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Abstract
Sediment transport controls the evolution of river channels, playing a fundamental role in physical, ecological, and

biogeochemical processes across a wide range of spatial and temporal scales on the Earth surface. However, developing

predictive transport models from first principles and understanding scale interactions on sediment fluxes remain as for-

midable research challenges in fluvial systems. Here we simulate the smallest scales of transport using direct numerical

simulations (DNS) to explore the dynamics of bed-load and discover how turbulence and grain-scale processes influence

transport rates, showing that their interplay gives rise to a critical regime dominated by fluctuations that propagate across

scales. These connections are represented using a stochastic differential equation, and a statistical description through a

path integral formulation and Feynman diagrams, thus providing a framework that incorporates nonlinear and turbulence

effects to model the dynamics of bed-load across scales.
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1 Introduction

How rivers change over time is shaped by complex non-

linear processes that take place at the interface of the

sediment bed and the flow. In most cases, their morpho-

dynamic evolution is controlled by sediment motion in

close contact with the bed, or bed-load transport (Church

2006), which is originated at the smallest physical scales,

driven by the dynamics of the turbulent boundary layer at

the particle size. Sediments interact with recurring and self-

sustained patterns of the flow velocity near the bed that

reveal a wide range of organized eddies, predominantly

streaks and hairpin vortices of different sizes (Adrian 2007;

Smits et al. 2011; Marusic and Adrian 2013). These

coherent vortices constitute the fundamental structure of

the boundary layer, which very close to the bed produce

spatially correlated velocity fluctuations influenced by

viscosity, transferring momentum and mobilizing sediment

grains downstream (Séchet and Le Guennec 1999; Radice

et al. 2013; Cameron et al. 2020). Interactions of particles

with the turbulent flow have a remarkable complexity and

significant consequences on the channel morphology for a

wide range of spatial and temporal scales. Even though the

couplings and feedbacks that affect bed-load transport are

not entirely known, quantitative studies of the
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morphodynamic evolution of river channels have always

required models to predict transport rates, from the study of

sediment relations with the scales of turbulence, to inves-

tigations on the effects of tectonic motions (Church 2007).

However, modeling transport from first principles is a very

difficult task, since different nonlinear processes and flow

features that are important to predict sediment fluxes

depend on the scale of observation, which also determines

the variables used in the models to represent the system. At

larger scales, the problem is further complicated as the

dynamics of turbulence and bed-load transport give rise to

emergent phenomena, producing self-organized patterns

that evolve slowly, at spatial scales much larger than the

grain advection lengthscales (Werner 1999; Murray et al.

2009; Ganti et al. 2014). These large-scale sedimentary

structures, such as ripples, dunes or bars, also play an

important role on flow resistance and on the evolution of

the drainage network. In addition, these phenomena are

related to multiple other interactions and feedbacks that can

affect bed-load transport, including ecological and bio-

geochemical processes, as well as geological and anthropic

factors (Pledger et al. 2014; Vignaga et al. 2013; Ravaz-

zolo et al. 2019; Kirby and Whipple 2012; Wohl 2019;

Yang and Nepf 2019).

The prediction of the sediment transport capacity for

geological, geomorphological, or engineering applications

has traditionally been carried out from a continuum/Eule-

rian perspective, abstracting an inherently discrete system

comprised by many particles of different sizes and shapes

that are mobilized by the flow, into a sediment transport

flux expressed as the total volume of sediment per unit

width per unit time in a channel cross-section (qb [m2/s]).

Transport formulas for qb are derived from field data or

laboratory experiments in steady unidirectional flows, as a

function of bulk parameters of the flow, and based on either

Bagnold (1956) or Einstein (1937, 1950) hypotheses. These

descriptions are mostly empirical, without an explicit def-

inition of the scales involved in the model, as similar for-

mulas are used to predict the initial stages of bedform

development induced by turbulence (Escauriaza and

Sotiropoulos 2011a; Khosronejad and Sotiropoulos 2014)

or to define transport laws to simulate landscape evolution

in the long-term (Barnhart et al. 2020). The fluxes obtained

from these formulas typically overpredict the average

magnitude of transport and they do not account for the

intermittency that is observed in bed-load transport mea-

surements (Frey and Church 2009). At larger spatial and

temporal scales, evidence shows that intermittent transport

rates arise from either internal autogenic processes (Paola

2016), or from the external forcing when the time-scales of

the input signal are larger than the scales of autogenic

variability (Jerolmack and Paola 2010). At the smallest

scales, at which bed-load transport is originated, intermit-

tency is driven by turbulent fluctuations and interactions

with sediment particles, as shown in Fig. 1, producing

frequent transport events of different magnitudes (Escau-

riaza and Sotiropoulos 2011b; González et al. 2017).

Models aimed at predicting bed-load transport rates are

therefore crucial to provide insights on the fundamental

processes of sediment dynamics, how turbulence influences

sediment motion, and the potential connections among

scales to understand the scope of application (Escauriaza

et al. 2017).

Here we propose two models to understand these con-

nections: First we explore the physical mechanisms of

interaction between turbulence and sediment motion at the

smallest scales, with a model that can resolve the particle

dynamics coupled with the turbulent boundary layer flow

(González et al. 2017). We then pursue a model integration

(Escauriaza et al. 2017), using statistical information of the

high-fidelity approach to inform a larger scale stochastic

one-dimensional (1D) model for the bed-load transport

rate. We compute the flux from the viewpoint of an

external observer of the system to answer two important

questions: (1) Does the small-scale mechanics of sediment

motion have an influence on the flux observed at larger

scales? (Furbish et al. 2012; Heyman et al. 2013; Ancey

and Pascal 2020); and (2) Can we improve the prediction of

bed-load transport formulas using high-resolution simula-

tions? Intuitively, the answer to the these questions is that

temporal and spatial averaging swiftly erase the turbulence

signature, and that small-scale processes do not contribute

to the observed transport rates. However, in our simulations

we observe the emergence of a critical regime, at which

transport fluctuations are propagated across scales.

The advantages of implementing stochastic equations in

sediment transport have been demonstrated since the

pioneering work of Man and Tsai (2007), who developed a

model to represent particle trajectories and suspended load

concentrations, considering the turbulence effects in the

random term. Recent developments of these methods show

that the effects of turbulence fluctuations can be captured

on particle statistics, generating probability distributions of

suspended sediment fluxes observed at larger scales, and

they can reveal additional details of particle dynamics (Tsai

et al. 2018; Oh and Tsai 2018; Tsai et al. 2020) and

incorporate the sediment size distributions (Huang et al.

2021). In bed-load transport we assume here that a simple

1D stochastic model can represent fluctuating transport for

uniform sediment, and reproduce the intermittency

observed in fluxes of high-fidelity numerical simulations.

In this work we discuss the physical basis of these

fluctuations that appear in bed-load at larger scales and we

connect the two modeling approaches at different scales to

capture the transport dynamics and find analytical
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expressions for the statistical moments of transport using

renormalized perturbation expansions from a stochastic

action, summarized as a superposition of Feynman dia-

grams. The results underscore the role of the smallest

scales of particle motion and turbulence on the transport

rates, and the implications on modeling bed-load by con-

necting approaches at different scales.

2 Critical transport driven by collective
motion

Particle models correspond to the maximum level of

physical fidelity and space-time resolution of sediment

motion. To study bed-load transport at these small scales,

we model the dynamics of each individual particle and the

momentum interactions with the flow field and with other

particles in motion or in the bed. Lagrangian approaches

consider the sediment transport processes from a granular

perspective (Frey and Church 2009; Schmeeckle 2014;

Houssais et al. 2015; Ferdowsi et al. 2017) by integrating

the trajectory and momentum equations of each particle,

and accounting for particle–particle interactions and the

effects of the instantaneous forces produced by the turbu-

lent flow. The Navier–Stokes equations are solved using

direct numerical simulations (DNS), resolving all the scales

of turbulence with a grid resolution of the same order of

magnitude as the Kolmogorov scale, the smallest scale of

the system at which viscosity dissipates kinetic energy. The

discrete-element model (DEM) is used for sediment parti-

cles (Schmeeckle 2014), which computes collisions

between grains using a point-particle approach, assuming

particles as spheres. The computational domain and details

of the instantaneous flow field near the bed are shown in

Fig. 1d. The simulations of González et al. (2017) are

employed here with the computation of two additional

cases as numerical experiments to analyze the time series

of bed-load transport.

The DNS-DEM model is based on the coupled solution

of the Navier–Stokes (N-S) equations, and the momentum

and trajectory equation for each particle. The incompress-

ible N-S equation for mass and momentum conservation in

Cartesian coordinates can be written in tensor notation as

follows,

Fig. 1 Fluctuations in bed-load transport fluxes emerges at time and

lengthscales much larger than the scales of particle motion. a Bed-

load transport data from experiments (Jerolmack and Paola 2010).

b Experimental time-series of bed-load observed at different time

scales for high flow velocities by Ma et al. (2014). c Numerical

simulations of intermittent bed-load transport by the turbulent

horseshoe vortex system generates a cumulative sediment transport

represented by a self-similar devil’s staircase fractal distribution

(Escauriaza and Sotiropoulos 2011b). d Computational domain,

instantaneous near-bed flow, and bed-load transport flux, from the

model of González et al. (2017) used in this investigation
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where ui are the velocity components, p is the pressure, q is

the fluid density, l the viscosity, and Fi is the forces of the

particles acting on the fluid. The governing equations for

the position and velocity of each particle read in tensor

form as:

dxi
dt

¼ vi ð3Þ

m
dvi
dt

¼ fi ð4Þ

where m is the particle mass, and xi and vi are the particle

location and velocity, respectively. The hydrodynamic

forces, gravity, and collisions are included in the vector fi
(Escauriaza and Sotiropoulos 2009). The set of equations

are integrated using a third-order Runge–Kutta scheme,

using a sixth-order Lagrange interpolation to obtain

the flow velocities at the particle locations. The

particle Reynolds number is maintained constant

(Re� ¼ qu�d=l ¼ 7:0) by modifying the sediment density,

and the Shields parameter is varied. In the definition of Re�,
the length scale is the particle diameter d. For details of the

model and parameters used in the simulations the reader is

referred to González et al. (2017).

We perform simulations to capture the details of sedi-

ment motion that are driven by the turbulent motions of the

boundary layer, and characterize the system using the non-

dimensional Shields parameter s�, defined as follows,

s� ¼
s0

ðqs � qÞgd ð5Þ

where s0 is the mean bed shear stress of the flow, qs and q
are the sediment and water density, respectively, g is the

acceleration of gravity, and d is the particle diameter.

We consider six simulations (González et al. 2017)

using a constant particle diameter, and maintaining the

Reynolds number of the bulk flow and the particle Rey-

nolds number constant by changing the sediment density,

to retain the statistical properties of the forcing exerted by

turbulence on sediment grains. These high-resolution

numerical simulations are employed to study the evolution

of bed-load transport flux from an Eulerian standpoint as an

external observer, quantifying the number of particles that

cross a vertical plane perpendicular to the streamflow

direction, and dividing the total mass by the measurement

time. The transport rate is computed after the coupled

system statistically converges, performing a long simula-

tion period. After this initial convergence, the data is then

collected, and the averaged non-dimensional bed-load flux

for each Shields parameter is obtained (This procedure is

the same as established in González et al. 2017) (Fig. 2).

This ‘‘measurement’’ of bed-load transport is equivalent to

the output yielded by formulas commonly used for pre-

dicting the non-dimensional transport rate, which are based

on dimensional analysis and experimental or field data. The

non-dimensional transport q� is defined as follows,

q� ¼
qbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs� 1Þgd
p ð6Þ

where s ¼ qs=q is the sediment specific gravity. The DNS

results agree well with the common scaling of q� with

respect to the Shields parameter s�, which exhibits an

exponent equal to 3/2, shown as a solid line in the plot

(Fig. 2a).

The scaling of bed-load transport rate with the Shields

parameter across an order of magnitude with a constant

exponent for the convergent cases is due to the dynamic

similarity of the flux with the Shields number, which pre-

dicts a stable convergence of the averaged number of

particles passing through a cross section per unit time.

However, two cases stand out from the plot that generate a

smaller average flux compared to the 3/2 law. When we

examine these cases that are overpredicted by the analytical

formula, we observe that the dynamics does not converge

smoothly to the average, but exhibit large-scale fluctuations

that seem to be bounded in amplitude but are significantly

larger than the mean. To compare the changes on the

dynamics of the system as a function of s�, we show three

cases of the standardized series of bed-load flux to show

the convergence on small and large values of the Shields

parameter to the average, while the intermediate case

(s� ¼ 0:08) is dominated by large fluctuations with respect

to the mean (Fig. 2b). The fluctuating cases exhibit a sig-

nificant standard deviation that also implies a large coef-

ficient of variation, which will require a stochastic

approach.

The non-dimensional parameter s� that represents the

relation between the averaged turbulent stresses and grav-

ity, can be used to quantify the leading mechanism of bed-

load transport variability: For a small value of the Shields

number, transport is sustained but the system is dominated

by gravity and it is very slow to react to turbulent stresses.

As the Shields number increases, however, turbulence has a

more predominant role and instantaneous localized events

of intense stresses on the bed mobilize groups of particles

at different locations (Fig. 3), producing a striking trans-

port regime characterized by bed-load transport bursts

leading to a persistence of fluctuations in the global flux.

This regime is characterized by collective motion, defined

as the simultaneous entrainment of a group of particles

lying closely on the bed by the effect of turbulent stresses.
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For larger values of s�, the collective transport of particles

becomes widespread on the entire bed surface, the flux is

fully dominated by turbulence and the relative magnitude

of the fluctuations becomes smaller compared to the mean

transport rate. In this high s� regime, collective motion

occurs continuously on the entire surface of the bed, and

the system responds quickly to the flow but independent

transport events become invisible in the statistical moments

of transport. The dynamic equilibrium conditions are

therefore controlled by the stress-gravity balance: In low

transport flows, the temporal and spatial variability of

turbulent stresses are stabilized by gravity and the system

converges to the mean value of transport. This intermediate

state of transport is produced by the unstable balance

Fig. 2 Bed-load transport flux

from the Lagrangian model.

a Averaged bed-load transport

rate computed from DNS, the

continuous line corresponds to a

fit to an analytical equation with

exponent 3/2. b Standardized

time-series of the system shows

examples of convergence to

almost constant values of the

time average for the smallest

Shields number case and for one

of the largest cases (black lines

are converged averages), and

the fluctuating dynamics of

transport exhibited by the cases

overpredicted by the formula

Fig. 3 Collective particle

motion. An instantaneous image

shows a vortical structure of the

turbulent boundary layer known

as a hairpin vortex, visualized

with the q-criterion (Hunt et al.

1988), colored by vorticity in

the streamwise direction.

Sediments are colored by their

velocity magnitude, as a sweep

event mobilizes a group of

particles
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between gravity and turbulent stresses that is reflected in

the Shields parameter. The emergence of this critical

regime breaks the scale-invariance of transport, and affects

the mean and higher-order moments, producing a fluctu-

ating signal at larger scales.

3 Stochastic nonlinear model and bed-load
transport statistics

In the critical regime the large-scales of transport are

connected to the collective motion of the grains, as the

small-scale intermittent events on the bed generate a bed-

load flux that exhibits fluctuations of transport at time and

length scales larger than the particle dynamics. These

episodic transport conditions produce a non-stationary

response of the entire system, which can no longer be

represented by a deterministic bed-load function. The

complex dynamics of grains associated to the collective

transport events yields a large-scale dynamics that appears

stochastic from a global perspective.

To improve our predictions of bed-load transport we

develop a model at a higher-level of abstraction based on

the data obtained from the Lagrangian DNS model. We

consider a dynamical system that comprises the entire

computational domain from an Eulerian perspective, con-

sidering the evolution of the sediment transport rate in a

cross section as the global response, at spatial and temporal

levels outside the particle scale processes. A simple model

to reproduce the fluctuations in the bed-load flux considers

the domain as a control volume where we apply the

momentum balance for the sediment from an integral

perspective, which averages the details of grain-scale

interactions. This spatial integration filters the intrinsic

variability and unsteady distributions of collective trans-

port events produced by turbulent stresses, and the effects

of particle collisions on the flux.

We consider the computational domain in Fig. 1d as a

control volume to derive a global equation of transport for

the entire domain. The integral momentum equation can be

written in vector form as:

o

ot

Z
8c
qsV
!
d8 þ

Z
Sc

qsV
!

V
!� n̂

� �
dA ¼

X
F
! ð7Þ

where V
!

is the sediment velocity integrated in the entire

domain or control volume (8c), enclosed by the control

surface (Sc). From this relation we can derive a simple

nonlinear model of transport evolution: We consider the

bed-load transport to be one-dimensional, and the periodic

boundaries of the domain cancel the integral of the flux

across the control surface. Assuming spatial uniformity of

the domain, the statistics of the transport flux have the

same properties in all cross-sections, and the 1D momen-

tum equation derived from Eq. (7) can be expressed as

follows:

qs
dqb
dt

¼ finternal þ fforcing ð8Þ

where finternal and fforcing are the 1D components of the

integral forces per unit volume derived from the right hand

side of Eq. (7). This equation shows that a force imbalance

between the internal bed dynamics and the hydrodynamic

forcing integrated in space is a source of bed-load flux,

producing a variation in time of qb. The first term in the

right hand side represent the nonlinear internal interactions

of the particles that generates a dynamic dependence of the

bed-load flux. The second term fforcing represents the

external forcing acting on the bed, i.e. the stresses exerted

by the coherent structures of the turbulent boundary layer

that are relevant for the particles.

The simplest formulation to represent the nonlinear

dynamics of the system finternal, as the bed experiences

changes due to bed-load transport (Masteller and Finnegan

2017), is a quadratic function. This expression can also be

thought of as a second-order Taylor expansion to represent

the nonlinear internal dependence. The external input

corresponds to the combined instantaneous hydrodynamic

forces acting on the entire domain seen at large scales. This

input is assumed as a white noise in the definition of the

stochastic differential equation, which corresponds to the

derivative of a Wiener process (Bressloff 2014; Chow and

Buice 2015).

From this analysis we propose a stochastic differential

equation with additive noise (Gardiner 2009; Särkkä and

Solin 2019) that represents the temporal evolution of the

flux as a consequence of the imbalances between the

driving and resistive forces integrated in the control vol-

ume. Instead of considering the evolution of bed-load

transport as a linear process, we explicitly adopt a non-

linear formulation, since sediment motion changes the

local flow conditions and modifies the exposure of grains,

which in turn changes the entrainment of particles and their

transport (Masteller and Finnegan 2017). The model

incorporates the simplest nonlinear parameterization of the

internal dynamics in the deterministic part of the stochastic

equation to represent the internal mechanisms of the bed at

work. This is a global spatial equation for the evolution of

the bed-load transport flux in time, in which the deter-

ministic part of the model is a basic nonlinear approxi-

mation for the entire computational domain, with a random

input forcing process. The nonlinear stochastic version of

the momentum Eq. (8) can therefore be written in nondi-

mensional form as follows,

dq� ¼ �aq� þ bq2�
� �

dt þ
ffiffiffiffi
D

p
dW ð9Þ
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where q� is the non-dimensional bed-load transport flux,

the internal nonlinear dynamics of the system contains the

parameters a and b, and the random input dW is the

increment of a Wiener process (Man and Tsai 2007; Gar-

diner 2009) scaled with the dispersion coefficient D. These

parameters are obtained by using maximum likelihood with

an extended Kalman filter (Kristensen and Madsen 2003;

Kristensen et al. 2004), using the DNS-DEM data (see

Table 1).

It is important to emphasize that linear stochastic

approaches have already been used to represent specific

features of transport, based on Langevin-type of equations

for particle velocities (Fan et al. 2016; Tsai and Huang

2019) or master equations that reproduce the evolution

bed-load transport rate or the distribution of moving par-

ticles on the bed (Furbish et al. 2012; Ma et al. 2014;

Ancey et al. 2015). For this large-scale model we derive a

stochastic expression from the momentum balance equa-

tion of the domain that represents the emergence of the

transport signal at scales significantly larger than the par-

ticle step lengths. The model can be solved numerically

(Rößler 2010; Särkkä and Solin 2019) to produce synthetic

series of bed-load transport rate statistically indistinguish-

able from the DNS model to compute histograms of

transport.

We can further simplify the analysis of these complex

conditions, deriving analytical expressions for bed-load

statistics based on the probability distribution function

(PDF) of different realizations of the transport rate, as

represented by the large-scale stochastic model. As pro-

posed by Chow and Buice (2015) (see also Bressloff 2014),

the PDF of the flux is expressed as follows,

P q�ðtÞ j q�ð0Þ½ � ¼
Z

e�S q�ðtÞ; ~q�ðtÞ½ � D~q�ðtÞ ð10Þ

where S q�ðtÞ; ~q�ðtÞ½ � is the stochastic action of the system

or Onsager–Machlup functional, ~q�ðtÞ is a complex

wavenumber function, and D~q�ðtÞ indicates that we per-

form a functional integration on realizations of the process.

This is known as the path-integral formulation (Feynman

and Hibbs 1965) or Wiener integral (Gardiner 2009;

Bressloff 2014) of the dynamical system to define the PDF.

Equation (10) can be interpreted as an integration over all

the possible realizations that the transport process can

experience, which depends on the stochastic action of the

dynamical system in Eq. (9). This is equivalent to the

principle of stationary action in classical mechanics, in

which bed-load transport series with the smallest action (S),

have a larger contribution to the probability distribution

(� e�S).

The methodology to approximate analytically the

moments of the nonlinear equation is based on the defini-

tion of the characteristic functional, also known as the

moment generating functional:

Z½J; ~J� ¼
Z

e�S q�ðtÞ; ~q�ðtÞ½ �þ
R

~JðtÞq�ðtÞdtþ
R

JðtÞ ~q�ðtÞdt

�Dq�ðtÞD~q�ðtÞ
ð11Þ

or the cumulant generating functional W ½J; ~J� ¼ ln Z½J; ~J�,
where all the moments are obtained by performing func-

tional derivatives of Z or W in terms of the complex source

functions J(t) and ~JðtÞ (Buice and Cowan 2007; Chow and

Buice 2015; Lera 2018). Since this integral can only be

calculated analytically for the first order linear equation,

we approximate the moment of bed-load transport by

separating the action in Eq. (11) into the linear or free part

(SF), and the so-called interacting part (SI) that contains the

small nonlinear term and stochastic input (Buice and

Cowan 2007), S ¼ SF þ SI , as follows:

Z½J; ~J� ¼
Z

e�SF�SIþ
R

~Jq�dtþ
R

J ~q�dt Dq�ðtÞD~q�ðtÞ

¼
Z

e�SF
X1
n¼0

1

n!
�SI þ

Z
~Jq�dt þ

Z
J ~q�dt

� �n

�Dq�ðtÞD~q�ðtÞ
ð12Þ

Taking the integral within the sum, the characteristic

functional is expanded as a series of free moments of the

interacting part. The solution of the linear part from SF
corresponds to the impulse response function of a first-

order differential equation, also known as the propagator or

Green function Gðt; t0Þ ¼ e�aðt�t0Þ for t[ t0. The generating
functionals Z and W for the nonlinear stochastic equation

are then expanded in terms of Gðt; t0Þ, using a perturbative

expansion of the exponential of SI around the free action.

From the Itō condition for the temporal dependence of the

process (Gardiner 2009) and Wick’s theorem (Chow and

Buice 2015), we preserve only the non-zero free moments

with the same number of q�ðtÞ and ~q�ðtÞ.
The derivation of the sum of terms of the expansion in

Eq. (12), however, becomes rapidly unmanageable and

difficult to follow (Chow and Buice 2015). To simplify the

analysis, we express the moments of bed-load transport as a

sum of Feynman diagrams, defining rules to draw the terms

Table 1 Coefficients of the nonlinear stochastic bed-load transport

models for the critical regime

s� ¼ 0:06 s� ¼ 0:08

a 7:66� 10�2 3:75� 10�2

b 5:65� 10�4 7:10� 10�3ffiffiffiffi
D

p
1:00� 10�5 1:00� 10�5
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having the largest contributions in the expansion. Each

interacting term of the series represents external vertices of

the diagram, with ingoing and outgoing edges for each q�
and ~q� field, respectively. These vertices are connected by

straight arrows, which correspond to the propagators

Gðt2; t1Þ for t2 [ t1, flowing in time from left to right (see

Appendix A). Using Wick’s theorem and the Itō conven-

tion, only fully connected diagrams survive in the expan-

sion of cumulants, and they are multiplied by symmetry

factors of repeated diagrams in the series (Chow and Buice

2015). It is important to note that stochastic diagrammatic

expansions have been already been employed in environ-

mental flows to determine hydraulic conductivity in porous

media, obtaining distributions of effective permeability in

heterogeneous systems that present spatial fluctuations of

local permeability (Hristopulos and Christakos 1999).

The diagrams used here are composed from building

blocks that represent the terms of the interacting action

shown in Eq. (12) (see Appendix A). Therefore, the mean

of bed-load transport computed with a third-order expan-

sion for q�, from the stochastic model is obtained as fol-

lows:

ð13Þ

This expression yields the approximation of the average as

a function of the propagator, which including an initial

condition of the system q�0, is equal to:

q�ðtÞ ¼ q�0 Gðt; t0Þ þ bD

Z
Gðt; t1ÞG2ðt1; t2Þdt1dt2

þ bq2�0

Z
G2ðt0; t1ÞGðt; t1Þdt1

¼ q�0e
�aðt�t0Þ þ bD

2a2
1� e�aðt�t0Þ
h i2

þ bq2�0
a

e�aðt�t0Þ � e�2aðt�t0Þ
h i2

ð14Þ

As t ! 1, the first moment of bed-load transport con-

verges to an analytical expression obtained from the

coefficients of the stochastic transport model:

q� ¼
bD

2a2
ð15Þ

Following the same approach, the third-order diagrammatic

expansions of the cumulant generating functional to obtain

the variance and skewness of the transport flux from the

cumulant generating functional can be expressed as fol-

lows:

ð16Þ

ð17Þ

These approximations converge to equations for the

moments of bed-load transport that can be calculated

analytically, which converge to the following expressions:

r2q� ¼
D

2a
ð18Þ

cq� ¼
b

ffiffiffiffiffiffi
2D

p

3a3=2
ð19Þ

The moments derived from these diagrammatic expansions

represent the statistics of transport in the critical regime,

and predict accurately the results from the Lagrangian

model coupled to DNS for the non-convergent conditions,

except for the initial variability that affects the skewness,

as shown in Table 2. This analytical large-scale formula-

tion is based on the stochastic dynamics, when the random

input and the nonlinearity are explicitly considered as part

of the system and used to approximate the statistics of the

fluctuating flux in the critical regime.

4 Discussions and conclusions

The emergence of fluctuations in bed-load fluxes has been

recognized as major a feature of transport in experiments

and field observations. As shown here by the high-fidelity

DNS model, collective particle motion driven by turbu-

lence is the leading mechanism that produces the fluctu-

ating regime in the studied domain. This mode of transport

was first identified in the field by Drake et al. (1988), who

reported frequent localized transport events and described

brief episodes of collective particle motion in a series of

intermittent displacements, occurring due to turbulent

fluctuations of the boundary layer. Experimental evidence

has also shown that hydrodynamic forces play a funda-

mental role on bed-load dynamics, in which sweep events

of the boundary layer generate the transport events (Radice

et al. 2013), although collective motion also arises in near-

threshold conditions on steep slopes (Heyman et al. 2013)

or in cases without the direct influence of turbulent stresses,

when fluctuations are driven by collisions or by slow
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subsurface creeping of the granular material in the bed

(Houssais et al. 2015; Lee and Jerolmack 2018).

Through DNS we observe that in a uniform sediment

bed, the Shields parameter can be used to identify the

emergence of a critical regime, driven by the dynamic

competition of resistive forces and turbulent stresses that

strengthen the collective motion process, and produce

fluctuations on the integrated flux for the entire computa-

tional domain. We believe that this critical regime is the

same that was reported by Gilbert (1914), who observed a

transition in bed-load characterized by collective motion

and ‘‘rhythmic’’ transport, sequences of events in which

groups of particles were continuously mobilized.

To provide an answer to the first question we posed

initially: The small-scale dynamics of sediment motion is

observed in the large-scale flux when the collective motion

is activated. As the turbulent stresses increase with respect

to the gravitational and resistive forces, the cumulative

effect of the coherent structures of the boundary layer are

imprinted on the spatial and temporal averages, from which

we compute the bed-load transport rates. Therefore, local

particle interactions in a spatially distributed system

become relevant, and the turbulence signature appears in

the bed-load transport rate for intermediate Shields num-

bers. As turbulent stresses increase, the mechanisms that

produce fluctuations are still present, but they do not

compare in magnitude to the average transport, and the

bed-load flux converges as the system reaches a dynamic

equilibrium that can be represented by the power law

relation. The critical window that breaks the scaling rela-

tion emerges by the competition of forces acting on the

bed. These results indicate that in addition to the kinematic

scaling used to identify allogenic signals on the response of

sedimentary signals (Jerolmack and Paola 2010; Ganti

et al. 2014), the turbulence signature observed on the bed-

load flux shows the relevance of observing the dynamic

scaling, expressed here as the relation between flow stres-

ses and resistive forces in the Shields parameter.

The critical regime of bed-load transport connects the

small-scale dynamics of the particles to the larger-scale

measurements of the flux, which are typically made with

no access of the processes at the grain level. The changes

with the Shields parameter resemble the critical

phenomena and equilibrium phase transitions that are

observed in multiple physical systems, which constitute

one of the fundamental subjects of statistical mechanics

and field theory (Sornette 2006; Herbut 2007). In our case

the system goes through a transition for the range of

Shields numbers that reflects an equivalent influence of

turbulent stresses and resistant forces. Collective transport

events in this regime generate regions of spatial correlation

on the bed surface, or islands of motion that exist for a brief

period of time. Therefore, the continuous appearance of

particle groups moving intermittently produces time

intervals when the averaged bed-load flux grows signifi-

cantly, followed by periods of low transport. These changes

produce a fluctuating time series, with an average that

departs from the other cases, breaking the scale invariance

of the system represented by a constant exponent.

This analogy with critical phenomena in other physical

systems suggests that we should base our bed-load trans-

port analysis on statistical field theory and techniques that

provide approximations of macroscopic large-scale obser-

vations of a system composed of multiple interacting ele-

ments. As a strategy to account for scale interactions and

collective transport, the system is suitable to apply renor-

malization group transformations (McComb 2004; Sornette

2006), which will be explored in the future to describe the

scaling laws considering the effects of the fluctuations on

the critical regime. As an example, we test the generalized

complex exponent in the power-law between the parame-

ters q� and s� to incorporate the effects of fluctuations as a

correction that introduces log-periodic oscillations in this

relationship (Saleur et al. 1996; Sornette 2006). In Fig. 4,

we show that this exponent provides a good representation

of the averaged flux, which considers the effects of the

fluctuations on the self-similar structure of bed-load

transport for the range of Shields parameters. In the critical

regime, the exponent for the average seems to be smaller

than 3/2, while for lower values of s� is high (Shih and

Diplas 2018). It is important to consider that the simula-

tions studied in this investigation are based on an idealized

domain with a uniform sediment size, but the strategy of

connecting models at different scales by using stochastic

techniques that incorporate explicitly the nonlinearity of

Table 2 Moments of bed-load

transport in the critical regime

obtained from DNS and from

the renormalized perturbation

expansion using Feynman

diagrams

s� ¼ 0:06 s� ¼ 0:08

DNS Renormalization DNS Renormalization

q� 5:9588� 10�5 5:9588� 10�5 1:9568� 10�4 1:9568� 10�4

rq� 2:5545� 10�5 2:5548� 10�5 3:6507� 10�5 3:6514� 10�5

cq� 4.37 0.095 �0:89 �0:1
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the process provides a pathway to incorporate additional

and more realistic effects in the near future.

On the other hand, the 1D stochastic model that repre-

sents the bed-load flux on the entire domain provides an

answer to our second question, by incorporating the fluc-

tuating dynamics originated by the interactions of the

particles with turbulence as a nonlinear dynamical system.

We propose a predictive bed-load transport model that

captures the complexity of the flux observed in the

Lagrangian DNS approach at a larger scale, considering

explicitly the nonlinear dependence of q� and representing

the integrated turbulent forcing as a random process with

parameters obtained from the results of the high-fidelity

simulations. The system reproduces the dynamics of the

critical bed-load transport regime that emerges at scales

much larger that the turbulent transport events, without

resolving the small-scale interactions or details of the

particle motion.

The parameters of the stochastic dynamical equation

reflect the memory of the system, nonlinearity, and rele-

vance of the random input on the bed-load transport rate.

Compared to long-established deterministic equations that

have been successfully employed in a wide range of

problems to predict the average transport capacity, the

stochastic model can help us understand the physical

mechanisms that control the evolution of bed-load trans-

port by the changes of its parameters with the Shields

number. The expansions using Feynman diagrams also

provide simple analytical expressions for the moments of

bed-load transport, as other recent advanced statistical

formulations (Furbish et al. 2012; Ancey and Pascal 2020),

but incorporating explicitly the fluctuations and nonlin-

earity of transport, and accounting for the variability of the

flux under critical conditions, when fluctuations that are

comparable to the mean dominate the transport signal. In

this investigation we contribute to understand the relation

between transport and turbulent stresses, connecting mod-

els at different scales by using a stochastic technique that

incorporate explicitly the nonlinearity of the process, to

advance toward more general predictions of the statistical

moments of bed-load transport

Further modeling developments will be required to take

full advantage of physically-based stochastic models, and

to provide insights on bed-load transport mechanics from

these approaches, beyond application purposes. In the

studied domain we limited the analysis to the changes on

the transport dynamics only as a function of the Shields

number. The development of broader stochastic formula-

tions will need a comprehensive definition of parameters

that represent the controlling mechanisms acting on the

system, to explore systematically their phase-space and

identify the forces and internal bed processes that are rel-

evant at different spatial and temporal scales. We anticipate

that integrated models can be used to tackle more complex

problems related to the dynamics of bed-load transport and

to identify the origin of transport fluctuations at larger

scales. Contributions of the nonlinear function and noise

would vary as additional factors are incorporated in general

conditions, for example as a consequence of sediment size

distributions, as grains organise creating clusters and

microforms (Hassan and Reid 1990), armoring (Bertin and

Friedrich 2018), or interact with larger immobile particles

(Ghilardi et al. 2014; Papanicolaou et al. 2018) that pro-

duce large fluctuations on transport rates. Processes of

particle burial (Pierce and Hassan 2020), and sediment

accumulation, storage and release (Paola 2016) that appear

at larger spatial scales contribute to generate autogenic

variability of transport, which emerges by grain interac-

tions and nonlinear feedbacks.

Connecting high-resolution models with larger-scale

formulations can also be designed to study transitions as

the nonlinearity of the bed evolves, and the local interac-

tions explain more complex global behavior. The emer-

gence of bedforms and sedimentary patterns push the

systems to new equilibrium conditions, generating inter-

dependence between transport and near-bed turbulence

(Leary and Schmeeckle 2017). Coherent structures, vortex

interactions and flow separation induced by the growth and

migration of bedforms modify turbulent stresses and

Fig. 4 Generalized exponent for

the averaged bed-load transport

flux. Assuming that the power-

law relationship between the

averaged bed-load transport flux

and the Shields parameter is a

scaling law for the range of

DNS simulations, we correct the

exponent to consider the effects

of fluctuations as log-periodic

oscillations using a complex

number exponent, as proposed

by Saleur et al. (1996)
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control bed-load transport fluctuations, introducing addi-

tional length and timescales (Guala et al. 2014), and a

strong autogenic component on the response of the system.

High-resolution numerical simulations have shown that

incorporating the unsteady turbulent stresses in bed-load

transport formulas is required to resolve the interactions

that trigger the formation and evolution of sand ripples

(Escauriaza and Sotiropoulos 2011a; Khosronejad and

Sotiropoulos 2014), which underscores the need for reex-

amining predictive large-scale models of transport in the

presence of transitions and emergent sedimentary patterns,

since turbulent forcing is strongly modulated by the

dynamics of bed-load transport. Stochastic approaches

aimed at estimating the mean and the variability of trans-

port would therefore need to introduce this dependence as a

multiplicative noise in the equations (Särkkä and Solin

2019).

If there is hope on developing bed-load transport models

based on physical principles that can combine deterministic

representations of internal bed processes with the random

dynamic contributions of the turbulent forcing and sedi-

ment variability, we will need to advance closely with

experiments and field observations to discover the essential

processes that can describe the sediment dynamics, and the

aspects of the small scales that dominate or can be removed

from predictive equations. Blending modeling techniques

and using detailed data to parameterize high-level equa-

tions can help us understand the connections among scales,

the changes of the systems as functions of these parame-

ters, and the physical influences on other processes that

take place on river beds.

Diagrams for approximating moments

The diagrammatic expansion is used to simplify the cal-

culation of moments of bed-load transport from the first

terms of Eq. (12), which corresponds to a sum of ‘‘free’’

moments based on the PDF of the free action, e�SF . Here

we follow the procedure outlined by Chow and Buice

(2015), defining a set of rules to draw the diagrams that

represent each term in the expansion. The moments are

obtained by integrating the functions with respect to the

free action, and expressing them in terms of the propagator

or Green function of the linear first-order equation

Gðt2; t1Þ ¼ e�aðt2�t1Þ ¼ hq�ðt1Þ~q�ðt2ÞiF for t2 [ t1, repre-

sented as an arrow in time, going from left to right. From

Wick’s theorem (Chow and Buice 2015) and the symmetry

of Gaussian processes, all the odd-numbered free-moments

are zero, and the even moments are expressed as the sum of

the moments of all the possible pairings of the variables at

different instants in time. The Itō interpretation (Gardiner

2009; Särkkä and Solin 2019) or causality of the stochastic

system, ensures that the variables of the model only depend

on the past. Therefore, each time integral of the expansion

in the interacting part of Eq. (12) is represented by a vertex

in each diagram, with incoming arrows for each q� field,

and outgoing arrows for each ~q� field. In this case we adopt

the formulation and rules defined by Lera (2018), such that

the diagrams that contain the initial condition (starting

from a constant ~q�0 value), the noise, and the nonlinear

term are the following:

ðA1Þ

ðA2Þ

ðA3Þ

These basic diagrams are the building blocks that are

assembled to construct the expansion terms. Any general

moment derived from the characteristic functional Z½J; ~J� is
defined as follows:

Ym
i¼1

Yn
j¼1

q�ðtiÞ~q�ðtjÞ
* +

¼ 1

Z½0; 0�
Ym
i¼1

Yn
j¼1

d

d ~JðtiÞ

� d
dJðtjÞ

Z½J; ~J�
ðA4Þ

which is approximated as a sum of diagrams with m

incoming and n outgoing arrows. Therefore, we can intu-

itively derive diagrams that connect the terms, either for

the characteristic functional or for the cumulant generating

functional W ½J; ~J�, which are easier to derive since only

diagrams that connect all the nodes survive (Lera 2018).

For example, for the first cumulant or mean of bed-load

transport in Eq. (13), we sum the first three diagrams of the

expansion with only one outgoing arrow, combining the

diagrams in Eqs. (A1), (A2), and (A3). To calculate the

numerical value of the moment approximation, each time

integration is multiplied by a symmetry factor due to the

number of repeated diagrams that appear in the expansion

(Chow and Buice 2015), which corresponds to the number

of ways arrows can be rearranged in each node of the

diagram. The second and third diagrams in Eq. (13) have

been multiplied by 2, since we have two ways of

exchanging the incoming arrows in the same diagram. For
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the case of the second cumulant or variance in equation 16,

we sum all connected diagrams with 2 outgoing arrows,

where the number of nodes equal to the order of the term in

the expansion.
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