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Solution NMR investigations of integral membrane protein structure and dynamics
Solution NMR investigations have contributed significantly to the development of NMR
applications and to the understanding of the structure and dynamics of a-helical and B-barrel
membrane proteins. In addition, the requirements of NMR solution biomolecular spectroscopy
have pushed the development and engineering of robust expression systems and led to a greater
understanding of membrane mimics, such as detergent and bicelles. These advances have enabled
the solution NMR to identify, structurally map, and dynamically characterize membrane protein-
protein interactions [ 1-4], membrane protein-ligand interactions [5-7], and membrane protein-lipid
interactions [8-10].

Protein expression and isotope incorporation: advances and challenges

NMR requires protein concentrations in the range of hundreds of micromolar as well as
expression systems that can incorporate NMR active nuclei. These limitations almost entirely
exclude eukaryotic expression systems for complete membrane protein structure determination of
membrane proteins [11,12]. However, specific side chain incorporation in has facilitated the
applications of solution NMR to investigating membrane protein dynamics and conformational
landscape of lower expressing proteins, including those from eukaryotic expression systems [13-
17]. Membrane proteins can be isolated from the membrane or refolded from an insoluble fraction
(e.g. inclusion bodies) [18,19]. Regardless of the approach, a robust assay of protein function or
biological activity is essential as expression and purification conditions can drastically affect
protein fold and function [20,21].

Directed evolution and optimization of E. coli expression of eukaryotic targets has
facilitated breakthroughs in understanding membrane protein structure, function and dynamics
[22-25]. However, membrane proteins from eukaryotic organisms may have post-translational
modifications essential to form and function, which cannot be recapitulated in a bacterial
expression system [26]. Eukaryotic expression systems are not as versatile for deuteration or
complete labeling compared to bacterial expression systems, so alternative isotope incorporation
strategies, such as single amino acid labeling, the use of isotopically labeled unnatural amino acids,
or post-translational chemical modification with stable isotopes have been successfully used [13-
17]. These labeling strategies are more suitable for studying protein dynamics or ligand binding as
opposed to structure determination since the proteins are not uniformly labeled with >N and '*C

[27]. The power of this methodology is demonstrated by stunning investigations of G-protein
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coupled receptors (GPCRs), such as the f2-adrenergic receptor in which adopting °C labeling of
lysine or methionine residues allowed elucidation of changes in dynamic behavior of the protein
in response to ligand binding as well as the structural heterogeneity that exists even in bound states
that is not captured well by other structural techniques [28,29].

In conjunction with these alternative labeling strategies, eukaryotic proteins may require
extensive genetic manipulation to produce an optimally thermostable protein sample, with G-
protein coupled receptors (GPCRs) being a prime example [30,31]. Optimization such as this is
not universal and must be designed specifically within each experimental framework. In this
context, NMR has also proved an incredible tool to assess functionality of membrane proteins
genetically optimized for structure determination as elegantly demonstrated by Goba, et al. [32].
Codon harmonization, in which the codon usage in recombinant gene sequences is matched to
those in the native sequences, has shown an increase in protein yield [33]. This specific codon
optimization nearly doubles yield through the ability to mitigate protein misfolding. In addition to
the expression system, the membrane mimic is an incredibly important factor for membrane

protein integrity and physiological relevance [34-36].
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Figure 1. Representation of membrane mimics for membrane protein solution NMR
arranged in order of least detergent/more bilayer-like to most detergent/least bilayer like.
Lipid molecules are represented in blue, while detergents are represented in orange.

Extraction and solubilization impacts NMR spectral quality
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Micelles. For solution NMR investigations, membrane proteins need an apolar solvent around the
hydrophobic transmembrane regions yet be soluble and freely tumbling in an aqueous solvent. In
addition, if the membrane protein is expressed to the cell membrane, then the protein needs to be
extracted from the membrane as well as stabilized in aqueous solution. Choosing the correct
membrane mimic for membrane protein solubilization and stabilization can have an outsized
impact on the success of a study. Choosing an incompatible membrane mimic can result in
insoluble, destabilized, and/or not functional membrane protein [37-42]. Fortunately, a host of
membrane mimics have been developed for use in membrane protein NMR, such as micelles,
bicelles, and nanodiscs (Figure 1) [43,44]. Each mimic system has well-documented advantages
and disadvantages and within each system, much work has been done to characterize the myriad
combinations of the constituent component detergents, lipids, and membrane scaffolding proteins
[45-48]. Despite the large body of literature surrounding membrane mimics, identifying the right
membrane analogue for a given system is often a matter of empirical screening, which is often
costly and time-consuming [49-51].

Traditionally, amphiphilic surfactants are used; however, additional systems have been developed
and used. Membrane proteins are extracted from the bilayer with the addition of detergent through
detergent-lipid interactions that destabilize the lipid-lipid interactions and yield solubilized mixed
lipid-detergent assemblies [52]. The protein of interest is then purified from the rest of the
solubilized membrane components and most weakly associated lipids are removed. The resulting
protein-detergent micelle complexes are then empirically screened for solubility, stability (days
for spectral acquisition), and quality NMR spectra (evaluated by chemical dispersion, uniform
intensity of peaks, and a match of the number of expected and observed resonances). While
detergent micelles are used in most extractions, the final mimic system may change for NMR
analysis.

In detergent micelles, charged detergents have been identified to destabilize tertiary membrane
protein structure, whereas nonionic and zwitterionic detergents micelles, such as n-dodecyl-f-D-
maltoside (DDM) and dodecylphosphocholine (DPC), respectively, stabilize membrane proteins
[53-56]. Historically, nonionic protein — detergent micelles are used to determine protein structures
with X-ray crystallography [57,58] and zwitterionic detergents from NMR [56]. This could arise

from the requirement that proteins not interact in NMR yet need to interact to form a crystal lattice.
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Thus, detergent micelles that have electrostatic repulsive headgroups would be more favorable for
NMR to reduce exchange processes and higher molecular weight complexes.

For quality NMR spectra, the molecular weight of the molecular complex should be minimized
including the molecules that solubilize the membrane protein. With respect to detergents, long-
chain alkyl chains result in larger aggregates that may be unsuitable for high-resolution
spectroscopy [14,59]. Even in cases where a protein is successfully solubilized, the membrane
mimic can cause loss of function or destabilization of the overall structure and dynamics [60,61].
For instance, although quality NMR spectra for the ADP/ATP mitochondrial carrier transport
protein AAC3 were obtained, Kurauskas et al. demonstrated that carrier was not functional in DPC
micelle, but was functional when reconstituted into a DDM micelle [62]. Detergents can be mixed
to tune mixed micelles of different properties to match membrane [63,64] and membrane protein
properties. In addition, lipids with specific properties (e.g. charged head groups, alkyl chain length,
or known modulators of function) can be added and will partition into micelles; however, these
mixed micelle — lipid assemblies will have different properties [65].

Bicelles. Mixtures of lipids and detergents are referred to as bicelles (Figure 1) and have proven
extremely useful in solution NMR studies. An ideal bicelle has a segregated lipid core with a
detergent belt surrounding the core lipids. When the lipid component is present at molar ratios less
than 1:1, the lipids can mix with detergents to form mixed micelles [65,66]. The concentration for
which lipid segregation occurs is dependent on the lipid and detergent monomer properties and the
presence of protein. Membrane proteins can be purified in bicelles or reconstituted into liposomes
and solubilized with the addition of the detergent at the appropriate concentration to form the
desired bicelle. The quality of the NMR spectrum not only depends on the bicelle used but how
the bicelle is formed as was shown for EmrE [61,67].

There are many detergents, detergent mixtures, and bicelles to screen empirically for folded,
functional, membrane proteins with quality NMR spectra. The major challenge is line broadening
that could be due to (i) exchange processes due to interactions between solubilized complexes, (ii)
conformational heterogeneity which is very common in a-helical proteins, (iii) correlation time of
the complex, and (iv) partial unfolding or denaturation of the membrane protein. There is no magic
bullet as to what membrane mimic is the best for all proteins. However, several factors can be
considered to narrow the choice, such as aggregate size, hydrophobic thickness, and composition.

Hydrophobic mismatch between a membrane protein and the membrane mimic environment can
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impact protein structure [68-70]. Inner and outer membrane proteins have a hydrophobic thickness
of ~29 A and ~24 A, respectively [71,72]. A surfactant’s ability to match the hydrophobic
thickness is critical, but not necessarily sufficient. The maximum hydrophobic thickness of a
micelle is determined by the amphiphile tail length in a pure micelle and can be titrated with
detergent mixtures; however, as the detergents are mixed the aggregate shape and size change as
well [73]. Electrostatics are important to both mimic the membrane environment and to reduce
interactions between solubilized complexes. A mixture of surfactant and lipid that can provide the
required charges and meet the hydrophobic thickness may be most desired.

Finally, this section would not be complete without mentioning the innovative use of reverse
micelles to encapsulate membrane proteins for NMR solution studies [74-76]. These systems,
although seemingly the least membrane-like, result in quality NMR spectra and stabilize
membrane protein structures.

Nanodiscs. Assemblies of lipids surround by an amphipathic scaffold that can be a protein,
synthetic polymer, or DNA are referred to as nanodiscs (Figure 1) [77,78]. The most common
nanodisc used in solution NMR are scaffolds formed by membrane scaffolding proteins (MSP)
[79,80]. MSP nanodiscs take advantage of the alpha helical, amphipathic proteins from
apolipoprotein A-1, first reported by Sligar and coworkers. Within these systems, the radius of the
disc is modulated between 8-16 nmwith different scaffolding proteins [79] and the lipid
composition can be manipulated [81]. Applications of MSP for membrane protein solution NMR
experiments was reviewed recently [82] and a more recent demonstration of the benefits of
circularized nanodiscs for solution NMR studies of membrane proteins was published [83].
Although nanodiscs require membrane protein isolation and purification in detergent, the
advantage is that they are a discrete size and the molecular understanding of their structure and
stabilization of the bilayer is well understood. Alternative to MSP nanodiscs, synthetic nanodiscs,
such as styrene maleic acid copolymers (SMAs), diisobutylene-maelic acid (DIBMA), and
poly(acylic acid-co-styrene (AASTY) have gained recent popularity. . While all three synthetic
polymers provide nanodisc structures for stabilization, the attractive feature of these polymers is
they eliminate the need for detergents for extraction and solubilization [85-88]. Where MSP
nanodiscs typically contain artificial lipids, synthetic nanodiscs have the ability to use the native
cell phospholipids. Each polymer has its own unique drawbacks, but one that is ubiquitous to all

the synthetic polymers nanodiscs is their variable size, due to the different lengths of polymer
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chain. SMA, the longest synthetic polymer in use, has an extensive database for successful
solubilizations of membrane proteins. Additionally, SMAs have been shown to have a slight
increase in yield when compared to DIBMA [89]. However, like AASTY, SMAs contain an
aromatic ring that absorbs light at wavelengths of 280 nm, which can make quantification of
proteins troublesome [90]. Due to their relatively new use, membrane protein structure
determination has been limited in these systems, but they have been successful in characterization
studies of membrane proteins. SMAs used in solution NMR, was shown to maintain the
physiological activity, and allow for the dissociation measurement of the Smoothened (SMO)
protein of the GPCR family to its known ligands[5]. One drawback to many synthetic nanodiscs,
is a sensitivity to divalent cations. Because of this, development of electroneutral SMA and
DIBMA derivatives, containing a sulfobetaine group, were developed to advert cation
incompatibility [91].Recent reports indicate the lipid properties are different in nanodiscs than
bilayers. Lipid and protein dynamics are reportedly different in membrane scaffolding protein
nanodiscs [92] and copolymer assemblies [93] compared to lipid bilayers and more investigation
is required to determine if these packing properties impact membrane protein function.

Solution NMR Investigations of Membrane Proteins: Beyond Structure Determination
Solution NMR has determined the structure of numerous membrane proteins. However, solution
NMR approaches can offer more than structure determination and are now facilitating the
investigation of catalysis, ligand binding, conformational dynamics, and lipid -protein
interactions. Saturation transfer difference (STD) NMR is a powerful technique used to
investigate protein-ligand interactions [52]. The STD-NMR experiment relies on the weak-
binding ligand to exchange between the bound and free ligand state and can be useful in
understanding the protein-lipid interactions. In protein-lipid interactions investigations with

STD, the protein resonances are selectively saturated, and magnetization is transferred to a first
layer of lipids surrounding the protein. While the saturation energy is continually applied, lipids
are allowed to exchange, increasing the rf-saturated lipid population. Gawrisch et al. measured,
by using STD-NMR, the individual strength as well as the statistics of the lipid-protein
interactions in membranes with incorporated bovine rhodopsin [94]. STD combined with high
throughput screening also allowed researchers to map the binding epitopes of epinephrine and A-
61603 to both adrenoreceptors, revealing the selectivity of the a1a-AR-selctive agonist for one

adrenoreceptor over the other [25]. '°F-transfer NMR has been used to report on conformation
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dynamics on the binding groove of theneruokinin 1 receptor (NK1R) [95]. Pan et al.
demonstrated that the orthosteric binding groove on NK1R fluctuates with amplitudes of 6 to 8A,
highlighting a multistep selection of orthosteric ligands not captured in current static structures.
Dynamic nuclear polarization (DNP) has gained significant attention recently, where polarization
is transferred from an electron spin ensemble to a nuclear spin ensemble. The large difference in
relaxation rates between electron spins and nuclear spins results in hyperpolarization of the
nuclear spin ensemble [96]. Overcoming the inherent low sensitivity of NMR spectroscopy has
allowed researchers to selectively enhance signals in ligand-binding sites [97]. Additionally,
DNP is a provides an opportunity for a high-throughput, quantitative analysis of ligand-protein
interactions using solution NMR [98]. This provides enhanced signal, and atomic-level structural
detail in a single scan allowing for rapid analysis.

In studying large macromolecular complexes, increasing the isotopic labeling diversity is often
important. Obtaining structural restraints using paramagnetic relaxation enhancement of of °C
labeled methyls is well established in beta-barrel [99,100] and alpha-helical proteins [101,102].
Recently, Huang et al. used paramagnetic relaxation of a '°F label to elucidate information of the
conformational dynamics of the membrane transporter, GItPh [103]. This approach not only
allows for the identification of the multiple states of functional proteins, but also allows for the
measurement of the exchange rates [104].

Fragment based drug discovery (FBDD) has become a powerful complementary approach to
high throughput screening to identify drug-like candidates in the early stages of drug discovery
[105]. FBDD utilizes libraries of small molecules called “fragments” that binding is evaluated
against a target protein of interest. Using small molecules allows for a more efficient exploration
of the ensemble of all possible molecular conformations presenting drug-like properties [106].
FBDD’s ability to screen potential therapeutics is demonstrated in the screening of several
Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) inhibitors using an enzymatic
assay and a WaterLOGSY NMR experiment [107]. The authors identified 10 fragment hits that
directly bind and inhibit the GPI-PLC, an enzyme active in the pathogenesis of trypanosmiasis
cause by Trypanosoma brucei.

Solution NMR s also able to estimate dissociation constants of specific lipid-protein
interactions. The Tamm laboratory was able to investigate lipopolysaccharide (LPS) binding to

the membrane protein OprH. Through a series of '’N-'H TROSY and HMQC experiments the
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authors determined which specific residues interact with LPS based on chemical shifts upon LPS
addition. Additionally, to quantitatively determine the binding of LPS to OprH, the authors
generated chemical shifts from TROSY cross-peaks that followed Langmuir binding isotherms,
from which dissociation constants could be derived [109].

Most NMR experiments performed to date are at physiological pressure, however high-pressure
NMR is emerging as a unique and complementary approach to chemical and temperature
perturbation [110]. Pressure is a fundamental thermodynamic variable that can report on protein
stability, function, and dynamics [111] and , with NMR, can be monitored at a site-specific
atomic level [112]. Specific to membrane protein applications, high-pressure NMR can also be
used to modulate the main gel-fluid phase transition and gelation of lipids [113]. Pozza et al.
used high-pressure NMR to show the fluidity modulation of phospholipids in the interplay
between lipids and the membrane proteins OmpX and BLT2 [114]. The conformational
equilibria of the apo B1-adrenergic receptor was investigated with high-pressure solution NMR
with the fully active conformation (only reached in the ternary agonist-G protein effector
complex) accessed with moderate pressure [115]. More recently, high-pressure NMR was used
to demonstrate that the observed allosteric effects of cholesterol on adenosine Aza receptor
originate from changes in membrane properties not through direct interactions [9].

As demonstrated with these examples, the applications of solution NMR to integral membrane
proteins are emerging beyond structure determination and with a focus on the strengths of
spectroscopy in detection and dynamics.
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