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Abstract
Italiano–Martelli–Migliorini recently constructed
hyperbolic groups which have non-hyperbolic
subgroups of finite type. Using a closely related
construction, Llosa Isenrich–Martelli–Py constructed
hyperbolic groups with subgroups of type 3 but not 4.
We observe that these hyperbolic groups can be chosen
to be special in the sense of Haglund–Wise.
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1 INTRODUCTION

In [12] Italiano–Martelli–Migliorini construct the first examples of hyperbolic groups containing
non-hyperbolic subgroups of finite type. This answered a well-known question which had been
open for many years (see [1, Question 1.1], [2, Question 7.2], [13, §7]). In this note, we point out
that these examples can be constructed so as to be special, in the sense of Haglund–Wise [9]. In
particular, these examples embed in right-angled Artin groups, and thus inherit linearity, residual
finiteness, and geometric subgroup separability properties from those groups. Also, being non-
abelian, these groups surject a non-abelian free group [3, Theorem 1.1]. We also explain how Llosa
Isenrich–Martelli–Py’s examples in [10, Theorem 1] of hyperbolic groups with subgroups of type
F3 but notF4 can be chosen to be special.
The hyperbolic manifold examples constructed in [12] and [10] are commensurable with

right-angled Coxeter groups, so their virtual special-ness is immediate. However, the manifolds
constructed are only finite volume and not compact, so [12] and [10] must apply Dehn filling tech-
niques to obtain hyperbolic groups with the appropriate subgroup structure. By using a version of
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2 GROVES andMANNING

the Malnormal Special Quotient Theorem due to Wise [17], we will explain how this Dehn filling
can be chosen to preserve virtual special-ness.

Theorem 1.1. There are infinitely many (pairwise non-isomorphic) special hyperbolic groups, each
of which fits into a short exact sequence

1→ " → # → ℤ → 1
so that " is non-hyperbolic and finite type.

These are particular cases of the construction in [12]. Thus, the hyperbolic group # is the fun-
damental group of a negatively curved (hence aspherical) pseudo-manifold of dimension 5, and" is the fundamental group of an aspherical pseudo-manifold of dimension 4.
Theorem 1.2. There are infinitely many (pairwise non-isomorphic) special hyperbolic groups, each
of which fits into a short exact sequence

1→ " → # → ℤ → 1
so that " is of typeF3 but not of typeF4.
These are particular cases of the construction in [10], and thus # is here the fundamen-

tal group of a negatively curved pseudo-manifold of dimension 8. Note that in order to obtain
infinitely many examples in [10, Theorem 1], a delicate argument about perturbing the fibra-
tion was required. However, once we have one example which is residually finite, we will obtain
infinitely many examples by passing to finite index subgroups. Simplicial volume will be used to
prove there are infinitelymanydifferent examples.Of course, these groups are all commensurable.

2 THE EXAMPLES

In this section, we recall some important facts about the manifold examples constructed by
Italiano–Martelli–Migliorini in [11] and [12] and by Llosa Isenrich–Martelli–Py in [10]. These
examples satisfy the following hypotheses (after possibly passing to a finite sheeted cover).

(H1) % is an orientable non-compact hyperbolic &-manifold of finite volume.
(H2) % contains disjoint open cusp neighborhoods '1, …'( so that% = % −⋃'* is a compact

manifold whose boundary consists of flat (& − 1)-dimensional tori.
(H3) If # = +1% and  = {+1'*}(*=1, then (#,) is relatively hyperbolic.
(H4) There is a surjective map ,∶ # → ℤ which is nontrivial on each . ∈  , and which has a

finitely generated kernel.
(H5) # is a finite index subgroup of a right-angled Coxeter group Γ and% is homotopy equivalent

to the cube complex #\1 where 1 is the Davis complex for Γ.
We make a few comments on these features.
The hypothesis in (H2) that the boundary consists of tori may be stronger than necessary for

what we do. In [12, Section 2], a fibered hyperbolic 5-manifold is considered which does not have
torus cusp cross sections. This 5-manifold was previously considered by Ratcliffe–Tschantz [15]
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SPECIAL IMM GROUPS 3

and is the smallest known hyperbolic 5-manifold. We do not consider this example in this paper,
though it should be possible to perform similar constructions on such an example.
Hypothesis (H3) follows from (H1) (see [5]).
Hypothesis (H4) says that the map , is an algebraic fibering of +1%. We are most interested

in the cases when ker(,) enjoys additional finiteness properties. The examples in [10] have the
property that ker(,) is type 3 but not type 4. The examples in [12] have the property that ker(,)
has type  .
Hypothesis (H5) is immediate from the construction. It follows that% is homotopy equivalent

to a virtually special cube complex [9].
We fix some% as in Hypotheses (H1)–(H5) for the rest of the section.

Definition 2.1. Given the relatively hyperbolic pair (#,) and a collection = {2. < . ∣ . ∈} the Dehn filling of # along is the group

#( ) = #/⟨⟨∪2∈2⟩⟩ .
The relatively hyperbolic version of the Malnormal Special Quotient Theorem [17, Theorem

15.6], applied using Hypotheses (H3) and (H5), yields the following.

Proposition 2.2. There are finite index normal subgroups {.̇ < . ∣ . ∈ } so that, for any collection = {2. < . ∣ . ∈ } with (i) 2. < .̇ for each .; and (ii) each .∕2. virtually cyclic, the Dehn
filling #( ) is hyperbolic and virtually compact special. Moreover, ker(# → #( )) ∩ . = 2. for
each . ∈  .
UsingHypotheses (H2) and (H4) the following lemma says we can find appropriate as above

which moreover interact nicely with the algebraic fibering ,.
Lemma 2.3. There is a collection  = {2. < . ∣ . ∈ } which satisfies the following conditions
for each . ∈  :
(1) 2. ⩽ .̇;
(2) .∕2. is virtually cyclic;
(3) 2. < ker(,);
(4) 2. − {1} contains no element whose representative as a curve on the boundary of% has length⩽ 2+.
Proof. Since the . are all isomorphic to ℤ&−1, and there are only finitely many closed geodesics
on each boundary component of % of length at most 2+, finding 2. which satisfy the above
conditions is straightforward. □

The next result uses all the hypotheses (H1)–(H5).

Proposition 2.4. Let be a collection satisfying the conclusions of Lemma 2.3, and let# = #( ).
Then the algebraic fibering ,∶ # → ℤ is equal to ,◦9, where 9 is the Dehn filling map 9∶ # → #
and ,∶ # → ℤ is an algebraic fibering. Moreover # contains a finite index normal subgroup #0 so
that the following hold.
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4 GROVES andMANNING

∙ #0 is special.∙ #0 is the fundamental group of a closed orientable negatively curved pseudomanifold of
dimension &.

Proof. By Proposition 2.2 and the choice of2. ⩽ .̇, we see that # is a virtually special hyperbolic
group. Let " be the image of ker(,) in # under the natural quotient map 9∶ # → #. Since the
kernel of 9 is normally generated by elements in ker(,), the algebraic fibering factors through 9
as desired, and there is a short exact sequence

1→ " → # ,→ ℤ → 1.
As the image of a finitely generated group, " is finitely generated.
Let#0 ⩽ # be a finite index normal special subgroup, which is in particular torsion-free, and let#0 = 9−1(#0). Since #0 has a finite index in #, there is a finite-sheeted regular covering %̃ → %

so that #0 = +1(%̃).
Let .0 be a cusp subgroup of #0, which is of the form .0 = .g ∩ #0 for some . ∈  and g ∈ #.

By the last sentence of Proposition 2.2, the intersection of ker(9) with . is 2.. Let 20 = 2g. ∩ #0
be the intersection of .0 with ker(9). Then .0∕20 is virtually cyclic and embeds in the torsion-
free #0, so .0∕20 ≅ ℤ and20 is a direct summand of .0. Moreover, ker(,) ∩ .0 ⩽ 20, so the map.0 → .0∕20 ≅ ℤ factors through themap .0 → ℤ induced by the fibration. Sinceℤ is torsion free
we have ker(,) ∩ .0 = 20.
We now have a short exact sequence

1→ "0 → #0 → ℤ → 1,
where "0 = " ∩ #0.
Each cusp group .0 < #0 is the fundamental group of some boundary component =0 ≅ =&−1,

fibered by totally geodesic tori of dimension (& − 2) whose fundamental groups are all equal to20. On the level of topology, the map 9|#0 is realized by coning all these (& − 2)-dimensional
tori to points, in other words attaching a copy of '(=&−2) × ?1 to each boundary component. The
resulting space is a closed &-dimensional pseudo-manifold, which is amanifold away from a finite
collection of circles. In [8], it is shown that under the condition (4) of Lemma 2.3, this closed
pseudo-manifold can be given a locally CAT(−1)metric. □

The following summarizes two theorems from [10]; it uses the hypotheses (H1)–(H4).

Theorem 2.5 [10, Theorems 3 and 5]. Let ,∶ #( )→ ℤ be as in Proposition 2.4. If ,0 = ,|#0 andker(,) is ( for some ( ⩾ 0, then ker(,0) is also ( . If & is even and ker(,) is not &∕2, then neither
is ker(,0).
3 PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. The construction in [12] begins by constructing an% satisfying the hypothe-
ses (H1)–(H5), which additionally has the property that , = A∗ where A∶ % → C1 is a fiber
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SPECIAL IMM GROUPS 5

bundlemap. This fibration restricts on each boundary component to a fibration by totally geodesic
sub-tori (see [12, §1.13]).
Choosing a collection  of filling kernels as in Lemma 2.3, we obtain a map 9∶ # → # and

a finite index subgroup #0 < # as in the conclusion of Proposition 2.4. As in the proof of that
proposition we set #0 = 9−1(#0) and let %̃ be the corresponding finite-sheeted cover.
On the level of topology, the map 9|#0 ∶ #0 → #0 can be obtained from coning the geodesic3-tori fibers in the boundary components of %̃ to points, to obtain a space %̂ with +1(%̂) ≅ #0.

Moreover, there is an induced fibration %̂ → C1 with fiber Ê the fiber of %̃ → C1 with boundary3-tori coned to points.
This is exactly the construction described in [12, §3] applied to the manifold %̃. As in [12, §3],

there is an infinite cyclic cover of the aspherical pseudomanifold %̂ which is homeomorphic toÊ × ℝ, and so Ê is aspherical. In particular +1Ê has finite type. Moreover, the arguments of [12,
§3] show +1Ê is not hyperbolic.†
To get infinitely many groups as in Theorem 1.1, we may pass to subgroups of #0 of larger and

larger finite index, which exist because #0 is special and hence residually finite. To distinguish
these, we use simplicial volume. (This is a homotopy invariant, so the simplicial volume of #0 is
the same as the simplicial volume of %̂.) Since %̂ is a negatively curved closed pseudomanifold, its
simplicial volume is positive (see [18] for an explicit estimate). Simplicial volume is multiplicative
under covers (see [6, Proposition 7.2]), so the simplical volumes of our finite index subgroups of#0 go to infinity. This establishes Theorem 1.1. □

Proof of Theorem 1.2. In [10] Llosa Isenrich–Martelli–Py give an example of a hyperbolic8–manifold satisfying the hypotheses (H1)–(H5) and with the additional property that ker(,) has
property3 but not4. Theorem 2.5 implies that these finiteness properties persist inDehn fillings
as described in Proposition 2.4. We therefore obtain a special hyperbolic closed pseudo-manifold
group with a subgroup of type 3 but not of type 4. As in the proof of 1.1, since this group is
residually finite, we can find infinitely many examples by passing to finite index subgroups. □

4 QUESTIONS AND REMARK

Question 4.1. We see that these groups are QCERF. Are they LERF?

Question 4.2. In the language of Lubotzky–Manning–Wilton [14] we prove that a positive fraction
of 2+-fillings as above are virtually special. Is this true for all sufficiently long 2+-fillings?
Question 4.3. Is it possible to obtain infinitelymany commensurability classes in the conclusions
of Theorems 1.1 and/or 1.2?

Remark 4.4. In [7], Fujiwara starts with the fibered 5-manifold of [12] and does a manifold filling
to obtain an aspherical manifold (with a relatively hyperbolic fundamental group) which fibers

†Here is an alternative argument that +1Ê is not hyperbolic. Since +1%̂ is torsion-free hyperbolic, +1Ê admits an infinite
order atoroidal outer automorphism, namely the monodromy of the bundle. If +1Ê were hyperbolic, a result of Sela [16,
Corollary 1.10] would imply that +1Ê was a free product of free and surface groups—see [4, Chapter 2]. On the other handH4(+1Ê) = H4(Ê) = ℤ, since Ê is a closed orientable four-dimensional pseudomanifold.
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6 GROVES andMANNING

over the circle. In a subsequent paper, wewill explain that Fujiwara’s examples can be constructed
to have residually finite fundamental group.
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