoles or even an entire

nucleus in some rare cases) into the proximal tubular lumen to form
~5 um extruded vesicles. This organelle-extrusion-mediated elimi-
nation of AuNPs represents a nanoparticle-elimination mechanism
distinct from those membrane-fusion-mediated ones. However, this
extrusion process is not activated by the AuNPs but by an intrinsic
physiological ‘housekeeping’ function of normal PTs, used to remove
unwanted substances and renew intracellular organelles without cell
division, which, however, was significantly reduced once the tubules
wereinjured.

Endocytosis and re-elimination of AuNPs by PTs

While the glomerulusis known to dictate the filterability of engineered
nanoparticles in the kidneys®”, we find that nanoparticle clearance
outofthekidneysisalsoregulated by the PTs through PTEC-mediated
endocytosis and active re-elimination. Since the dense negatively
charged microvillion the luminal surface of PTECs is known to enhance
the uptake of positively charged endogenous proteins', we synthesized
two types of renal-clearable PEGylated AuNPs (PEG, poly(ethylene
glycol)) with the same core sizes (-2.6 nm) but opposite zeta potentials
(positively charged and negatively charged AuNPs, that is, (+)-AuNPs
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Fig. 2| Endocytosis and re-elimination of the PEGylated AuNPs by PTECs
invivo. a, Design and characterizations of (-)-AuNPs and (+)-AuNPs via coating
AuNPs with PEG methyl ether thiol (Molecular weight, 800 Da) or PEG methyl
ether thiol together with amine-terminated positively charged 11-amino-1-
undecanethiol. HD, hydrodynamic diameters. b, Quantification of the amount
of goldinthe urine collected at 24 h p.i. of the AuNPs, which was measured

by ICP-MS. P=4.54 x107. N =3 mice for each group. ¢, Quantification of the
amount of gold in the kidneys harvested at 24 h p.i. of the AuNPs, measured with
ICP-MS. P=3.86 x10"*. N =3 mice for each group. d, Representative images of
silver-enhanced and hematoxylin and eosin (H&E)-stained tissue sections of
the kidneys obtained at 24 h p.i. of (-)-AuNPs (upper) and (+)-AuNPs (lower).
Silver-enhanced AuNPs are indicated by blue triangles. The righthand images
show zoomed-in views of the areas in the boxes. G, glomerulus; DT, distal tubules;
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MV, microvilli. e, Quantification of the area fraction of silver-enhanced AuNPs in
the entire cross-section of aPT. P=3.50 x 1078, N= 60 and 59 PT cross-sections
for (-)-AuNPs and (+)-AuNPs, respectively. f, Representative images of silver-
enhanced and H&E-stained kidney tissue sections at 24 h, 4 days, 7 days and

30 days p.i. of (+)-AuNPs. Silver-enhanced AuNPs are indicated by blue triangles.
g, Theamount of gold in the kidneys was measured with ICP-MS at different time
points (2 h,24 h, 4 days, 7 days and 30 days) after injection of (+)-AuNPs (green
line) and (-)-AuNPs (orange line). Over 95% (that is, (Amount at 24 h - Amount at
30 days)/Amount at 24 h) x 100%) of accumulated AuNPs were eliminated out of
the kidneys within one month. N = 3 mice for each time point. Data are presented
asmean +s.d. (standard deviation) inb, ¢, eand g. Two-sided Student’s t-test was
performed at the 0.05 significance level inb, c and e. Representative images are
presented out of images acquired from three independent samplesind and f.
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Fig.3|Biotransformation and re-excretion of endocytosed (+)-AuNPs by
PTs. a, Arepresentative EM image of PTs at 24 h p.i. of (+)-AuNPs showing the
intracellular (+)-AuNPs located in lysosomes of PTECs on the luminal side
(labelled by arrows). The labelled box is the areashown in b. b, A representative
EMimage of the biotransformed 200-300 nm flower-like gold nanoassemblies
composed of nanofibresinalysosome of PTEC. ¢, A representative EM image
of extracellular vesicles in a proximal tubular lumen that contain lysosome-
encapsulated biotransformed AuNPs and other organelles. d, A magnified
image of the extracellular vesicle in ¢ containing lysosome-encapsulated
biotransformed AuNPs, mitochondria and smooth ER. e,f, Representative

tes and ultrasmall AuNPs |

EMimages of distal tubules showing that no biotransformed AuNPs were
foundinside the distal tubules at 24 h p.i. g,h, Representative EM images of
biotransformed gold nanostructures, including ~200 nm gold nanoassemblies
(g) and 5-10 nm AuNPs (h, indicated by black arrows), found in the urine within
24 hp.i. of (+)-AuNPs, in addition to ultrasmall AuNPs with an original size of

2-3 nminthe urine (h, indicated by white arrows). No gold or silver enhancement
staining was used for EM samples. Representative EMimagesina,c,e,gandhare
presented out of images acquired from three independent samples. The image
along the left side shows a schematic of the process.

and (-)-AuNPs; Fig.2a and Supplementary Figs.1and 2) to unravel the
charge dependency in the PT uptake of nanoparticles. Although the
hydrodynamic diameters (HDs) of both AuNPs are ~6.0 nm (Supple-
mentary Fig.1) and below the glomerular filtration threshold (-6-8 nm),

the 24 hrenal clearance efficiency of (+)-AuNPs is 16.62 + 0.38 %ID (%ID,
percentage of injection dose) post intravenous injection (p.i.), ~2.5
times lower than that of (—-)-AuNPs (42.21 + 0.29 %ID; Fig. 2b) due to
their differentinteractions with the organs. The blood concentrations
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Fig. 4| Nanoparticle elimination by PTECs through an organelle-extrusion
mechanism. a, Arepresentative EM image of PTs at 24 h p.i. of (+)-AuNPs showing
the tubular organelle-extrusion process: a balloon-like fraction of cytoplasm was
squeezed through the microvilli and extruded into the extracellular lumen space
(labelled as extrusions) to form the extracellular vesicles in the lumen (labelled
as extruded vesicles). AuNPs are labelled with arrows. The labelled boxes indicate
areas shown in azoomed-in view in other panels. b, No significant difference (NS)
is seenin the sizes of extrusions on the luminal membrane (V=38, mean +s.d.)
and extruded vesicles in the tubular lumen (N =67, mean +s.d.). P=0.47.
Two-sided Student’s t-test was performed at the 0.05 significance level.

¢, Arepresentative EM image of PTs showing no sign of extrusion on the
basolateral side of the PTs and no sign of endocytosed AuNPs on the luminal

side migrating to the basolateral side of the PTs and being reabsorbed into the
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peritubular capillary. d, Magnified EM image of an extrusion in a. The extrusion is
devoid of microvilli but contains intracellular organelles including mitochondria
(Mt), lysosomes (with or without AuNPs), apical vacuoles (AV) and smooth ER.

e, Magnified EM image of alysosome encapsulating biotransformed AuNPs in the
extrusionind. f, Magnified EM image of mitochondria and ER in the membrane
extrusion ind. g, Magnified EM image of an extruded vesicle in a proximal tubular
lumenina. Like the extrusion on the luminal membrane, the extruded vesicle
also contained similar organelles such as mitochondria, lysosomes and smooth
ER. h, Magnified EM image of lysosome-encapsulated biotransformed AuNPs in
the extruded vesicle in g. i, Magnified EM image of mitochondriaand ER in the
extruded vesicle ing. No gold or silver enhancement staining was used for EM
samples. Representative EM imagesin ¢, d and g are presented out of images
acquired from three independent samples.
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of both AuNPswere verylowat24 hp.i.(2.99 + 0.02 %ID g 'for (-)-AuNPs  (+)-AuNPs reached 54.35 + 2.39 %ID g at 24 h p.i., about eight times
and1.61 + 0.44 %ID g for (+)-AuNPs; %ID g%, %ID per gram of blood or  higher than that of (-)-AuNPs (7.11+ 0.87 %ID g™*; Fig. 2c), even though
tissue; Supplementary Fig. 3); however, the kidney accumulation of  amuchlarger portion of (+)-AuNPs (33.22 + 2.38 %ID g ") was also taken
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Fig. 5| Organelle extrusion is a native physiological function of PTs.

a,b, Representative EM images of tubular organelle extrusions in PBS-injected
mice (a) and (-)-AuNP-injected mice (b) at different magnifications.

c-f, Quantitative analyses on the percentage of PTs with extrusions (c), sizes of
extruded vesicles in the tubular lumen (d), number of extrusions of the proximal
tubular cross-section (e) and number of extruded vesicles of the proximal tubular
cross-section (f) derived from EM imaging studies of the PTs among mice treated
with PBS, (-)-AuNPs and (+)-AuNPs. In ¢, N =3 tissue sections of three individual
tissue blocks for each group, and more than 70 proximal tubular cross-sections
were analysed for each tissue block. P= 0.61.Ind, for PBS, (-)-AuNP and (+)-AuNP
injection, respectively, N = 38,74 and 67 extruded vesicles found in three tissue
sections from three individual tissue blocks. P= 0.95.In e and f, N =29 proximal
tubular cross-sections analysed in each group.P=0.64ine.P=0.74inf. Data

are presented as mean + s.d. in cand d. Data are analysed using one-way

analysis of variance at the 0.05 significance level in c-f. The boxes in e and frange
from the 25th percentile (the first quartile, top of the boxes) to the 75th percentile
(the third quartile, bottom of the boxes). The lines in the boxes present the
median values. The whiskers are the lowest and highest points within 1.5

times the interquartile range of the lower and higher quartiles.

g, Arepresentative EM image of an extruded vesicle containing neither
lysosomes nor mitochondria. h, Arepresentative EM image of an extruded vesicle
containing only lysosome. 1, A representative EM image of an extruded vesicle
containingonly ER. j, A representative EM image of an extrusion containing
anucleusin PBS-injected mice.k, A representative EM image of an extruded
vesicle containing a nucleus and lysosome-encapsulated AuNPs and their
nanoassemblies (indicated by arrows) in (-)-AuNP-injected mice. Representative
EMimagesing-kare presented out of images acquired from three independent
samples.

up by the liver than the portion of (=)-AuNPs (3.91 + 0.55 %ID g™) due
to the known charge selectivity in the liver uptake® (Supplementary
Fig.3). The histological studies further show that the kidney accumula-
tion of the AuNPs 24 h p.i. is mainly because of uptake by the PTs. As
shown inFig. 2d,e, the PT is a major site for uptake of both AuNPs at
24 hp.i.,whereas very few AuNPs were found in the other components
of the nephron (Supplementary Figs. 4-7). Such selectivity to the PTs
is very likely because densely packed microvilli on the apical mem-
brane of the PTs are known to increase the surface area of the PTECs
and facilitate the adsorption of filtered substances®. Consistent with
the higher kidney accumulation of (+)-AuNPs than (-)-AuNPs, more
(+)-AuNPs were internalized by PTECs than (-)-AuNPs (Fig. 2d,e and
Supplementary Fig. 8). Clathrin-mediated endocytosis was further
identified to be involved in the uptake of (+)-AuNPs by PTs, through
chlorpromazine inhibition studies (Supplementary Fig. 9). These
results confirmed the charge dependency involved in the nanopar-
ticle endocytosis by PTs. Despite the high uptake of (+)-AuNPs by the
PTs, the endocytosed (+)-AuNPs were still effectively eliminated out
of the PTs without inducing pathological damages within one month
(Fig.2fand Supplementary Fig. 10). Consistently, the kidney accumula-
tion of (+)-AuNPs decreased from 54.35 + 2.39 %ID g 'at one day p.i. to
2.62+0.27 %ID g at 30 days p.i. (Fig. 2g and Supplementary Fig. 11).
As aresult, 95.2% of the endocytosed AuNPs in the kidneys at one day
p.i. were re-eliminated after one month (Fig. 2g). A similar trend was
also observed from (-)-AuNPs (Fig. 2g and Supplementary Fig. 11). All
these findings show that the PTs can endocytose the filtered nano-
particles efficiently through charge-mediated interactions and can
alsore-eliminate the endocytosed AuNPs effectively within a month.

Biotransformation and excretion of AuNPs by PTs
Biotransformation, an intrinsic cellular metabolism of endocytosed
substances, has been found to hinder nanoparticle exocytosis'*". To

unravel the fate of endocytosed AuNPs at asubcell level, we used elec-
tron microscopy (EM) toimage the PTs down to nanometre resolution.
Ultrastructure imaging studies show that all the (+)-AuNPs inside the
PTECs were stored in either lysosomes (-93%) or endosomes (-7%)
near the luminal cell membrane 24 h p.i., further confirming that the
AuNPs were internalized by PTECs through endocytosis (Fig. 3a and
Supplementary Fig.12).Inaddition to monodispersed 2-3 nm AuNPs,
alarge portion of the nanoparticles were biochemically transformed
intolarge gold nanoassemblies 0f 216 + 55 nm with diverse morpholo-
gieswithin 24 hp.i., including flower-like assemblies of gold nanofibres
withlengths of ~20to 50 nm (Fig. 3b) and aggregates of larger AUNPs of
5-10 nm, as well as hybrid assemblies of nanofibres and 5-10 nm AuNPs
(Supplementary Figs.13 and 14). Similar morphologies of nanoassem-
blieswere observedinbothlysosomes and endosomes (Supplementary
Fig.15). This was not limited to (+)-AuNPs; (-)-AuNPs were also biotrans-
formed after endocytosis (Supplementary Fig.16). We furtherimaged
(+)-AuNPsintheliver and found that the (+)-AuNPs were endocytosed
by Kupffer cells and were also biotransformed into the flower-like
nanoassembliesin the lysosomes (Supplementary Fig.17). Similar bio-
transformation was also observed from2-3 nm dye-conjugated AuNPs
inside cancer cells' and 4 nm AuNPs inside fibroblast cells™. In addition
to the Balb/c mouse model, a metallothionine (MT) knockout mouse
modelwas also used to investigate the biotransformation mechanism.
The observation of a similar biotransformation of (+)-AuNPsin PTECs
suggeststhat MT is not essential to the AUNP biotransformation (Sup-
plementary Fig.18). Onthe other hand, we observed asize increase of
(+)-AuNPs from 2.5 nm to 10 nm as well as self-assembly of the 10 nm
AuNPsintoaunique ~150 nmdendritic gold nanostructure afterincuba-
tion with H,0,, while the size of (+)-AuNPs remained almost unchanged
after incubation with glutathione and MT at pH 4.5 in the test tubes
(Supplementary Fig.19),implying that reactive oxygen species might
play amore important role in the intracellular biotransformation of

Fig. 6 | Nanoparticle endocytosis and organelle extrusion significantly
reduced in PTs with cisplatin-induced injury. a-c, Representative pathological
and EM images of the PTs in cisplatin-injected mice showing three distinct
injury statuses. a, Anormal-appearing PT with no obvious structural damage
inthe pathology and no ultrastructural damage in the EM image. A high uptake
of (+)-AuNPs was observed (AuNPs are indicated by white arrows). b, A mildly
damaged PT. Intracellular vacuolization is clearly identified in the pathology.
Both vacuolization and mitochondrial fragmentation are observed in the EM
image. Less uptake of (+)-AuNPs was observed (AuNPs are indicated by white
arrows). ¢, Aseverely damaged PT. Degenerated proximal tubular structure
isobserved. Consistently, cell apoptosis with apoptotic bodies is observed
inthe EMimage. Almost no (+)-AuNPs are observed in the severely damaged
PTs. d, Quantification of the area fraction of silver-enhanced AuNPs in the
entire cross-section of a PT in normal-appearing, mildly damaged and severely
damaged PTs. N=30, 30 and 32 proximal tubular cross-sections in H&E-stained

kidney tissue slides were analysed for normal, mildly damaged and severely
damaged PTs, respectively. Data are presented as mean +s.d. P=5.16 x 10®
between normal and mild. P=3.75 x 10 between mild and severe. Two-sided
Student’s t-test was performed at the 0.05 significance level. e, Representative
EMimages of the extrusion and biotransformation of lysosomal AuNPs in PTs
withamild injury. The biotransformation of AuNPs was unaffected in mildly
damaged PTs. f, Percentages of PTs with organelle extrusion in normal mice and
cisplatin-treated mice after (+)-AuNP injection showing that tubular organelle
extrusion was significantly reduced in acute tubular injury. N = 3 tissue sections
from three individual tissue blocks, mean * s.d. More than 70 proximal tubular
cross-sections were analysed for each tissue block. Two-sided Student’s ¢-test
was performed at the 0.05 significance level. g, h, Representative EM images of an
autophagosome and apoptotic body in cisplatin-induced severely damaged PTs.
No gold or silver enhancement staining was used for EM samples.
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AuNPs than thiolated peptides and proteins, through their destabiliza-
tion; however, the detailed biotransformation mechanism still needs
further investigation.

While suchlarge gold nanoassemblies were expected to be perma-
nently stored in the cytoplasm according to previous understanding of

a Normal PT

nanoparticle exocytosis'“", we observed themin extracellular vesicles
of -5 umin the proximal tubular lumen (Fig. 3c,d and Supplementary
Fig. 20). Unlike the observation of individual nanoparticles released
to the extracellular space in lysosome-mediated exocytosis’, the
(+)-AuNPs and large gold nanoassemblies remained encapsulated
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inside theintactlysosomes (-92%) or endosomes (-8%) in those ~5 pm
extracellular vesicles (Supplementary Fig. 20). More astonishingly,
along with those lysosomes/endosomes containing AuNPs and gold
nanoassemblies, we also observed other organelles such as mitochon-
driaand smooth endoplasmicreticulum (ER) in these large extracellular
vesicles (Fig. 3d and Supplementary Fig. 20). Very few endocytosed
AuNPs or gold nanoassemblies were observed in distal tubules
(Fig. 3e,f and Supplementary Fig. 21) and collecting ducts (Supple-
mentary Fig.22), implying that the downstream nephron components
were less involved in the uptake of AuNPs and the re-uptake of the
extracellular vesicles. However, in the urine collected within 24 h p.i.,
we found the biotransformed gold nanostructures (including ~200 nm
flower-like assemblies of gold nanofibres and 5-10 nm gold aggregates)
alongwith ultrasmall AuNPs with their original size of 2-3 nm (Fig. 3g,h
and Supplementary Fig. 23), indicating that the AuNPs re-excreted
by PTECs were eventually cleared into the urine, consistent with the
observation of the gradual elimination of the AuNPs out of the PTs
and kidneys (Fig. 2f,g).

Organelle-extrusion-mediated elimination by PTs
Membrane fusionis an essential step in currently known nanoparticle
exocytosis mediated by intracellular vesicles®*'>. However, the observa-
tionof anintact lysosome encapsulating AuNPs and gold nanoassem-
blies in -5 pm extracellular vesicles accompanied by other organelles
implies an undiscovered nanoparticle-elimination pathway in the
kidneys. Thus, we further examined the events on the plasma mem-
brane of PTECs with EM and observed that a balloon-like fraction of
cytoplasmwith anaverage diameter of -5 umwas exclusively squeezed
through the dense microvilliand extruded into the extracellular lumen
space rather than on basolateral side (Fig. 4a-c and Supplementary
Figs. 24 and 25). Along with the extrusion of the cytoplasm on the lumi-
nal membrane, lysosome-encapsulated AuNPs and gold nanoassem-
blies, mitochondria and smooth ER were transported into the
extrusions (Fig. 4d-f and Supplementary Fig. 24). Compared to the
extracellular vesicles in the tubular lumen (Fig. 4g and Supplemen-
tary Fig.20), the observed extrusions shared the same featuresin size
(Fig.4b) and contentsincluding biotransformed AuNPs encapsulated
inlysosomes, lysosomes without gold, mitochondria, smooth ER and
apical vacuoles (Fig. 4d-i and Supplementary Fig. 24), suggesting
that the extracellular vesicles originated from the extrusions on the
plasma membrane, followed by a pinching off of the membranes and
release to the tubular cavities. We did not observe the migration of
AuNPs on the luminal side to the basolateral side of the PTs (Fig. 4c
and Supplementary Fig. 25), indicating that endocytosed AuNPs were
not reabsorbed back into the bloodstream from the basolateral side.
Giventheability of EMimagingin differentiating the segment far from
theglomerulus (S,) from those close ones (S;and S,) in PTs*’, we found
that the cellular uptake of AuNPs and the organelle-extrusion process
alsooccurredinthe S;segment (Supplementary Fig. 26), indicating that
the cellular uptake and the extrusion process are not specific to those
segments close to the glomerulus (Supplementary Fig. 4). Moreover,
we further examined the organelle-extrusion processinvitroin human
kidney proximal tubular cells (HK-2) and observed a similar extrusion of
cytoplasmonthe cellmembrane and extracellular vesicles adjacent to
cells, with the extrusion containing mitochondriaand lysosomes with
or without AuNPs (Supplementary Fig. 27), implying that organelle
extrusionis anintrinsic biological process of proximal tubular cells.

Organelle extrusion as anormal physiological
function

The observation of the extrusion and elimination of endocytosed
AuNPs along with different organelles inevitably leads to a funda-
mental question of whether this process was activated by the AuNPs
or not. Our further studies show that organelle extrusion in the PTs
also occurred in mice treated with phosphate-buffered saline (PBS;

Fig. 5a and Supplementary Fig. 28) and (-)-AuNPs (Fig. 5b and Sup-
plementary Fig. 29). Among the PBS, (-)-AuNP and (+)-AuNP groups,
there were no significant differences in the percentages of PTs with
tubular extrusion (Fig. 5¢), the sizes of the extruded vesicles (Fig. 5d)
or the numbers of extrusions (Fig. 5e), or the numbers of extruded
vesicles (Fig. 5f) in the PTs. While mitochondria were observed in the
tubular extruded vesicles, we also found that about 40% of vesicles
contained no mitochondria (Supplementary Fig. 30). Some extruded
vesicles contained neither mitochondria nor lysosomes (Fig. 5g and
Supplementary Fig. 31), some contained only lysosomes (Fig. 5h and
Supplementary Fig. 31) and some contained only ER (Fig. 5i). In some
rare cases (-2%), we even observed an entire nucleus extruded out,
together with AUNP-containing lysosomes (Fig. 5k and Supplementary
Fig. 32). These results suggest that the types of organelles extruded
out of the cell are also independent of the AuNP uptake. Although
these organelles were eliminated out of the cytoplasm, pathological
studies confirm that the PTECs remained healthy, and no elevation
of renal function biomarkers was observed (Supplementary Fig. 33).
Combining all these results, we conclude that the observed organelle
extrusionis notactivated by the AuNPs butis anintrinsic physiological
function of normal PTs to self-renew their endogenous organelles and
cytoplasmic contents.

Endocytosis and organelle extrusionininjured
PTs

While organelle extrusion is a normal function of PTs, we also unrav-
elled how drug-induced proximal tubular injury impacts organelle
extrusion of nanoparticles. Using a well-known nephrotoxic chem-
odrug, cisplatin?, we established a mouse model with acute but het-
erogeneous focal proximal tubular injuries (Supplementary Fig. 34)
and identified three types of PTs with distinct pathological features
using EM on the same tissue section: (1) PTs appearing normal, with-
out detectable pathological damages, by optical microscopy and EM
(Fig. 6a and Supplementary Fig. 35), (2) mildly damaged PTs with cell
vacuolization and mitochondrial fragmentation (Fig. 6b and Sup-
plementary Fig. 36) and (3) and severely damaged and degenerated
PTs with cell apoptosis (Fig. 6¢ and Supplementary Fig. 37). We found
that the endocytosis of (+)-AuNPs by the PTs declined as the injury
progressed. While the tubules appearing normal still internalized
the AuNPs, mildly injured tubules had a significantly reduced AuNP
uptake, and very few AuNPs were observed inside the severely injured
tubules (Fig. 6a-d and Supplementary Fig. 38). Although the uptake
efficiencies dramatically decreased as tubular injury occurred, the
biotransformation of endocytosed AuNPs remained the same in the
injured cells asin normal cells (Fig. 6e and Supplementary Figs. 35 and
36). However, the organelle extrusion also significantly decreased in
injured PTs. For (+)-AuNP-injected mice, the percentage of PTs with
organelle extrusions or extruded vesicles decreased from 37.1 + 4.6%
inthenormalmiceto 6.2 +1.5% in the cisplatinmodel (Fig. 6f). Inaddi-
tion, the observed organelle extrusions in the cisplatin model mainly
originated from tubules appearing normal or with mild injury (Fig. 6e
and Supplementary Fig. 36). No organelle extrusion was observed in
the severely damaged tubules. Moreover, once the PTs were severely
injured by cisplatin, we frequently observed autophagosomes and
apoptotic bodies (Fig. 6g,h and Supplementary Fig. 37) containing
abnormal mitochondriainside the PTECs, distinct from the extrusions
and extruded vesicles of normal PTECs containing mitochondria with
a healthy morphology (Fig. 4f,i and Supplementary Figs. 20 and 14).
These findings again suggest that organelle extrusion belongs to a
normal physiological function of healthy PTs.

Conclusion and outlook

This organelle-extrusion-mediated nanoparticle elimination is distinct
from conventional membrane-fusion-mediated exocytosis mecha-
nisms. The extruded vesicles (-5 pm) are much larger and containmuch
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richer intracellular contents, including a variety of organelles, than
those vesicles (-100-200 nm or ~1-2 pm) secreted through membrane
fusion. This nanoparticle-elimination pathway deepens our funda-
mental understanding of nanoparticle transport and interactions in
the kidneys in addition to glomerular filtration (Extended Data Fig. 1)
and ensures the effective elimination of non-biodegradable and even
biotransformed nanoparticles after they are actively taken up by the
PTs. The observed organelle-extrusion mechanismalso sheds light on
along-standing mystery of how mitotically quiescent PTECs remain
healthy while carrying out many heavy-duty functionsincluding uptake,
metabolism, reabsorption and secretion for the span of an entire life”>.
With this mechanism, PTECs can not only remove unwanted waste from
the lysosomes/endosomes but also renew intracellular organelles to
maintain homoeostasis without cell division, distinct from other situa-
tions when cells have beeninjured or are under stress®. For instance, the
extrusion of dysfunctional smooth ER aggregates was observed from
proximal tubular cells treated with methyl mercury chloride back in
the1970s (ref. 24). Dysfunctional mitochondriaand misfolded proteins
can also be released through exophergenesis once the neuronal cells
of Caenorhabditis elegans are under neurotoxic stress”. The ejection
of nuclei was observed in the maturation process of red blood cells®.
Combining our observations with previous findings highlights the
diverse self-renewal and self-repair mechanisms that biological systems
adapt to maintain homoeostasis under normal and diseased condi-
tions. Continuousinvestigations on this organelle-extrusion-mediated
self-renewal mechanism at the molecular level and potential physi-
ological functions of the extruded vesicles willundoubtedly enrich our
fundamental understanding of nephrology and guide us to develop new
diagnostics and treatments of kidney diseases, in which nanoparticles
canalways find incredible roles to play.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
ability are available at https://doi.org/10.1038/s41565-023-01366-7.
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Extended Data Fig. 1| A schematic summary of substance transport
processes carried by proximal tubular epithelial cells (PTECs). PTECs can
secrete substances from the blood into the tubular lumen and the urine through
transporter-mediated influx- and efflux-processes (green arrow line), reabsorb
substances from the lumen back into the bloodstream through transcytosis or
transporter-mediated efflux after lysosomal degradation (yellow arrow line). In
addition, this newly discovered organelle extrusion of PTECs represents another

route to remove the endocytosed and even biotransformed substances back
into the tubular lumen for further renal clearance (red arrow line), along with
elimination of other intracellular organelles. Since organelle extrusion also
happensin healthy proximal tubules without AuNP injection, the physiological
functionis believed to self-renew intracellular contents and remove wastes to
maintain homeostasis without cell division.
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