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A B S T R A C T   

Archaeological network analysis often focuses on networks in which ties between sites reflect some sort of 
similarity, such as in artifact assemblages. Site centrality is often of interest, but an apparent difference in two 
sites’ centrality may not be meaningful once sampling variability is considered. We investigate bootstrap as
sessments of sampling variability in centrality scores of a set of late pre-Hispanic archaeological sites in the San 
Pedro Valley, U.S. Southwest, for which ceramic assemblage data can be transformed into networks of ceramic 
similarity. We considered a variety of bootstrap confidence intervals for site eigenvector centrality scores and the 
implications of these intervals for interpretation of the site’s structural importance. In analysis of the San Pedro 
Valley for CE 1300–1349, small differences among site centrality were not statistically distinguishable, but 
moderate to large differences were, with conclusions consistent across methods of constructing bootstrap con
fidence intervals. Similar patterns were evident when examining a broader region in which the Valley is located. 
It appears that substantive interpretation of site centrality differences often will be justified.   

1. Introduction 

Network data and analytic methods can inform many archaeological 
research questions (Brughmans and Peeples, 2017; Mills, 2017; Peeples, 
2019). Rather than considering archaeological sites or contexts in 
isolation, the formal network approach models relations among such 
contexts as a network in which ties reflect some sort of social connection 
between contexts or the people who occupied them. Many applications 
use similarity of sites’ artifact assemblages, such as pottery sherds or 
other type/sourced materials, to construct this network; greater simi
larity between two assemblages is taken as a stronger tie between the 
two sites (Mills, et al., 2013a; Mills, et al., 2013b). Researchers then 
interpret network measures as representing archaeologically significant 
structural characteristics (Birch and Hart, 2018; Lulewicz, 2019; Peeples 
and Haas, 2013). Centrality and other characteristics of nodes may drive 
variation in outcomes for the contexts being studied, and network 
analysis allows quantification of structural features that otherwise can 
be discussed only informally. 

The nature of material culture and its representation in data 

introduces inherent uncertainty in archaeological analyses, and 
archaeological network analysis is no exception. An observed assem
blage is one realization of an underlying “true” probability structure that 
determines the likelihood of finding a particular artifact at a particular 
site, with this structure ultimately stemming from the use or production 
of objects by the site’s inhabitants. We view the observed assemblage as 
a sample from that underlying probability structure and expect that 
different samples would result in different observed assemblages, sug
gesting that the observed assemblage is subject to sampling variability. 
That is, the observed assemblage is unlikely to exactly match the un
derlying probability structure, and the variation in the observed 
assemblage from different samples is the sampling variability that we 
are interested in here. This sampling variability in the assemblage im
plies sampling variability in measures derived from the assemblage, 
including networks of assemblage similarity and any analysis of those 
networks. For archaeological interpretations, assessment of this uncer
tainty due to sampling variability is important in deciding if values such 
as two sites’ network centrality scores are meaningfully different. 
However, it can be challenging to assess uncertainty in network 
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measures; classical descriptive measures typically provide no formula- 
based standard error. Fortunately, in archaeological networks based 
on similarity of sites’ artifact assemblages, the bootstrap offers a natural 
method for assessing sampling variability. 

In this perspective, small differences in centrality scores may not 
indicate real differences in the sites’ structural importance. Some pre
vious work on assemblage networks has mentioned this (Gjesfjeld, 2015; 
Mills et al., 2013a; Mills et al., 2013b; Mills et al., 2015; Peeples et al., 
2016), but to our knowledge no empirical research has explored this 
issue in greater depth. In this paper, we investigate bootstrap assess
ments of sampling variability in network centrality scores of a set of late 
pre-Hispanic U.S. Southwest sites for which networks can be constructed 
from ceramic similarity data. We consider confidence intervals for sites’ 
centrality scores and their implications for interpretation of the sites’ 
structural importance. Although focused on a specific time and place, 
our investigation of sampling variability in centrality scores is pertinent 
to archaeological network analyses in many other settings. 

2. Overview of archaeological networks 

Archaeologists have increasingly used network data and social 
network analysis to understand the structure of relations among a set of 
actors, using models and methods developed in other fields to study 
people’s interactions with one another, material things, and the natural 
environment (Brughmans and Peeples, 2017; Collar et al., 2015). In 
many such studies, archaeologists take a social network approach to 
investigate ties among archaeological sites. In those analyses, relations 
among sites, not simple descriptions of site characteristics, are the 
explicit focus. Interpretation of network analytic measures is enriched 
by knowledge of the archaeological setting. 

Many recent archaeological networks have been constructed from 
measured similarity between site-level artifact assemblages (Hart and 
Engelbrecht, 2012; Golitko et al., 2012; Golitko and Feinman, 2015; 
Habiba et al., 2018; Hart et al., 2017; Mills et al., 2013a, 2013b, 2015, 
2018; Östborn and Gerding, 2014; Roberts et al., 2021; Weidele et al., 
2016). This similarity is typically calculated from categorical classifi
cations of artifact assemblages, with greater similarity when two sites’ 
assemblages are more alike. For ceramic assemblages, each artifact may 
be classified into a ware or type category based on the artifact’s physical 
characteristics and/or design, with raw data giving each site’s sherd 
counts of those categories (Mills et al., 2013b). The measured similarity 
of categorical distributions at pairs of sites produces a symmetric 
network of the sites, in which measured similarities are interpreted as 
network tie weights (see Peeples and Roberts, 2013; Mills et al., 2013a; 
Peeples and Haas, 2013). Most research to date has calculated tie 
weights via archaeology’s Brainerd-Robinson statistic (Brainerd, 1951; 
Robinson, 1951) or the equivalent dissimilarity index (Duncan and 
Duncan, 1955), also equivalent to city block distance between two sites’ 
assemblage profiles. Transforming the continuous weights into tradi
tional binary—present or absent—ties risks loss of information, but 
many network measures such as node centrality can still rely on the 
weighted ties (Mills et al., 2013b; Peeples and Roberts, 2013). 

As discussed in the Introduction, the fact that such a network is 
constructed from observed assemblages means that sampling variability 
in the assemblages introduces uncertainty in the network. This element 
of uncertainty is our focus in this paper. However, there surely are other 
important sources of uncertainty in the underlying assemblage data. It is 
likely that there is some misclassification of artifacts, and different an
alysts might make different decisions as to which artifacts to use when 
measuring site similarities, particularly in a classification that includes 
many fine categories. Also, errors in site occupation dates or, in the 
ceramic context, ware use or production dates would introduce vari
ability that is not represented in this bootstrap approach. Likewise, there 
is further uncertainty in any analysis that relies on apportioning objects 
into different time periods, chooses time periods to highlight, or uses a 
specific assemblage similarity measurement. These additional sources of 

uncertainty are not addressed by the bootstrap as used here. While the 
sampling variability that the bootstrap depicts is likely to be more 
substantial in practice than these other potential sources of error, the 
other sources will still be present to some extent in most realistic ana
lyses. These and other concerns, such as differential preservation of 
artifacts of different kinds or ages, are ubiquitous in archaeological 
research (see Peeples et al., 2016). 

3. The San Pedro Valley, Arizona 

Previous network analyses have considered the San Pedro Valley, 
marked by the “micro-scale” label in Fig. 1, in southeast Arizona, U.S. 
(Mills et al., 2013a; Mills et al., 2013b; Mills et al., 2015). Larger set
tlements in the northern portion of the valley have been extensively 
documented (Clark and Lyons, 2012) and are shown in Fig. 2. The San 
Pedro Valley is an especially vivid illustration of migration processes, 
with substantial entry of migrants from northeastern Arizona in the late 
13th century, and archaeological accounts have identified the known 
sites as local or migrant communities (Di Peso, 1958; Gerald, 2019). 
Settlement origins can be distinguished by architecture (e.g., platform 
mounds, compounds, pueblos, kivas, and plazas) and decorated ce
ramics, especially wares such as Maverick Mountain Polychromes which 
show strong technological and design similarities to ceramics produced 
immediately earlier in northeastern Arizona (Clark and Lyons, 2012; 
Woodson, 1999). After CE 1350, there is considerable evidence that 
hosts and migrants co-occupied a number of sites (Clark and Lyons, 
2012). Few settlements persisted past CE 1400, with most large seden
tary villages unoccupied by CE 1450, as much of the southern Southwest 
saw declines in large villages and population coalescence (Hill et al., 
2004). 

Mills et al. (2013b; 2015) discussed archaeological interpretations of 
the San Pedro network analyses and highlighted several main points 
from the analyses. First, the analyses indicate the importance of network 
centrality early in this period for sites’ persistence. Several sites that 
were highly central prior to the migration remained occupied even after 
widespread depopulation of the region. Second, after CE 1300, several 
migrant communities’ network centrality was among the highest in the 
region. This was likely linked to their importance as producers of 
distinctive and highly valued new ceramic wares. Third, late in the pre- 
Hispanic period and amidst dramatic depopulation, centrality scores of 
the remaining sites became more equal, perhaps reflecting decaying 
cultural distinctions between hosts and migrants (also see Mills et al., 
2013a). 

4. Bootstrap 

Archaeological networks that are based on artifact counts are a 
natural fit with the bootstrap resampling framework (Efron and Tib
shirani, 1993; Roberts et al., 2021). The resampling uses each site’s 
observed distribution of artifacts into classification categories; at each 
site, many repeated samples of the same size as the site’s original 
assemblage are taken with replacement from the site’s observed data. 
Because data likely reflect separate data collection efforts at the various 
sites, when resampling it is appropriate to set the sample size at each site 
to the site’s observed number of artifacts. Then, each resampled 
assemblage will yield a site-by-site similarity network of the type dis
cussed above. A network measure of interest can be calculated from each 
resampled network, resulting in an estimated sampling distribution for 
this measure. The resulting assessment of sampling variability can be 
used for hypothesis tests, confidence intervals, and other purposes. 

This bootstrap has been used in a small number of archaeological 
network studies (e.g., Gjesfjeld, 2015; Lulewicz, 2019; Mills et al., 
2013b; Peeples et al., 2016). While the bootstrap is not guaranteed to 
“work” in all possible situations (Bickel and Freedman, 1981; Chernick, 
2007), recent simulation results suggest that it does provide reasonable 
estimates of sampling variability in archaeological networks (Roberts 
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et al., 2021). As noted above, the sampling variability indicated by the 
bootstrap is not the only source of noise in archaeological network data 
(see Peeples et al., 2016). 

There are a variety of approaches to constructing bootstrap confi
dence intervals for an unknown parameter from the distribution of 
parameter estimates; here, the unknown parameter would be a site’s 
“true” centrality that would be calculated from underlying (unobserved) 
ware probabilities. For example, Efron’s (1979) percentile method takes 
the values that define the lowest and highest 2.5 % of the distribution as 
the endpoints of a 95 % confidence interval for the parameter of inter
est—in our case, the site’s true eigenvector centrality. Other variations 
on the bootstrap confidence interval are discussed below. 

5. Current study 

5.1. Data 

Our data come from a larger project involving over 1,600 sites that 
were occupied between CE 1200 and 1500 in Arizona and New Mexico. 
We focused on relatively large residential sites (at least thirteen rooms) 
in the San Pedro Valley, which are generally well-known and -docu
mented (Clark and Lyons, 2012), and the broader region in which the 
Valley is situated. Ceramic data at these sites indicate ware and type 
classifications of ceramic sherds. Wares are defined by technological 

attributes, such as appearance and production techniques. Types are 
finer classifications, here largely based on surface decoration, nested 
within wares. Network analyses to date have typically used ware-level 
classification (e.g., Mills et al., 2013a; Mills et al., 2013b; Mills et al., 
2015), usually focusing on decorated ceramics with likely ceremonial 
use and ideological importance (see Mills et al., 2013b; Mills, 2016). In 
this paper, networks reflect similarity in ware frequencies of decorated 
ceramics only. 

To consider temporal change in networks, long-occupied sites’ 
ceramic assemblages must be apportioned to shorter time intervals. We 
used Roberts et al.’s (2012) method for apportioning into 25-year in
tervals and combined periods into 50-year intervals. The method relies 
on a common trajectory of ceramic types’ popularity over their pro
duction spans and requires population history estimates for all sites; we 
used a model-based approximation of Hill et al.’s (2004) approach (see 
also Bernardini et al., 2021), described in detail in the Supplementary 
Material. Aggregating type data into wares results in a series of tables 
giving estimated ware counts at each occupied site in each 50-year 
period, with “CE 1300” shorthand for “the period CE 1300–1349.” 
The Supplementary Material provides all ceramic data. 

Mills et al. (2015) emphasized the importance of networks at 
different spatial scales. There, the microscale was represented by the 
northern San Pedro Valley. The mesoscale included that microregion 
along with much of the Arizona portion of the Basin and Range 

Fig. 1. Archaeological sites in Arizona and western New Mexico, with the San Pedro Valley and neighboring regions indicated. 
Source: Mills et al., 2015 
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physiographic province. Culturally, this region mostly aligns with the 
Hohokam archaeological culture area. The macroscale covered the 
entire project area in Arizona and New Mexico west of the North 
American Continental Divide. This work brought archaeology’s 
emphasis on varying geographical scales into the domain of network 
analysis. Here, we drew on this emphasis by first considering the San 
Pedro sites as a microregion before analyzing the larger mesoregion. 

5.2. Network analysis and bootstrap 

From the dissimilarity index Dij, we took (1 – Dij) as the weight on tie 
(i, j), so that greater similarity corresponds to a greater tie weight. While 
bootstrap resampling involved all of the wares in each site’s assemblage, 
Dij used only the subset of decorated wares. In previous work on ceramic 
similarity networks, eigenvector centrality was identified as a substan
tively appropriate measure (Mills et al., 2013a, 2013b, 2015, 2018) 

Fig. 2. Archaeological sites in San Pedro Valley, Arizona (Artifact Hill and Roach Wash are not included in the analysis). 
Source: Mills et al., 2013b 
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because, in Borgatti’s (2005) terms, it is reasonable to conceive of 
ideological and cultural influence as prominent “flows” in this network. 
An actor’s eigenvector centrality is proportional to the sum (weighted by 
tie strengths) of the centralities of others to whom the actor is tied, with 
scores given by the eigenvector for the largest eigenvalue of the net
work’s adjacency matrix A (Bonacich, 1972). Here we normalized the 
centrality scores so that 1 represents a typical score within the network. 

At both regional scales, we created 10,000 bootstrap replications by 
sampling with replacement from each site’s observed ceramic assem
blage (including decorated and undecorated wares). Each replication 
involved a with-replacement sample of the observed size from each 
site’s assemblage. Resampling was at the level of types and aggregated 
into ware-level data for analyses; this approach accommodates the 
possibility of different types within a ware having different production 
spans. Processing of each replication was as discussed above for the 
observed data: apportioning into 50-year periods, construction of a 
network of site similarities, and calculation of site eigenvector central
ities. Data for subsequent analyses therefore consisted of 10,000 cen
trality scores for each site. In principle, a site’s assemblage might not 
overlap with any other site, creating an isolate in the network. Other 
possibilities could also leave the network disconnected, such as if the 
bootstrap left a site with no decorated sherds in a particular period. Such 
issues would affect calculation of eigenvector centrality. However, this 
was not encountered in any of the 10,000 bootstrap replications for San 
Pedro, and only extremely rarely for the broader region, so it had no 
material impact on the results below. 

We considered several classic approaches to constructing bootstrap 
confidence intervals, listed here. For an overview that covers many of 
these approaches, see Manly (1997), with further details in Efron and 
Tibshirani (1993) and Chernick (2007) and theoretical justifications in 
Efron and Tibshirani (1993) or the articles cited in the Supplementary 
Material. These classic bootstrap confidence intervals are representative 
of methods used by practicing researchers, but certainly do not exhaust 
the possibilities available in the vast and ongoing technical literature 
that has developed around the bootstrap. We also did not take up the 
often-heated debates in that literature concerning the relative merits of 
the different approaches. We used a variety of confidence interval 
methods simply to check if the resulting confidence intervals were 
roughly similar, not to declare one method or another superior. Our 
analysis included the following confidence intervals, described further 
in the Supplementary Material: (i) the standard bootstrap confidence 
interval, with a bootstrap standard error used to construct a traditional 
confidence interval; (ii) Efron’s (1979) percentile confidence interval, 
discussed above; (iii) Hall’s (1986) percentile confidence interval, based 
on the distribution of differences between the observed estimate and the 
bootstrap estimates; (iv) the bootstrap-t percentile confidence interval 
from the double bootstrap, in which the iterated bootstrap permits 
calculation of a t-statistic in each bootstrap replication; (v) Booth and 
Hall’s (1994) calibrated percentile confidence interval from the double 
bootstrap, with the iterated bootstrap providing coverage estimates for 
adjustment of the confidence interval; and (vi) Efron’s BCa confidence 
interval, in which the confidence interval’s endpoints are adjusted for 
bias and acceleration. 

5.3. Summary of analytic plan 

We can summarize the steps in our analyses as follows.  

1. Data: Counts of classified (by type) ceramic sherds by sites; site 
occupation spans; use or production spans for types, possibly specific 
to sites.  

2. Apportioning: Use site and type time data to apportion sherd counts 
to time periods for sites that were occupied for more than one period. 

3. Network: Create site-by-site network of decorated assemblage simi
larity; calculate eigenvector centrality scores for the sites in this 
network.  

4. Bootstrap: Resampling from each site’s assemblage; for each site, 
draw a resample of the same size as the site’s observed assemblage; 
repeat many (here 10,000) times; for each bootstrapped dataset, 
repeat (2) and (3); collect the eigenvector centrality scores for each 
site from each bootstrapped dataset.  

5. Confidence intervals: For each site, apply one or more confidence 
interval methods to the collection of bootstrapped eigenvector cen
trality scores; if desired, use bootstrap eigenvector centrality scores 
from two sites to make confidence intervals for differences in scores 
or confidence regions from plots. 

The Supplementary Material includes the software code used to carry 
out our analyses. 

6. Results 

6.1. Analysis of the San Pedro Valley 

We first took the San Pedro Valley sites as the whole network. 
Because more sites were occupied in CE 1300 than in other periods, we 
focused on the results for the 21 sites occupied in the CE 1300 interval 
and explored whether different confidence interval methods produce 
similar results with these data. The sites’ observed eigenvector centrality 
ranged from 0.554 for Second Canyon Compound to 1.196 for Swingle’s 
Sample. A visualization of the binarized network is given in the Sup
plementary Material. 

Fig. 3 shows the various confidence intervals for Piper Springs’ 
centrality; the dot marks the site’s observed centrality. Although the 
differences among the methods at Piper Springs were large relative to 
those at other sites, in absolute terms the differences were quite small. 
The Y-axis scale makes clear that any apparent differences across the 
methods are minor and unlikely to appreciably affect interpretations; 
note that the pattern of a longer standard bootstrap interval is consistent 
across sites. (Figures for Bayless Ruin and Dudleyville Mound, and a 
table reporting all confidence intervals for all sites, are provided in the 
Supplementary Material.) Also, the standard deviations of the upper and 
lower bounds of each site’s confidence intervals across the six methods 
were small: the largest of these standard deviations was roughly 0.035, 
compared to a standard deviation of the site centrality estimates of 
0.187, and many were much smaller. (These standard deviations are 
displayed in the Supplementary Material.) For these data, then, the 
choice of confidence interval method does not appear to be too 
important. 

Fig. 4 presents Efron’s percentile 95 % confidence intervals for all 
sites. We first consider whether incorporating sampling variability via 
the confidence interval changes any interpretations implied by the 
original centrality score estimates, initially looking for overlapping 
confidence intervals as a crude indication of statistically indistinguish
able scores. Among the four sites with the highest estimated centrality, 
confidence intervals overlap a great deal. In the group of ten sites with 
the next highest estimated centrality, there is also considerable overlap 
among the confidence intervals, and between these two groups, the 
degree of overlap depends on which pair is being examined. The overall 
impression is still of the second group having lower centrality, but not all 
pairs appear statistically distinguishable. The six sites in the third group 
are clearly distinguishable from the other groups. Although within the 
group there is substantial overlap, the lowest centrality site, Second 
Canyon Compound, is obviously much less central than any other site. 
Note that in general the confidence intervals were shorter for sites with 
larger observed decorated assemblages, but there are exceptions to this 
pattern, and the correlation between observed number of decorated 
sherds and length of Efron’s percentile confidence interval was only 
–0.39 (–0.49 when using sites’ ranks on these variables). Fig. 5 gives 95 
% confidence intervals under Booth and Hall’s first method using the 
double bootstrap, with the overall impression quite like that from Fig. 4. 
(The Supplementary Material gives equivalent figures for the other 
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confidence intervals.). 
We also explicitly examined centrality differences in particular pairs 

of sites, expressed as ci − cj for additive comparisons and as ci/cj for 
multiplicative comparisons. By calculating these quantities in each 
bootstrap replication, confidence intervals for the difference between 
two sites can be constructed in the same way as a confidence interval for 
a single centrality score, with non-independence between the sites’ 
scores reflected in the analysis. We illustrate this via Efron’s percentile 
95 % confidence intervals for the additive and multiplicative differences 
in the pairs {Wright, Lost Mound}, {Camp Village, Ash Terrace}, 
{Swingle’s Sample, José Solas Ruin}, and {Bayless Ruin, Reeve Ruin}. 
These were chosen to highlight two pairs with quite similar observed 
eigenvector centrality scores and two with quite different scores. 

Fig. 6 shows confidence intervals for the additive differences be
tween these sites’ centrality scores ci − cj; the Supplementary Material 
contains a corresponding figure for the confidence intervals for multi
plicative differences ci/cj. No difference between scores is indicated by a 

value of 0 in the additive case and a value of 1 in the multiplicative case. 
When we informally considered overlap between the site confidence 
intervals in these pairs via Figs. 4 and 5, Wright appeared distinct from 
Lost Mound, and Swingle’s Sample likewise appeared distinct from José 
Solas Ruin. However, the confidence intervals for Bayless Ruin and 
Reeve Ruin overlap, and the intervals for Camp Village and Ash Terrace 
substantially overlap. When we consider the differences in these pairs 
more formally with confidence intervals for the differences in Fig. 6, the 
conclusions change a bit. The confidence intervals in Fig. 6 for additive 
differences between Wright and Lost Mound and between Swingle’s 
Sample and José Solas Ruin exclude 0, and the confidence intervals for 
the multiplicative difference between Wright and Lost Mound (1.304, 
1.468) and Swingle’s Sample and José Solas Ruin (1.114, 1.193) like
wise exclude 1. These conclusions agree with the informal comparison of 
the sites’ separate confidence intervals. However, for Bayless Ruin vs. 
Reeve Ruin, the confidence intervals for the difference exclude 0 for the 
additive comparison (0.001, 0.041) and 1 for the multiplicative 
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Fig. 3. Comparison of bootstrap confidence intervals for Piper Springs, CE 1300.  
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Fig. 4. Efron’s percentile 95 % confidence intervals, San Pedro, CE 1300.  

J.M. Roberts Jr. et al.                                                                                                                                                                                                                          



Journal of Archaeological Science: Reports 51 (2023) 104100

7

comparison (1.001, 1.039), a different conclusion than in the informal 
comparison. The formal Camp Village vs. Ash Terrace comparison 
agrees with the informal comparison. 

A different way of considering these comparisons between sites is to 
construct two-dimensional confidence regions for pairs of scores. To our 
knowledge, methods for bootstrap confidence regions for such pairs (e. 
g., Yeh and Singh, 1997) have not been standardized, so we used a 
simple approach that shares the spirit of Efron’s percentile method for a 
one-dimensional confidence interval and is akin to bootstrap confidence 
regions for points in correspondence analysis (Greenacre, 1984; Ring
rose, 1992). In Fig. 7, each point represents the two sites’ centrality 
scores in a single bootstrap replication, with the graph showing the 
9,500 (95 %) such points closest in Euclidean distance to the point of 
means of the scores across the 10,000 replications. The superimposed 
circular or oval shape is the convex hull, and the 45◦ line represents 
equality of the two scores. Treating the convex hull as a 95 % confidence 

region, if the line does not pass through the hull, then the two central
ities seem statistically distinct. When, on the other hand, the line passes 
through the convex hull, the two scores are not statistically distin
guishable. Note that beyond the way in which eigenvector centrality 
scores are conceptually related to each other, normalization of the scores 
introduces some inherent dependence of one site’s reported score on the 
others. But unless the number of sites is very small, this probably has 
little impact. 

For several pairs, the conclusion from this approach is like that from 
the confidence intervals for additive and multiplicative differences. 
Wright and Lost Mound (and, in the Supplementary Material, Swingle’s 
Sample and Jose Solas Ruin), appear to have distinct centrality scores 
because the 45◦ line does not pass through the convex hull, while Camp 
Village and Ash Terrace do not appear distinct. These interpretations 
agree with those from the confidence intervals for additive and multi
plicative differences above. On the other hand, for Bayless Ruin and 
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Fig. 5. Booth and Hall 95 % confidence intervals, San Pedro, CE 1300.  
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Reeve Ruin, the 45◦ line passes through the convex hull, while the 
confidence interval for the difference between these two sites in Fig. 6 
sits just above the equality threshold (0 for the additive comparison, and 
1 for the multiplicative comparison shown in the Supplementary Ma
terial). Note, however, that these confidence intervals are very close to 
the threshold, so that a different confidence interval method, a slightly 
different confidence level, or a different (due to chance) set of bootstrap 
replications might indicate no difference, and the 95 % confidence re
gion indicated by the convex hull is also by its nature somewhat 
informal. The comparison of these two sites is thus less clear cut and 

would bear further investigation if there were substantive interest in the 
specific comparison of Bayless Ruin to Reeve Ruin. 

We mentioned earlier that analysts may prefer to interpret centrality 
rank instead of actual centrality scores. Rather than confidence in
tervals, Fig. 8 is a “heatmap” indicating the proportion of the bootstrap 
replications in which a site had a given centrality rank. The proportions 
are shown in the figure and the continuous shading is darker as the 
proportion is larger. Outlined diagonal entries refer to replications in 
which a site’s centrality rank was the same as its rank in analysis of the 
observed data. First, the extremely dark cells in the corners show that 
Swingle’s Sample and Second Canyon Compound were virtually always 
the highest and lowest centrality sites across the bootstrap replications. 
For some other sites, the diagonal entry is darkest because the most 
frequent rank for that site was its observed rank, even if that largest 
proportion might fall below 0.5. In other cases, a non-diagonal entry is 
darkest, when the most frequent rank in the bootstrap replications was 
not the observed rank. However, the disparity was never great in those 
cases, and the most frequent ranks usually were adjacent to the 
observed. The largest variability in rank was for sites in the middle 
range; for these sites, the precise rank is rather uncertain. Although 
differing in its focus on ranks, this impression is consistent with the 
confidence intervals above, and site ranks appear to be reasonably 
consistent across the bootstrap replications. 

We can relate these results to previous discussions of the San Pedro 
Valley. For instance, Mills et al. (2013b) commented as follows on the CE 
1300 period: 

In the following period (AD 1300–1350), as migration into the valley 
continued, the greatest number of sites was occupied. The two most 
well-known migrant enclaves, Reeve Ruin and the Davis Ranch site, 
as well as sites in the vicinity with probable migrant components (i.e. 
Curtis, Elliott, Bayless Ranch Ruin, Jose Solas Ruin) exceed or rival 
the centrality scores of first-comer villages such as Flieger and Ash 
Terrace, with all in the group of sites with above average centrality. 
We think that this is related to the fact that the migrants became 
producers of highly valued decorated ceramics called Salado poly
chromes, and, through exchange of these vessels, their villages 
established connections with earlier ‘well-connected’ local sites. The 
migrant position in the San Pedro social network was enhanced by 

Fig. 7A. Convex hull of points representing centrality of Lost Mound and 
Wright, CE 1300, for the 95 % of bootstrap replications closest to the observed 
centrality for these sites, indicated by horizontal and vertical lines. The 45◦ line 
indicates equality of the sites’ centrality. 

Fig. 7B. Convex hull of points representing centrality of Ash Terrace and Camp 
Village, CE 1300 for the 95 % of bootstrap replications closest to the observed 
centrality for these sites, indicated by horizontal and vertical lines. The 45◦ line 
indicates equality of the sites’ centrality. 

Fig. 7C. Convex hull of points representing centrality of Reeve Ruin and 
Bayless Ruin, CE 1300 for the 95 % of bootstrap replications closest to the 
observed centrality for these sites, indicated by horizontal and vertical lines. 
The 45◦ line indicates equality of the sites’ centrality. 
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their central role in the production and distribution of these deco
rated ceramics. 

Our current analyses seem consistent with these remarks. The con
fidence intervals for Flieger and Ash Terrace indicate that even when 
sampling variability is considered, these sites have meaningfully lower 
centrality than the named migrant sites. The confidence intervals show 
that the centrality of the migrant sites is difficult to distinguish, but 
clearly exceeds that of these two first-comer sites. In this case, then, the 
substantive conclusion does not appear to be affected by sampling 
variability. 

6.2. Analysis of the broader region 

We also considered the broader region consisting of the Chihuahuan 
Lowlands (CL), Papagueria (P), Phoenix Basin (PB), Safford (S), San 
Pedro (SP), Santa Cruz (SC), Tonto Basin (TB), and Upper Gila (UG) 
areas, corresponding to the “meso-scale” boundary in Fig. 1. Although 
San Pedro is part of this broader region, its analysis in this wider context 
is not directly comparable to its analysis as a region unto itself. Partly 
that is just a consequence of what was previously the whole network 
now being part of a larger one, so that the nature of the ties between San 
Pedro sites and those in other subregions could affect the relative cen
trality of the San Pedro locales. However, a more fundamental difference 
is that the set of wares designated as decorated is not the same in the two 
analyses. Previous researchers have made this choice because some of 
the wares that are relatively uncommon, and therefore distinctive, when 
considering the San Pedro Valley in isolation are much more common in 
other parts of the broader region (see Mills et al., 2015). 

For instance, red-slipped wares lacking other decoration can be 
reasonably treated as decorated when considering only San Pedro sites, 
but these are much more prevalent in data from sites in the Tonto Basin. 
As wares that are extremely common in sites’ assemblages probably 
have a utilitarian rather than expressive nature, this shift in the defini
tion of decorated seems appropriate for the larger region. One conse
quence, though, is that changes in relative centrality within San Pedro 
reflect more than just the impact of considering ties in the rest of the 

network. The Supplementary Material reports the list of wares consid
ered decorated for the analysis of the broader region. We also restricted 
our analysis to sites for which the apportioned count of decorated sherds 
in the site’s observed assemblage for that period was at least five; for CE 
1300, this left 96 sites. While this low cutoff permitted the inclusion of 
many sites and a large network, it also left some sites with very wide 
confidence intervals. 

Fig. 9 shows Efron’s percentile confidence intervals for sites active in 
CE 1300 across the broader region, roughly in thirds and ordered by 
their observed centrality scores. Because of the wide confidence in
tervals in panel B, the vertical scale differs across the panels. The figure 
suggests that, as in the isolated analysis of San Pedro, many sites of 
differing observed centrality genuinely are statistically distinguishable, 
but small differences in observed centrality are likely not. However, in 
the broader region there are also sites whose centrality is essentially 
indistinguishable from that of all other sites, so some modesty is 
required when interpreting analyses of this larger network. 

Fig. 9 includes each site’s regional designation. When considered in 
this broader context, the San Pedro sites appear to have had generally 
high centrality in this period; note the difference for Second Canyon 
Compound, from lowest centrality in the San Pedro-only analysis to 
roughly average in the analysis of the broader region. This high cen
trality of San Pedro sites is consistent with the Valley’s recognized 
importance for social transformation and migration in the region in this 
period and its location in the larger region’s center. As before, interest 
may lie in assessing centrality ranks, and the Supplementary Material 
includes a heat map similar to Fig. 8 displaying variability in sites’ 
centrality rank across the bootstrapped replications. 

7. Conclusion 

The results presented here are encouraging with respect to the value 
of network analysis of archaeological assemblage data and the incor
poration of sampling variability into such analysis. First, it did not 
appear that confidence intervals for eigenvector centrality scores were 
much affected by the choice of bootstrap confidence interval method. 
Different methods’ confidence limits were quite similar, with little 

Centrality Rank

Site 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Swingle's Sample      .931 .051 .014 .004 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Piper Springs         .050 .425 .227 .231 .033 .018 .007 .004 .002 .002 .001 .000 .001 0 0 0 0 0 0 0 0
Davis Ranch Site      .017 .484 .471 .029 .000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Elliott Site          .002 .039 .283 .641 .034 .001 .000 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Curtis                0 0 .000 .019 .323 .322 .170 .071 .040 .023 .016 .010 .006 .001 0 0 0 0 0 0 0
Bajada Site           .000 .001 .005 .045 .279 .161 .141 .086 .072 .055 .045 .042 .036 .034 0 0 0 0 0 0 0
Dudleyville Mound     0 0 .001 .030 .273 .313 .201 .096 .049 .020 .011 .005 .001 0 0 0 0 0 0 0 0
Bayless Ruin          0 0 0 .000 .006 .053 .222 .322 .219 .117 .047 .011 .002 .000 0 0 0 0 0 0 0
Adobe Hill            0 0 0 0 .001 .011 .061 .166 .238 .157 .112 .097 .081 .077 .000 0 0 0 0 0 0
Wright                0 0 0 .001 .033 .075 .117 .128 .135 .153 .150 .115 .070 .024 0 0 0 0 0 0 0
Reeve Ruin            0 0 0 0 .000 .000 .002 .020 .098 .266 .311 .228 .074 .001 0 0 0 0 0 0 0
High Mesa             0 0 0 .000 .011 .030 .052 .072 .093 .123 .154 .192 .172 .100 0 0 0 0 0 0 0
Leaverton             0 0 0 .000 .008 .016 .027 .036 .049 .068 .093 .140 .226 .337 0 0 0 0 0 0 0
Jose Solas Ruin       0 0 0 0 0 0 .000 .000 .005 .017 .061 .160 .331 .426 0 0 0 0 0 0 0
Big Bell              0 0 0 0 0 0 0 0 0 0 0 0 0 0 .372 .294 .172 .115 .039 .008 0
Camp Village          0 0 0 0 0 0 0 0 0 0 0 0 0 .000 .359 .159 .114 .150 .114 .105 0
111 Ranch             0 0 0 0 0 0 0 0 0 0 0 0 0 0 .210 .301 .249 .179 .052 .009 0
Lost Mound            0 0 0 0 0 0 0 0 0 0 0 0 0 0 .058 .231 .406 .285 .021 .000 0
Flieger               0 0 0 0 0 0 0 0 0 0 0 0 0 0 .002 .015 .056 .232 .552 .144 0
Ash Terrace           0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .001 .004 .039 .223 .734 0
Second Canyon Cmpnd 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 8. Proportions of San Pedro sites’ centrality rank across bootstrap replications. Darker shading indicates greater proportions; unshaded cells indicate ranks that 
did not appear in any bootstrap replications. Entries of “.000” indicate non-zero proportions that round to less than 0.001 (representing fewer than 5 out of 10,000 
replications). 
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variation across methods relative to the variation in centrality across 
sites. Second, while the analysis showed that not all San Pedro sites were 
statistically distinguishable from each other in centrality, clear groups of 
similarly central sites could be distinguished. Third, when focusing on 
centrality ranks rather than centrality scores, we likewise saw that the 
analysis could reasonably identify groups of similarly central sites. 
Fourth, this conclusion also seemed to apply in analysis of data from the 
broader region, though with some sites having very wide centrality 
confidence intervals due to the small size of their assemblage for some 
apportioned time periods. 

Although focused on a particular time and place, these results give 
some reassurance that substantive conclusions from analysis of 

archaeological assemblage networks reflect more than statistical noise. 
Consideration of sampling variability adds richness to archaeological 
network analysis and should be a standard part of substantive research 
in this area. The bootstrap methods used here require that the site 
similarities used in the network analysis were derived from assemblage 
counts. If similarities were derived from, say, binary presence-absence 
data that did not include counts, different strategies would be neces
sary. But when counts are available, this approach is a straightforward 
tool for incorporating sampling variability in the form of confidence 
intervals for centrality scores. Similar confidence intervals could be 
constructed for sites’ other network properties. 

Regarding the other sources of uncertainty that are not addressed by 
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Fig. 9A. Efron’s percentile 95 % confidence intervals, broader region, CE 1300; high centrality sites.  
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the bootstrap approach here, many could be effectively investigated as 
part of a more comprehensive analysis. For instance, Ladefoged et al. 
(2019) represented uncertainty in classification by adding artifacts at 
random to the observed classification. Alternatively, one could 
randomly reclassify some proportion of the observed distribution. For 
dates, random perturbations of the start and end dates of site occupation 
or ceramic wares could account for this source of uncertainty. Archae
ological knowledge would inform a researcher’s choices of the expected 
size of such perturbations, with different archaeological contexts 
marked by varying degrees of uncertainty in dates. For uncertainty 
stemming from choices of apportioning methods and similarity mea
surements, analysts can assess the robustness of major findings under 
different methods and measures. Finally, although we use ceramic ware- 
based categories to form networks here, similar issues would pertain to a 
variety of analyses of classified artifacts. Whatever the particular data 
setting and challenges, the bootstrap methods used here will be a helpful 
addition to any archaeological network analysis. 
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