
Solution NMR investigations of integral membrane protein structure and dynamics 1 

Solution NMR investigations have contributed significantly to the development of NMR 2 

applications and to the understanding of the structure and dynamics of α-helical and β-barrel 3 

membrane proteins. In addition, the requirements of NMR solution biomolecular spectroscopy 4 

have pushed the development and engineering of robust expression systems and led to a greater 5 

understanding of membrane mimics, such as detergent and bicelles. These advances have enabled 6 

the solution NMR to identify, structurally map, and dynamically characterize membrane protein-7 

protein interactions [1-4], membrane protein-ligand interactions [5-7], and membrane protein-lipid 8 

interactions [8-10]. 9 

Protein expression and isotope incorporation: advances and challenges 10 

NMR requires protein concentrations in the range of hundreds of micromolar as well as 11 

expression systems that can incorporate NMR active nuclei. These limitations almost entirely 12 

exclude eukaryotic expression systems for complete membrane protein structure determination of 13 

membrane proteins [11,12]. However, specific side chain incorporation in has facilitated the 14 

applications of solution NMR to investigating membrane protein dynamics and conformational 15 

landscape of lower expressing proteins, including those from eukaryotic expression systems [13-16 

17]. Membrane proteins can be isolated from the membrane or refolded from an insoluble fraction 17 

(e.g. inclusion bodies) [18,19]. Regardless of the approach, a robust assay of protein function or 18 

biological activity is essential as expression and purification conditions can drastically affect 19 

protein fold and function [20,21].  20 

Directed evolution and optimization of E. coli expression of eukaryotic targets has 21 

facilitated breakthroughs in understanding membrane protein structure, function and dynamics 22 

[22-25]. However, membrane proteins from eukaryotic organisms may have post-translational 23 

modifications essential to form and function, which cannot be recapitulated in a bacterial 24 

expression system [26]. Eukaryotic expression systems are not as versatile for deuteration or 25 

complete labeling compared to bacterial expression systems, so alternative isotope incorporation 26 

strategies, such as single amino acid labeling, the use of isotopically labeled unnatural amino acids, 27 

or post-translational chemical modification with stable isotopes have been successfully used [13-28 

17]. These labeling strategies are more suitable for studying protein dynamics or ligand binding as 29 

opposed to structure determination since the proteins are not uniformly labeled with 15N and 13C 30 

[27]. The power of this methodology is demonstrated by stunning investigations of G-protein 31 



coupled receptors (GPCRs), such as the β2-adrenergic receptor in which adopting 13C labeling of 32 

lysine or methionine residues allowed elucidation of changes in dynamic behavior of the protein 33 

in response to ligand binding as well as the structural heterogeneity that exists even in bound states 34 

that is not captured well by other structural techniques [28,29].  35 

In conjunction with these alternative labeling strategies, eukaryotic proteins may require 36 

extensive genetic manipulation to produce an optimally thermostable protein sample, with G-37 

protein coupled receptors (GPCRs) being a prime example [30,31].  Optimization such as this is 38 

not universal and must be designed specifically within each experimental framework. In this 39 

context, NMR has also proved an incredible tool to assess functionality of membrane proteins 40 

genetically optimized for structure determination as elegantly demonstrated by Goba, et al. [32]. 41 

Codon harmonization, in which the codon usage in recombinant gene sequences is matched to 42 

those in the native sequences, has shown an increase in protein yield [33]. This specific codon 43 

optimization nearly doubles yield through the ability to mitigate protein misfolding. In addition to 44 

the expression system, the membrane mimic is an incredibly important factor for membrane 45 

protein integrity and physiological relevance [34-36].  46 

 47 
Figure 1. Representation of membrane mimics for membrane protein solution NMR 48 

arranged in order of least detergent/more bilayer-like to most detergent/least bilayer like.  49 

Lipid molecules are represented in blue, while detergents are represented in orange. 50 

Extraction and solubilization impacts NMR spectral quality  51 



Micelles. For solution NMR investigations, membrane proteins need an apolar solvent around the 52 

hydrophobic transmembrane regions yet be soluble and freely tumbling in an aqueous solvent. In 53 

addition, if the membrane protein is expressed to the cell membrane, then the protein needs to be 54 

extracted from the membrane as well as stabilized in aqueous solution. Choosing the correct 55 

membrane mimic for membrane protein solubilization and stabilization can have an outsized 56 

impact on the success of a study. Choosing an incompatible membrane mimic can result in 57 

insoluble, destabilized, and/or not functional membrane protein [37-42]. Fortunately, a host of 58 

membrane mimics have been developed for use in membrane protein NMR, such as micelles, 59 

bicelles, and nanodiscs (Figure 1) [43,44]. Each mimic system has well-documented advantages 60 

and disadvantages and within each system, much work has been done to characterize the myriad 61 

combinations of the constituent component detergents, lipids, and membrane scaffolding proteins 62 

[45-48]. Despite the large body of literature surrounding membrane mimics, identifying the right 63 

membrane analogue for a given system is often a matter of empirical screening, which is often 64 

costly and time-consuming [49-51]. 65 

Traditionally, amphiphilic surfactants are used; however, additional systems have been developed 66 

and used. Membrane proteins are extracted from the bilayer with the addition of detergent through 67 

detergent-lipid interactions that destabilize the lipid-lipid interactions and yield solubilized mixed 68 

lipid-detergent assemblies [52].  The protein of interest is then purified from the rest of the 69 

solubilized membrane components and most weakly associated lipids are removed. The resulting 70 

protein-detergent micelle complexes are then empirically screened for solubility, stability (days 71 

for spectral acquisition), and quality NMR spectra (evaluated by chemical dispersion, uniform 72 

intensity of peaks, and a match of the number of expected and observed resonances). While 73 

detergent micelles are used in most extractions, the final mimic system may change for NMR 74 

analysis.  75 

In detergent micelles, charged detergents have been identified to destabilize tertiary membrane 76 

protein structure, whereas nonionic and zwitterionic detergents micelles, such as n-dodecyl-β-D-77 

maltoside (DDM) and dodecylphosphocholine (DPC), respectively, stabilize membrane proteins 78 

[53-56]. Historically, nonionic protein – detergent micelles are used to determine protein structures 79 

with X-ray crystallography [57,58] and zwitterionic detergents from NMR [56]. This could arise 80 

from the requirement that proteins not interact in NMR yet need to interact to form a crystal lattice. 81 



Thus, detergent micelles that have electrostatic repulsive headgroups would be more favorable for 82 

NMR to reduce exchange processes and higher molecular weight complexes.   83 

For quality NMR spectra, the molecular weight of the molecular complex should be minimized 84 

including the molecules that solubilize the membrane protein. With respect to detergents, long-85 

chain alkyl chains result in larger aggregates that may be unsuitable for high-resolution 86 

spectroscopy [14,59]. Even in cases where a protein is successfully solubilized, the membrane 87 

mimic can cause loss of function or destabilization of the overall structure and dynamics [60,61]. 88 

For instance, although quality NMR spectra for the ADP/ATP mitochondrial carrier transport 89 

protein AAC3 were obtained, Kurauskas et al. demonstrated that carrier was not functional in DPC 90 

micelle, but was functional when reconstituted into a DDM micelle [62]. Detergents can be mixed 91 

to tune mixed micelles of different properties to match membrane [63,64] and membrane protein 92 

properties. In addition, lipids with specific properties (e.g. charged head groups, alkyl chain length, 93 

or known modulators of function) can be added and will partition into micelles; however, these 94 

mixed micelle – lipid assemblies will have different properties [65]. 95 

Bicelles. Mixtures of lipids and detergents are referred to as bicelles (Figure 1) and have proven 96 

extremely useful in solution NMR studies. An ideal bicelle has a segregated lipid core with a 97 

detergent belt surrounding the core lipids. When the lipid component is present at molar ratios less 98 

than 1:1, the lipids can mix with detergents to form mixed micelles [65,66]. The concentration for 99 

which lipid segregation occurs is dependent on the lipid and detergent monomer properties and the 100 

presence of protein. Membrane proteins can be purified in bicelles or reconstituted into liposomes 101 

and solubilized with the addition of the detergent at the appropriate concentration to form the 102 

desired bicelle. The quality of the NMR spectrum not only depends on the bicelle used but how 103 

the bicelle is formed as was shown for EmrE [61,67]. 104 

There are many detergents, detergent mixtures, and bicelles to screen empirically for folded, 105 

functional, membrane proteins with quality NMR spectra. The major challenge is line broadening 106 

that could be due to (i) exchange processes due to interactions between solubilized complexes, (ii) 107 

conformational heterogeneity which is very common in α-helical proteins, (iii) correlation time of 108 

the complex, and (iv) partial unfolding or denaturation of the membrane protein. There is no magic 109 

bullet as to what membrane mimic is the best for all proteins. However, several factors can be 110 

considered to narrow the choice, such as aggregate size, hydrophobic thickness, and composition. 111 

Hydrophobic mismatch between a membrane protein and the membrane mimic environment can 112 



impact protein structure [68-70]. Inner and outer membrane proteins have a hydrophobic thickness 113 

of ~29 Å and ~24 Å, respectively [71,72]. A surfactant’s ability to match the hydrophobic 114 

thickness is critical, but not necessarily sufficient. The maximum hydrophobic thickness of a 115 

micelle is determined by the amphiphile tail length in a pure micelle and can be titrated with 116 

detergent mixtures; however, as the detergents are mixed the aggregate shape and size change as 117 

well [73]. Electrostatics are important to both mimic the membrane environment and to reduce 118 

interactions between solubilized complexes. A mixture of surfactant and lipid that can provide the 119 

required charges and meet the hydrophobic thickness may be most desired.  120 

Finally, this section would not be complete without mentioning the innovative use of reverse 121 

micelles to encapsulate membrane proteins for NMR solution studies [74-76]. These systems, 122 

although seemingly the least membrane-like, result in quality NMR spectra and stabilize 123 

membrane protein structures. 124 

Nanodiscs. Assemblies of lipids surround by an amphipathic scaffold that can be a protein, 125 

synthetic polymer, or DNA are referred to as nanodiscs (Figure 1) [77,78]. The most common 126 

nanodisc used in solution NMR are scaffolds formed by membrane scaffolding proteins (MSP) 127 

[79,80]. MSP nanodiscs take advantage of the alpha helical, amphipathic proteins from 128 

apolipoprotein A-1, first reported by Sligar and coworkers. Within these systems, the radius of the 129 

disc is modulated between 8-16 nmwith different scaffolding proteins [79] and the lipid 130 

composition can be manipulated [81]. Applications of MSP for membrane protein solution NMR 131 

experiments was reviewed recently [82] and a more recent demonstration of the benefits of 132 

circularized nanodiscs for solution NMR studies of membrane proteins was published [83].  133 

Although nanodiscs require membrane protein isolation and purification in detergent, the 134 

advantage is that they are a discrete size and the molecular understanding of their structure and 135 

stabilization of the bilayer is well understood. Alternative to MSP nanodiscs, synthetic nanodiscs, 136 

such as styrene maleic acid copolymers (SMAs), diisobutylene-maelic acid (DIBMA), and 137 

poly(acylic acid-co-styrene (AASTY) have gained recent popularity. . While all three synthetic 138 

polymers provide nanodisc structures for stabilization, the attractive feature of these polymers is 139 

they eliminate the need for detergents for extraction and solubilization [85-88]. Where MSP 140 

nanodiscs typically contain artificial lipids, synthetic nanodiscs have the ability to use the native 141 

cell phospholipids. Each polymer has its own unique drawbacks, but one that is ubiquitous to all 142 

the synthetic polymers nanodiscs is their variable size, due to the different lengths of polymer 143 



chain.  SMA, the longest synthetic polymer in use, has an extensive database for successful 144 

solubilizations of membrane proteins. Additionally, SMAs have been shown to have a slight 145 

increase in yield when compared to DIBMA [89]. However, like AASTY, SMAs contain an 146 

aromatic ring that absorbs light at wavelengths of 280 nm, which can make quantification of 147 

proteins troublesome [90]. Due to their relatively new use, membrane protein structure 148 

determination has been limited in these systems, but they have been successful in characterization 149 

studies of membrane proteins. SMAs used in solution NMR, was shown to maintain the 150 

physiological activity, and allow for the dissociation measurement of the Smoothened (SMO) 151 

protein of the GPCR family to its known ligands[5]. One drawback to many synthetic nanodiscs, 152 

is a sensitivity to divalent cations. Because of this, development of electroneutral SMA and 153 

DIBMA derivatives, containing a sulfobetaine group, were developed to advert cation 154 

incompatibility [91].Recent reports indicate the lipid properties are different in nanodiscs than 155 

bilayers. Lipid and protein dynamics are reportedly different in membrane scaffolding protein 156 

nanodiscs [92] and copolymer assemblies [93] compared to lipid bilayers and more investigation 157 

is required to determine if these packing properties impact membrane protein function.  158 

Solution NMR Investigations of Membrane Proteins: Beyond Structure Determination 159 

Solution NMR has determined the structure of numerous membrane proteins. However, solution 160 

NMR approaches can offer more than structure determination and are now facilitating the 161 

investigation of catalysis, ligand binding, conformational dynamics, and lipid -protein 162 

interactions. Saturation transfer difference (STD) NMR is a powerful technique used to 163 

investigate protein-ligand interactions [52].  The STD-NMR experiment relies on the weak-164 

binding ligand to exchange between the bound and free ligand state and can be  useful in 165 

understanding the protein-lipid interactions. In protein-lipid interactions investigations with 166 

STD, the protein resonances are selectively saturated, and magnetization is transferred to a first 167 

layer of lipids surrounding the protein. While the saturation energy is continually applied, lipids 168 

are allowed to exchange, increasing the rf-saturated lipid population.  Gawrisch et al. measured, 169 

by using STD-NMR, the individual strength as well as the statistics of the lipid-protein 170 

interactions in membranes with incorporated bovine rhodopsin [94]. STD combined with high 171 

throughput screening also allowed researchers to map the binding epitopes of epinephrine and A-172 

61603 to both adrenoreceptors, revealing the selectivity of the α1A-AR-selctive agonist for one 173 

adrenoreceptor over the other [25]. 19F-transfer NMR has been used to report on conformation 174 



dynamics on the binding groove of theneruokinin 1 receptor (NK1R) [95]. Pan et al. 175 

demonstrated that the orthosteric binding groove on NK1R fluctuates with amplitudes of 6 to 8Å, 176 

highlighting a multistep selection of orthosteric ligands not captured in current static structures. 177 

Dynamic nuclear polarization (DNP) has gained significant attention recently, where polarization 178 

is transferred from an electron spin ensemble to a nuclear spin ensemble. The large difference in 179 

relaxation rates between electron spins and nuclear spins results in hyperpolarization of the 180 

nuclear spin ensemble [96]. Overcoming the inherent low sensitivity of NMR spectroscopy has 181 

allowed researchers to selectively enhance signals in ligand-binding sites [97]. Additionally, 182 

DNP is a provides an opportunity for a high-throughput, quantitative analysis of ligand-protein 183 

interactions using solution NMR [98]. This provides enhanced signal, and atomic-level structural 184 

detail in a single scan allowing for rapid analysis. 185 

In studying large macromolecular complexes, increasing the isotopic labeling diversity is often 186 

important. Obtaining structural restraints using paramagnetic relaxation enhancement of of 13C 187 

labeled methyls is well established in beta-barrel [99,100] and alpha-helical proteins [101,102].  188 

Recently, Huang et al. used paramagnetic relaxation of a 19F label to elucidate information of the 189 

conformational dynamics of the membrane transporter, GltPh [103]. This approach not only 190 

allows for the identification of the multiple states of functional proteins, but also allows for the 191 

measurement of the exchange rates [104].  192 

Fragment based drug discovery (FBDD) has become a powerful complementary approach to 193 

high throughput screening to identify drug-like candidates in the early stages of drug discovery 194 

[105]. FBDD utilizes libraries of small molecules called “fragments” that binding is evaluated 195 

against a target protein of interest. Using small molecules allows for a more efficient exploration 196 

of the ensemble of all possible molecular conformations presenting drug-like properties [106]. 197 

FBDD’s ability to screen potential therapeutics is demonstrated in the screening of several 198 

Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) inhibitors using an enzymatic 199 

assay and a WaterLOGSY NMR experiment [107]. The authors identified 10 fragment hits that 200 

directly bind and inhibit the GPI-PLC, an enzyme active in the pathogenesis of trypanosmiasis 201 

cause by Trypanosoma brucei.   202 

Solution NMR is also able to estimate dissociation constants of specific lipid-protein 203 

interactions. The Tamm laboratory was able to investigate lipopolysaccharide (LPS) binding to 204 

the membrane protein OprH. Through a series of 15N-1H TROSY and HMQC experiments the 205 



authors determined which specific residues interact with LPS based on chemical shifts upon LPS 206 

addition. Additionally, to quantitatively determine the binding of LPS to OprH, the authors 207 

generated chemical shifts from TROSY cross-peaks that followed Langmuir binding isotherms, 208 

from which dissociation constants could be derived [109]. 209 

Most NMR experiments performed to date are at physiological pressure, however high-pressure 210 

NMR is emerging as a unique and complementary approach to chemical and temperature 211 

perturbation [110]. Pressure is a fundamental thermodynamic variable that can report on protein 212 

stability, function, and dynamics [111] and , with NMR, can be monitored at a site-specific 213 

atomic level  [112]. Specific to membrane protein applications, high-pressure NMR can also be 214 

used to modulate the main gel-fluid phase transition and gelation of lipids [113]. Pozza et al. 215 

used high-pressure NMR to show the fluidity modulation of phospholipids in the interplay 216 

between lipids and the membrane proteins OmpX and BLT2 [114]. The conformational 217 

equilibria of the apo β1-adrenergic receptor was investigated with high-pressure solution NMR 218 

with the fully active conformation (only reached in the ternary agonist·G protein effector 219 

complex) accessed with moderate pressure [115]. More recently, high-pressure NMR was used 220 

to demonstrate that the observed allosteric effects of cholesterol on adenosine A2A receptor 221 

originate from changes in membrane properties not through direct interactions [9]. 222 

As demonstrated with these examples, the applications of solution NMR to integral membrane 223 

proteins are emerging beyond structure determination and with a focus on the strengths of 224 

spectroscopy in detection and dynamics.  225 
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