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QUASICONVEXITY AND DEHN FILLING

By DANIEL GROVES and JASON FOX MANNING

Abstract. We define a new condition on relatively hyperbolic Dehn filling which allows us to control
the behavior of a relatively quasiconvex subgroups which need not be full. As an application, in
combination with recent work of Cooper and Futer, we provide a new proof of the virtual fibering
of non-compact finite-volume hyperbolic 3-manifolds, a result first proved by Wise. Additionally, we
explain how previous results on multiplicity and height can be generalized to the relative setting to
control the relative height of relatively quasiconvex subgroups under appropriate Dehn fillings.

1. Introduction. Dehn filling results for hyperbolic and relatively hyper-
bolic groups have been used to great effect in recent years, notably in solving the
isomorphism problem for a broad class of relatively hyperbolic groups [9], and as
part of Agol’s proof of the Virtual Haken Conjecture [2] (see particularly [4] and
the appendix to [2]). In many of these results a key ingredient is the control of rela-
tively quasiconvex subgroups under Dehn filling, building on techniques developed
in [3].

In previous work, this control was limited by the requirement that the fillings
be “H-fillings”, for a relatively quasiconvex subgroup H . This requirement is mild
when H is full (in the sense that each infinite intersection of H with a maximal par-
abolic subgroup is finite index in that parabolic), but more restrictive for general
relatively quasiconvex subgroups. One way to avoid this issue is to apply combi-
nation theorems such as those in [19, 18], etc. to enlarge relatively quasiconvex
subgroups to full ones. Even in case this is possible, the methods of this paper are
conceptually simpler as they avoid this intermediate enlargement step.

In this paper, we propose a new condition on relatively hyperbolic Dehn filling,
which we call H-wide, which is applicable to relatively quasiconvex subgroups H
in much greater generality than previous techniques. We prove that under suffi-
ciently long and H-wide fillings, the same control can be had over the behavior
of a relatively quasiconvex subgroup H under filling as could be obtained with
sufficiently long H-fillings in the previous works.

We provide two main applications. First, we combine our work with recent
work of Cooper and Futer [6] to give a new proof of the following theorem of
Wise.
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96 D. GROVES AND J. F. MANNING

THEOREM A. [28, Theorem 14.29] Suppose that G is the fundamental group
of a non-compact finite-volume hyperbolic 3-manifold. Then G is virtually compact
special.

The study of (virtually) special cube complexes and groups was initiated by
Haglund and Wise in [13]; we refer to that paper for the definition and basic prop-
erties. The following is an immediate consequence of Theorem A and Agol’s cri-
terion for fibering [1, Theorem 1.1].

COROLLARY B. Suppose that M is a non-compact finite-volume hyperbolic
3-manifold. Then M has a finite-sheeted cover which fibers over the circle.

Previous to this paper, Wise’s unpublished manuscript [28] contained the only
proof that a non-compact finite-volume hyperbolic 3-manifold virtually fibers over
a circle. Our proof does not rely on any results from [28] (and neither does the one
in [6]).

The second application we provide is to use H-wide fillings to explain how the
results from [2, Appendix A] can be generalized to control the “relative height” of
relatively quasiconvex subgroups under Dehn fillings. We apply this to prove a re-
sult (Theorem 7.18) needed by Wilton and Zalesskii in their work [27] on profinite
rigidity of 3-manifold groups.

1.1. On virtual fibering of hyperbolic 3-manifolds. Agol proved in [2]
that fundamental groups of closed hyperbolic 3-manifolds are virtually special,
which implies that these manifolds are virtually Haken, and virtually fibered. He
also proved that Kleinian groups are LERF, and large.

In the non-compact but finite-volume case, the LERF and large results are in-
cluded in Agol’s result, and these manifolds are well known to be Haken. However
virtual fibering in the non-compact case is not covered by [2].

We make some comments on Wise’s proof of Theorem A in the most recent
publicly available version of [28], dated October 29, 2012. This proof relies on
[28, Theorem 16.28], which in turn uses [28, Theorem 16.16] in three places. This
last result is about the separability of quasiconvex subgroups of certain graphs of
virtually sparse special groups. In the proof of [28, Theorem 16.16], Wise asserts
that relative quasiconvexity of subgroups of relatively hyperbolic groups persists
under sufficiently long fillings and refers to Osin [22]. Such a result is not in [22]
and in fact a correct formulation requires some care (see Example 4.8 below).

As explained above, existing results about controlling relatively quasiconvex
subgroups under Dehn filling, such as those in [3, 2] and also [28, Theorem 15.6],
apply to relatively quasiconvex subgroups which are full, and they do not apply in
the setting needed in [28, Theorem 16.16].

We believe the above issue in the proof of [28, Theorem 16.16] can be fixed
using either a “Combination Theorem” approach or techniques as in the current
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paper. However, one of our goals here is to use the advances of the last five years
to give an alternative proof of virtual fibering in the non-compact setting.

1.2. Outline. In Section 2 we recall the basic concepts about relatively hy-
perbolic groups, relatively quasiconvex subgroups, and Dehn filling. In Section 3
we introduce the notion of H-wide fillings. In Section 4 we prove that the behavior
of a relatively quasiconvex subgroup H under sufficiently long and H-wide fillings
is well controlled. We also give an example to show that this is not true without the
assumption of H-wideness. In Section 5 we prove that in certain circumstances we
can ensure the existence of appropriate H-wide fillings. In Section 6 we provide
the application to virtual specialness of fundamental groups of finite-volume hy-
perbolic 3-manifolds. Finally, in Section 7, we prove that the results about height in
the hyperbolic setting from [2, Appendix A] can be generalized to control relative
height under sufficiently long and H-wide fillings. These results may be of inde-
pendent interest. As an application, we prove Theorem 7.18, the result required by
Wilton and Zalesskii.

Acknowledgments. Thanks to Stefan Friedl for asking for an alternative ac-
count of virtual fibering for finite-volume hyperbolic 3-manifolds, and to Henry
Wilton for useful discussions and for asking us to prove Theorem 7.18. Thanks
also to Dave Futer and Eduard Einstein for useful comments on an earlier version
of this paper.

The authors thank the Mathematical Sciences Research Institute, where the
second author was in residence during the conception of this work, and the Amer-
ican Institute of Mathematics, where the paper was finished.

2. Background. For background on relatively hyperbolic groups, their as-
sociated cusped spaces, and relatively hyperbolic Dehn filling see [11]. For back-
ground on relatively quasiconvex subgroups see [3, 15]. We always work in a com-
binatorial cusped space X =X(G,P,S), where S is some chosen generating set
for G which also contains generating sets for the peripheral groups P ∈ P. This
cusped space contains a copy of the Cayley graph of G with respect to the genera-
tors S. The depth of a vertex of X is its distance to the Cayley graph.

Suppose that (G,P) is relatively hyperbolic. We fix a combinatorial cusped
space X for the pair (G,P) as in [11]. Since (G,P) is relatively hyperbolic, X is
Gromov hyperbolic. Unless otherwise stated, δ is a hyperbolicity constant for the
space X.

Recall that a Dehn filling of (G,P) is determined by a collection N =
{NP }P∈P of normal subgroups NP !P . The Dehn filling is the quotient

G(N ) =G/〈〈∪NP 〉〉.

The peripheral groups of G(N ) are the images of the elements of P in G(N ). We
often abbreviate this as (G,P)→ (G,P). A statement S holds for all sufficiently
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long fillings if there is a finite set B ⊂ ∪P ! {1} so that S holds for any fillings
G(N ) so that NP ∩B = /0 for all P ∈ P. If (G,P) is a Dehn filling of (G,P),
with G = G/K, then one obtains a combinatorial cusped space X for (G,P) by
taking X equal to K

∖
X with self-loops removed. In fact, since the self-loops do

not affect the metric on the zero-skeleton, we ignore the issue of removing them
and abuse notation by setting X =K

∖
X.

The following result is key to any approach to relatively hyperbolic Dehn filling
theorems using the cusped space.

THEOREM 2.1. Using the cusped spaces just described, let B be a finite metric
ball in X. For all sufficiently long fillings the quotient map X→K

∖
X restricts on

B to an isometric embedding whose image is a metric ball.

Proof. This follows immediately from [22, Theorem 1.1]. "

Using the coarse Cartan-Hadamard Theorem [7, A.1] and the uniform hy-
perbolicity of combinatorial horoballs [11, Theorem 3.8] we obtain the following
corollary, which was stated in a slightly weaker form as [3, Proposition 2.3].

PROPOSITION 2.2. For all δ > 0 there is a δ′ > 0 so that if the combinatorial
cusped space X is δ-hyperbolic, then for all sufficiently long fillings, the combina-
torial cusped space X of the Dehn filling is δ′-hyperbolic.

Remark 2.3. Proposition 2.2 implies that (G,P) is relatively hyperbolic, us-
ing only Theorem 2.1. The proof of Theorem 2.1 in [11] used the bicombing of
X by preferred paths, whereas the proof that the cusped space of X is Gromov
hyperbolic used a homological bicombing which used an adaptation of results of
Mineyev from [21]. Using the above approach allows one to avoid the homological
bicombing in [11] entirely.

Definition 2.4. Suppose that (G,P) is relatively hyperbolic with associated
cusped space X. Let A be a horoball in X, and let R > 0. A geodesic penetrates
A to depth R or R-penetrates A if it contains a point in A at depth R.

Suppose H ≤ G. Then A is R-penetrated by H if there is a geodesic γ with
endpoints in H which R-penetrates A.

Recall the following result from [18].

PROPOSITION 2.5. [18, Proposition A.6] Let (G,P) be relatively hyperbolic
and H ≤ G be relatively quasiconvex. There is a constant R so that whenever a
horoball A of X is R-penetrated by H then the intersection of H with the stabilizer
of the horoball is infinite.

The following is a combination of Lemma 3.3 from [12], and a statement im-
plicit in its proof.
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LEMMA 2.6. [12, Lemma 3.3] Suppose (G,P) is relatively hyperbolic, with
δ-hyperbolic combinatorial cusped space X. Suppose further that P1 and P2 are
distinct conjugates of elements of P , and that F = P1∩P2. Then F acts freely on
some set Q in X which lies in the Cayley graph and has diameter (in X) at most
2δ+1.

In particular, there is a constant C depending only on δ and the cardinality of
the generating set S so that #F ≤ C .

The second part of the Lemma says that if P1 and P2 are distinct maximal
parabolics, then #P1 ∩P2 ≤ C . In other words, the family P is C-almost malnor-
mal. In particular, for a parabolic subgroup A of size more than C , there is no
ambiguity about which g ∈ G and which P ∈ P has A ≤ P g (up to the choice of
conjugating element in gP ).

The following result was stated without proof as [12, Proposition 3.4]. The
proof that we provide here is more elementary than the one suggested in [12].

PROPOSITION 2.7. If (G,P) is relatively hyperbolic, and P is C-almost mal-
normal, then for all sufficiently long fillings (G,P) of (G,P), the collection P is
C-almost malnormal.

Proof. By Proposition 2.2, there is a δ′ so that for all sufficiently long fillings
(G,P) of (G,P), the cusped space X for (G,P) is δ′-hyperbolic. Fix a filling
(G,P) so that the induced map between cusped spaces is injective on any ball of
radius 100δ′ centered in the Cayley graph of X (see Theorem 2.1).

Suppose that P 1 and P 2 are distinct conjugates of elements of P , and let
F = P 1 ∩P 2. There are horoballs A1 and A2 in X so that P i stabilizes Ai. As
explained in the proof of [12, Lemma 3.3], the subgroup F acts freely on a subset
of the Cayley graph of G in X of diameter at most 2δ′+ 1. Moreover, it is clear
by considering the F -orbit of a geodesic between the limit points of A1 and A2 in
∂X that there are also subsets Q1 and Q2 of diameter at most 2δ′+1 so that F acts
freely on each Qi and Qi is contained in Ai at depth 5δ′.

Suppose that a geodesic between Q1 and Q2 10δ′-penetrates some other
horoball B. Then let B be the closest such horoball to A1, and replace A2 by B
and Q2 by an F -invariant subset Q of B at depth 5δ′ and diameter at most 2δ′+1.
In this manner, we may suppose that any geodesic between Q1 and Q2 stays within
a 10δ′-neighborhood of the Cayley graph in X ′.

We may thus lift Q1, Q2 and the geodesics between them to X. To see that this
is possible, consider that any pair of points in Q1 and pair of points in Q2 are the
vertices of a geodesic quadrilateral with two sides of length at most 5δ′ and so can
be filled with a disk which lies entirely within a 20δ′-neighborhood of the Cayley
graph. In an entirely similar way to the proof of [12, Theorem 4.1] (a result whose
proof did not rely on the result we are currently trying to prove), it now follows that
F can be lifted bijectively to a finite subgroup F of G which stabilizes two distinct
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horoballs. Because P is C-almost malnormal, it follows that |F |= |F |≤C , which
is what we were required to prove. "

Definition 2.8. Suppose that (G,P) is relatively hyperbolic and that X is a
cusped space for (G,P) which is δ-hyperbolic. A parabolic subgroup Q of G is
uniquely parabolic if there is a unique conjugate of an element of P which contains
Q.

It follows from [12, Lemma 3.3] that there is a constant C so that any parabolic
subgroup of size more than C , and in particular any infinite parabolic subgroup, is
uniquely parabolic.

It is an immediate consequence of the definition that a uniquely parabolic sub-
group stabilizes a unique horoball in the cusped space.

In order to fix notation, we recall a definition from [3, Section 3], and slightly
adapt the notation from there. Let H ≤ G. Suppose that D is a collection of rep-
resentatives of H-conjugacy classes of maximal uniquely parabolic subgroups of
H . Given D ∈ D, there exists PD ∈ P and cD ∈ G so that D ≤ cDPDc

−1
D . We

fix such cD , and suppose that cD is a shortest possible choice. We abuse notation
slightly and write (H,D)≤ (G,P). Let Y be a combinatorial cusped space for the
pair (H,D). The inclusion ι : H ↪→G extends to an H-equivariant Lipschitz map
ι̌ : Y (0)→X as follows:

A vertex in a horoball of Y is determined by a triple (sD,h,n) where s ∈H ,
D ∈D and n ∈ N. We define

ι̌(sD,h,n) =
(
scDPD,hcD,n

)
.

It follows from [3, Lemma 3.1] that ι̌ is H-equivariant and α-Lipschitz for some
α. We refer to ι̌ as the induced map on cusped spaces. Whenever we have a pair
(H,D)≤ (G,P) as above, we fix the subgroups PD ∈P and the (shortest) elements
cD as above.

Definition 2.9. Suppose that (G,P) is relatively hyperbolic and that H ≤ G
is a subgroup. Suppose that D consists of a set of representatives of H-conjugacy
classes of maximal uniquely parabolic subgroups of H . Then (H,D) is relatively
quasiconvex in (G,P) if the image of the 0-skeleton of the cusped space of (H,D)
in the cusped space of (G,P) is λ-quasiconvex for some λ. In this case we say that
λ is a quasiconvexity constant for (H,D) in (G,P).

This definition is slightly different than the one in [3], since we do not assume
that (H,D) is relatively hyperbolic. However, we do assume that D consists of
maximal uniquely parabolic subgroups of H . If the image of the cusped space of
(H,D) in the cusped space of (G,P) is quasiconvex, then it follows from the proof
of [18, Theorem A.10] that H is relatively quasiconvex in the sense of Hruska
[15], and hence that (H,D) is relatively hyperbolic. Therefore, this definition is
equivalent to others in the literature, by the results in [18, Appendix A].
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3. H-wide fillings.

Definition 3.1. Let P be a group, B ≤ P a subgroup, and S a finite set. A
normal subgroup N#P is (B,S)-wide in P if whenever there are b∈B and s∈ S
so that bs ∈N we have s ∈B.

Definition 3.2. Let (G,P) be relatively hyperbolic and let (H,D)≤ (G,P) be
relatively quasiconvex. Let S ⊆

⋃
P!{1}. A filling

G−→G=G(N )

is (H,S)-wide if for any D ∈ D (with D ≤ P cD
D as above) the normal subgroup

ND is (Dc−1
D ,S∩PD)-wide in PD. (To simplify notation, for D ∈D, we write ND

for NPD .)

Since it is possible that PD1 = PD2 for D1 ,=D2, it is also possible that ND1 =
ND2 . We also remark that ND need not be a subgroup of H .

In place of the statement in Definition 3.2 above, we sometimes use the equiv-
alent formulation that for any D ∈D (with D≤ P cD

D as above), any d ∈D and any
w ∈ S ∩PD, if dcDwc−1

D ∈N cD
D , then cDwc

−1
D ∈D.

Definition 3.3. We say that a property P holds for all sufficiently long and H-
wide fillings if there is a finite set S ⊆

⋃
P! {1} so that P holds for any (H,S)-

wide filling G→G(N ) for which N ∩S = /0 for each N ∈N .

Remark 3.4. In the definition of (H,S)-wide, one should think of S containing
all nontrivial elements of

⋃
P in a large ball around the identity. This ensures

that, for each D ∈ D, a “big neighborhood” of D = D/(N cD
D ∩D) embeds in

P
cD
D = (PD/ND)cD , ruling out behavior like that pictured in Figure 1.

Previous quasiconvex Dehn filling results [2, 3, 18] have been in terms of “H-
fillings”, whose definition we now recall.

Definition 3.5. Let (G,P) be relatively hyperbolic, let H < G be relatively
quasiconvex, and let N = {NP }P∈P be a collection of filling kernels. The Dehn
filling G→G=G(N ) is said to be an H-filling if, whenever #(P g ∩H) = ∞, the
kernel Ng

P lies entirely in H .

Remark 3.6. In [3] the condition “P g∩H ,= {1}” was used instead of “#(P g∩
H) = ∞.” As explained in [18], the formulation in Definition 3.5 is the correct one
if there is torsion, and this is the definition that is used in [2, 18].

The following result shows that, at least for long fillings, the notion of H-wide
filling generalizes that of H-filling.

LEMMA 3.7. Let (G,P) be relatively hyperbolic, and let H <G be relatively
quasiconvex. For any finite S ⊂G any sufficiently long H-filling is (H,S)-wide.
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Figure 1. A cartoon of the coset graph for NcD
D in P cD

D and the kind of loop forbidden
by (H,S)-wideness with w ∈ S.

Proof. Let R be the constant from Proposition 2.5, as applied to H . Let D be
the peripheral structure on H consisting of maximal uniquely parabolic subgroups,
and {PD ∈ P} and {cD ∈G} the elements described before, so that D < P cD

D for
each D ∈D. Let M = max{dX(1, cD)}+max{dX(1,w) | w ∈ S}. Choose filling
kernels {Nj !Pj} determining a sufficiently long H-filling so that any geodesic
joining 1 to n ∈Nj \{1} must (R+M +2δ+2)-penetrate the horoball stabilized
by Pj .

Now suppose that for some w ∈ S and some d ∈D ∈D we have dwcD ∈N cD
D .

We must show that wcD ∈ D. Since (dwcD)c
−1
D ∈ ND, the geodesic from 1 to

(dwcD)c
−1
D must (R+M + 2δ + 2)-penetrate the horoball stabilized by PD. In

particular, dX(1,(dwcD )c
−1
D ) must be at least 2R+ 2M + 4δ + 4. Consider the

quadrilateral with vertices 1, cD,dcDw,d. The segment [cD,dcDw] is the trans-
late of a geodesic [1,(dwcD )c

−1
D ] by cD, so it has length at least 2R+2M +4δ+4

and (R+M + 2δ+ 2)-penetrates the horoball based on cDPD . Since the sides
[1, cD] and [dcDw,d] have length at most M , the side [1,d] must pass within 2δ of
[cD,dcDw] at its midpoint, which is also its deepest point in the horoball. In partic-
ular [1,d] must R-penetrate the horoball based on cDPD. Since d ∈H , Proposition
2.5 implies that H ∩P cD

D = D is infinite. Since the filling kernels N determine
an H-filling, this implies that ND < D, and in particular, the element dwcD ∈D.
It immediately follows that wcD ∈ D, so we have established that the filling is
(H,S)-wide. "
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In any case, if (H,D) is a relatively quasiconvex subgroup of the relatively
hyperbolic pair (G,P), any Dehn filling of (G,P) induces a Dehn filling of (H,D),
which may or may not inject into the filling of G.

Definition 3.8. Let (G,P) be relatively hyperbolic, and let H <G be relatively
quasiconvex. Let D be the canonical (uniquely parabolic) peripheral structure on
H , so each D ∈ D is contained in some P cD

D for a unique PD ∈ P , and some
shortest cD . Let N = {NP }P∈P be a collection of filling kernels for (G,P). The
induced filling kernels for (H,D) are the collection NH = {N cD

PD
∩D}D∈D. These

define the induced filling

(H,D)−→
(
H
(
NH
)
,D
)
,

where D consists of the images of the elements of D in H(NH) =H/〈〈
⋃
NH〉〉H .

There is a natural map from H(NH) to the filling G(N ).

4. Properties of H-wide fillings. In this section we prove various results
which imply that a relatively quasiconvex subgroup H can be controlled in H-wide
fillings. These results should be compared to those in [3, Section 4], where analo-
gous results are proved for the behavior of a full relatively quasiconvex subgroup
H under sufficiently long H-fillings.

Let (G,P) be relatively hyperbolic. According to Proposition 2.2, there exists a
constant δ so that the cusped space for G is δ-hyperbolic, and moreover the induced
cusped spaces for sufficiently long fillings of (G,P) are also δ-hyperbolic. In this
section, we assume that δ is such a constant, and that all fillings we perform are
long enough so that the cusped spaces of the filled groups are δ-hyperbolic.

The following lemma is a reformulation of [3, Lemma 4.1].

LEMMA 4.1. Suppose (G,P) is relatively hyperbolic, and that L1,L2 ≥ 10δ.
For sufficiently long fillings π : G→G=G/K with induced map between cusped
spaces π : X →X, and any geodesic γ in X either:

(1) There is a 10δ-local geodesic in X between the endpoints of π(γ) which
lies in a 2-neighborhood of π(γ) and agrees with π(γ) in the L1-neighborhood of
the Cayley graph in X; or

(2) There is a horoball A in X so that γ L2-penetrates A in a segment [x,y]
with x,y ∈G, and there is some k ∈K stabilizing A so that dX(x,k ·y)≤ 2L1+3.

The following result is very similar to [3, Lemma 4.2] but for H-wide fillings
rather than H-fillings. The induced filling is defined above in Definition 3.8.

LEMMA 4.2. Suppose that (G,P) is relatively hyperbolic and that H ≤ G is
relatively quasiconvex. Let R be the constant from Proposition 2.5. For any L1 ≥
10δ, L2 > max{2L1 +3,R}, and all sufficiently long and H-wide fillings π : G→
G, the following holds: suppose that KH ≤ ker(π)∩H is the kernel of the induced
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filling of H , that h ∈H and that γ is a geodesic from 1 to h. If conclusion (2) of
Lemma 4.1 holds then there exists k ∈KH so that dX(1,kh) < dX(1,h).

Proof. Let D be a collection of representatives of H-conjugacy classes of max-
imal uniquely parabolic subgroups of H , so that (H,D) is relatively quasiconvex
in (G,P).

Let γ be a geodesic as in the statement of the lemma, and suppose that con-
clusion (2) of Lemma 4.1 holds. Accordingly there is some horoball A which is
L2-penetrated by γ. Let gP be the coset on which A is based. According to Propo-
sition 2.5, H ∩P g is infinite. This implies that there are r ∈H , and D ∈D, so that
P = PD and gP = rcDPD . The intersection of γ with A is the segment [x,y], and
there is an element k ∈N rcD

D so that dX(x,k ·y)≤ 2L1 +3.
Now, by quasiconvexity of (H,D), there exists some d1,d2 ∈ D so that

dX(x,rd1cD),dX (y,rd2cD) are both bounded by some constant L depending
only on the quasiconvexity constant for (H,D).

Let w1 = (rd1cD)−1ky and w2 = y−1rd2cD. Both dX(1,w1) and dX(1,w2)
are at most L+ 2L1 + 3, and both w1 and w2 lie in PD . Let S be the set of words
in the parabolic subgroups of X-length at most 2(L+ 2L1 + 3). Since k ∈ N rcD

D ,
we can find n ∈ND so that k = rcDnc

−1
D r−1.

We have

k = ky ·y−1 = rd1cDw1w2c
−1
D d−1

2 r−1.

Therefore,

cDnc
−1
D = d1cDw1w2c

−1
D d−1

2 ,

and
(
d−1

2 cD
)
n
(
d−1

2 cD
)−1

=
(
d−1

2 d1
)
cDw1w2c

−1
D .

However, for an (H,S)-wide filling, there can only be an element of ND of this
form if cDw1w2c

−1
D ∈ D. This implies that cDnc−1

D ∈ D, which implies that k ∈
Dr ∩N cD

D ≤KH .
Since dX(x,ky) ≤ 2L1 + 3, but dX(x,y) ≥ 2L2 > 2L1 + 3, it is clear that

dX(1,k ·h)< dX(1,h), as required. "

The following result is an immediate consequence.

COROLLARY 4.3. Suppose that (G,P) is relatively hyperbolic and that H ≤G
is relatively quasiconvex. For any L≥ 10δ and for all sufficiently long and H-wide
fillings π : G→ G, if h ∈ H is the shortest element of H ∩π−1(π(h)) and γ is
a geodesic from 1 to h then there is a 10δ-local geodesic in X with the same
endpoints as π(γ) which lies in a 2-neighborhood of π(γ) and agrees with π(γ) in
an L-neighborhood of the Cayley graph of G in X.
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Recall that in a δ-hyperbolic space, 10δ-local geodesics are quite close to
geodesics. In particular, we have the following (see [5, III.H.1.13] for a more gen-
eral and precise statement):

LEMMA 4.4. Let γ be a 10δ-local geodesic in a δ-hyperbolic space. Then γ is
a (7/3,2δ)-quasigeodesic, and is Hausdorff distance at most 3δ from any geodesic
with the same endpoints.

Lemma 4.2, and its interpretation in the form of Corollary 4.3 are the key
results needed to generalize many results about H-fillings to sufficiently long and
H-wide fillings, as we now explain.

PROPOSITION 4.5. (cf. [3, Proposition 4.3]) Let (G,P) be relatively hyper-
bolic and suppose that H is a relatively quasiconvex subgroup of (G,P), with
relative quasiconvexity constant λ. There exists λ′ = λ′(λ,δ) so that for all suf-
ficiently long and H-wide fillings π : G→ G the subgroup π(H) is λ′-relatively
quasiconvex in G.

Proof. Recall that at the beginning of the section we fixed a constant δ so that
the cusped space X for (G,P) is δ-hyperbolic and that for sufficiently long fillings
π : G→G the cusped space X for (G,P ) is also δ-hyperbolic. Suppose that H is
λ-relatively quasiconvex.

Let h ∈ π(H) and suppose that h ∈ H is the shortest element of H so that
π(h) = h. Let γ be a geodesic from 1 to h in X. By Corollary 4.3 with L = 10δ,
for sufficiently long and H-wide fillings there is a 10δ-local geodesic in X from
1 to h which lies in a 2-neighborhood of π(γ) and agrees with π(γ) in a 10δ-
neighborhood of the Cayley graph.

By Lemma 4.4, any geodesic from 1 to h is contained in an (3δ + 2)-
neighborhood of π(γ), and thus within a (λ+ 3δ+ 2)-neighborhood of the image
of the cusped space of H in X. This suffices to prove the result, as in the proof
of [3, Proposition 4.3]. (All that remains is to consider geodesics between points
in the image of the cusped space of H which do not lie at depth 0, and it is
straightforward to deal with these points given what has already been proved.) "

PROPOSITION 4.6. (cf. [3, Proposition 4.4]) Let H ≤G be relatively quasicon-
vex. For sufficiently long and H-wide fillings π : G→G the map from the induced
filling of H to G is injective.

Proof. Let X be the cusped space for G and X the cusped space for G. Sup-
pose that h ∈H ∩ker(π) is nontrivial. Let KH be the kernel of the induced filling
on H . We must show that h ∈KH .

Let γ be a geodesic in X from 1 to h, and note that π(γ) is a loop. Suppose that
condition (1) from Lemma 4.1 holds. Then there is a nontrivial 10δ-local geodesic
loop based at 1 in X agreeing with π(γ) in a 10δ-neighborhood of 1 ∈X. This is
impossible.
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Therefore, Lemma 4.2 applies, and there is an element k ∈ KH so that
dX(1,kh) < dX(1,h). Induction on the length of h shows that h ∈ KH , as
required. "

PROPOSITION 4.7. (cf. [3, Proposition 4.5]) Let H ≤ G be relatively qua-
siconvex and suppose that g ∈ G!H . For sufficiently long and H-wide fillings
π : G→G we have π(g) ,∈ π(H).

Proof. Choose L1 = 3dX(1,g)+10δ and any L2 >max{2L1+3,R}, and sup-
pose that π is sufficiently long and H-wide that Lemmas 4.1 and 4.2 hold for π,
and also so that π induces a bijection between the ball of radius L1 about 1 in X
and the ball of radius L1 about the image of 1 in the cusped space of π(G).

In order to obtain a contradiction, suppose that π(g) ∈ π(H), and choose h ∈
H ∩π−1(π(g)) with dX(1,h) minimal. Let γ be a geodesic from 1 to h in X, and
let σ be a geodesic from 1 to g in X. Note that π(σ) is a geodesic.

The minimality of h and Lemma 4.2 ensure that condition (1) from Lemma 4.1
holds for γ.

There are now two cases, depending on whether π(γ) (equivalently γ) leaves
the L1-neighborhood of the Cayley graph. If γ lies in the L1-neighborhood of the
Cayley graph, it is a 10δ-local geodesic joining 1 to g. Its length is therefore at
most 7

3dX(1,g)+ 2δ < L1, by Lemma 4.4. But since π is injective on the L1-ball
about 1, this implies g = h, a contradiction.

The second case is that π(γ) leaves the L1-neighborhood of the Cayley graph,
in which case there is a 10δ-local geodesic as in Lemma 4.1, joining 1 to g, which
coincides with π(γ) in the L1-neighborhood of the Cayley graph, but may differ
elsewhere. The length of this 10δ-local geodesic is at least L1 > 7

3dX(1,g)+ 2δ,
again contradicting Lemma 4.4. "

We finish this section with an example which exhibits the necessity of restrict-
ing to H-wide fillings (and not just sufficiently long fillings) in Propositions 4.5,
4.6, and 4.7.

Example 4.8. Let Σ be a genus 2 surface, with π1Σ = F = 〈a,b,c,d |
abcd(dcba)−1〉. Let φ be an automorphism of F induced by a pseudo-Anosov
homeomorphism of Σ, so that the mapping torus Mφ has fundamental group

G=
〈
F,t | txt−1 = φ(x), for x ∈ F

〉
.

By Thurston’s geometrization of fiber bundles [23], Mφ is a hyperbolic 3-manifold;
in particular G is a hyperbolic group. Now extend the centralizer of a (attaching a
torus to Mφ by gluing its longitude to a loop representing a) to get Γ:

Γ=
〈
G,e | [e,a]

〉
.
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Letting P = 〈e,a | [e,a]〉 we have a relatively hyperbolic pair (Γ,{P}), by [8,
Theorem 0.1.(2)].

Let H = 〈b,c,d,e〉 < Γ. Then H is a free group on the given generators. This
can be seen from the induced action of H on the Bass-Serre tree of the defining
graph of groups for Γ, which exhibits H as the free product of the free group
〈b,c,d〉<G and the infinite cyclic group 〈e〉. The subgroup 〈b,c,d〉 is quasiconvex
in G, by a result of Scott and Swarup [26]. It then follows from the argument in the
proof of [8, Proposition 4.6] that H is relatively quasiconvex in (Γ,{P}).

For an integer i > 0, let Ni = 〈eia−1〉#P . Taking the sequence of fillings

πi : Γ−→ Γi = Γ/〈〈Ni〉〉,

gives a cofinal sequence of longer and longer Dehn fillings. For each i > 0 the
group Γi has the following graph of groups decomposition:

Γi =G∗a=ei 〈e〉.

In particular, G embeds in Γi (as a quasiconvex subgroup).
The image Hi := πi(H) of H in Γi is an amalgam of F with an infinite cyclic

subgroup over a maximal cyclic subgroup of F . Since F is distorted in G, the
subgroup Hi is distorted in Γi, and hence is not quasiconvex.

Moreover, a ,∈H but πi(a) ∈Hi for all i > 0. Finally, we have Ni∩H = {1},
so the induced filling of H is the trivial filling. On the other hand, Hi is not a
free group, so the map from the induced filling of H to Γi is not injective for any
i > 0. Explicitly, the element (ei)bcd(dcb(ei))−1 is in the kernel of the map from
the induced filling of H to Γi.

5. Existence of H-wide fillings. In this section, we prove Lemma 5.2
which implies that in our applications in Sections 6 and 7 we can find sufficiently
long and H-wide fillings. The key observation is that separability allows us to do
this.

LEMMA 5.1. Suppose that P is a group and that B is a separable subgroup.
For any finite set S there exists a finite-index normal subgroup KS ≤ P so that for
any N #P with N ≤KS , the subgroup N is (B,S)-wide in P .

Proof. For each s ∈ S!B, choose some Ps ≤ P finite index and satisfying
B < Ps and s ,∈ Ps. Let KS =

⋂
{Ps | s ∈ S!B}, and note that KS is finite index

in P , and contains B.
Suppose N!P is contained in KS . We verify that N is (B,S)-wide. Let b∈B

and s∈S, and suppose bs∈N . If s∈B there is nothing to show, so suppose s ,∈B.
The element s is not contained in KS , but bs ∈N <KS , so we must have b ,∈KS .
But this contradicts B ≤KS .

The subgroup KS just constructed may not be normal, but we may replace KS

by the intersection of its conjugates without disturbing the conclusion. "
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In Lemma 5.2 we consider a finite collection {(H1,D1), . . . ,(Hk,Dk)} of rela-
tively quasiconvex subgroups of a relatively hyperbolic pair (G,P). For each i and
each D ∈Di we assume that we have fixed PD ∈ P and cD ∈G so that D ≤ P cD

D ,
and that cD is a shortest such conjugating element.

LEMMA 5.2. Suppose that (G,P) is relatively hyperbolic, and that H =
{(H1,D1), . . . ,(Hk,Dk)} is a collection of relatively quasiconvex subgroups.
Suppose that for each 1≤ j ≤ k and for each D ∈Dj the subgroup D is separable
in P cD

D .
Then for any finite S ⊂

⋃
P!{1} there exist finite index subgroups {KP #P |

P ∈ P} so that any filling

G−→G(N ), with N =
{
NP ≤KP | P ∈ P

}

is (Hj,S)-wide for each 1≤ j ≤ k.

Proof. Fix S ⊂∪P!{1} a finite set.
Fix P ∈ P and let SP = P ∩S. Suppose, for some i, that D ∈ Di is so that

P = PD . By Lemma 5.1 there is a finite-index normal subgroup KD#P so that
any N #P cD for which N ≤KcD

D is (D,SP )-wide in P cD .
We choose KP to be the intersection of all KD for which P = PD . If we now

choose NP ≤ KP then the conclusion of the lemma holds. This completes the
proof. "

6. Application to virtual specialness and virtual fibering. In this section,
we explain how the ideas and results in the beginning of the paper, together with
a recent result of Cooper and Futer [6] give a proof of Theorem A independent of
[28].

The following consequence of Theorem A was reproved (without using the
results of [28]) by Cooper and Futer.

THEOREM 6.1. [6, Corollary 1.3] Suppose that G is the fundamental group of
a non-compact finite-volume hyperbolic 3-manifold. Then G acts freely and cocom-
pactly on a CAT(0) cube complex dual to finitely many immersed quasi-Fuchsian
surfaces.

In this section, our main result is that this cubulation is virtually special.

THEOREM A. Suppose that G is the fundamental group of a non-compact
finite-volume hyperbolic 3-manifold M . Then G is virtually compact special.

If P is a collection of conjugacy-representatives of maximal parabolic sub-
groups of G then (G,P) is relatively hyperbolic. After possibly replacing M by
an orientable double-cover of M , each element of P is free abelian of rank 2. As
explained in the proof of Theorem A below, proving Theorem A reduces to estab-
lishing separability of certain double cosets of relatively quasiconvex subgroups of
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G. In the closed case, such double cosets are separable by results in [2, 20]. We
reduce to this case by performing orbifold Dehn filling on M and applying the
following “weak separability” criterion for double cosets. [Note added in proof:
Since this paper was written, Proposition 6.2 has been generalized to more gen-
eral classes of parabolic subgroups. See Theorem 3.21 in arXiv:2003.12702 and
Proposition A.4 in arXiv:2008.13677.]

PROPOSITION 6.2. Suppose that (G,P) is relatively hyperbolic and that each
element of P is free abelian. Suppose further that H is a finite collection of rela-
tively quasiconvex subgroups of (G,P) and that S ⊆ (

⋃
P)!{1} and F ⊆G are

finite subsets.
There exist finite-index subgroups {KP #P |P ∈P} so that for any subgroups

NP ≤KP the filling
G−→G/K :=G

({
NP |P ∈P

})
,

is (H,S)-wide for each H ∈H and furthermore whenever f ∈ F , Ψ,Θ∈H satisfy
1 ,∈ΨΘf , there is no element of K in ΨΘf .

Proof. By Lemma 5.2 and the fact that all subgroups of finitely generated
abelian groups are separable, there exist finite-index subgroups KP #P so that
if NP ≤KP then the filling is (H,S)-wide for each H . Below, we find other finite-
index subgroups K̂P #P so that if NP < K̂P then the condition on double cosets
holds. We then choose NP ≤KP ∩K̂P . For the remainder of the proof we concen-
trate on finding the subgroups K̂P .

Let X be the cusped space for (G,P) and suppose that X is δ-hyperbolic.
We further assume that δ is chosen so that the cusped spaces of all sufficiently long
fillings are δ-hyperbolic. We suppose that δ≥ 1. Let λ be a quasiconvexity constant
which works for every element in H. Finally, let M = max{dX(1,f) | f ∈ F}.

Fix f ∈F and Ψ,Θ ∈H so that 1 ,∈ΨΘf , and consider the equation k ∈ΨΘf
for elements k of the kernel of a filling. After finding conditions on the filling
which ensure there is no such element, we consider a filling appropriate for all
f ∈ F simultaneously.

Let D be a collection of representatives of Ψ-conjugacy classes of maximal
uniquely parabolic subgroups of Ψ. For D ∈D, we have D ≤ P cD

D for some PD ∈
P and some (shortest) cD ∈G. Similarly, let E be a collection of representatives of
Θ-conjugacy classes of maximal parabolic subgroups of Θ, and for E ∈ E we have
E ≤ P dE

E for some PE ∈ P and some (shortest) dE ∈ G. Let XΨ be the cusped
space for the pair (Ψ,D) and let XΘ be the cusped space for (Θ,E) (both with
respect to some choices of generating sets). Let ι̌Ψ : XΨ→X and ι̌Θ : XΘ→X

be the induced maps of cusped spaces, and note that ι̌Ψ(X
(0)
Ψ ) and ι̌Θ(X

(0)
Θ ) are

both λ-quasiconvex subsets of X.
In order to apply the results from Section 4, choose L1 = 10δ and L2 =

max{20δ +M + λ + 4,RΨ,RΘ}, where RΨ and RΘ are the constants from
Proposition 2.5 applied to Ψ and Θ, respectively.
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For P ∈ P, let

SP ⊇
{
p ∈ P | dX(1,p) ≤ 32δ+2M +4λ+2L1 +3

}

be a finite set which is large enough so that for all H ∈H the H-wideness condition
of Lemma 4.2 is satisfied with L1 and L2 as above. Consider the collection of
subgroups of P of the form PB1,B2 = 〈B1,B2〉 where B1 = P ∩Ψg1 for some
g1 ∈ G and B2 = P ∩Θg2 for some g2 ∈ G. There are finitely many such pairs of
subgroups of P . For each such pair (B1,B2), by Lemma 5.1 there exists a finite-
index K̂B1,B2 !P which is (PB1,B2 ,SP )-wide. We define K̂P =

⋂
K̂B1,B2 and

check the condition on double cosets.
Choose NP ≤ K̂P , and consider the filling

G−→G
({

NP | P ∈ P
})

=G/K.

In order to obtain a contradiction suppose that there is an element g ∈K, and
elements f ∈ F , ψ ∈Ψ and θ ∈Θ so that

g = ψθf.

Choose a g so that dX(1,g) is minimal amongst all choices of g for which there is
such an expression.

Consider a geodesic quadrilateral in X with vertices 1,ψ,ψθ,g, and let ξ1 be
the geodesic from 1 to ψ, ξ2 the geodesic from ψ to ψθ, η the geodesic from ψθ to
g and ρ the geodesic from 1 to g, respectively. By assumption, we know that g ,= 1.

Let π : X → X be the map on cusped spaces induced by the filling map
π : G→G/K . Since g ∈K!{1} the image of ρ in X is a loop, so condition (1)
from Lemma 4.1 cannot hold. This means that condition (2) from Lemma 4.1 holds.
Let A be a horoball L2-penetrated by ρ, so ρ meets A in a segment [x,y], and let
k ∈K ∩Stab(A) be so that dX(x,k ·y)≤ 2L1 +3. It is straightforward to see that
dX(1,k ·g)<dX(1,g), since dX(x,k ·y)≤ 2L1+3 but dX(x,y)≥ 2L2 > 2L1+4.
We arrive at a contradiction by showing that k ·g ∈ΨΘf , contradicting the choice
of g as a shortest element of K with such an expression.

Without loss of generality, the subsegment of ρ between x and y is a geodesic
through A which consists of a vertical segment down from x, a horizontal segment
of at most 3 edges, and then a vertical segment terminating at y (see [11, Lemma
3.10]). Let x′ be the point on this geodesic directly below x at depth 3δ+M +λ
and let y′ be the point directly below y at depth 3δ+M + λ. The quadrilateral
ξ1∪ ξ2∪ η∪ ρ is 2δ-slim, so there are points on η∪ ξ1∪ ξ2 within 2δ of x′ and of
y′. Because η is a geodesic (of length at most M ) joining two points at depth 0, no
point on η can be within 2δ of either x′ or y′. Therefore, there are points on ξ1∪ ξ2

within 2δ of x′ and of y′.
The geodesic ξ1 travels between two points in Ψ and ξ2 joins two points in

ψΘ. By quasiconvexity, any point on ξ1 lies within λ of a point in ι̌Ψ(XΨ) and
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any point on ξ2 lies within λ of a point in ψ · ι̌Θ(XΘ). Let u0 and v0 be points in
ι̌Ψ(XΨ)∪ψ · ι̌Θ(XΘ) lying within distance 2δ+λ of x′ and y′ respectively. Note
that u0 and v0 lie in the horoball A.

There are points at depth more than 0 in a horoball A which lie in ι̌Ψ(XΨ)
exactly when they are of the form (scDPD,hcD,n) for some s ∈ Ψ, h ∈ sD and
n ∈N, where D ∈D is so that D ≤ P cD

D , as above, and A is the horoball based on
the coset scDPD .

Similarly, there are points at depth more than 0 in A which lie in ψ · ι̌Θ(XΘ)
exactly when they are of the form (ψ · tdEPE,ψ · gcD,m) for t ∈ Θ, g ∈ tE and
m ∈ N, where E ∈ E and E ≤ P dE

E , and A is the horoball based on ψ · tdEPE .
The points u0, v0 have one of these forms, and they are at distance at most

2δ+λ from x′ and y′ respectively, which implies that the appropriate n or m is
at most 3δ+M + 2λ. Thus, there are points u,v at depth 0 in A, directly above
u0 and v0 respectively, so that dX(u,x),dX (v,y) ≤ α := 10δ+ 2M + 4λ. All of
the points in A directly above u0 lie in ι̌Ψ(XΨ) or ψ · ι̌Θ(XΘ), except possibly the
point u at depth 0. This point u will not lie in ι̌Ψ(XΨ) unless cD = 1, and similarly
for ι̌Θ(XΘ). However, certainly u lies within distance 1 of ι̌Ψ(XΨ) or ψ · ι̌Θ(XΘ).
Similarly, v lies within distance 1 of ι̌Ψ(XΨ) or ψ · ι̌Θ(XΘ).

We deal with four cases, depending on whether each of u0 and v0 are contained
in ι̌Ψ(XΨ) or ψ · ι̌Θ(XΘ).

Case 1. Both u0 and v0 are contained in ι̌Ψ(XΨ).

(The case where they are both contained in ψ · ι̌Θ(XΘ) is entirely similar and
we omit it.)

In this case, if u0 = (scDPD,ψucD,n) then u= ψucD, where ψu ∈Ψ and A is
the horoball based on scDPD. For ease of notation we write P = PD and c = cD,
and so we have ψuc ∈ scP .

Note that v = ψvc ∈ scP also, for some ψv ∈ Ψ. We have u−1v =
c−1(ψ−1

u ψv)c ∈Dc−1
.

Now, dX(x,k · y) ≤ 2L1 + 3, and we also have dX(x,u),dX (y,v) ≤ α, from
which it follows that dX(u,k · v) ≤ 2α+ 2L1 + 3. Write w = v−1k−1u, a group
element of X-length at most 2α+ 2L1 + 3 and note that u−1k−1u is in the filling
kernel NP !P , and so cu−1k−1uc−1 is contained in N c

P . On the other hand, we
also have

SP ⊇
{
p ∈ P | dX(1,p)≤ 44δ+8M +16λ+2L1 +3

}

Note that w ∈ SP , and that the filling is (Ψ,SP )-wide. Since (ψ−1
u ψv) ∈ D,

this implies that cwc−1 ∈D, so cu−1k−1uc−1 = (ψ−1
u ψv)cwc−1 ∈D. Therefore,

ψ−1
u kψu = cu−1kuc−1 ∈D, which means that

k ·ψ = kψu
(
ψ−1
u ψ

)
= ψu

(
ψ−1
u kψu

)
ψ−1
u ψ ∈Ψ.
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Figure 2. Case 2. The dotted line represents the coset scP = ψtdP .

Therefore,

k ·g = (k ·ψ)θf,

gives an expression for k · g as an element of ΨΘf , contradicting the fact that g
was the shortest element of K with such an expression.

Case 2. u0 is contained in ι̌Ψ(XΨ) and v0 contained in ψ · ι̌Θ(XΘ).

We can write u0 = (scDPD,ψucD,n) and v0 = (ψ · tdEPE ,ψ · rvdE ,m), so
u= ψucD and v = ψ · θvdE , where ψu ∈ Ψ, θv ∈Θ, D ≤ P cD

D and E ≤ P dE
E . We

clearly have PE = PD, which we write as P . We write c = cD and d = dE , and
note that A is the horoball based on the coset scP = ψtdP .

We still have dX(u,x),dX (v,y)≤α. The geodesic ξ1 intersects A in a segment
[g1,h1], where the entrance point g1 is within 4δ of x, and within α of u. The exit
point h1, we may similarly argue, is within α of some group element w = ψwc in
the coset scP , with ψw ∈Ψ. Likewise, the geodesic ξ2 intersects the horoball A in
a segment [g2,h2], where dX(g2,h1)≤ 4δ, and there is another point z = ψθzd in
scP with θz ∈Θ, and satisfying dX(z,g2)≤ α. See Figure 2.

We have u−1w ∈ Dc−1
and z−1v ∈ Ed−1

. Both Dc−1
and Ed−1

are subgroups
of P .

Let B1 =Dc−1
and B2 = Ed−1

so u−1wz−1v ∈ PB1,B2 . Now,

u−1k−1u=
(
u−1w

)(
w−1z

)(
z−1v

)(
v−1k−1u

)

=
(
u−1w

)(
z−1v

)((
w−1z

)(
v−1k−1u

))
.

(Note that we use here that P is abelian.)
Since w−1z has length at most 2α+ 4δ and v−1k−1u has length at most

2α+ 2L1 + 3, so the last of the three terms above is in SP and we can apply
the (PB1,B2 ,SP )-wideness of the kernel to deduce that u−1ku ∈ PB1,B2 = B1B2.
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Choose elements b1 ∈B1 and b2 ∈B2 so that u−1ku= b1b2. We now have

kψθ = u
(
u−1ku

)(
u−1w

)(
w−1z

)(
z−1v

)(
v−1ψθ

)

= u
(
b1b2

)(
u−1w

)(
w−1z

)(
z−1v

)(
v−1ψθ

)

= u
(
b1
(
u−1w

))(
w−1z

)((
z−1v

)
b2
)(

v−1ψθ
)

= u
(
b1
(
u−1w

))(
w−1ψ

)(
ψ−1z

)((
z−1v

)
b2
)(

v−1ψθ
)

= ψu
(
c
(
b1u
−1w

)
c−1)(cw−1ψ

)(
ψ−1z

)((
z−1v

)
b2
)(

v−1ψθ
)

=
(
ψu
(
c
(
b1u
−1w

)
c−1)(ψ−1

w ψ
))(

θz
(
d
(
z−1vb2

)
d−1)(θ−1

v θ
))

.

The first three terms of this expression are in Ψ and the last three terms are in Θ,
which proves that kψθ ∈ ΨΘ. Therefore, k · g = kψθf ∈ ΨΘf . Since we know
that dX(1,k ·g)< dX(1,g), this contradicts the minimality of g, hence proving the
result in Case 2.

It remains to note that the case that u0 is contained in ψ · ι̌Θ(XΘ) and v0 is
contained in ι̌Ψ(XΨ) essentially becomes Case 1. Indeed, suppose that v0 is con-
tained in ι̌Ψ(XΨ). Then the geodesic from v to 1 lies near to the geodesic from y
to 1, which easily implies (since x lies on the geodesic from y to 1) that x lies near
ι̌Ψ(XΨ), as required. This completes the proof of Proposition 6.2. "

We now turn to the proof of Theorem A.

Proof (of Theorem A). Pass to a finite cover which is orientable, so that all
cusps in M have torus cross-sections. It is well known that if P is a collection
of representatives of G-conjugacy classes of maximal cusp subgroups of M then
(G,P) is relatively hyperbolic.

By Theorem 6.1, there is a CAT(0) cube complex X upon which G acts freely
and cocompactly. By [24, Criterion 2.3] (see also [14, Section 4]), to prove that the
action of G on X is virtually special it suffices to prove that for a certain finite list
of subgroups Qi which stabilize hyperplanes in X, the subgroups Qi and double
cosets QiQj are separable in G. Since G is a Kleinian group, it is LERF by [2,
Corollary 9.4], so it remains to prove double coset separability.

The cube complex X built by Cooper and Futer for Theorem 6.1 is built using
the Sageev construction [25] (see also [17]). The hyperplane subgroups in G are
commensurable to the codimension 1 subgroups, which are quasi-Fuchsian surface
subgroups and therefore geometrically finite. It now follows immediately by [15,
Corollary 1.3] that the subgroups Qi are relatively quasiconvex in G.

Suppose now that h ,∈QiQj . Equivalently, 1 ,∈QiQjh−1. By Proposition 4.5,
for sufficiently long and Qi-wide fillings the image of Qi is relatively quasiconvex,
and similarly for Qj . By Proposition 6.2, there exist finite-index subgroups {KP #
P | P ∈ P} so that for any choices {γP ∈KP | P ∈ P}, the filling

G−→G=G
({
γP | P ∈ P

})
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is such that the images of Qi and Qj are relatively quasiconvex and there is no
element of K in QiQjh−1. For such a filling, the image of h is outside the image
of QiQj .

Possibly replacing the γP by powers (which does not change containment in
KP , and so the above properties continue to hold), the Orbifold Hyperbolic Dehn
Surgery Theorem [10, Theorem 5.3], implies that the group G is the fundamental
group of a compact hyperbolic orbifold, and so is Kleinian and word-hyperbolic.
Since it is Kleinian, it is LERF by [2, Corollary 9.4], and since it is also word-
hyperbolic [20, Theorem 1.1] implies that all double cosets of quasiconvex sub-
groups of G are separable. Therefore, the image of h can be separated from the
image of QiQj in a finite quotient of G, which is clearly also a finite quotient of
G.

This proves that QiQj is separable in G, which proves that the G-action on X
is virtually special, as required. "

7. Relative height and relative multiplicity. For quasiconvex subgroups
of hyperbolic groups, the height is an important invariant. For full relatively quasi-
convex subgroups, it remains a useful invariant, but because we cannot control the
normalizer in P of an intersection H ∩P when H is (non-full) relatively quasicon-
vex and P is a maximal parabolic subgroup, height is not always a useful notion
as it is too often infinite. Instead, we should consider the relative height, defined as
follows.

Definition 7.1. (cf. [16, Section 1.4]) Suppose that (G,P) is relatively hyper-
bolic and H ≤ G. The relative height of H in (G,P) is the maximum number
n ≥ 0 so that there are distinct cosets {g1H,. . . ,gnH} so that

⋂n
i=1 giHg−1

i is an
infinite non-parabolic subgroup.

In [16], they refer to relative height merely as ‘height’, but we prefer to keep
this term for its traditional meaning.

Remark 7.2. It follows from the classification of groups acting isometrically
on δ-hyperbolic spaces that a subgroup of a relatively hyperbolic group is infinite
and non-parabolic if and only if it contains a loxodromic element. We use this
equivalent characterization without further mention.

In this section, we prove results for relative height analogous to those proved
for height in [2, Appendix A]. Specifically, we define a notion of relative multiplic-
ity (see Definition 7.7) and prove in Theorem 7.8 that relative multiplicity is equal
to relative height. This gives a new proof of a theorem of Hruska and Wise [16]
that the relative height of a relatively quasiconvex subgroup is finite. In Theorem
7.15 we prove that for sufficiently long and H-wide fillings the relative height of a
relatively quasiconvex subgroup does not increase under Dehn filling.
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The definition of a weakly geometrically finite (or WGF) action is given in
[2, A.27]. We note here that a weakly geometrically finite action differs from the
usual notion of a geometrically finite action (as in [15, Definition 3.2 (RH-2)]) in
allowing horoballs with finite stabilizer.

Fix a relatively quasiconvex subgroup (H,D). Let XH be a cusped space for
(H,D) and ι̌ : XH →X be the extension of the natural inclusion of H into G on
the level of cusped spaces, as described in [3, Section 3].

Definition 7.3. Suppose that (G,P) is relatively hyperbolic and that (H,D) is
relatively quasiconvex. Let X be a cusped space for (G,P) (considered as contain-
ing G as a subset), let ∗̃ be the basepoint of X, and let R ≥ 0. An R-hull for H
acting on X is a connected H-invariant full sub-graph Z̃ ⊂X so that

(1) ∗̃ ∈ Z̃;
(2) If γ is a geodesic in X with endpoints in Λ(H) then NR(γ)∩NR(G)⊂ Z̃;

and
(3) If A is any horoball containing a vertex a of depth greater than 0 in the

image ι̌(XH), then Z̃ ∩A(0) contains every vertex of a maximal vertical ray in A
containing a.

(4) The action of (H,D) on Z̃ (with its induced path metric) is WGF.

Remark 7.4. This definition is not the same as [2, Definition A.32] unless H
is full relatively quasiconvex (as was assumed in [2]). It is important that we do
not include an R-neighborhood of γ, but only that part of the R-neighborhood near
the Cayley graph. The third condition in [2, Definition A.32] has similarly been
modified. Both of these changes are made so that Lemma 7.12 below is true.

Definition 7.5. Suppose that (H,D) ≤ (G,P) is relatively quasiconvex, and
ι̌ : XH →X is the inclusion of cusped spaces as above. For a positive integer D,
the restricted D-neighborhood of ι̌(XH), denoted NR

D(ι̌(XH)), is the full subgraph
of X on the vertices of either of the following two types:

(1) Vertices of ND(ι̌(XH))∩ND(G); and
(2) For any horoball A so ι̌(XH) contains vertices of arbitrary depth in A,

include all vertices a ∈A which are connected by a vertical geodesic to a vertex of
the first type.

LEMMA 7.6. (cf. [2, Lemma A.41]) Let R ≥ 0. There exists some D so that
the restricted D-neighborhood of ι̌(XH) is an R-hull for the action of H on X.

Proof. We first note that if any of the requirements of an R-hull are satisfied by
the restricted D-neighborhood of ι̌(XH), then they are satisfied for the restricted
D′-neighborhood of ι̌(XH), for any D′ ≥D. It therefore suffices to consider each
of the four requirements separately, and take D to be the maximum needed for any
of the four.

Condition (1) is satisfied for any D, since ∗̃= 1 ∈H .
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Condition (2) is satisfied as soon as D ≥R+2δ+λ, where λ is the quasicon-
vexity constant for ι̌(XH). Indeed, Λ(H) ⊂ Λ(ι̌(XH)), so if γ is a biinfinite geo-
desic with endpoints in Λ(H), it must lie in a λ+2δ-neighborhood of ι̌(XH). Sup-
pose x∈NR(γ)∩NR(G); we want to show that x∈NR

D(ι̌(XH)). Let z ∈ γ, g ∈G
be vertices at distance at most R from x. As we have noted, there is a q ∈ ι̌(XH)
satisfying dX(z,q) ≤ λ+ 2δ. Thus x lies in the (R+ λ+ 2δ)-neighborhood of
ι̌(XH). If D ≥R+2δ+λ, then x ∈ND(ι̌(XH))∩ND(G).

Condition (3) is built in to the definition of restricted D-neighborhood.
Condition (4) (the weak geometric finiteness) follows once we observe that for

large enough D, the restricted D-neighborhood is equivariantly quasi-isometric to
the D-neighborhood, and either one is quasi-isometrically embedded in X. In par-
ticular, the limit set of the restricted D-neighborhood is equivariantly homeomor-
phic to ∂XH = ∂(H,D). (Though in general ι̌ is not a quasi-isometric embedding
if some D ∈D is very distorted in P cD

D .) "

Let Z̃ be an R-hull for the action of H on G, and let Z =H
∖
Z̃. Similarly, let

Y =G
∖
X . Then there is a natural map i : Z→ Y which induces the inclusion of

H into G (in the sense described in [2]).
For n > 0, let

Sn = {(z1, . . . ,zn) ∈ Zn | i(z1) = · · ·= i(zn)}\∆

where ∆= {(z1, . . . ,zn) | there exist i ,= j so that zi = zj} is the fat diagonal.
Points in Sn have a well-defined depth which is the depth of the image in Y

We consider components C of Sn which contain a point with depth 0.
As in [2], choosing a maximal tree in Z , and a basepoint p at depth 0, a com-

ponent C of Sn induces well-defined maps τC,i : π1(C,p)→H , for i= 1, . . . ,n.

Definition 7.7. The relative multiplicity of i : Z → Y is the largest n so that
Sn contains a component C so that for all i ∈ 1, . . . ,n the group τC,i(π1(C,p))
contains a loxodromic element.

THEOREM 7.8. (cf. [2, Theorem A.38]) For sufficiently large R, depending
only on δ and the quasi-convexity constant of H , if Z̃ is an R-hull for the action of
H on X, and i : Z → Y is as described above, then the relative height of H in G
is equal to the relative multiplicity of i : Z→ Y .

Definition 7.9. A geodesic σ in a combinatorial horoball is regular if it has at
most three horizontal edges, and these are at the maximum depth for σ. A path in
a cusped space X(G,P) is regular if every intersection with a horoball is regular.

A path σ in a combinatorial horoball is super-regular if it has at most 1 hori-
zontal edge, this edge is at maximum depth for σ, and σ has minimal length among
paths with this property. A path in a cusped space X(G,P) is super-regular if every
intersection with a horoball is super-regular.
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LEMMA 7.10. Let g be a loxodromic element of the relatively hyperbolic group
pair (G,P). Then for any D > 0, and any sufficiently large n > 0, there is a bi-
infinite quasigeodesic axis σ for gn satisfying:

(1) σ is super-regular;
(2) σ is contained in a (4δ+ 3)-neighborhood of any geodesic with the same

endpoints;
(3) dX(p,gnp)>D for any point p ∈ σ.

Proof. Let g±∞ be the two limit points in ∂X of the cyclic group 〈g〉. Since
X is proper, there is a bi-infinite geodesic γ joining g±∞. Note that gnγ and γ are
Hausdorff distance at most 2δ from one another, for any n. Fix n large enough so
that dX(x,gnx)> max{D,100δ} for every point x ∈X.

Since the endpoints of γ are distinct, γ is not contained in a single horoball.
Choose some h∈ γ in the Cayley graph of G. Choose a regular geodesic α0 joining
h to gnh.

Let σ0 be the concatenation of the gn-translates of α0; namely σ0 =⋃
i∈Z g

inα0. Let σ be the path obtained by modifying σ0 to be super-regular.
(This means first ensuring that paths within any horoball consist of two vertical
segments and a single horizontal segment, and then removing the horizontal
subsegments of σ0 inside horoballs, and replacing them by minimal length
super-regular paths with the same endpoints.)

The path σ0 is a broken geodesic with each breakpoint on gkγ for some γ.
The individual geodesics have length at least 100δ, and the Gromov products at the
vertices are at most 6δ. In particular, σ is a quasi-geodesic. The local modifications
producing σ from σ0 do not change the fact of quasi-geodesicity (though they do
change the constants of quasi-geodesicity).

The path σ0 lies a 2δ-neighborhood of γ. The path σ thus lies in a (2δ+ 3)-
neighborhood of γ, and in a (4δ+3)-neighborhood of any other geodesic with the
same endpoints. "

Proof of Theorem 7.8. The proof from [2] works almost as written. Let
λ be the constant of quasiconvexity for ι̌(XH), and let C = 2(λ + 2δ) +
maxi{dX(1, cD)}, where the elements cD are those elements chosen as in Section
2. We suppose R > C+λ+6δ+4.

We first show the more difficult direction, that relative multiplicity dominates
relative height. Suppose that the relative height is at least n, so there is some
collection of cosets {H,g2H,. . . ,gnH} and loxodromic elements h1, . . . hn ∈ H
so that h1 = g2h2g

−1
2 = · · · = gnhng−1

n . Let σ be the quasi-axis for h1 given by
Lemma 7.10, and let γ be any bi-infinite geodesic with the same endpoints at in-
finity as σ. Requirement (2) implies that NR(γ)∩NR(G) is contained in J =
Z̃ ∩ g2Z̃ ∩ · · ·∩ gnZ̃ . In particular, any points of σ∩NR−(4δ+3)(G) are contained
in J . We next need to show that the deeper points of σ are also contained in J .
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Figure 3. Showing that the points of γ lie in J .

Choose g ∈ G on the quasi-axis σ. Fix 1 ≤ i ≤ n. We claim that there is an
element ĥi in H so that dX(g,giĥi) ≤ C (taking g1 = 1). Indeed, gihig−1

i = h1

leaves σ invariant, so the endpoints of σ lie in giΛH . Suppose that ρ is a bi-infinite
geodesic with the same endpoints as σ. Then by Lemma 7.10 σ lies in a (4δ+3)-
neighborhood of ρ. On the other hand, quasi-convexity implies that any point on ρ
lies within distance λ+ 2δ of ι̌(XH). Possibly, the point g lies within λ+ 2δ of a
point in ι̌(XH) which lies within a horoball, but then this point has depth at most
λ+2δ, and so lies within distance λ+2δ+max{dX(1, cD)} of a point in H . The
claim follows.

Now, let A be a horoball (R−4δ+3)-penetrated by σ, and note that R−(4δ+
3) > C +λ+ 2δ+ 1. Any point on σ lies within 2δ of some point of geodesics
[g, ĥ1], [ĥ1,hĥ1], [hĥ1,h1g]. However, the first and third of these geodesics are be-
tween points in the Cayley graph and have length at most C . Therefore, any points
of σ at depth greater than R− (4δ+3) in A must be within 2δ of the geodesic be-
tween ĥ1 and hĥ1. This implies that there is a geodesic with endpoints in H which
(λ+1)-penetrates A, which by λ-quasiconvexity implies that A contains points at
depth greater than 0 in the image ι̌(XH). Condition (3) from Definition 7.3 (along
with the requirement that an R-hull be a full subgraph) ensures that the intersection
of Z̃ with A consists of a collection of vertical lines together with any horizontal
edges connecting them. In particular, the (super-regular) subsegment of σ meeting
A is contained in Z̃. An exactly analogous argument shows that this subsegment is
contained in giZ̃ for each i, so all of σ is contained in J .

This implies that σ projects to a loop in Sn of the type desired; if C is the
component containing the image of σ, then τC,i(π1(C,p)) contains a conjugate of
the loxodromic h1 for each i.

The other direction, that relative height dominates relatively multiplicity, is al-
most exactly the same as in [2, Appendix A]. The only difference is that we assume
that the intersection is infinite and non-parabolic, so that it contains a loxodromic
element. This loxodromic element is then the one required by Definition 7.7. "

COROLLARY 7.11. [16, Theorem 1.4] The relative height of a relatively qua-
siconvex subgroup of a relatively hyperbolic group is finite.

Proof. If the relative multiplicity is n, then in particular, Sn contains a loop
with a vertex at depth 0. Since Sn avoids the fat diagonal, this vertex represents an
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n-tuple of distinct depth 0 vertices of Z . There are only finitely many such vertices,
so the relative height is bounded. "

7.1. Non-increasing of height under wide fillings. Suppose that Z̃ is an
R-hull for the action of H on X. The following is an analog of [2, Lemma A.45].

LEMMA 7.12. (cf. [2, Lemma A.45]) For all sufficiently long and H-wide
fillings φ : G→G(N1, . . . ,Nm), if K = ker(φ), KH =K ∩H , and k ∈K!KH ,
then k · Z̃ ∩ Z̃ = /0.

Proof. By conditions (3) and (4) of an R-hull, there is some R′ so that if gZ̃ ∩
Z̃ ,= /0, and if N is the R′-neighborhood of H in the Cayley graph of G, then
gN ∩N ,= /0. It follows that the set of g for which gZ̃ ∩ Z̃ ,= /0 is contained in a
finite union of double cosets

A=
l⊔

i=0

HgiH, with g0 = 1.

Now let φ be long and H-wide enough to apply Proposition 4.7 to all the elements
g1, . . . ,gl. For such a filling we have φ(gi) ,∈ φ(H) for each i. Equivalently, there
is no k ∈K of the form gih for h ∈H and i > 0.

Suppose by way of contradiction that k ∈ (K \KH)∩A. Then we can write
k = h1gih2 for some i > 0 and some h1,h2 ∈ H . Conjugating we obtain a k′ ∈
(K \KH)∩A which lies in giH . But this contradicts the last paragraph. "

Remark 7.13. Lemma A.45 in [2] is a special case of Lemma 7.12. The proof
given in [2] contains the erroneous assertion that A is a finite union of left cosets;
otherwise the proof given there is similar to our proof here of Lemma 7.12, but
using a theorem about H-fillings [2, A.43] in place of our Proposition 4.7.

Suppose π : (G,P)→ (G,P) is a Dehn filling, and X(G,P) is the combi-
natorial cusped space for (G,P). If K is the kernel of the quotient map G→ G,
then the quotient X =K

∖
X(G,P) is very nearly equal to the cusped space for the

pair (G,P), differing only in the addition of some self-loops. In particular, their
0-skeleta are isometric, and we can safely ignore the difference.

Putting Lemma 7.12 together with uniformity of hyperbolicity and quasicon-
vexity after long Dehn fillings, we can prove the following:

LEMMA 7.14. Fix (G,P) relatively hyperbolic, and a relatively quasiconvex
subgroup H . For all R, there is an R′ satisfying the following: For all sufficiently
long and H-wide fillings φ : G→G(N1, . . . ,Nm), if K = ker(φ), if Z̃ is an R′-hull

for H , then Z̃ ⊂K
∖
X is an R-hull for the image of H in G(N1, . . . ,Nm).



120 D. GROVES AND J. F. MANNING

Proof. Let δ be such that X =K
∖
X is δ-hyperbolic whenever K is the kernel

of a sufficiently long filling (see Proposition 2.2). As discussed above this quotient
is essentially equal to the combinatorial cusped space for the pair (G,P), where
G = G(N1, . . . ,Nm), and P consists of the images of the elements of P. Let λ′

be the constant from Proposition 4.5, so that φ(H) is λ′-relatively quasiconvex
for a sufficiently long and H-wide filling. Let R0 = R0(λ′,δ) be such that any
bi-infinite geodesic with endpoints in the limit set of a λ′-quasiconvex subset of a
δ-hyperbolic space is contained in the R0-neighborhood of that quasiconvex subset.
Let C = max{dX(1, cD)}, where cD ranges over the elements chosen in Section 2.
Finally we fix some R′ > 3R+2R0 +C .

We assume that φ is sufficiently long and H-wide so that the results from the
last paragraph apply.

We suppose that Z̃ is an R′-hull, and show that the image Z̃ ⊂ K
∖
X is an

R-hull for the image H of H in G(N1, . . . ,Nm).
Conditions (1) and (3) of Definition 7.3 follow easily from the fact that Z̃ is an

R′-hull. Condition (4) is a fairly straightforward consequence of the fact that H is
relatively quasiconvex.

We now establish Condition (2). Suppose that γ is a bi-infinite geodesic with
endpoints in Λ(H). Let p ∈NR(γ)∩NR(G). Since ι̌(XH) is λ′-quasiconvex, we
have dX(p,x) ≤ R0 +R for some x ∈ ι̌(XH). Since the depth of p is at most R,
the depth of x is at most R0 + 2R. Thus there is some h ∈ H with dX(x,h) ≤
R0 + 2R+C . Choose h ∈ H projecting to h, and note that there is a bi-infinite
geodesic passing through h with endpoints in Λ(H).

(We remark that because we assumed that γ exists, Λ(H) contains more than
one point. It follows that Λ(H) contains more than one point, which implies the
existence of such a bi-infinite geodesic.)

In particular, an R′-ball about h is contained in the R′-hull Z̃ . Since R′ >
dX(h,p), the image of Z̃ in K

∖
X must contain p. "

We now prove that the relative height of H does not increase under sufficiently
long and H-wide fillings.

THEOREM 7.15. (cf. [2, A.46]) For sufficiently long and H-wide fillings, the
relative height of (H,D) in (G,P) is at most the relative height of (H,D) in
(G,P).

Proof. As usual, let δ be a constant so that the cusped space of (G,P) and also
those of sufficiently long fillings, are δ-hyperbolic, and let λ be a quasi-convexity
constant for H , which we also assume (using Proposition 4.5) is a quasi-convexity
constant for the image of H under sufficiently long and H-wide fillings.

Let R be sufficiently large to apply Theorem 7.8 with these values of δ and λ.
Let R′ the the constant (depending on R) from the conclusion of Lemma 7.14.
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Consider the following commutative diagram, which is equivariant with re-
spect to the group actions and the natural maps between the groups (inclusion and
quotient maps, as appropriate):

Z̃

H

X

G

Z̃
H/KH

X
G/K

where X is the cusped space for (G,P), X =K
∖
X , Z̃ is an R-hull for H , KH =

H ∩K is the kernel of the induced filling on H , and Z̃ =KH

∖
Z̃.

It follows immediately from Lemma 7.12 that Z̃ embeds in X , and it follows

from Lemma 7.14 that Z̃ is an R-hull for H/KH in X.
Taking quotients by the relevant groups we get the diagram,

Z
i

Y

Z
ı

Y

(1)

where the horizontal maps are immersions inducing the inclusions H → G and
H→G on the level of fundamental group. The vertical maps from Y to Y and from
Z to Z are homeomorphisms. Theorem 7.8 implies that the relative multiplicities
of Z in Y and of Z in Y measure the relative heights of H in G and of H/KH in
G/K , respectively.

For n > 0, define

Sn =
{(

z1, . . . ,zn
)
∈ Zn | i

(
z1
)
= · · ·= i

(
zn
)}

\∆

and

Sn =
{(

z1, . . . ,zn
)
∈ Z

n | ı
(
z1
)
= · · ·= ı

(
zn
)}

\∆,

where ∆= {(z1, . . . ,zn) | there exist i ,= j so that zi = zj} is the fat diagonal in Zn

and ∆ is the fat diagonal in Z
n

.
For each i ∈ {1, . . . ,n} and each component C of Sn the projections of Zn to

its factors induce maps

τC,i : π1(C)−→H,

and

τC,i : π1(C)−→H.
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Since the quotient Z =H
∖
Z̃ can also be thought of as (H/KH)

∖
Z̃, the homomor-

phisms τC,i all factor as τC,i = φ|H ◦ τC,i, where φ is the filling map.
In particular, if γ is a loop in Sn so that τC,i([γ]) is infinite for each i ∈

{1, . . . ,n} then it must be that τC,i([γ]) is already infinite for each i. "

In case parabolic subgroups of a relatively hyperbolic group are finite, the rel-
ative height is the same as the height. Recall that a filling G→G(N1, . . . ,Nm) is
peripherally finite if for each 1 ≤ j ≤m the subgroup Nj has finite-index in Pj .
The following is an immediate consequence of Theorem 7.15.

COROLLARY 7.16. For sufficiently long and H-wide peripherally finite fill-
ings, the height of H in G is at most the relative height of (H,D) in (G,P).

7.2. A result required by Wilton and Zalesskii.

Definition 7.17. [27, Definition 4.1] Suppose that (G,P) is relatively hyper-
bolic and H ≤ G. We say that H is relatively malnormal if for any g ,∈ H the
intersection Hg ∩H is conjugate into some element of P.

If (G,P) is relatively hyperbolic and G is torsion-free, then a relatively mal-
normal subgroup is either parabolic or a subgroup of relative height 1.

For his joint work with Zalesskii [27], Henry Wilton asked us to prove the
following result, which appeared as [27, Theorem 4.4]:

THEOREM 7.18. Let G be a toral relatively hyperbolic group with parabolic
subgroups {P1, . . . ,Pn} and let H be a subgroup which is relatively quasi-convex
and relatively malnormal. There exist subgroups of finite index K ′i ⊂ Pi (for all i)
such that, for all subgroups of finite index Li ⊂K ′i, if

η : G−→Q=G/〈〈L1, . . . ,Ln〉〉

is the quotient map, the quotient Q is word-hyperbolic and the image η(H) in Q is
quasi-convex and almost malnormal.

Proof. We restrict to peripherally finite fillings. For sufficiently long peripher-
ally finite fillings η : G→ Q, the quotient Q is hyperbolic (since it is hyperbolic
relative to finite groups) by [11, Theorem 7.3.(2)]. Since the peripheral subgroups
of Q are finite, there is no difference between quasiconvex and relatively quasicon-
vex subgroups.

By Proposition 4.5, for sufficiently long and H-wide fillings η : G→ Q the
image η(H) is quasi-convex, and by Corollary 7.16, for sufficiently long and H-
wide fillings η(H) is almost malnormal in Q.

It remains only to note that sufficiently long and H-wide peripherally finite
fillings exist by Lemma 5.2, since the peripheral subgroups of G are free abelian,
and hence ERF. "
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