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Analysis of Nonlinear Fiber Kerr Effects for
Arbitrary Modulation Formats
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Abstract—Coherent optical transmission systems can be mod-
eled as a four-dimensional (4D) signal space resulting from the
two polarization states, each with two quadratures. Recently,
nonlinear analytical models have been proposed capable of
capturing the impact of Kerr nonlinearity on 4D constellations.
None of these addresses the inter-channel nonlinear interference
(NLI) imposed by arbitrary modulation formats in multi-channel
wavelength division multiplexed (WDM) systems. In this paper,
we introduce a general nonlinear model for multi-channel WDM
systems that is valid for arbitrary modulation formats, even
asymmetric ones. The proposed model converges to the previous
models, including the EGN model, in the special case of polariza-
tion multiplexed systems. The model focuses on the cross-phase
modulation (XPM) nonlinear term that lies at the heart of the
NLI in multi-channel WDM systems operating on standard high
dispersion single-mode fiber. We show that strategic mappings
of the modulation format’s coordinates to the polarization states
can reduce the NLI undergone by these formats.

Index Terms—Coherent systems, Channel model, Four-
dimensional signal spaces, Inter channel nonlinear interference,
Optical Kerr effects, Optical fiber communications.

I. INTRODUCTION

ANALYTICAL nonlinear channel models in optical fiber
communications have been developed that provide a

powerful tool to estimate the nonlinear interference (NLI)
caused by the Kerr nonlinearity. Although the literature pro-
vides many such models, most are restricted to polarization
multiplexed (PM) modulation formats. This paper presents
an analytical nonlinear model that has the power to predict
the NLI in systems using an arbitrary modulation format,
including those using asymmetric four dimensional (4D) con-
stellations.

The first nonlinear model was introduced in 1993 [1]. Then,
an analytical solution to the nonlinear Schrödinger equation
employing the Volterra series method was presented both in the
time and frequency domains in [2]. Following years of neglect,
greater efforts have been made recently to achieve more
accurate nonlinear models. The Gaussian noise (GN) model
was derived based on the assumption that the transmitted
signal in a link follows a Gaussian distribution [3], [4], leading
to an overestimate of the NLI. The first 4D GN-like nonlinear
model was introduced in [5].

The GN model does not contain any modulation-format-
dependent terms. A second-order perturbation technique for
the self-phase modulation and cross-phase modulation (XPM)
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effects was developed in [6]. A modulation-format-dependent
time-domain model was proposed for the first time in [7] by
resorting to an asymptotic approximation reminiscent of the
far-field approximation in paraxial optics. The authors of [8]
found that there is a discrepancy between the time domain
model in [7] and the GN model [3], and they attributed this
deviation to the Gaussianity assumption of the signal in the
GN model. To settle this discrepancy, [8] added a modulation-
format-dependent correction term to the XPM term. Following
the same approach as [8], the authors of [9] added correction
terms to the GN model, taking the self-channel interference
(SCI), cross-channel interference (XCI), and multi-channel
interference (MCI) terms into account, giving rise to an
enhanced Gaussian noise (EGN) model.

Other versions of the GN model have emerged to improve
its accuracy under different scenarios. Modifications to the GN
model to account for the presence of stimulated Raman scat-
tering (SRS) were presented in [10], [11], which are capable
of taking into account an arbitrary frequency-dependent signal
power profile. These models are valid for Gaussian-modulated
signals such as probabilistically-shaped high-order modulation
signals. Very recently, [12] proposed an approximate GN
model for SCI and cross-phase modulation (XPM) in the
presence of SRS. The authors of [13], [14] added a modulation
format correction term to the XPM, derived in [12, Eq. (8)],
while the SCI was computed under a Gaussian assumption.
Modulation-format-dependent models in the presence of SRS
were proposed in [15], [16], accounting for all the NLI terms,
the SCI, XCI, and MCI. The model in [16] introduced a
general link function for heterogeneous fiber spans where the
span loss and SRS gain/loss are not fully compensated by the
amplifier at the end of each span.

Some nonlinear channel models have targeted space-
division multiplexing (SDM) systems. An extended version
of the GN model for SDM was proposed in [17], irrespective
of modulation format dependence and modal dispersion. A
modulation-format-dependent nonlinear model was derived in
[18] for SDM fibers taking the variance of XPM into account.
A comprehensive nonlinear model for SDM as an extension
of [18] was introduced in [19], including all the NLI terms
such as the SCI, XCI, and MCI terms.

All of the analytical models described above are valid for
PM systems but do not apply to 4D modulated systems.
In [20], we derived a nonlinear model which quantifies the
impact of Kerr nonlinearity on 4D symmetric constellations,
accounting for the SCI and XPM nonlinear terms. We extended
the model in [20] to a general nonlinear model [21] that
accounts for all the NLI terms, including the SCI, XCI, and
MCI terms. Although the model given in [21] has the power
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to take all the NLI terms into account, it still lacks the
ability to predict the NLI of constellations that lack symmetry.
The contribution of the SCI variance for arbitrary modulation
formats was derived in [22], but it does not address the NLI
terms that disturb multi-channel WDM systems.

In this paper, we derive a nonlinear model for arbitrary 4D
constellations capable of capturing the predominant nonlinear
term in multi-channel WDM systems, namely the XPM term.
The SCI nonlinear term is caused by the interaction between
symbols transmitted within the channel of interest (COI)
and is much easier to compensate for [8]. The SCI can,
for instance, be reduced by a signal processing technique
known as backpropagation [23], [24]. For high-speed optical
transmission, where multiple WDM channels occupy the C-
band spectrum, the predominant nonlinear term in the high
dispersion regime comes from the XPM terms [25]. For these
reasons, we concentrate on deriving the XPM in this paper,
as in [8]. To derive this model, we remove the restricting
assumptions made in [20, Sec. III]. The emphasis in this
paper is on the high dispersion regime where, for instance,
high symbol rates of around 32 Gbaud are used in a single
mode fiber (SMF); the proposed model should not be used for
predicting the NLI in the low dispersion regime, where the
impact of MCI nonlinear terms is significant. The derivation
of a general analytical model that accounts for all NLI terms,
such as SCI, XCI, and MCI, for an arbitrary modulation format
falls outside the scope of this paper and is left to future work.

The significance of our model is its ability to capture the
NLI on any 4D signal space. Not only does this paper give
expressions to evaluate the NLI of asymmetric constellations,
which has not been done before for multichannel systems,
it also tackles the shortcoming in [20], [21] brought about
by the assumptions made therein. There exist 4D symmetric
constellations whose NLI cannot be predicted by [20], [21]
such as BPSK, SP-QAM4_32 [26], SP-QAM4_512 [26], etc.
However, we are able to compute the NLI of such constellation
through the model proposed in this paper. Furthermore, we
provide final expressions that the reader can directly apply to
a wide range of purposes, such as geometric and probabilistic
shaping. We benchmark the proposed model against the EGN
model, and find that the EGN model may inaccurately predict
the NLI by about 1.4 dB for a system with 80 WDM channels.
Unique to this work, the model can be used to understand
how the alignment of the signal constellation with the light
polarization affects the severity of the NLI. In particular, we
show that a good mapping of the constellation’s coordinates
to the polarization states can decrease the NLI up to 0.5 dB
in certain scenarios.

The structure of the paper is as follows. In Sec. II, we review
the first-order solution to the Manakov equation. Sec. III
presents the key result of this work, which is an expression
for the XCI power. Sec. IV is devoted to simulation results;
a wide range of 4D constellations are compared in terms
of the experienced XCI in this section. Sec. V provides the
conclusion. Finally, the appendix provides a detailed derivation
of the NLI model.

Notation: We use (·)x and (·)y in this paper to refer to
variables related to polarizations x and y, respectively. Two

dimensional complex functions are designated by boldface
symbols. The conjugate transpose is denoted by (·)†, whereas
expectations are indicated by E{·}.

II. PRELIMINARIES

To describe the signal transmission, we start from the
Manakov equation1

∂

∂z
u(t, z) =− iβ2

2

∂2

∂t2
u(t, z)

+ i
8

9
γf(z)u†(t, z)u(t, z)u(t, z), (1)

in which u(t, z) is associated with the electrical field E(t, z),
given in [20, Eq. (1)], by rescaling it to cancel out the
attenuation contribution. The function f(z) is responsible
for the link’s loss/gain profile, which is equal to 1 in
the case of perfectly distributed amplification, and equal to
exp{−αmod(z, L)} in the case of lumped amplification where
α is the loss coefficient, L is the span length, and mod(z, L)
indicates the distance between the point z and the nearest
preceding amplifier. In (1), β2 is the group velocity dispersion
and γ is the fiber nonlinearity coefficient.

Throughout this work, our main focus is on interference
due to the XPM effect. This effect involves only two-channel
interactions, and as a result, the NLI contributions of multiple
WDM channels add up independently. We thus carry out
our initial analysis with only two channels, of which one
is the channel of interest (COI), whose central frequency is
arbitrarily set to zero, and the other is an interfering channel
with central frequency Ω. The linear solution to (1) for two
channels is then expressed as

u(z, t) =
∑
k

akga(t− kTa, z)

+ e−iΩt+
iβ2Ω2

2 z
∑
k

bkgb(t− kTb − β2Ωz, z), (2)

where ak and bk represent the k-th symbol transmitted in the
COI and the interfering channel, respectively. The dispersed
pulse waveform at point z along the fiber is ga,b(t, z) =
exp(−izβ2/2∂

2
t )ga,b(t, 0), where ga,b(t, 0) is the injected

waveform and ∂2
t is the time derivative operator. The symbol

durations of the COI and interfering channel are denoted by Ta

and Tb, respectively. The COI is matched filtered with a filter
whose impulse response is proportional to g∗a(L, t). Without
loss of generality, we aim to detect the zeroth symbol a0.

The extracted symbol at the receiver may be expressed as
a0 +∆a0, where ∆a0 accounts for the NLI. By resorting to
a perturbation approach, we can write the first-order solution
of the Manakov equation as

∆a0(Ω) =i
8

9
γ
∑
h,k,l

Sh,k,la
†
kahal+

i
8

9
γ
∑
h,k,l

Xh,k,l

(
b†kbhI+ bhb

†
k

)
al, (3)

1It was first shown in [27] that the coupled nonlinear Schrödinger equation
that describes wave evolution over long length along a communication fiber
can be reduced to the Manakov equation.
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where I is the 2× 2 identity matrix, and Sh,k,l and Xh,k,l are
expressed as

Sh,k,l =

∫ L

0

dz
∫ ∞

−∞
dtf(z)g∗a(t, z)ga(t− lTa, z)

· g∗a(t− kTa, z)ga(t− hTa, z), (4)

and

Xh,k,l =

∫ L

0

dz
∫ ∞

−∞
dtf(z)g∗a(t, z)ga(t− lTa, z)

· g∗b (t− kTb − β2Ωz, z)gb(t− hTb − β2Ωz, z),
(5)

respectively. The SCI and XPM terms are obtained via the first
and second summations on the right-hand side of (3), respec-
tively. We concentrate exclusively on the XPM term because
the impact of the SCI was already described in [22]. Using
the fact that g(t, z) =

∫
dwg̃(w)exp(−iwt+iw2β2z/2)/(2π),

where g̃(w) is the Fourier transform of g(t, 0), (5) can be
written in the frequency domain as

Xh,k,l =

∫
d3w
(2π)3

ρ(w1, w2, w3)ei(w1h−w2k+w3l)T , (6)

where
∫

d3w signifies
∫ ∫ ∫

dw1dw2dw3, and

ρ(w1, w2, w3) =g̃∗a(w1 − w2 + w3)g̃b(w1)g̃
∗
b (w2)g̃a(w3)

·
∫ L

0

dzf(z)eiβ2(w2−w3+Ω)(w2−w1)z. (7)

The x-polarized and y-polarized components of the second
term of (3) can be assembled into a vector denoted as ∆aXPM,0

with components

∆aXPM,0,x(Ω) =i
8

9
γ
∑
h,k,l

Xh,k,l

(
2bh,xb

∗
k,xal,x + bh,yb

∗
k,yal,x

+ bh,xb
∗
k,yal,y

)
, (8)

and

∆aXPM,0,y(Ω) =i
8

9
γ
∑
h,k,l

Xh,k,l

(
2bh,yb

∗
k,yal,y + bh,xb

∗
k,xal,y

+ bh,yb
∗
k,xal,x

)
. (9)

The reader is referred to [20, Eq. 2], [28, Appendix], [8], and
[7, Sec. II] to find the origin of (1)-(9).

III. KEY RESULT AT A GLANCE: THE NLI POWER

In this section, we give the final result of the paper, mak-
ing the resulting expressions easily accessible to the reader.
Detailed derivations are relegated to the Appendix.

To obtain the key result, we remove some of the simplifying
assumptions made in [20, Sec. III] except the following. We
first assume that the data symbols in the x- and y-polarization
are correlated with each other. Channels across the spectrum
can have different 4D modulation formats. The modulations
are assumed to be zero mean, i.e., E{ax} = E{ay} = 0. In
our expressions, channels within the spectrum have the same
launch power, an assumption which can be easily removed to
generalize the results. The key result is obtained for Nyquist

rectangular spectral shape channels (sinc pulses) [3], [8], [9],
yet we note that our model has the ability to compute the
nonlinear disturbance resulting from near rectangular signal
spectral shapes, such as a root raised cosine with a small
roll-off factor [3]. Note that we no longer assume that the
modulation’s constellation is symmetric with respect to the
two polarizations.

Given (3), the NLI covariance of the zeroth symbol of the
COI is given by

Cov(∆aXPM,0) = E
{
(∆aXPM,0 − E{∆a XPM,0})

· (∆aXPM,0 − E{∆aXPM,0})†
}
, (10)

in which we suppressed the indication of the Ω-dependence
in ∆aXPM,0 for notational convenience. Because E{∆aXPM,0} is
equal to zero, (10) can be written as

Cov(∆aXPM,0)

=

[
E{∆aXPM,0,x∆a∗XPM,0,x} E{∆aXPM,0,x∆a∗XPM,0,y}
E{∆aXPM,0,y∆a∗XPM,0,x} E{∆aXPM,0,y∆a∗XPM,0,y}

]
, (11)

Although the non-diagonal terms of the covariance matrix in
(11) are non-zero, the power of the NLI on the COI caused
by the second term of (3) depends only on the diagonal terms
and can be written as

PXPM(Ω) = trace [Cov {∆aXPM,0}] (12)

= σ2
XPM,x(Ω) + σ2

XPM,y(Ω), (13)

where σ2
XPM,x and σ2

XPM,y are the XPM variances on polarizations
x and y, respectively. The term σ2

XPM,x, given in (13), results in
the final expression

σ2
XPM,x(Ω) =E{∆aXPM,0,x∆a∗XPM,0,x}

=
64

81
γ2P 3

x

(
Φ1(Ω)χ1(Ω) + Φ2(Ω)Z(Ω)

+ Φ3(Ω)χ2(Ω)
)
, (14)

where Px is the launch power in polarization x so that the total
optical transmit power becomes

P = Px + Py. (15)

The terms χ1(Ω), Z(Ω), and χ2(Ω) in Table I depend on
the spectral properties of the signal. The terms Φ1, Φ2 and
Φ3 in Table II, on the other hand, depend on the modulation
format. The term σ2

XPM,y, given in (13), can be obtained from
(14) by swapping x and y in these equations and the terms
given in Table II. A detailed derivation of (14) is given in
the Appendix. In the special case of independent polarizations
where the same format is used in both polarizations, Table II
reduces to Φ1 = 5E{|bx|4}/E2{|bx|2} − 10, Φ2 = 6, and
Φ3 = 0. These values used in combination with the integral
expressions in Table I can be shown to coincide with the EGN
model.

As mentioned above, the NLI contributions stemming from
multiple channels in a multi-channel WDM system add up
independently. The total NLI power on the n-th channel in the
spectrum resulting from the XPM contributions of N WDM
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Table I
INTEGRAL EXPRESSIONS FOR THE TERMS USED IN (14).

Term Integral Expression

χ1
1

T 2

∫
d3w
(2π)3

dw′
2

2π
ρ(w1, w2, w3)ρ

∗(w1 − w2 + w′
2, w

′
2, w3)

Z
1

T 3

∫
d3w
(2π)3

|ρ(w1, w2, w3)|2

χ2
1

T 3

∫
d3w
(2π)3

ρ(w1, w2, w3)ρ
∗(−w2,−w1, w3)

channels can be expressed as

P NLI,n =
N∑

i=1,i̸=n

PXPM(Ωi,n), Ωi,n = |νi − νn|. (16)

where the function PXPM(·) is provided in (12). In (16), νi is
the central frequency of channel i.

IV. NUMERICAL RESULTS

In this section, we first numerically validate our model
using the split-step Fourier method (SSFM), described in detail
in [20, Sec. III], for an optical fiber communication system
accommodating 80 WDM channels, using the parameters
listed in Table III. We then compare a wide range of 4D
modulation formats regarding the NLI experienced in a fully-
loaded C band transmission system. Lastly, we investigate how
different mappings of the constellation’s coordinates to the
polarization states may affect the NLI experienced.

A. SSFM validation

In this section, we compare our model with the classical
EGN model (the XPM term given in [9, Eqs. (14)–(17)]) as
a benchmark in a fully-loaded C-band transmission. Fig. 1
shows the SNR of the COI, channel n = 40,

SNR40 =
P

σ2
ASE + PNLI,40

, (17)

where σ2
ASE is the amplified spontaneous emission noise gen-

erated by the EDFA amplifiers along the link, as a function
of launch power for 16-, 256-, and 4096-point constellations.
In order to validate (17), SSFM numerical simulations were
conducted. Specifically, (17) can be estimated by the simulated
SNR of the 40th channel; for a constellation with M symbols,
the SNR was estimated through

SNRest
40 =

∑M
i=1|ȳi|2∑M

i=1 E{|Y − ȳi|2|X = xi}
, (18)

where X and Y are the random variables representing the
transmitted and received symbols, respectively, xi is the i-
th constellation point, and ȳi = E{Y |X = xi}. A total of
215 symbols were simulated per data point, of which the first
and last 1500 symbols were removed from the transmitted
and received sequences. All channels used the same launch
power. In Fig. 1, we mark the SSFM results as filled circles.
The modulation formats considered in our simulations are
PM-QPSK, subset optimized PM-QPSK (SO-PM-QPSK) [29],

[30], c4_16 [31], [32], PM-16QAM, voronoi4_256 [33], [34],
a4_256 [35], w4_256 [36], PM-64QAM, and a4_4096 [32].

Our proposed model, labeled as the 4D model, closely
follows the results obtained via SSFM for all types of 4D
formats shown in Fig. 1. By contrast, the gap between the
conventional EGN model results (marked as dashed curves in
Fig. 1) and the SSFM results shows the obvious shortcoming
of the EGN model in predicting the NLI of 4D formats. From
these results, we expect our model to be precise enough to
predict the NLI in systems using any modulation type and
operating in the high dispersion regime in which the chief NLI
terms are the SCI and XPM. We found in our simulations that
the discrepancy between the results of the model proposed
and the SSFM results becomes greater as the channel spacing
decreases. For systems operating at low symbol rates, this gap
also increases. The main reason for this deviation is the impact
of MCI nonlinear terms ignored in this paper. Note that for
PM modulation formats that do not violate the assumptions
made in [20], [21], our model yields the same results as the
EGN model.

B. Analysis of the NLI undergone by channels across the
spectrum

In this section we further analyze the experienced NLI of
all channels across the spectrum using the parameters listed
in Table III. The 4D modulation formats tested, selected
from [30], are compared using the NLI noise experienced by
channel n normalized by P−3,

ηn =
PNLI,n

P 3
, (19)

where PNLI,n, defined in (16), is the NLI power at the COI. We
assume that the whole spectrum can accommodate 80 WDM
channels in a system with 50 GHz channel spacing and a
symbol rate of 32 Gbaud. We use Eqs. (13)–(14), and Tables I
and II to evaluate the NLI of the 4D constellations.

The figures in this section show ηn as a function of the
spectral location of the COI, identified by the channel number
n. In Fig. 2, we compare 16-point, 256-point, and 4096-point
constellations in terms of the NLI experienced. We first note
that the symmetry of the results in Fig. 2 indicates that the
channels located at either edge of the spectrum experience
lower NLI than the ones in the middle. The EGN model
results are marked as dashed lines. As can be seen in Fig. 2
(a), the EGN model results are inaccurate for estimating the
NLI for the 4D 16-point constellations considered. The EGN
model overestimates the NLI encountered by c4_16 format.
In contrast, the EGN model underestimates the NLI of SO-
PM-QPSK. The difference between the NLI obtained from
the EGN model and our proposed model is more pronounced
for the c4_16 format, with a gap of about 1.4 dB as shown in
Fig. 2 (a).

Fig. 2 (a) also shows that all three 4D formats experience
higher NLI than PM-QPSK, meaning that PM-QPSK out-
performs 4D peers. SO-PM-QPSK is the most nonlinearity-
prone constellation; the difference between the experienced
NLI for SO-PM-QPSK and PM-QPSK is about 1.70 dB. The
c4_16 format proposed in [31], although exquisitely evolved
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Table II
EXPRESSIONS FOR THE MODULATION-DEPENDENT TERMS USED IN (14).

Term Expression

Φ1
1

E{|ax|2}E2{|bx|2}

(
4E{|bx|4}E{|ax|2} − 8E{|ax|2}E2{|bx|2} − 4E{b∗x 2}E{b2x}E{|ax|2}

+2E{axa∗y }E{|bx|2b∗x by} − 4E{axa∗y }E{b∗x by}E{|bx|2}
−2E{axa∗y }E{b∗x 2}E{bxby}+ 4E{|bx|2|by|2}E{|ax|2} − 4E{|by|2}E{|ax|2}E{|bx|2}
−4E{bxb∗y }E{byb∗x }E{|ax|2} − 4E{bxby}E{b∗x b∗y }E{|ax|2}+ E{|by|4}E{|ax|2}
−2E2{|by|2}E{|ax|2} − E{b2y}E{b∗y 2}E{|ax|2}+ E{axa∗y }E{|by|2b∗x by}
−2E{axa∗y }E{|by|2}E{b∗x by} − E{axa∗y }E{by

2}E{b∗x b∗y }+ 2E{aya∗x }E{|bx|2b∗y bx}
−4E{aya∗x }E{b∗y bx}E{|bx|2} − 2E{aya∗x }E{bx

2}E{b∗x b∗y }+ E{aya∗x }E{|by|2bxb∗y }
−2E{aya∗x }E{|by|2}E{bxb∗y } − E{aya∗x }E{b∗y 2}E{bxby}+ E{|ay|2}E{|bx|2|by|2}
−E{|ay|2}E{bxb∗y }E{b∗x by} − E{|ay|2}E{|by|2}E{|bx|2} − E{|ay|2}E{bxby}E{b∗x b∗y }

)
Φ2

1
E{|ax|2}E2{|bx|2}

(
4E{|ax|2}E2{|bx|2}+ 2E{b∗x by}E{axa∗y }E{|bx|2}+ 4E{b∗x by}E{bxb∗y }E{|ax|2}

+E2{|by|2}E{|ax|2}+ E{|by|2}E{b∗x by}E{axa∗y }+ 2E{bxb∗y }E{aya∗x }E{|bx|2}
+E{|by|2}E{bxb∗y }E{aya∗x }+ E{|by|2}E{|ay|2}E{|bx|2}

)
Φ3

1
E{|ax|2}E2{|bx|2}

(
4E{b2x}E{b∗x 2}E{|ax|2}+ 2E{b∗x 2}E{bxby}E{axa∗y }+ 4E{b∗x b∗y }E{bxby}E{|ax|2}

+E{b2y}E{b∗y 2}E{|ax|2}+ E{b2y}E{b∗x b∗y }E{axa∗y }+ 2E{bx
2}E{b∗x b∗y }E{aya∗x }

+E{bxby}E{b∗y 2}E{aya∗x }+ E{bxby}E{b∗x b∗y }E{|ay|2}
)
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Figure 1. SNR of the COI, the channel located in the middle of spectrum n = 40, as a function of launch power after 10 spans of SMF. The full C-band
spectrum accommodates N = 80 WDM channels with symbol rate 32 Gbaud and spacing 50 GHz. The SSFM simulation results are marked as filled circles,
while the results obtained from the proposed model, labeled as ‘4D’, are marked as solid lines. The benchmark EGN model is denoted using dashed lines.

Table III
SYSTEM PARAMETERS FOR NUMERICAL SIMULATIONS

Parameters Values
Loss (α) [dB/km] 0.22
Dispersion (D) [ps/nm/km] 16.5
Nonlinear coefficient (γ) [1/W/km] 1.3
Span length (L) [km] 100
Symbol rate (R) [Gbaud] 32
Roll-off factor [%] 0.01
Channel spacing (R) [GHz] 50
Number of channels 80
Optical center wavelength (nm) 1550
Optical bandwidth (Btot) [THz] 4
Noise figure (dB) 5

to increase the power efficiency, is more vulnerable to the
destructive effect of Kerr nonlinearity than its 2D counterpart
(PM-QPSK). Although the mean of the c4_16 constellation
is not exactly zero, is it close enough so that the 4D model
is able to accurately approximate the NLI experienced. The
experienced NLI disparities between different 4D modulation
formats is attributed to Φ1, Φ2, and Φ3, defined in Table II and
used in (14). Table IV quantifies the influence of Φ1, Φ2, and
Φ3, and as a result, χ1, χ2, and Z, given in (14), on the NLI.
Among the terms shown in this table, Φ3 has the lowest value,
implying that χ2 in (14) has the least impact on the NLI. The
terms Φ1 and Φ2, on the other hand, are the dominant factors
affecting the NLI.

Fig. 2 (b) shows the NLI undergone by PM-16QAM,
voroni4-256, a4_256, and w4_256 formats. In this case, the
EGN model overestimates the NLI of the 4D modulations,



PREPRINT, NOVEMBER 27, 2023 6

20 40 60 80
33

34

35

36

37

38

Channel number n

η n
[d

B
W

−
2
]

16-point constellations

SO-PM-QPSK: 4D EGN
c4_16: 4D EGN
PM-QPSK: 4D EGN

20 40 60 80
33

34

35

36

37

38

Channel number n

256-point constellations

voronoi4_256: 4D EGN
a4_256, w4_256: 4D EGN
PM-16QAM: 4D EGN

20 40 60 80
33

34

35

36

37

38

Channel number n

4096-point constellations

a4_4096: 4D EGN
PM-64QAM: 4D EGN

(a) (b) (c)

1.70 dB1.40 dB

0.91 dB

0.50 dB
0.90 dB

Figure 2. Normalized nonlinear interference ηn defined in (19) as a function of the channel number n after 10 spans of SMF fiber accommodating N = 80
50 GHz WDM channels with symbol rate 32 Gbaud. We call the proposed model ‘4D’, and benchmark this model against the conventional EGN model.
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Figure 3. Normalized nonlinear interference ηn defined in (19) as a function of channel number n after 10 spans of SFM fiber. Different mappings of
coordinates of l4-13, c4-13 and l4-18 to the fiber polarization states are shown.

voronoi4_256 and a4_256 (rotated w4_256), by around 0.90
dB and 0.80 dB, respectively. Unlike the 16-point constella-
tions, the 256-point 2D modulation, PM-16QAM, is at a dis-
advantage in comparison with its 4D peers. The difference in
NLI between the PM-16QAM and the a4_256/w4-256 formats
is about 0.3 dB. This deviation may be rooted in the value of
Φ1, shown in Table IV, which is smaller for a4_256/w4-256
(Φ1 = −3.8) than for PM-16QAM (Φ1 = −3.4).

Recall that a4_256 is equivalent to w4_256 by rotation [30].
As can be seen in Fig. 2 (b), there is no change in the NLI
between a4-256 and w4-256, meaning that rotations of the
constellation do not affect the NLI.

Fig. 2 (c) finally compares PM-64QAM and a4_4096 [30]
regarding the experienced NLI. An inaccuracy of around 0.91

dB is seen in the NLI predicted by the EGN model, leading to
an overestimate of the NLI. Looking at this figure, we can see
that a4_4096 is more resistant to NLI than PM-64QAM and
experiences roughly 0.50 dB lower NLI than PM-64QAM.

C. Influence of a constellation’s coordinates on the NLI

In this section, we investigate the effects that a constella-
tion’s coordinates may have on the NLI. The symbol alphabet,
or constellation, of a 4D modulation format with M symbols
is given by the set of vectors

C = {c1, c2, · · · , cM} , (20)

where ck = (ck,1, ck,2, ck,3, ck,4), of which two are mapped
onto the x polarization and the other two onto the y. Different
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Table IV
VALUE OF Φ1 , Φ2 , AND Φ3 , GIVEN IN TABLE II, FOR THE

CONSTELLATIONS STUDIED IN FIGS. 1 AND 2.

Constellations Φ1 Φ2 Φ3

PM-QPSK -5 6 0

c4_16 -5 6.26 0.004

SO-PM-QPSK -3 6 0

PM-16QAM -3.40 6 0

voronoi4_256 -3.706 6.06 0.001

a4_245, w4_256 -3.8 6 0

PM-64QAM -3.09 6 0

a4_4096 -3.80 6.08 0.002

mappings have different tolerance to the NLI depending on the
modulation format; we noted a strong impact of this mapping
particularly on l4_13, c4_13, and l4_18 formats studied.

The reader interested in visualizing how 4D symbols map to
each polarization is invited to see an exquisite demonstration
in [37, Fig. 3] and [38, Fig. 2 (a)].

Two different mappings are shown in Fig. 3. The first one
consists of mapping ck,1, ck,2 to the x polarization and the
other two to the y. The second one maps ck,1, ck,4 to the x
polarization and the other two to the y. The term Φ1, given
in Table II, for the second mapping is higher than for the
first one, which explains why this mapping generates higher
NLI. As can be seen in Fig. 3 (a), the NLI that disturbs l4_13
increases from around 37 dB for the first mapping to 37.55
dB for the second mapping, a difference of more than half a
dB, surprisingly. There is also an increase of 0.20 dB in the
NLI obtained via the second mapping compared to the first
mapping in the case of c4_13, as indicated in Fig. 3 (b). This
discrepancy for l4_18 is less, only about 0.10 dB, as shown in
Fig. 3 (c). These results indicate that a good mapping of the
constellation’s coordinates to the polarization states might curb
the impact of the NLI. Interestingly, the experienced NLI of
the constellations presented in [37], [38] remains unchanged
under different mappings.

V. CONCLUSION

A detailed derivation of a general analytical nonlinear model
for 4D formats is given in this paper. The derived model has
the ability to quantify the impact of Kerr nonlinearity on a 4D
signal space, irrespective of symmetries. The interpolarization
dependency had to be taken into account to derive this model.
Numerical results show that the EGN model overestimates the
NLI by around 1.4 dB in the case of c4_16 for a system
with 80 WDM channels. This erroneous prediction is ascribed
to polarization dependency, ignored in the EGN model. We
also show that l4_16, c4_16 and SO-PMQPSK modulations
have higher NLI than PM-QPSK; the SO-PMQPSK format
experiences the highest NLI amongst 16-point constellations.
Because the model can capture the nonlinear disturbance

of an arbitrary 4D format, it it can uniquely be used to
quantify the influence of a constellation’s coordinates on the
NLI. The model presented in this paper is valid for high
dispersion regimes where the majority of the NLI stems from
the XPM terms. Extending this model to transmissions over
low-dispersion fiber is the subject of future research.

VI. APPENDIX

This appendix is devoted to evaluating σ2
XPM,x(Ω) in (14) for

a single pair of channels with fixed separation Ω. Thorough
this section, the dependence on Ω is left out for notational
convenience.

The variance of the perturbative term given in (8) can be
written as

σ2
XPM,x =

64

81
γ2

∑
h,k,l,h′,k′,l′

Xh,k,lX
∗
h′,k′,l′

·
(
4E{bh,xb∗k,xb∗h′,xbk′,x}E{al,xa∗l′,x}

+ 2E{bh,xb∗k,xb∗h′,xbk′,y}E{al,xa∗l′,y}
+ 2E{bh,xb∗k,xb∗h′,ybk′,y}E{al,xa∗l′,x}
+ 2E{bh,yb∗k,yb∗h′,xbk′,x}E{al,xa∗l′,x}
+ E{bh,yb∗k,yb∗h′,ybk′,y}E{al,xa∗l′,x}
+ E{bh,yb∗k,yb∗h′,xbk′,y}E{al,xa∗l′,y}
+ 2E{bh,xb∗k,yb∗h′,xbk′,x}E{al,ya∗l′,x}
+ E{bh,xb∗k,yb∗h′,ybk′,y}E{al,ya∗l′,x}

+ E{bh,xb∗k,yb∗h′,xbk′,y}E{al,ya∗l′,y}
)
. (21)

For the sake of brevity, we only give the procedure to
calculate the second term of (21), and the same approach can
be followed for the other terms. We focus on calculating this
term because it is more general to compute than the first term.
The second term is

σ2
NLI,x,2nd =

64

81
γ2

∑
h,k,l,h′,k′,l′

Xh,k,lX
∗
h′,k′,l′

· 2E{bh,xb∗k,xb∗h′,xbk′,y}E{al,xa∗l′,y}, (22)

where the second order moment E{al,xa∗l′,y} = E{axa
∗
y}δl,l′

(see [39, Appendix A]). To compute the fourth order moment,
the following cases should be considered:

E{bh,xb∗k,xb∗h′,xbk′,y}

=


E{|bx|2b∗xby}, h = k = h′ = k′

E{|bx|2}E{b∗xby}, h = k ̸= h′ = k′

E{|bx|2}E{b∗xby}, h = h′ ̸= k = k′

E{b∗x
2}E{bxby}, h = k′ ̸= k = h′.

(23)
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Combining (6), (23), and (22) gives

σ2
NLI,x,2nd =

64

81
γ2

∫
d3w
(2π)3

d3w′

(2π)3

· ρ(w1, w2, w3)ρ
∗(w′

1, w
′
2, w

′
3)

((
2E{|bx|2b∗xby}E{axa

∗
y}

·
∑
h

ei(w1−w2−w′
1+w′

2)hT + 2E{|bx|2}E{b∗xby}E{axa
∗
y}

·
∑
h ̸=h′

ei(w1−w2)hT−(w′
1−w′

2)h
′T + 2E{|bx|2}E{b∗xby}E{axa

∗
y}

·
∑
h ̸=k

ei(w1−w′
1)hT−(w2−w′

2)kT + 2E{b∗x
2}E{bxby}E{axa

∗
y}

·
∑
h ̸=k

ei(w1+w′
2)hT−(w2+w′

1)kT
)∑

l

ei(w3−w′
3)lT

)
. (24)

Using [39, Eqs. (15) and (29)], we can write (24) as

σ2
NLI,x,2nd =

64

81
γ2

∫
d3w

(2π)3
d3w′

(2π)3
ρ(w1, w2, w3)ρ

∗(w′
1, w

′
2, w

′
3)

·

((
2E{|bx|2b∗xby}E{axa

∗
y}

4π2

T 2
δ(w1 − w2 − w′

1 + w′
2)

·+2E{|bx|2}E{b∗xby}E{axa
∗
y}

2π

T
(
4π2

T 2
δ(w1 − w2)δ(w

′
1 − w′

2)

− 2π

T
δ(w1 − w2 − w′

1 + w′
2))

·+2E{|bx|2}E{b∗xby}E{axa
∗
y}

2π

T
(
4π2

T 2
δ(w1 − w′

1)δ(w2 − w′
2)

− 2π

T
δ(w1 − w2 − w′

1 + w′
2))

+ 2E{b∗x
2}E{bxby}E{axa

∗
y}

2π

T
(
4π2

T 2
δ(w1 + w′

2)δ(w2 + w′
1)

− 2π

T
δ(w1 − w2 − w′

1 + w′
2))
)
δ(w3 − w′

3)

)
. (25)

The term involving δ(w1 − w2)δ(w
′
1 − w′

2) is a bias term
resulting in a constant phase shift, and should be ignored [7,
Sec. VIII, Eqs. (63)–(67)], [8, Sec. 3, Eq. (17)], [9, Appendix
A], [40, Sec.IV-B and the text after (63)], [4, Appendix C])
and [20, Eq. (37)]. By removing this term from (25), we have

σ2
NLI,x,2nd =

64

81

[(
E{|bx|2b∗xby} − E{|bx|2}E{b∗xby}

− E{|bx|2}E{b∗xby} − E{b∗x
2}E{bxby}

)
· E{axa

∗
y}2χ1 + E{|bx|2}E{b∗xby}E{axa

∗
y}2Z

+ E{b∗x
2}E{bxby}E{axa

∗
y}2χ2

]
, (26)

where χ1, Z and χ2 are expressed in Table I. The same
approach can be employed for the other terms in (21). Using
the fact that E{|ax|2} = E{|bx|2} = Px, (21) is expressed as
(14).
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