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Abstract

Sediment transport controls the evolution of river channels, playing a fundamental role in physical, ecological, and
biogeochemical processes across a wide range of spatial and temporal scales on the Earth surface. However, developing
predictive transport models from first principles and understanding scale interactions on sediment fluxes remain as for-
midable research challenges in fluvial systems. Here we simulate the smallest scales of transport using direct numerical
simulations (DNS) to explore the dynamics of bed-load and discover how turbulence and grain-scale processes influence
transport rates, showing that their interplay gives rise to a critical regime dominated by fluctuations that propagate across
scales. These connections are represented using a stochastic differential equation, and a statistical description through a
path integral formulation and Feynman diagrams, thus providing a framework that incorporates nonlinear and turbulence

effects to model the dynamics of bed-load across scales.
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1 Introduction

How rivers change over time is shaped by complex non-
linear processes that take place at the interface of the
sediment bed and the flow. In most cases, their morpho-
dynamic evolution is controlled by sediment motion in
close contact with the bed, or bed-load transport (Church
2006), which is originated at the smallest physical scales,
driven by the dynamics of the turbulent boundary layer at
the particle size. Sediments interact with recurring and self-
sustained patterns of the flow velocity near the bed that
reveal a wide range of organized eddies, predominantly
streaks and hairpin vortices of different sizes (Adrian 2007,
Smits et al. 2011; Marusic and Adrian 2013). These
coherent vortices constitute the fundamental structure of
the boundary layer, which very close to the bed produce
spatially correlated velocity fluctuations influenced by
viscosity, transferring momentum and mobilizing sediment
grains downstream (Séchet and Le Guennec 1999; Radice
et al. 2013; Cameron et al. 2020). Interactions of particles
with the turbulent flow have a remarkable complexity and
significant consequences on the channel morphology for a
wide range of spatial and temporal scales. Even though the
couplings and feedbacks that affect bed-load transport are
not entirely known, quantitative studies of the
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morphodynamic evolution of river channels have always
required models to predict transport rates, from the study of
sediment relations with the scales of turbulence, to inves-
tigations on the effects of tectonic motions (Church 2007).
However, modeling transport from first principles is a very
difficult task, since different nonlinear processes and flow
features that are important to predict sediment fluxes
depend on the scale of observation, which also determines
the variables used in the models to represent the system. At
larger scales, the problem is further complicated as the
dynamics of turbulence and bed-load transport give rise to
emergent phenomena, producing self-organized patterns
that evolve slowly, at spatial scales much larger than the
grain advection lengthscales (Werner 1999; Murray et al.
2009; Ganti et al. 2014). These large-scale sedimentary
structures, such as ripples, dunes or bars, also play an
important role on flow resistance and on the evolution of
the drainage network. In addition, these phenomena are
related to multiple other interactions and feedbacks that can
affect bed-load transport, including ecological and bio-
geochemical processes, as well as geological and anthropic
factors (Pledger et al. 2014; Vignaga et al. 2013; Ravaz-
zolo et al. 2019; Kirby and Whipple 2012; Wohl 2019;
Yang and Nepf 2019).

The prediction of the sediment transport capacity for
geological, geomorphological, or engineering applications
has traditionally been carried out from a continuum/Eule-
rian perspective, abstracting an inherently discrete system
comprised by many particles of different sizes and shapes
that are mobilized by the flow, into a sediment transport
flux expressed as the total volume of sediment per unit
width per unit time in a channel cross-section (g, [m?/s]).
Transport formulas for ¢, are derived from field data or
laboratory experiments in steady unidirectional flows, as a
function of bulk parameters of the flow, and based on either
Bagnold (1956) or Einstein (1937, 1950) hypotheses. These
descriptions are mostly empirical, without an explicit def-
inition of the scales involved in the model, as similar for-
mulas are used to predict the initial stages of bedform
development induced by turbulence (Escauriaza and
Sotiropoulos 2011a; Khosronejad and Sotiropoulos 2014)
or to define transport laws to simulate landscape evolution
in the long-term (Barnhart et al. 2020). The fluxes obtained
from these formulas typically overpredict the average
magnitude of transport and they do not account for the
intermittency that is observed in bed-load transport mea-
surements (Frey and Church 2009). At larger spatial and
temporal scales, evidence shows that intermittent transport
rates arise from either internal autogenic processes (Paola
2016), or from the external forcing when the time-scales of
the input signal are larger than the scales of autogenic
variability (Jerolmack and Paola 2010). At the smallest
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scales, at which bed-load transport is originated, intermit-
tency is driven by turbulent fluctuations and interactions
with sediment particles, as shown in Fig. 1, producing
frequent transport events of different magnitudes (Escau-
riaza and Sotiropoulos 2011b; Gonzalez et al. 2017).
Models aimed at predicting bed-load transport rates are
therefore crucial to provide insights on the fundamental
processes of sediment dynamics, how turbulence influences
sediment motion, and the potential connections among
scales to understand the scope of application (Escauriaza
et al. 2017).

Here we propose two models to understand these con-
nections: First we explore the physical mechanisms of
interaction between turbulence and sediment motion at the
smallest scales, with a model that can resolve the particle
dynamics coupled with the turbulent boundary layer flow
(Gonzilez et al. 2017). We then pursue a model integration
(Escauriaza et al. 2017), using statistical information of the
high-fidelity approach to inform a larger scale stochastic
one-dimensional (1D) model for the bed-load transport
rate. We compute the flux from the viewpoint of an
external observer of the system to answer two important
questions: (1) Does the small-scale mechanics of sediment
motion have an influence on the flux observed at larger
scales? (Furbish et al. 2012; Heyman et al. 2013; Ancey
and Pascal 2020); and (2) Can we improve the prediction of
bed-load transport formulas using high-resolution simula-
tions? Intuitively, the answer to the these questions is that
temporal and spatial averaging swiftly erase the turbulence
signature, and that small-scale processes do not contribute
to the observed transport rates. However, in our simulations
we observe the emergence of a critical regime, at which
transport fluctuations are propagated across scales.

The advantages of implementing stochastic equations in
sediment transport have been demonstrated since the
pioneering work of Man and Tsai (2007), who developed a
model to represent particle trajectories and suspended load
concentrations, considering the turbulence effects in the
random term. Recent developments of these methods show
that the effects of turbulence fluctuations can be captured
on particle statistics, generating probability distributions of
suspended sediment fluxes observed at larger scales, and
they can reveal additional details of particle dynamics (Tsai
et al. 2018; Oh and Tsai 2018; Tsai et al. 2020) and
incorporate the sediment size distributions (Huang et al.
2021). In bed-load transport we assume here that a simple
1D stochastic model can represent fluctuating transport for
uniform sediment, and reproduce the intermittency
observed in fluxes of high-fidelity numerical simulations.

In this work we discuss the physical basis of these
fluctuations that appear in bed-load at larger scales and we
connect the two modeling approaches at different scales to
capture the transport dynamics and find analytical
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Fig. 1 Fluctuations in bed-load transport fluxes emerges at time and
lengthscales much larger than the scales of particle motion. a Bed-
load transport data from experiments (Jerolmack and Paola 2010).
b Experimental time-series of bed-load observed at different time
scales for high flow velocities by Ma et al. (2014). ¢ Numerical
simulations of intermittent bed-load transport by the turbulent

expressions for the statistical moments of transport using
renormalized perturbation expansions from a stochastic
action, summarized as a superposition of Feynman dia-
grams. The results underscore the role of the smallest
scales of particle motion and turbulence on the transport
rates, and the implications on modeling bed-load by con-
necting approaches at different scales.

2 Critical transport driven by collective
motion

Particle models correspond to the maximum level of
physical fidelity and space-time resolution of sediment
motion. To study bed-load transport at these small scales,
we model the dynamics of each individual particle and the
momentum interactions with the flow field and with other
particles in motion or in the bed. Lagrangian approaches
consider the sediment transport processes from a granular
perspective (Frey and Church 2009; Schmeeckle 2014;
Houssais et al. 2015; Ferdowsi et al. 2017) by integrating
the trajectory and momentum equations of each particle,

horseshoe vortex system generates a cumulative sediment transport
represented by a self-similar devil’s staircase fractal distribution
(Escauriaza and Sotiropoulos 2011b). d Computational domain,
instantaneous near-bed flow, and bed-load transport flux, from the
model of Gonzalez et al. (2017) used in this investigation

and accounting for particle—particle interactions and the
effects of the instantaneous forces produced by the turbu-
lent flow. The Navier—Stokes equations are solved using
direct numerical simulations (DNS), resolving all the scales
of turbulence with a grid resolution of the same order of
magnitude as the Kolmogorov scale, the smallest scale of
the system at which viscosity dissipates kinetic energy. The
discrete-element model (DEM) is used for sediment parti-
cles (Schmeeckle 2014), which computes collisions
between grains using a point-particle approach, assuming
particles as spheres. The computational domain and details
of the instantaneous flow field near the bed are shown in
Fig. 1d. The simulations of Gonzilez et al. (2017) are
employed here with the computation of two additional
cases as numerical experiments to analyze the time series
of bed-load transport.

The DNS-DEM model is based on the coupled solution
of the Navier—Stokes (N-S) equations, and the momentum
and trajectory equation for each particle. The incompress-
ible N-S equation for mass and momentum conservation in
Cartesian coordinates can be written in tensor notation as
follows,
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where u; are the velocity components, p is the pressure, p is
the fluid density, u the viscosity, and F; is the forces of the
particles acting on the fluid. The governing equations for
the position and velocity of each particle read in tensor
form as:

dx;

. 3
il (3)
dav;

m = @)

where m is the particle mass, and x; and v; are the particle
location and velocity, respectively. The hydrodynamic
forces, gravity, and collisions are included in the vector f;
(Escauriaza and Sotiropoulos 2009). The set of equations
are integrated using a third-order Runge—Kutta scheme,
using a sixth-order Lagrange interpolation to obtain
the flow velocities at the particle locations. The
particle Reynolds number is maintained constant
(Re,. = pu,d/p = 7.0) by modifying the sediment density,
and the Shields parameter is varied. In the definition of Re.,,
the length scale is the particle diameter d. For details of the
model and parameters used in the simulations the reader is
referred to Gonzalez et al. (2017).

We perform simulations to capture the details of sedi-
ment motion that are driven by the turbulent motions of the
boundary layer, and characterize the system using the non-
dimensional Shields parameter 7., defined as follows,

To
(ps — p)gd

where 1 is the mean bed shear stress of the flow, p; and p
are the sediment and water density, respectively, g is the
acceleration of gravity, and d is the particle diameter.

We consider six simulations (Gonzalez et al. 2017)
using a constant particle diameter, and maintaining the
Reynolds number of the bulk flow and the particle Rey-
nolds number constant by changing the sediment density,
to retain the statistical properties of the forcing exerted by
turbulence on sediment grains. These high-resolution
numerical simulations are employed to study the evolution
of bed-load transport flux from an Eulerian standpoint as an
external observer, quantifying the number of particles that
cross a vertical plane perpendicular to the streamflow
direction, and dividing the total mass by the measurement
time. The transport rate is computed after the coupled
system statistically converges, performing a long simula-
tion period. After this initial convergence, the data is then

Ty =

(5)

@ Springer

collected, and the averaged non-dimensional bed-load flux
for each Shields parameter is obtained (This procedure is
the same as established in Gonzilez et al. 2017) (Fig. 2).
This “measurement” of bed-load transport is equivalent to
the output yielded by formulas commonly used for pre-
dicting the non-dimensional transport rate, which are based
on dimensional analysis and experimental or field data. The
non-dimensional transport g, is defined as follows,

_ qb
” (s —1)gd (6)
where s = p,/p is the sediment specific gravity. The DNS
results agree well with the common scaling of ¢, with
respect to the Shields parameter 7,, which exhibits an
exponent equal to 3/2, shown as a solid line in the plot
(Fig. 2a).

The scaling of bed-load transport rate with the Shields
parameter across an order of magnitude with a constant
exponent for the convergent cases is due to the dynamic
similarity of the flux with the Shields number, which pre-
dicts a stable convergence of the averaged number of
particles passing through a cross section per unit time.
However, two cases stand out from the plot that generate a
smaller average flux compared to the 3/2 law. When we
examine these cases that are overpredicted by the analytical
formula, we observe that the dynamics does not converge
smoothly to the average, but exhibit large-scale fluctuations
that seem to be bounded in amplitude but are significantly
larger than the mean. To compare the changes on the
dynamics of the system as a function of 7., we show three
cases of the standardized series of bed-load flux to show
the convergence on small and large values of the Shields
parameter to the average, while the intermediate case
(1. = 0.08) is dominated by large fluctuations with respect
to the mean (Fig. 2b). The fluctuating cases exhibit a sig-
nificant standard deviation that also implies a large coef-
ficient of variation, which will require a stochastic
approach.

The non-dimensional parameter 7, that represents the
relation between the averaged turbulent stresses and grav-
ity, can be used to quantify the leading mechanism of bed-
load transport variability: For a small value of the Shields
number, transport is sustained but the system is dominated
by gravity and it is very slow to react to turbulent stresses.
As the Shields number increases, however, turbulence has a
more predominant role and instantaneous localized events
of intense stresses on the bed mobilize groups of particles
at different locations (Fig. 3), producing a striking trans-
port regime characterized by bed-load transport bursts
leading to a persistence of fluctuations in the global flux.
This regime is characterized by collective motion, defined
as the simultaneous entrainment of a group of particles
lying closely on the bed by the effect of turbulent stresses.
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Fig. 2 Bed-load transport flux 102F
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Fig. 3 Collective particle
motion. An instantaneous image
shows a vortical structure of the
turbulent boundary layer known
as a hairpin vortex, visualized
with the g-criterion (Hunt et al.
1988), colored by vorticity in
the streamwise direction.
Sediments are colored by their
velocity magnitude, as a sweep
event mobilizes a group of
particles

For larger values of 7., the collective transport of particles
becomes widespread on the entire bed surface, the flux is
fully dominated by turbulence and the relative magnitude
of the fluctuations becomes smaller compared to the mean
transport rate. In this high 7, regime, collective motion
occurs continuously on the entire surface of the bed, and
the system responds quickly to the flow but independent

transport events become invisible in the statistical moments
of transport. The dynamic equilibrium conditions are
therefore controlled by the stress-gravity balance: In low
transport flows, the temporal and spatial variability of
turbulent stresses are stabilized by gravity and the system
converges to the mean value of transport. This intermediate
state of transport is produced by the unstable balance
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between gravity and turbulent stresses that is reflected in
the Shields parameter. The emergence of this critical
regime breaks the scale-invariance of transport, and affects
the mean and higher-order moments, producing a fluctu-
ating signal at larger scales.

3 Stochastic nonlinear model and bed-load
transport statistics

In the critical regime the large-scales of transport are
connected to the collective motion of the grains, as the
small-scale intermittent events on the bed generate a bed-
load flux that exhibits fluctuations of transport at time and
length scales larger than the particle dynamics. These
episodic transport conditions produce a non-stationary
response of the entire system, which can no longer be
represented by a deterministic bed-load function. The
complex dynamics of grains associated to the collective
transport events yields a large-scale dynamics that appears
stochastic from a global perspective.

To improve our predictions of bed-load transport we
develop a model at a higher-level of abstraction based on
the data obtained from the Lagrangian DNS model. We
consider a dynamical system that comprises the entire
computational domain from an Eulerian perspective, con-
sidering the evolution of the sediment transport rate in a
cross section as the global response, at spatial and temporal
levels outside the particle scale processes. A simple model
to reproduce the fluctuations in the bed-load flux considers
the domain as a control volume where we apply the
momentum balance for the sediment from an integral
perspective, which averages the details of grain-scale
interactions. This spatial integration filters the intrinsic
variability and unsteady distributions of collective trans-
port events produced by turbulent stresses, and the effects
of particle collisions on the flux.

We consider the computational domain in Fig. 1d as a
control volume to derive a global equation of transport for
the entire domain. The integral momentum equation can be
written in vector form as:

0 A
at[ﬁpﬁdv+/&p57(7~n)dAZF’ (7)

where V is the sediment velocity integrated in the entire
domain or control volume (V,), enclosed by the control
surface (S.). From this relation we can derive a simple
nonlinear model of transport evolution: We consider the
bed-load transport to be one-dimensional, and the periodic
boundaries of the domain cancel the integral of the flux
across the control surface. Assuming spatial uniformity of
the domain, the statistics of the transport flux have the
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same properties in all cross-sections, and the 1D momen-
tum equation derived from Eq. (7) can be expressed as
follows:

dgy
pA‘ dt

where fipema and frorcing are the 1D components of the
integral forces per unit volume derived from the right hand
side of Eq. (7). This equation shows that a force imbalance
between the internal bed dynamics and the hydrodynamic
forcing integrated in space is a source of bed-load flux,
producing a variation in time of g;. The first term in the
right hand side represent the nonlinear internal interactions
of the particles that generates a dynamic dependence of the
bed-load flux. The second term ff,, represents the
external forcing acting on the bed, i.e. the stresses exerted
by the coherent structures of the turbulent boundary layer
that are relevant for the particles.

The simplest formulation to represent the nonlinear
dynamics of the system fi.ma1, as the bed experiences
changes due to bed-load transport (Masteller and Finnegan
2017), is a quadratic function. This expression can also be
thought of as a second-order Taylor expansion to represent
the nonlinear internal dependence. The external input
corresponds to the combined instantaneous hydrodynamic
forces acting on the entire domain seen at large scales. This
input is assumed as a white noise in the definition of the
stochastic differential equation, which corresponds to the
derivative of a Wiener process (Bressloff 2014; Chow and
Buice 2015).

From this analysis we propose a stochastic differential
equation with additive noise (Gardiner 2009; Siarkkid and
Solin 2019) that represents the temporal evolution of the
flux as a consequence of the imbalances between the
driving and resistive forces integrated in the control vol-
ume. Instead of considering the evolution of bed-load
transport as a linear process, we explicitly adopt a non-
linear formulation, since sediment motion changes the
local flow conditions and modifies the exposure of grains,
which in turn changes the entrainment of particles and their
transport (Masteller and Finnegan 2017). The model
incorporates the simplest nonlinear parameterization of the
internal dynamics in the deterministic part of the stochastic
equation to represent the internal mechanisms of the bed at
work. This is a global spatial equation for the evolution of
the bed-load transport flux in time, in which the deter-
ministic part of the model is a basic nonlinear approxi-
mation for the entire computational domain, with a random
input forcing process. The nonlinear stochastic version of
the momentum Eq. (8) can therefore be written in nondi-
mensional form as follows,

dg. = (—aq. + bq?)dt + VD dW (9)

= ﬁnternal + ﬁarcing (8)
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where g, is the non-dimensional bed-load transport flux,
the internal nonlinear dynamics of the system contains the
parameters a and b, and the random input dW is the
increment of a Wiener process (Man and Tsai 2007; Gar-
diner 2009) scaled with the dispersion coefficient D. These
parameters are obtained by using maximum likelihood with
an extended Kalman filter (Kristensen and Madsen 2003;
Kristensen et al. 2004), using the DNS-DEM data (see
Table 1).

It is important to emphasize that linear stochastic
approaches have already been used to represent specific
features of transport, based on Langevin-type of equations
for particle velocities (Fan et al. 2016; Tsai and Huang
2019) or master equations that reproduce the evolution
bed-load transport rate or the distribution of moving par-
ticles on the bed (Furbish et al. 2012; Ma et al. 2014,
Ancey et al. 2015). For this large-scale model we derive a
stochastic expression from the momentum balance equa-
tion of the domain that represents the emergence of the
transport signal at scales significantly larger than the par-
ticle step lengths. The model can be solved numerically
(RoBler 2010; Sérkkd and Solin 2019) to produce synthetic
series of bed-load transport rate statistically indistinguish-
able from the DNS model to compute histograms of
transport.

We can further simplify the analysis of these complex
conditions, deriving analytical expressions for bed-load
statistics based on the probability distribution function
(PDF) of different realizations of the transport rate, as
represented by the large-scale stochastic model. As pro-
posed by Chow and Buice (2015) (see also Bressloff 2014),
the PDF of the flux is expressed as follows,

Pla.(1)] 0.(0)] = [ & 30-04:01 D (1) (10)

where S[q.(t),q,(¢)] is the stochastic action of the system
or Onsager-Machlup functional, ¢,(f) is a complex
wavenumber function, and Dg,(¢) indicates that we per-
form a functional integration on realizations of the process.
This is known as the path-integral formulation (Feynman
and Hibbs 1965) or Wiener integral (Gardiner 2009;
Bressloff 2014) of the dynamical system to define the PDF.
Equation (10) can be interpreted as an integration over all

Table 1 Coefficients of the nonlinear stochastic bed-load transport
models for the critical regime

7, = 0.06 7, = 0.08
7.66 x 1072 3.75 x 1072
5.65 x 1074 7.10 x 1073
VD 1.00 x 1073 1.00 x 1073

the possible realizations that the transport process can
experience, which depends on the stochastic action of the
dynamical system in Eq. (9). This is equivalent to the
principle of stationary action in classical mechanics, in
which bed-load transport series with the smallest action (S),
have a larger contribution to the probability distribution
(~ e 5).

The methodology to approximate analytically the
moments of the nonlinear equation is based on the defini-
tion of the characteristic functional, also known as the
moment generating functional:

ZU7,J] = / o Sla-().q. O+ [ T0)g. (et [ 1(0)q. (1)

x Dq.(1)D4,(1)

(11)

or the cumulant generating functional W[J,J| = InZ[J, J],
where all the moments are obtained by performing func-
tional derivatives of Z or W in terms of the complex source
functions J(r) and J(r) (Buice and Cowan 2007; Chow and
Buice 2015; Lera 2018). Since this integral can only be
calculated analytically for the first order linear equation,
we approximate the moment of bed-load transport by
separating the action in Eq. (11) into the linear or free part
(SFr), and the so-called interacting part (S;) that contains the
small nonlinear term and stochastic input (Buice and
Cowan 2007), S = Sg + S, as follows:

Z10.J) = / ¢SS e [ 13 Dy (1)Dg (1)
B o0 1 B ~ n
:/e Sr ;H(—SI-I—/Jq*dl—‘r/Jq*dt)

(12)

Taking the integral within the sum, the characteristic
functional is expanded as a series of free moments of the
interacting part. The solution of the linear part from Sg
corresponds to the impulse response function of a first-
order differential equation, also known as the propagator or
Green function G(1,1') = ¢=“*~") for t > ¢'. The generating
functionals Z and W for the nonlinear stochastic equation
are then expanded in terms of G(¢,7'), using a perturbative
expansion of the exponential of S; around the free action.
From the Itd condition for the temporal dependence of the
process (Gardiner 2009) and Wick’s theorem (Chow and
Buice 2015), we preserve only the non-zero free moments
with the same number of ¢.(¢) and ¢,(z).

The derivation of the sum of terms of the expansion in
Eq. (12), however, becomes rapidly unmanageable and
difficult to follow (Chow and Buice 2015). To simplify the
analysis, we express the moments of bed-load transport as a
sum of Feynman diagrams, defining rules to draw the terms
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having the largest contributions in the expansion. Each
interacting term of the series represents external vertices of
the diagram, with ingoing and outgoing edges for each g,
and g, field, respectively. These vertices are connected by
straight arrows, which correspond to the propagators
G(t, 1) for t; > 11, flowing in time from left to right (see
Appendix A). Using Wick’s theorem and the It6 conven-
tion, only fully connected diagrams survive in the expan-
sion of cumulants, and they are multiplied by symmetry
factors of repeated diagrams in the series (Chow and Buice
2015). It is important to note that stochastic diagrammatic
expansions have been already been employed in environ-
mental flows to determine hydraulic conductivity in porous
media, obtaining distributions of effective permeability in
heterogeneous systems that present spatial fluctuations of
local permeability (Hristopulos and Christakos 1999).

The diagrams used here are composed from building
blocks that represent the terms of the interacting action
shown in Eq. (12) (see Appendix A). Therefore, the mean
of bed-load transport computed with a third-order expan-
sion for g,, from the stochastic model is obtained as fol-
lows:

o—»— G—» +
(13)

This expression yields the approximation of the average as
a function of the propagator, which including an initial
condition of the system g,q, is equal to:

G.(1) = g0 G(t,10) + bD/ G(t, tl)Gz(tl,tz)dtldtz

+bq§0/G2(t0,t1)G(t, 1)dt,

(1) 4 BD (-10)]? "
_ —a(t—t —a(t—1
= {gx0€ 0 +ﬁ |:1 —e 0):|
+ quo [e—a(t—to) o 672a(t7t0)}2
a

As t — oo, the first moment of bed-load transport con-
verges to an analytical expression obtained from the
coefficients of the stochastic transport model:

bD

=2

(15)
Following the same approach, the third-order diagrammatic
expansions of the cumulant generating functional to obtain
the variance and skewness of the transport flux from the
cumulant generating functional can be expressed as fol-

lows:
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(17)

These approximations converge to equations for the
moments of bed-load transport that can be calculated
analytically, which converge to the following expressions:

D
0'2* = (18)
y =2v2b (19)
G« 303/2

The moments derived from these diagrammatic expansions
represent the statistics of transport in the critical regime,
and predict accurately the results from the Lagrangian
model coupled to DNS for the non-convergent conditions,
except for the initial variability that affects the skewness,
as shown in Table 2. This analytical large-scale formula-
tion is based on the stochastic dynamics, when the random
input and the nonlinearity are explicitly considered as part
of the system and used to approximate the statistics of the
fluctuating flux in the critical regime.

4 Discussions and conclusions

The emergence of fluctuations in bed-load fluxes has been
recognized as major a feature of transport in experiments
and field observations. As shown here by the high-fidelity
DNS model, collective particle motion driven by turbu-
lence is the leading mechanism that produces the fluctu-
ating regime in the studied domain. This mode of transport
was first identified in the field by Drake et al. (1988), who
reported frequent localized transport events and described
brief episodes of collective particle motion in a series of
intermittent displacements, occurring due to turbulent
fluctuations of the boundary layer. Experimental evidence
has also shown that hydrodynamic forces play a funda-
mental role on bed-load dynamics, in which sweep events
of the boundary layer generate the transport events (Radice
et al. 2013), although collective motion also arises in near-
threshold conditions on steep slopes (Heyman et al. 2013)
or in cases without the direct influence of turbulent stresses,
when fluctuations are driven by collisions or by slow
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Table 2 Moments of bed-load

. .. . 7, = 0.06 7, = 0.08
transport in the critical regime
obtained from DNS and from DNS Renormalization DNS Renormalization
the renormalized perturbation
expansion using Feynman g, 5.9588 x 107 5.9588 x 1073 1.9568 x 10+ 1.9568 x 10~*
diagrams a, 2.5545 x 1075 2.5548 x 1075 3.6507 x 1075 3.6514 x 1075
Ya 4.37 0.095 —0.89 —0.1

subsurface creeping of the granular material in the bed
(Houssais et al. 2015; Lee and Jerolmack 2018).

Through DNS we observe that in a uniform sediment
bed, the Shields parameter can be used to identify the
emergence of a critical regime, driven by the dynamic
competition of resistive forces and turbulent stresses that
strengthen the collective motion process, and produce
fluctuations on the integrated flux for the entire computa-
tional domain. We believe that this critical regime is the
same that was reported by Gilbert (1914), who observed a
transition in bed-load characterized by collective motion
and “rhythmic” transport, sequences of events in which
groups of particles were continuously mobilized.

To provide an answer to the first question we posed
initially: The small-scale dynamics of sediment motion is
observed in the large-scale flux when the collective motion
is activated. As the turbulent stresses increase with respect
to the gravitational and resistive forces, the cumulative
effect of the coherent structures of the boundary layer are
imprinted on the spatial and temporal averages, from which
we compute the bed-load transport rates. Therefore, local
particle interactions in a spatially distributed system
become relevant, and the turbulence signature appears in
the bed-load transport rate for intermediate Shields num-
bers. As turbulent stresses increase, the mechanisms that
produce fluctuations are still present, but they do not
compare in magnitude to the average transport, and the
bed-load flux converges as the system reaches a dynamic
equilibrium that can be represented by the power law
relation. The critical window that breaks the scaling rela-
tion emerges by the competition of forces acting on the
bed. These results indicate that in addition to the kinematic
scaling used to identify allogenic signals on the response of
sedimentary signals (Jerolmack and Paola 2010; Ganti
et al. 2014), the turbulence signature observed on the bed-
load flux shows the relevance of observing the dynamic
scaling, expressed here as the relation between flow stres-
ses and resistive forces in the Shields parameter.

The critical regime of bed-load transport connects the
small-scale dynamics of the particles to the larger-scale
measurements of the flux, which are typically made with
no access of the processes at the grain level. The changes
with the Shields parameter resemble the critical

phenomena and equilibrium phase transitions that are
observed in multiple physical systems, which constitute
one of the fundamental subjects of statistical mechanics
and field theory (Sornette 2006; Herbut 2007). In our case
the system goes through a transition for the range of
Shields numbers that reflects an equivalent influence of
turbulent stresses and resistant forces. Collective transport
events in this regime generate regions of spatial correlation
on the bed surface, or islands of motion that exist for a brief
period of time. Therefore, the continuous appearance of
particle groups moving intermittently produces time
intervals when the averaged bed-load flux grows signifi-
cantly, followed by periods of low transport. These changes
produce a fluctuating time series, with an average that
departs from the other cases, breaking the scale invariance
of the system represented by a constant exponent.

This analogy with critical phenomena in other physical
systems suggests that we should base our bed-load trans-
port analysis on statistical field theory and techniques that
provide approximations of macroscopic large-scale obser-
vations of a system composed of multiple interacting ele-
ments. As a strategy to account for scale interactions and
collective transport, the system is suitable to apply renor-
malization group transformations (McComb 2004; Sornette
2006), which will be explored in the future to describe the
scaling laws considering the effects of the fluctuations on
the critical regime. As an example, we test the generalized
complex exponent in the power-law between the parame-
ters g. and 7. to incorporate the effects of fluctuations as a
correction that introduces log-periodic oscillations in this
relationship (Saleur et al. 1996; Sornette 2006). In Fig. 4,
we show that this exponent provides a good representation
of the averaged flux, which considers the effects of the
fluctuations on the self-similar structure of bed-load
transport for the range of Shields parameters. In the critical
regime, the exponent for the average seems to be smaller
than 3/2, while for lower values of 7, is high (Shih and
Diplas 2018). It is important to consider that the simula-
tions studied in this investigation are based on an idealized
domain with a uniform sediment size, but the strategy of
connecting models at different scales by using stochastic
techniques that incorporate explicitly the nonlinearity of
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Fig. 4 Generalized exponent for
the averaged bed-load transport
flux. Assuming that the power-
law relationship between the
averaged bed-load transport flux
and the Shields parameter is a
scaling law for the range of
DNS simulations, we correct the
exponent to consider the effects
of fluctuations as log-periodic
oscillations using a complex
number exponent, as proposed

o
by Saleur et al. (1996) 0.05

the process provides a pathway to incorporate additional
and more realistic effects in the near future.

On the other hand, the 1D stochastic model that repre-
sents the bed-load flux on the entire domain provides an
answer to our second question, by incorporating the fluc-
tuating dynamics originated by the interactions of the
particles with turbulence as a nonlinear dynamical system.
We propose a predictive bed-load transport model that
captures the complexity of the flux observed in the
Lagrangian DNS approach at a larger scale, considering
explicitly the nonlinear dependence of ¢, and representing
the integrated turbulent forcing as a random process with
parameters obtained from the results of the high-fidelity
simulations. The system reproduces the dynamics of the
critical bed-load transport regime that emerges at scales
much larger that the turbulent transport events, without
resolving the small-scale interactions or details of the
particle motion.

The parameters of the stochastic dynamical equation
reflect the memory of the system, nonlinearity, and rele-
vance of the random input on the bed-load transport rate.
Compared to long-established deterministic equations that
have been successfully employed in a wide range of
problems to predict the average transport capacity, the
stochastic model can help us understand the physical
mechanisms that control the evolution of bed-load trans-
port by the changes of its parameters with the Shields
number. The expansions using Feynman diagrams also
provide simple analytical expressions for the moments of
bed-load transport, as other recent advanced statistical
formulations (Furbish et al. 2012; Ancey and Pascal 2020),
but incorporating explicitly the fluctuations and nonlin-
earity of transport, and accounting for the variability of the
flux under critical conditions, when fluctuations that are
comparable to the mean dominate the transport signal. In
this investigation we contribute to understand the relation
between transport and turbulent stresses, connecting mod-
els at different scales by using a stochastic technique that
incorporate explicitly the nonlinearity of the process, to
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advance toward more general predictions of the statistical
moments of bed-load transport

Further modeling developments will be required to take
full advantage of physically-based stochastic models, and
to provide insights on bed-load transport mechanics from
these approaches, beyond application purposes. In the
studied domain we limited the analysis to the changes on
the transport dynamics only as a function of the Shields
number. The development of broader stochastic formula-
tions will need a comprehensive definition of parameters
that represent the controlling mechanisms acting on the
system, to explore systematically their phase-space and
identify the forces and internal bed processes that are rel-
evant at different spatial and temporal scales. We anticipate
that integrated models can be used to tackle more complex
problems related to the dynamics of bed-load transport and
to identify the origin of transport fluctuations at larger
scales. Contributions of the nonlinear function and noise
would vary as additional factors are incorporated in general
conditions, for example as a consequence of sediment size
distributions, as grains organise creating clusters and
microforms (Hassan and Reid 1990), armoring (Bertin and
Friedrich 2018), or interact with larger immobile particles
(Ghilardi et al. 2014; Papanicolaou et al. 2018) that pro-
duce large fluctuations on transport rates. Processes of
particle burial (Pierce and Hassan 2020), and sediment
accumulation, storage and release (Paola 2016) that appear
at larger spatial scales contribute to generate autogenic
variability of transport, which emerges by grain interac-
tions and nonlinear feedbacks.

Connecting high-resolution models with larger-scale
formulations can also be designed to study transitions as
the nonlinearity of the bed evolves, and the local interac-
tions explain more complex global behavior. The emer-
gence of bedforms and sedimentary patterns push the
systems to new equilibrium conditions, generating inter-
dependence between transport and near-bed turbulence
(Leary and Schmeeckle 2017). Coherent structures, vortex
interactions and flow separation induced by the growth and
migration of bedforms modify turbulent stresses and
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control bed-load transport fluctuations, introducing addi-
tional length and timescales (Guala et al. 2014), and a
strong autogenic component on the response of the system.
High-resolution numerical simulations have shown that
incorporating the unsteady turbulent stresses in bed-load
transport formulas is required to resolve the interactions
that trigger the formation and evolution of sand ripples
(Escauriaza and Sotiropoulos 2011a; Khosronejad and
Sotiropoulos 2014), which underscores the need for reex-
amining predictive large-scale models of transport in the
presence of transitions and emergent sedimentary patterns,
since turbulent forcing is strongly modulated by the
dynamics of bed-load transport. Stochastic approaches
aimed at estimating the mean and the variability of trans-
port would therefore need to introduce this dependence as a
multiplicative noise in the equations (Sédrkkd and Solin
2019).

If there is hope on developing bed-load transport models
based on physical principles that can combine deterministic
representations of internal bed processes with the random
dynamic contributions of the turbulent forcing and sedi-
ment variability, we will need to advance closely with
experiments and field observations to discover the essential
processes that can describe the sediment dynamics, and the
aspects of the small scales that dominate or can be removed
from predictive equations. Blending modeling techniques
and using detailed data to parameterize high-level equa-
tions can help us understand the connections among scales,
the changes of the systems as functions of these parame-
ters, and the physical influences on other processes that
take place on river beds.

Diagrams for approximating moments

The diagrammatic expansion is used to simplify the cal-
culation of moments of bed-load transport from the first
terms of Eq. (12), which corresponds to a sum of “free”
moments based on the PDF of the free action, e~57. Here
we follow the procedure outlined by Chow and Buice
(2015), defining a set of rules to draw the diagrams that
represent each term in the expansion. The moments are
obtained by integrating the functions with respect to the
free action, and expressing them in terms of the propagator
or Green function of the linear first-order equation
G(tr,11) = ™) = (q.(1)q,(12))p for 1 > 11, repre-
sented as an arrow in time, going from left to right. From
Wick’s theorem (Chow and Buice 2015) and the symmetry
of Gaussian processes, all the odd-numbered free-moments
are zero, and the even moments are expressed as the sum of
the moments of all the possible pairings of the variables at
different instants in time. The Itd interpretation (Gardiner

2009; Sirkka and Solin 2019) or causality of the stochastic
system, ensures that the variables of the model only depend
on the past. Therefore, each time integral of the expansion
in the interacting part of Eq. (12) is represented by a vertex
in each diagram, with incoming arrows for each g, field,
and outgoing arrows for each ¢, field. In this case we adopt
the formulation and rules defined by Lera (2018), such that
the diagrams that contain the initial condition (starting
from a constant g, value), the noise, and the nonlinear
term are the following:

: Q*OQ*O (A 1 )
D A2

Dz (A2)

bgZd (A3)

These basic diagrams are the building blocks that are
assembled to construct the expansion terms. Any general

moment derived from the characteristic functional Z[J, J] is
defined as follows:

(A4)

which is approximated as a sum of diagrams with m
incoming and n outgoing arrows. Therefore, we can intu-
itively derive diagrams that connect the terms, either for
the characteristic functional or for the cumulant generating
functional W[J,J], which are easier to derive since only
diagrams that connect all the nodes survive (Lera 2018).
For example, for the first cumulant or mean of bed-load
transport in Eq. (13), we sum the first three diagrams of the
expansion with only one outgoing arrow, combining the
diagrams in Egs. (Al), (A2), and (A3). To calculate the
numerical value of the moment approximation, each time
integration is multiplied by a symmetry factor due to the
number of repeated diagrams that appear in the expansion
(Chow and Buice 2015), which corresponds to the number
of ways arrows can be rearranged in each node of the
diagram. The second and third diagrams in Eq. (13) have
been multiplied by 2, since we have two ways of
exchanging the incoming arrows in the same diagram. For
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the case of the second cumulant or variance in equation 16,
we sum all connected diagrams with 2 outgoing arrows,
where the number of nodes equal to the order of the term in
the expansion.
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