
Generalized Path Planning for Collaborative UAVs using
Reinforcement and Imitation Learning

Jack Farley∗

jack.farley@duke.edu

Department of Computer Science

Duke University

Durham, North Carolina, USA

Amirahmad Chapnevis
chapnevisa@vcu.edu

Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia, USA

Eyuphan Bulut
ebulut@vcu.edu

Department of Computer Science

Virginia Commonwealth University

Richmond, Virginia, USA

ABSTRACT

Cellular-connected Unmanned Aerial Vehicles (UAVs) need consis-

tent cellular network connectivity to effectively accomplish their

designated missions. However, when navigating through regions

with partial coverage, such as rural areas, the task of planning the

flight paths for these UAV missions becomes notably intricate. Al-

gorithms designed to solve this issue require significant compu-

tational resources, making them infeasible for active deployment

where an algorithm must run in real time using small compute

power. Furthermore, these algorithms exponentially scale in run-

time with respect to the number of UAVs being considered. To

tackle this problem, we model the parameter space as a discrete

grid-world, enable collaboration between drones, and gather su-

pervised data from nonlinear programming and unsupervised data

from a simulated version of the environment with associated re-

wards. We then train a Deep Neural Network (DNN) on this data

and approximate optimal results by combining imitation and re-

inforcement learning methods. This DNN can successfully be de-

ployed at fast speeds using relatively small computational power

and can generalize to unseen maps where drone collaboration can

be used to reduce mission time. By using the results of a network

trained on supervised data as a guiding hand during training, our

reinforcement learning approach achieves results better than ei-

ther method in isolation.

CCS CONCEPTS

•Networks→Mobile networks; •Computingmethodologies

→Multi-agent planning; Neural networks.

KEYWORDS

UAV, trajectory optimization, cellular network, reinforcement learn-

ing.

ACM Reference Format:

Jack Farley, Amirahmad Chapnevis, and Eyuphan Bulut. 2023. Generalized

Path Planning for Collaborative UAVs using Reinforcement and Imitation

∗The student was a REU participant at Virginia Commonwealth University when this
work was performed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9926-5/23/10. . . $15.00
https://doi.org/10.1145/3565287.3617622

Learning. In The Twenty-fourth International Symposium on Theory, Algo-

rithmic Foundations, and Protocol Design for Mobile Networks and Mobile

Computing (MobiHoc ’23), October 23–26, 2023, Washington, DC, USA. ACM,

New York, NY, USA, 6 pages. https://doi.org/10.1145/3565287.3617622

1 INTRODUCTION

Unmanned Aerial Vehicles are used in a variety of applications,

such as 3D mapping [12], environmental monitoring [6], natural

disaster monitoring and prediction [1], and traffic monitoring [14].

For UAVs to be used practically, they must have secure and consis-

tent connection. Most off-the-shelf UAVs rely on line of sight com-

munication, significantly decreasing the range of UAV flights, thus

restricting their potential usage. As a result, recent attempts have

beenmade to utilize cell towers for connection, to ensure that UAVs

can maintain connections over longer and more complex flights.

However, finding the path of UAVs, particularly in rural areas with

a sparse connectivity, is a significant challenge.

Recent efforts have incorporated an acceptable duration for con-

tinuous network outages in the context of UAVs [3] and focused on

optimizing the UAV trajectories considering this outage constraint.

The objective is to reduce the overall mission completion time for

all UAVs, ensuring that none of them encounter a connectivity out-

age surpassing a predefined threshold. A collaboration between

UAVs has also been considered in these studies, enabling the UAVs

to serve as relays to each other to maintain connections and curtail

their flight paths.

In order to solve this problem, a variety of tools [7] have been

utilized in existing studies [3, 16]. However, many of these solu-

tions scale quite poorly in run time with respect to the number of

UAVs being utilized, or they often require extensive information

about the state when planning paths. This study seeks to outline a

potential method for fast and generalized collaborative path plan-

ning under this outage constraint.

The rest of the paper is organized as follows. We discuss the re-

lated work in Section 2 followed by a system model described in

Section 3. In Section 4, we then outline how we have created the

data used by our model. In Section 5, we outline the specifics of

training and network initialization. In Section 6, we provide nu-

merical results and compare approximations to optimal results. Fi-

nally, we conclude and discuss future work in Section 7.

2 RELATED WORK

There have been several recent contributions to the field of trajec-

tory planning for UAVs. In [3], the authors explore the trajectory

optimization for a cellular-connected UAV considering the outage

constraint for the first time, followed by the studies in [5, 7, 16]. In

https://orcid.org/0000-0003-4744-9211
https://doi.org/10.1145/3565287.3617622
https://doi.org/10.1145/3565287.3617622

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Farley et al.

Notations Description

U, G The set of UAVs and GBSs

�푛,�푚 Number of UAVs and GBSs

�퐿D
S
, �퐿D

F
Start and final location of UAV �푢

�푥D (�푡), ~D (�푡) Location of UAV �푢 in timeslot �푡 .

�푅6 The range of GBS → UAV connection

�푅D The range of UAV → UAV connection

�푇)>C0; Sum of flight durations of all UAVs

�표<0G Maximum continuous outage threshold for

UAVs

M Nodes (points) created on the map

M(�푎) a-th point on the map

�푄" (�퐴, �푡) Minimum distance of UAV �푀 from the start

point when it is located in node�퐴 at time slot

�푡

N(�푎) Set of nodes that has at least one direct path

to node �푎 (Neighbours of Node �푎)

�표�푢�푡D (�푎, �푡) Outage time for UAV �푢 when it is located in

node �푎 at time slot �푡

Table 1: Notations and their descriptions.

[4], collaboration amongUAVs is also considered as part of the path

planning algorithm. In [12], a generalized algorithmwith quick run

time is developed relying on having significant information about

the surrounding terrain.

The field ofmulti-agent path planning (MAPF) has also exploded

in recent years with the availability and success of deep learn-

ing. In [13], reinforcement learning (RL) and imitation learning

(IL) are combined to optimize collision avoidance in path plan-

ning and to improve the run time performance. In [8], a new and

improved multi-agent actor-critic solution is proposed using cen-

tralized value approximation and decentralized policies and a per-

formance improvement in several benchmark domains has been

shown. Despite the variety of studies in trajectory planning for

UAVs, to the best of our knowledge, there is no study that specifi-

cally focuses on generalized path planning for collaborative UAVs

in the context we defined in this work. Similarly, within the MAPF

literature, there is a limited set of works that overlap partially with

the problem studied here. For example, in [10], a generalized solu-

tion is targeted including many agents, however the study does

not consider active collaboration among UAVs as we consider in

this study.

3 SYSTEM MODEL

For a given number of UAVs, n, we denote the setU = {�푢1, �푢2, . . . , �푢=}

as the set of UAVs. The location of each UAV inU is defined by an

x and y coordinate at each time step, �푡 , by �푢 (�푡) = (�푥D (�푡), ~D (�푡)).

We denote the set of m different ground base stations (GBSs) or

cell towers by |G| =�푚, where G = {�푔1, �푔2, . . . , �푔<}. The location of

each GBS in G is defined by an x and y coordinate, �푔8 = (�푥8 , ~8).

We assume a discrete 2 dimensional grid world for our experiments,

where all coordinates in the system are integers. EachUAV can take

1 of 9 actions at each time step: a single movement to any adjacent

space including diagonals or no movement. All GBSs are assumed

Figure 1: An example of optimal drone paths with and with-

out collaboration.

to have the same range of connectivity, �푅6 . Any UAV within dis-

tance �푅6 of any GBS at time �푡 is considered connected at time �푡 . All

UAVs are able to act as signal extenders to any other UAV within

range �푅D . This signal extension can be chained together. The goal

of the system is to find a path that takes each UAV from its respec-

tive start point �퐿B to its respective end point �퐿5 while primarily

minimizing total mission time (Fig. 1). Along this path, no UAV

can be continuously disconnected for more than a maximum out-

age time denoted by �표<0G . Mission time is defined as themaximum

of the set �푇 , where the set �푇 is a list of all individual times taken

for each drone to traverse from its start point to destination. This

system model is similar to the one in [4].

Table 1 shows the notations used throughout the paper. Fig. 1

shows an example of UAV flight utilizing collaborative planning.

4 DATASET GENERATION

4.1 Random Map Creation

We generated a set of 14,000 random maps using a 10 by 10 grid.

All maps are restricted to 2 UAVs. Maps have either 4 or 5 GBSs

and have an outage constraint of either 0 or 1. These values are

selected in an attempt to sample maps that would include a higher

sample of collaboration, as maps with high outage and/or many

GBSs would often permit paths directly from start to destination

for both UAVs. We randomly created maps by placing�푚 number of

GBSs randomly on the map. If any GBSs has more than a certain

threshold of intersection with another (i.e., %20), it was replaced.

Then, start and end points were selected randomly until they were

both within range of a GBS. Given these start and end points, a

feasibility check was performed to ensure all drones could reach

the destination within some time horizon. If the map was infeasi-

ble, the process was restarted. If the map was deemed feasible, the

Generalized Path Planning for Collaborative UAVs using Reinforcement and Imitation Learning MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Algorithm 1 Finding Individual UAV path (u) and check the feasi-

bility

1: �퐼�푛�푝�푢�푡 : �퐿D
(
,�퐿D
�
,M,T

2: �푄D (�푎,�푡)← ∞ ∀�푡 ≤ T , �푎 ∈ M

3: �푄D (�퐿
D
(
, 0) ← 0

4: for t in 1 : T do

5: for �푎 = 0 �푡�표 |M| do

6: for ∀ �푎′ ∈ N(�푎) do

7: if �푅�푎�푛�푔�푒� (�푎′) then

8: if �푄D (�푎, �푡 − 1) + �푑�푖�푠�푡 (�푎, �푎′) < �푄D (�푎
′, �푡) then

9: �푄D (�푎
′, �푡) ← �푄D (�푎, �푡 − 1) + �푑�푖�푠�푡 (�푎, �푎′)

10: �표�푢�푡D (�푎
′, �푡) ← 0

11: M(�푎′, �푡) ← �푎

12: end if

13: else

14: if �표�푢�푡D (�푎, �푡 − 1) < �표<0G then

15: if �푄D (�푎, �푡 −1) +�푑�푖�푠�푡 (�푎, �푎′) < �푄D (�푎
′, �푡) then

16: �푄D (�푎
′, �푡) ← �푄D (�푎, �푡 − 1) + �푑�푖�푠�푡 (�푎, �푎′)

17: �표�푢�푡D (�푎
′, �푡) ← �표�푢�푡D (�푎, �푡 − 1) + 1

18: M(�푎′, �푡) ← �푎

19: end if

20: end if

21: end if

22: end for

23: end for

24: end for

25: if �푄D (�퐿
D
�
,T) ≠ 0 then

26: return Feasible Path

27: end if

28: return Unfeasible Path

map was saved and added to the dataset. The dynamic program-

ming (DP) algorithm for feasibility is given in Algorithm 1 (input

T is a time constraint, and �푄D (�푎, �푡) denotes the distance of UAV �푢

from its destination when it is located at point �푎, along a path that

does not break the �표<0G at time �푡):

4.2 Nonlinear Programming

In previous work [4], this problem is successfully solved and mod-

eled using nonlinear programming. While quite slow, these results

are guaranteed to find optimal paths under constraints. To create

a supervised dataset, we run the nonlinear optimization on all ran-

domly created maps to create a dataset of optimal behavior for our

model to learn from. Each map takes roughly 90 seconds to con-

verge to an optimal solution. The definition of our nonlinear opti-

mization can be found in [4].

4.3 Reinforcement Learning

We use the classical formulation of a Markov Decision Process

(MDP) [2] to collect episodes of experience. We define an agent,

environment, a set of states {S}, a set of actions {A}, and policy �휋 .

We collect reward at each state-action transition. We assume this

process to have the Markov property.

We define a state s to include:

1. The current coordinates of UAV u at time t, (�푥D (�푡), ~D (�푡))

2. The coordinates of all other UAVs, (�푥8 (�푡), ~8 (�푡)),∀�푖 ≠ �푢 where

�푖 ∈ U ≠ �푢

3. The coordinates of all GBSs (�푥 9 , ~ 9)∀�푗 ∈ G

4. The outage constraint �표<0G

5. The matrix of boolean vector representing current connectiv-

ity for all UAVs C

6. The integer vector representing current continuous outage

for all UAVS �퐶>DC , where C>DC [�푖] = 0 if C[�푖] = 1

7. The Range of UAV → UAV connection �푅*
8. The range of GBS → UAV connection �푅�

We take an action A at one of 9 choices, either jumping to a point

on the grid that is adjacent including diagonal points, or standing

still.

We collect reward according to specifics outlined later in this

paragraph.

A state �푆C is Markov iff:

P[�푆C+1 |�푆C] = P[�푆C+1 |�푆1, �푆2,, �푆C] . (1)

We assume the Markov property ∀�푆C ∈ {�푆}. The MDP defines:

P0
BB′ = P[�푆C+1 = �푠′ |�푆C = �푠, �퐴C = �푎] . (2)

The policy �휋 is defined:

�휋 (�푎 |�푠) = P[�퐴C = �푎 |�푆C = �푠]∀�푎 ∈ �퐴,∀�푠 ∈ �푆, (3)

with expected reward:

R = E[�푅C+1 |�푆C = �푠, �퐴C = �푎] . (4)

We then seek to find a policy �휋 that optimizes this expected reward

∀�푆C ∈ {�푆}. We can define a state value function �푣c (�푠) starting from

state s following policy �휋 :

�푣c (�푠) = E[�퐺C |�푆C = �푠], (5)

where �퐺C is expected cumulative reward. We define a state-action

function as the expected reward starting from state s, taking action

a, and then following policy �휋 :

�푞c (�푠, �푎) = Ec [�퐺C |�푆C = �푠, �퐴C = �푎] . (6)

We consider future states to have discounted reward, �훾 , i.e., a re-

ward x steps in the future should be weighed �훾 (G−1) as heavily as

an immediate reward:

�푣c (�푠) = E[�푅C+1 + �훾�푣c (�푆C+1) |�푆C = �푠] . (7)

We use a discount factor of 0.99, as is common practice. This state-

value equation is then solved recursively.

Historically, these values are tracked with a table of all state-

action pairs [2], manually updating the average reward received

in the steps following the execution of action �푎 in state �푠 . How-

ever, a DNN can be used to perform complex function approxima-

tion, to update these values based on learned experiences. This is

a standard reinforcement learning algorithm referred to as deep Q

learning (DQN) [11].

We collected experiences by simulating this grid world environ-

ment, having agents initialized with (�푥D (0), ~D (0)) = �퐿DB ,∀�푢 ∈ U

for each random map. Agents act according to policy �휋 , which it-

eratively improves. Agents receive a reward as in [13] following:

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Farley et al.

Figure 2: A flowchart documenting the DNN architecture.

�푅C+1 = �훿�푑 − �푝 − 1

�푑�푖�푠�푡 (�푎, �푏) =
√

(�푎[0] − �푏 [0])2 + (�푎[1] − �푏 [1])2)

�훿�푑 = �푑�푖�푠�푡 (�푆C−1, �퐿5) − �푑�푖�푠�푡 (�푆C , �퐿5)

where p = -0.25 if action is no movement and �푆C ≠ �퐿5 .

If all agents reach their respective destinations, all agents re-

ceive a reward of +10, and the episode ends. If an episode lasts a

certain amount of time �푡BC>? without a destination being found, the

episode is terminated, and all agents receive no further reward. Ex-

periences are collected in parallel, as the environment supports an

arbitrary number of agents. In training, agents are unable to access

states that violate the outage constraint. At each step, each agent

is checked if it is in range of a GBS. If an agent is in range of a GBS,

the agent’s current location is stored as a variable.When the agents

violate the outage constraint, they are transported back to the last

index where they were in within range of a GBS. This greatly in-

creases the training efficiency, as compared to negative rewards for

violating the outage constraint. This approach has the drawback of

not teaching agents how to properly recover when they violate the

outage constraint, but, in practice, most algorithms would require

agents to simply fly back to the last safe location after violating the

outage constraint. Agents do not share observations but act accord-

ing to the same policy network. The policy network then learns

from the combined experience of all agents. We ran approximately

45,000 episodes of experience collection, accounting for each map

being sampled 4 times of the 80% of the random maps that are in

the training set. Maps are sampled randomly.

For one RL network, we randomly initialize the policy network.

As per [11], we exponentially decay the probability of random ac-

tions, �휖 , from 0.9 to 0.05 over the first 60,000 time steps of training.

This selection of random actions naturally allows the agent to ex-

plore sufficiently and to gain meaningful information as it refines

its policy. This decay is standard practice for DQN implementation.

For the other network, we use the network trained on super-

vised data as a guide, similar to [13]. We exponentially decay the

probability of random actions, �휖 , from 0.2 to 0.05 over the first

60,000 time steps of training to ensure some exploration is still

done. However, if an action is not selected at random, we select the

action using the guide network with some probability. This proba-

bility starts at 0.6 and linearly decays to 0 over the first 60,000 time

steps.

5 NET AND TRAINING SPECIFICS

5.1 Observation and DNN Structure

We transformed observations into normalized coordinates and bi-

nary matrices, which is similar to the structures used in [13]. We

converted GBS coordinates into a binary 10 by 10 matrix of con-

nectivity. We converted the positions of other UAVs into two 10

by 10 binary matrices- one matrix representing the current posi-

tions of other UAVs, and the other representing goal positions of

the other UAVs. These three matrices are concatenated into a 10

by 10 by 3 matrix, representing the state information independent

of the drone’s position. We also create a normalized matrix, rep-

resenting the current position of the UAV in question, the goal of

the current UAV, and the outage constraint �표<0G . The 10 by 10 by

3 matrix is passed through 2 convolutional layers, followed by a

maxpool, followed by two subsequent convolutional layers with a

final maxpool, and flattened. The 5 by 1 normalized vector is fed

into a fully connected layer (FCL), the output is rectified, and the

output of this FCL (128 by 1) is concatenated with the other flat-

tened output. This concatenated vector is fed into two subsequent

fully connected layers that output to the final policy (9 by 1), which

represent the nine possible actions at any time step. This is a very

similar network structure used in [13], which was inspired by [15].

This way of creating observations naturally generalizes to any ar-

bitrary number of UAVs. We show a visualization of this model in

Fig. 2.

5.2 Loss and Parameters

For both models, we used the AdamW optimizer. For imitation

learning, we used the cross-entropy loss between output action

probabilities and ground truth actions taken by agents in the ILP

dataset. For reinforcement learning, we used the Huber loss [9] be-

tween expected and actual state-action values. We experimented

Generalized Path Planning for Collaborative UAVs using Reinforcement and Imitation Learning MobiHoc ’23, October 23–26, 2023, Washington, DC, USA

Figure 3: RL + IL successfully learns collaboration.

Table 2: Distribution of accurate, sub-optimal and failure

paths considered during training of different solutions.

Results IL RL RL with IL

Accurate 65.0% 56.7% 70.2%

Sub optimal 15.5% 12.8% 8.5%

Critical Failure 19.5% 30.5% 19.4%

with different hyperparameters but generally used a learning rate

near 1e-4.

5.3 Training

For imitation learning, we trained the model on 80% of the gener-

ated data, holding the other 20% for testing. We found generaliza-

tion to be optimized using around 8-15 epochs. Before each epoch,

we randomly shuffled samples as is standard practice.

For reinforcement learning, we trained the model on the same

80% of maps for consistency when comparing and transferring re-

sults. The resulting data points are inherently different when com-

pared to the supervised case, as the agent can only sample experi-

ences using its policy (it of course learns off policy). For both mod-

els we used a batch size of 128. We updated the target network

every fifth batch.

6 RESULTS

We tested our learned policies on ∼2,000 maps that were not in-

cluded in training. We used the same structure that we did when

gathering RL data. That is, we initialized UAVs at their respective

start points and had agents act according to the policy they had

learned in training. We defined accurate trials as trials where both

Figure 4: No policy generalizes correctly.

Table 3: Percentage of correct results that included collabo-

rative behavior for each learned policy.

Results Baseline IL RL RL with IL

Collaboration 16.8% 8.3% 3.4% 11.4%

UAVs successfully navigated to the destination, without violating

�표<0G , with mission time equivalent to that of the optimal baseline

run on the same map. We defined sub-optimal trials as trials where

both UAVs successfully navigated to the destination without violat-

ing �표<0G , with: optimal <mission time < �푡BC>? . We defined critical

failures as trials where the outage constraint was violated (upon vi-

olating �표<0G , trials were terminated immediately) or where �푡BC>?
time passed without both drones successfully navigating to there

destinations. Importantly, we lifted the safety guards used in train-

ing that would restrict agents from violating the outage constraint

to be able to observe how they would behave in a realistic scenario.

Table 2 shows the distribution of different type of paths used

during training of different solutions. As the results show, the net-

work trained using RL + IL is the most accurate of the three. The

network seems to have the benefit of being guided down promising

paths by its supervised guide and then fully exploring those paths

using reinforcement learning. Given a network is stored onto the

system, results are quite fast, with the 2000 trajectories being gen-

erated in less than 5 seconds. The stored network is on the scale

of megabytes of storage. This hints at the feasibility of using this

algorithm in live situations with storage and time constraints.

MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Farley et al.

To measure the extent to which collaboration was learned, we

also calculated the percentage of correct results that included col-

laborative behavior for each learned policy. We define collabora-

tion as any trial that includes a time step where one of the two

UAVs is connected to a GBS, but one of the UAVs is not in range of

a GBS, but rather in range of the other UAV. We define baseline as

the percentage of optimal runs in the test set that included collab-

oration. As it is shown in Table 3, our RL + IL policy did the best

job in successfully learning how to collaborate. An example of this

is shown in Fig. 3 . It appears from both of these results that the RL

+ IL policy successfully learned a deeper and more complex policy

when compared to its two counterparts. It also suggests that this

policy was better at finding optimal routes in complex maps, as

maps that need collaboration are inherently more likely to require

complex behaviors.

For all policies, collaboration was undersampled in correct runs

when compared to baseline. This is intuitive, as collaborative poli-

cies are relatively harder to learn because they require coordinated

behavior.

Looking at unsuccessful runs, it seems evident that the policy

learned through IL acts more conservatively. In its critical failures,

it more frequently fails by sitting still rather than violating the out-

age constraint. An example of this is shown in Fig. 4. Both RL algo-

rithms violate the outage constraint more frequently, although RL

+ IL is an upgrade over RL alone in almost every way. It seems RL +

IL vs. IL is a bit more of a complex comparison, as sitting still could

be considered a less harmful failure than going astray. Additionally,

although the RL + IL algorithm behaves optimally more often, both

algorithms have roughly the same failure rate, due to the higher

rate of sub optimal routes completed by the IL policy. Asymptot-

ically with respect to grid size and number of agents, we believe

that the combination of IL + RL would prove much more fruitful

than plain IL, given that it is difficult to generate a meaningfully

sized dataset of only IL outcomes. This asymptotic improvement

has been demonstrated by [8], [13], and others.

It also seems evident that our model learned from too many triv-

ial examples. It is a goal of future work to generate a dataset that

more heavily contains complex and collaboration focused behav-

iors.

From a technical perspective, it is meaningful to mention the

number of parameters (observation structure, network, algorithm

choice, algorithm specific parameters, training specifics, etc.) that

could have potentially increased or decreased performance. Many

were tested, but given the length of time needed to trainmodels (RL

models specifically), we only were able to explore a small fraction

of this potential parameter space.

7 CONCLUSION

Cellular-connected Unmanned Aerial Vehicles require continuous

cellular network connectivity to effectively complete theirmissions.

However, in areas with limited coverage, like rural regions, plan-

ning flight paths for these UAVmissions becomes complex. Recent

endeavors have aimed to optimize UAV trajectories within accept-

able network outage periods, enhancing mission completion times.

The goal is to prevent UAVs from experiencing connectivity out-

ages beyond a predefined limit. Collaborative UAV efforts involve

using some UAVs as relays to maintain connections and shorten

flight paths. Nonetheless, the computational demands of solving

this challenge hinder real-time deployment, especially with mul-

tiple UAVs. To address this, we create a model using supervised

and unsupervised data, training a Deep Neural Network (DNN)

through a combination of imitation and reinforcement learning.

This DNN can perform effectively with limited computation power

and adapt to new environments. Through simulations, we have

shown that our approach thatmerge supervised and reinforcement

learning outperforms both individual methods.

ACKNOWLEDGMENTS

This work is supported in part by National Science Foundation

(NSF) Award# 2050958: REU Site: End-User Programming of Cyber-

Physical Systems andAward# 1815603. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of

the funding agencies.

REFERENCES
[1] Stuart M Adams and Carol J Friedland. 2011. A survey of unmanned aerial vehi-

cle (UAV) usage for imagery collection in disaster research and management. In
9th international workshop on remote sensing for disaster response, Vol. 8. 1–8.

[2] Barto and Sutton. 1992. reinforcement Learning: An Introduction.
http://incompleteideas.net/book/RLbook2020.pdf

[3] Eyuphan Bulut and Ismail Guevenc. 2018. Trajectory optimization for cellular-
connected UAVs with disconnectivity constraint. In IEEE International Confer-
ence on Communications Workshops (ICC Workshops). 1–6.

[4] Amirahmad Chapnevis, Ismail Güvenç, Laurent Njilla, and Eyuphan Bulut. 2021.
Collaborative trajectory optimization for outage-aware cellular-enabled UAVs.
In IEEE 93rd Vehicular Technology Conference (VTC2021-Spring). 1–6.

[5] Yu-Jia Chen and Da-Yu Huang. 2020. Trajectory optimization for cellular-
enabled UAV with connectivity outage constraint. IEEE Access 8 (2020), 29205–
29218.

[6] AS Danilov, Ur D Smirnov, and MA Pashkevich. 2015. The system of the eco-
logical monitoring of environment which is based on the usage of UAV. Russian
journal of ecology 46, 1 (2015), 14–19.

[7] Omid Esrafilian, Rajeev Gangula, and David Gesbert. 2020. 3D-map assisted UAV
trajectory design under cellular connectivity constraints. In IEEE International
Conference on Communications (ICC). 1–6.

[8] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Pro-
ceedings of the AAAI conference on artificial intelligence, Vol. 32.

[9] Kaan Gokcesu and Hakan Gokcesu. 2021. Generalized huber loss for robust
learning and its efficient minimization for a robust statistics. arXiv preprint
arXiv:2108.12627 (2021).

[10] Nir Greshler, Ofir Gordon, Oren Salzman, and Nahum Shimkin. 2021. Cooper-
ative multi-agent path finding: Beyond path planning and collision avoidance.
In 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS).
IEEE, 20–28.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[12] Francesco Nex and Fabio Remondino. 2014. UAV for 3D mapping applications:
a review. Applied geomatics 6 (2014), 1–15.

[13] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,
Sven Koenig, and Howie Choset. 2019. Primal: Pathfinding via reinforcement
and imitation multi-agent learning. IEEE Robotics and Automation Letters 4, 3
(2019), 2378–2385.

[14] Hazim Shakhatreh, Ahmad H Sawalmeh, Ala Al-Fuqaha, Zuochao Dou, Eyad
Almaita, Issa Khalil, Noor Shamsiah Othman, Abdallah Khreishah, and Mohsen
Guizani. 2019. Unmanned aerial vehicles (UAVs): A survey on civil applications
and key research challenges. Ieee Access 7 (2019), 48572–48634.

[15] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[16] Shuowen Zhang and Rui Zhang. 2019. Trajectory design for cellular-connected
UAV under outage duration constraint. In IEEE International Conference on Com-
munications (ICC). 1–6.

http://incompleteideas.net/book/RLbook2020.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	4 Dataset Generation
	4.1 Random Map Creation
	4.2 Nonlinear Programming
	4.3 Reinforcement Learning

	5 Net and Training Specifics
	5.1 Observation and DNN Structure
	5.2 Loss and Parameters
	5.3 Training

	6 Results
	7 Conclusion
	Acknowledgments
	References

