Solution NMR investigations of integral membrane protein structure and dynamics

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

interactions [8-10].

2 Solution NMR investigations have contributed significantly to the development of NMR 3 applications and to the understanding of the structure and dynamics of α -helical and β -barrel 4 membrane proteins. In addition, the requirements of NMR solution biomolecular spectroscopy 5 have pushed the development and engineering of robust expression systems and led to a greater 6 understanding of membrane mimics, such as detergent and bicelles. These advances have enabled 7 the solution NMR to identify, structurally map, and dynamically characterize membrane protein-8 protein interactions [1-4], membrane protein-ligand interactions [5-7], and membrane protein-lipid 9

Protein expression and isotope incorporation: advances and challenges

NMR requires protein concentrations in the range of hundreds of micromolar as well as expression systems that can incorporate NMR active nuclei. These limitations almost entirely exclude eukaryotic expression systems for complete membrane protein structure determination of membrane proteins [11,12]. However, specific side chain incorporation in has facilitated the applications of solution NMR to investigating membrane protein dynamics and conformational landscape of lower expressing proteins, including those from eukaryotic expression systems [13-17]. Membrane proteins can be isolated from the membrane or refolded from an insoluble fraction (e.g. inclusion bodies) [18,19]. Regardless of the approach, a robust assay of protein function or biological activity is essential as expression and purification conditions can drastically affect protein fold and function [20,21].

Directed evolution and optimization of E. coli expression of eukaryotic targets has facilitated breakthroughs in understanding membrane protein structure, function and dynamics [22-25]. However, membrane proteins from eukaryotic organisms may have post-translational modifications essential to form and function, which cannot be recapitulated in a bacterial expression system [26]. Eukaryotic expression systems are not as versatile for deuteration or complete labeling compared to bacterial expression systems, so alternative isotope incorporation strategies, such as single amino acid labeling, the use of isotopically labeled unnatural amino acids, or post-translational chemical modification with stable isotopes have been successfully used [13-17]. These labeling strategies are more suitable for studying protein dynamics or ligand binding as opposed to structure determination since the proteins are not uniformly labeled with ¹⁵N and ¹³C [27]. The power of this methodology is demonstrated by stunning investigations of G-protein coupled receptors (GPCRs), such as the β 2-adrenergic receptor in which adopting ¹³C labeling of lysine or methionine residues allowed elucidation of changes in dynamic behavior of the protein in response to ligand binding as well as the structural heterogeneity that exists even in bound states that is not captured well by other structural techniques [28,29].

In conjunction with these alternative labeling strategies, eukaryotic proteins may require extensive genetic manipulation to produce an optimally thermostable protein sample, with G-protein coupled receptors (GPCRs) being a prime example [30,31]. Optimization such as this is not universal and must be designed specifically within each experimental framework. In this context, NMR has also proved an incredible tool to assess functionality of membrane proteins genetically optimized for structure determination as elegantly demonstrated by Goba, et al. [32]. Codon harmonization, in which the codon usage in recombinant gene sequences is matched to those in the native sequences, has shown an increase in protein yield [33]. This specific codon optimization nearly doubles yield through the ability to mitigate protein misfolding. In addition to the expression system, the membrane mimic is an incredibly important factor for membrane protein integrity and physiological relevance [34-36].

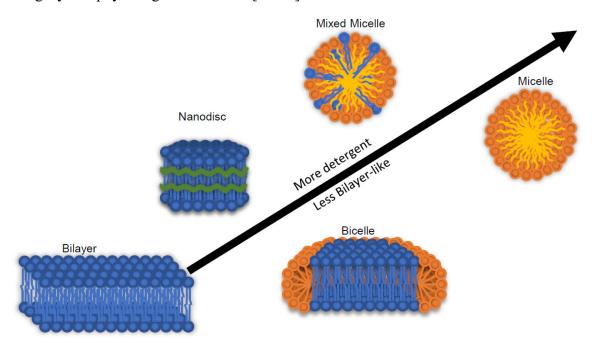


Figure 1. Representation of membrane mimics for membrane protein solution NMR arranged in order of least detergent/more bilayer-like to most detergent/least bilayer like. Lipid molecules are represented in blue, while detergents are represented in orange.

Extraction and solubilization impacts NMR spectral quality

52 Micelles. For solution NMR investigations, membrane proteins need an apolar solvent around the 53 hydrophobic transmembrane regions yet be soluble and freely tumbling in an aqueous solvent. In 54 addition, if the membrane protein is expressed to the cell membrane, then the protein needs to be 55 extracted from the membrane as well as stabilized in aqueous solution. Choosing the correct 56 membrane mimic for membrane protein solubilization and stabilization can have an outsized 57 impact on the success of a study. Choosing an incompatible membrane mimic can result in 58 insoluble, destabilized, and/or not functional membrane protein [37-42]. Fortunately, a host of 59 membrane mimics have been developed for use in membrane protein NMR, such as micelles, 60 bicelles, and nanodiscs (Figure 1) [43,44]. Each mimic system has well-documented advantages 61 and disadvantages and within each system, much work has been done to characterize the myriad 62 combinations of the constituent component detergents, lipids, and membrane scaffolding proteins [45-48]. Despite the large body of literature surrounding membrane mimics, identifying the right 63 64 membrane analogue for a given system is often a matter of empirical screening, which is often 65 costly and time-consuming [49-51]. 66 Traditionally, amphiphilic surfactants are used; however, additional systems have been developed 67 and used. Membrane proteins are extracted from the bilayer with the addition of detergent through 68 detergent-lipid interactions that destabilize the lipid-lipid interactions and yield solubilized mixed 69 lipid-detergent assemblies [52]. The protein of interest is then purified from the rest of the 70 solubilized membrane components and most weakly associated lipids are removed. The resulting 71 protein-detergent micelle complexes are then empirically screened for solubility, stability (days 72 for spectral acquisition), and quality NMR spectra (evaluated by chemical dispersion, uniform 73 intensity of peaks, and a match of the number of expected and observed resonances). While 74 detergent micelles are used in most extractions, the final mimic system may change for NMR 75 analysis. 76 In detergent micelles, charged detergents have been identified to destabilize tertiary membrane 77 protein structure, whereas nonionic and zwitterionic detergents micelles, such as n-dodecyl- β -D-78 maltoside (DDM) and dodecylphosphocholine (DPC), respectively, stabilize membrane proteins 79 [53-56]. Historically, nonionic protein – detergent micelles are used to determine protein structures 80 with X-ray crystallography [57,58] and zwitterionic detergents from NMR [56]. This could arise 81 from the requirement that proteins not interact in NMR yet need to interact to form a crystal lattice.

82 Thus, detergent micelles that have electrostatic repulsive headgroups would be more favorable for NMR to reduce exchange processes and higher molecular weight complexes. 83 84 For quality NMR spectra, the molecular weight of the molecular complex should be minimized 85 including the molecules that solubilize the membrane protein. With respect to detergents, long-86 chain alkyl chains result in larger aggregates that may be unsuitable for high-resolution 87 spectroscopy [14,59]. Even in cases where a protein is successfully solubilized, the membrane 88 mimic can cause loss of function or destabilization of the overall structure and dynamics [60,61]. 89 For instance, although quality NMR spectra for the ADP/ATP mitochondrial carrier transport 90 protein AAC3 were obtained, Kurauskas et al. demonstrated that carrier was not functional in DPC 91 micelle, but was functional when reconstituted into a DDM micelle [62]. Detergents can be mixed 92 to tune mixed micelles of different properties to match membrane [63,64] and membrane protein 93 properties. In addition, lipids with specific properties (e.g. charged head groups, alkyl chain length, 94 or known modulators of function) can be added and will partition into micelles; however, these 95 mixed micelle – lipid assemblies will have different properties [65]. 96 Bicelles. Mixtures of lipids and detergents are referred to as bicelles (Figure 1) and have proven 97 extremely useful in solution NMR studies. An ideal bicelle has a segregated lipid core with a 98 detergent belt surrounding the core lipids. When the lipid component is present at molar ratios less 99 than 1:1, the lipids can mix with detergents to form mixed micelles [65,66]. The concentration for 100 which lipid segregation occurs is dependent on the lipid and detergent monomer properties and the 101 presence of protein. Membrane proteins can be purified in bicelles or reconstituted into liposomes 102 and solubilized with the addition of the detergent at the appropriate concentration to form the 103 desired bicelle. The quality of the NMR spectrum not only depends on the bicelle used but how 104 the bicelle is formed as was shown for EmrE [61,67]. 105 There are many detergents, detergent mixtures, and bicelles to screen empirically for folded, 106 functional, membrane proteins with quality NMR spectra. The major challenge is line broadening 107 that could be due to (i) exchange processes due to interactions between solubilized complexes, (ii) 108 conformational heterogeneity which is very common in α -helical proteins, (iii) correlation time of 109 the complex, and (iv) partial unfolding or denaturation of the membrane protein. There is no magic 110 bullet as to what membrane mimic is the best for all proteins. However, several factors can be 111 considered to narrow the choice, such as aggregate size, hydrophobic thickness, and composition. 112 Hydrophobic mismatch between a membrane protein and the membrane mimic environment can

113 impact protein structure [68-70]. Inner and outer membrane proteins have a hydrophobic thickness of ~29 Å and ~24 Å, respectively [71,72]. A surfactant's ability to match the hydrophobic 114 115 thickness is critical, but not necessarily sufficient. The maximum hydrophobic thickness of a 116 micelle is determined by the amphiphile tail length in a pure micelle and can be titrated with 117 detergent mixtures; however, as the detergents are mixed the aggregate shape and size change as 118 well [73]. Electrostatics are important to both mimic the membrane environment and to reduce 119 interactions between solubilized complexes. A mixture of surfactant and lipid that can provide the 120 required charges and meet the hydrophobic thickness may be most desired. 121 Finally, this section would not be complete without mentioning the innovative use of reverse 122 micelles to encapsulate membrane proteins for NMR solution studies [74-76]. These systems, 123 although seemingly the least membrane-like, result in quality NMR spectra and stabilize 124 membrane protein structures. 125 Nanodiscs. Assemblies of lipids surround by an amphipathic scaffold that can be a protein, 126 synthetic polymer, or DNA are referred to as nanodiscs (Figure 1) [77,78]. The most common 127 nanodisc used in solution NMR are scaffolds formed by membrane scaffolding proteins (MSP) 128 [79,80]. MSP nanodiscs take advantage of the alpha helical, amphipathic proteins from 129 apolipoprotein A-1, first reported by Sligar and coworkers. Within these systems, the radius of the 130 disc is modulated between 8-16 nmwith different scaffolding proteins [79] and the lipid 131 composition can be manipulated [81]. Applications of MSP for membrane protein solution NMR 132 experiments was reviewed recently [82] and a more recent demonstration of the benefits of 133 circularized nanodiscs for solution NMR studies of membrane proteins was published [83]. 134 Although nanodiscs require membrane protein isolation and purification in detergent, the 135 advantage is that they are a discrete size and the molecular understanding of their structure and 136 stabilization of the bilayer is well understood. Alternative to MSP nanodiscs, synthetic nanodiscs, 137 such as styrene maleic acid copolymers (SMAs), diisobutylene-maelic acid (DIBMA), and 138 poly(acylic acid-co-styrene (AASTY) have gained recent popularity. . While all three synthetic 139 polymers provide nanodisc structures for stabilization, the attractive feature of these polymers is 140 they eliminate the need for detergents for extraction and solubilization [85-88]. Where MSP 141 nanodiscs typically contain artificial lipids, synthetic nanodiscs have the ability to use the native 142 cell phospholipids. Each polymer has its own unique drawbacks, but one that is ubiquitous to all 143 the synthetic polymers nanodiscs is their variable size, due to the different lengths of polymer

chain. SMA, the longest synthetic polymer in use, has an extensive database for successful solubilizations of membrane proteins. Additionally, SMAs have been shown to have a slight increase in yield when compared to DIBMA [89]. However, like AASTY, SMAs contain an aromatic ring that absorbs light at wavelengths of 280 nm, which can make quantification of proteins troublesome [90]. Due to their relatively new use, membrane protein structure determination has been limited in these systems, but they have been successful in characterization studies of membrane proteins. SMAs used in solution NMR, was shown to maintain the physiological activity, and allow for the dissociation measurement of the Smoothened (SMO) protein of the GPCR family to its known ligands[5]. One drawback to many synthetic nanodiscs, is a sensitivity to divalent cations. Because of this, development of electroneutral SMA and DIBMA derivatives, containing a sulfobetaine group, were developed to advert cation incompatibility [91]. Recent reports indicate the lipid properties are different in nanodiscs than bilayers. Lipid and protein dynamics are reportedly different in membrane scaffolding protein nanodiscs [92] and copolymer assemblies [93] compared to lipid bilayers and more investigation is required to determine if these packing properties impact membrane protein function. Solution NMR Investigations of Membrane Proteins: Beyond Structure Determination Solution NMR has determined the structure of numerous membrane proteins. However, solution NMR approaches can offer more than structure determination and are now facilitating the investigation of catalysis, ligand binding, conformational dynamics, and lipid -protein interactions. Saturation transfer difference (STD) NMR is a powerful technique used to investigate protein-ligand interactions [52]. The STD-NMR experiment relies on the weakbinding ligand to exchange between the bound and free ligand state and can be useful in understanding the protein-lipid interactions. In protein-lipid interactions investigations with STD, the protein resonances are selectively saturated, and magnetization is transferred to a first layer of lipids surrounding the protein. While the saturation energy is continually applied, lipids are allowed to exchange, increasing the rf-saturated lipid population. Gawrisch et al. measured, by using STD-NMR, the individual strength as well as the statistics of the lipid-protein interactions in membranes with incorporated bovine rhodopsin [94]. STD combined with high throughput screening also allowed researchers to map the binding epitopes of epinephrine and A-61603 to both adrenoreceptors, revealing the selectivity of the α_{1A} -AR-selective agonist for one adrenoreceptor over the other [25]. ¹⁹F-transfer NMR has been used to report on conformation

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

- dynamics on the binding groove of theneruokinin 1 receptor (NK1R) [95]. Pan et al.
- demonstrated that the orthosteric binding groove on NK1R fluctuates with amplitudes of 6 to 8Å,
- highlighting a multistep selection of orthosteric ligands not captured in current static structures.
- Dynamic nuclear polarization (DNP) has gained significant attention recently, where polarization
- is transferred from an electron spin ensemble to a nuclear spin ensemble. The large difference in
- relaxation rates between electron spins and nuclear spins results in hyperpolarization of the
- nuclear spin ensemble [96]. Overcoming the inherent low sensitivity of NMR spectroscopy has
- allowed researchers to selectively enhance signals in ligand-binding sites [97]. Additionally,
- DNP is a provides an opportunity for a high-throughput, quantitative analysis of ligand-protein
- interactions using solution NMR [98]. This provides enhanced signal, and atomic-level structural
- detail in a single scan allowing for rapid analysis.
- 186 In studying large macromolecular complexes, increasing the isotopic labeling diversity is often
- important. Obtaining structural restraints using paramagnetic relaxation enhancement of of ¹³C
- labeled methyls is well established in beta-barrel [99,100] and alpha-helical proteins [101,102].
- 189 Recently, Huang et al. used paramagnetic relaxation of a ¹⁹F label to elucidate information of the
- conformational dynamics of the membrane transporter, GltPh [103]. This approach not only
- allows for the identification of the multiple states of functional proteins, but also allows for the
- measurement of the exchange rates [104].
- 193 Fragment based drug discovery (FBDD) has become a powerful complementary approach to
- high throughput screening to identify drug-like candidates in the early stages of drug discovery
- 195 [105]. FBDD utilizes libraries of small molecules called "fragments" that binding is evaluated
- against a target protein of interest. Using small molecules allows for a more efficient exploration
- of the ensemble of all possible molecular conformations presenting drug-like properties [106].
- 198 FBDD's ability to screen potential therapeutics is demonstrated in the screening of several
- 199 Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) inhibitors using an enzymatic
- assay and a WaterLOGSY NMR experiment [107]. The authors identified 10 fragment hits that
- directly bind and inhibit the GPI-PLC, an enzyme active in the pathogenesis of trypanosmiasis
- 202 cause by Trypanosoma brucei.
- 203 Solution NMR is also able to estimate dissociation constants of specific lipid-protein
- interactions. The Tamm laboratory was able to investigate lipopolysaccharide (LPS) binding to
- 205 the membrane protein OprH. Through a series of ¹⁵N-¹H TROSY and HMQC experiments the

- authors determined which specific residues interact with LPS based on chemical shifts upon LPS
- addition. Additionally, to quantitatively determine the binding of LPS to OprH, the authors
- 208 generated chemical shifts from TROSY cross-peaks that followed Langmuir binding isotherms,
- from which dissociation constants could be derived [109].
- 210 Most NMR experiments performed to date are at physiological pressure, however high-pressure
- NMR is emerging as a unique and complementary approach to chemical and temperature
- 212 perturbation [110]. Pressure is a fundamental thermodynamic variable that can report on protein
- stability, function, and dynamics [111] and, with NMR, can be monitored at a site-specific
- 214 atomic level [112]. Specific to membrane protein applications, high-pressure NMR can also be
- used to modulate the main gel-fluid phase transition and gelation of lipids [113]. Pozza et al.
- used high-pressure NMR to show the fluidity modulation of phospholipids in the interplay
- between lipids and the membrane proteins OmpX and BLT2 [114]. The conformational
- 218 equilibria of the apo β1-adrenergic receptor was investigated with high-pressure solution NMR
- 219 with the fully active conformation (only reached in the ternary agonist G protein effector
- complex) accessed with moderate pressure [115]. More recently, high-pressure NMR was used
- 221 to demonstrate that the observed allosteric effects of cholesterol on adenosine A_{2A} receptor
- originate from changes in membrane properties not through direct interactions [9].
- 223 As demonstrated with these examples, the applications of solution NMR to integral membrane
- 224 proteins are emerging beyond structure determination and with a focus on the strengths of
- spectroscopy in detection and dynamics.

226 References

- 1. Huang Y, Reddy KD, Bracken C, Qiu B, Zhan W, Eliezer D, Boudker O: Environmentally
 Ultrasensitive Fluorine Probe to Resolve Protein Conformational Ensembles by
 (19)F NMR and Cryo-EM. J Am Chem Soc 2023, 145:8583-8592.
- 230 2. Bai J, Wang J, Ravula T, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A:
 231 Expression, purification, and functional reconstitution of (19)F-labeled cytochrome
 232 b5 in peptide nanodiscs for NMR studies. Biochim Biophys Acta Biomembr 2020,
 233 1862:183194.
- 3. Bragin PE, Kuznetsov AS, Bocharova OV, Volynsky PE, Arseniev AS, Efremov RG, Mineev
 KS: Probing the effect of membrane contents on transmembrane protein-protein
 interaction using solution NMR and computer simulations. Biochim Biophys Acta
 Biomembr 2018, 1860:2486-2498.
- 4. Zhou S, Pettersson P, Huang J, Brzezinski P, Pomes R, Maler L, Adelroth P: NMR Structure
 and Dynamics Studies of Yeast Respiratory Supercomplex Factor 2. Structure 2021,
 29:275-283 e274.

5. Zhu L, Zhao H, Wang Y, Yu C, Liu J, Li L, Li Z, Zhang J, Dai H, Wang J, et al.:
 Solubilization, purification, and ligand binding characterization of G protein coupled receptor SMO in native membrane bilayer using styrene maleic acid

copolymer. *PeerJ* 2022, **10**:e13381.

262

263

264

265

266

- 6. Wang XD, Bushra N, Muschol M, Madsen JJ, Ye LB: An in-membrane NMR spectroscopic
 approach probing native ligand-GPCR interaction. International Journal of
 Biological Macromolecules 2022, 206:911-916.
- 7. Wang H, Hu W, Liu D, Wuthrich K: **Design and preparation of the class B G protein- coupled receptors GLP-1R and GCGR for (19) F-NMR studies in solution**. *FEBS J*2021, **288**:4053-4063.
- 8. Combet S, Bonnete F, Finet S, Pozza A, Saade C, Martel A, Koutsioubas A, Lacapere JJ:
 Effect of amphiphilic environment on the solution structure of mouse TSPO
 translocator protein. *Biochimie* 2023, **205**:61-72.
- 9. Huang SK, Almurad O, Pejana RJ, Morrison ZA, Pandey A, Picard LP, Nitz M, Sljoka A,
 Prosser RS: Allosteric modulation of the adenosine A(2A) receptor by cholesterol.
 Elife 2022, 11.
- 10. Kim J, Mandal R, Hilty C: Characterization of Membrane Protein-Lipid Interactions in
 Unfolded OmpX with Enhanced Time Resolution by Hyperpolarized NMR.
 Chembiochem 2020, 21:2861-2867.
- 11. Schlegel S, Hjelm A, Baumgarten T, Vikstrom D, de Gier JW: Bacterial-based membrane
 protein production. Biochim Biophys Acta 2014, 1843:1739-1749.
 - 12. Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK: Current strategies for protein production and purification enabling membrane protein structural biology. *Biochem Cell Biol* 2016, **94**:507-527.
 - 13. Clark L, Zahm JA, Ali R, Kukula M, Bian L, Patrie SM, Gardner KH, Rosen MK, Rosenbaum DM: **Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris**. *J Biomol NMR* 2015, **62**:239-245.
- 14. Danmaliki GI, Hwang PM: Solution NMR spectroscopy of membrane proteins. *Biochim Biophys Acta Biomembr* 2020, **1862**:183356.
- 270 15. Gossert AD, Jahnke W: **Isotope labeling in insect cells**. *Adv Exp Med Biol* 2012, **992**:179-271 196.
- 16. Ye L, Wang X, McFarland A, Madsen JJ: (19)F NMR: A promising tool for dynamic
 conformational studies of G protein-coupled receptors. Structure 2022, 30:1372-1384.
- 17. Sastry M, Bewley CA, Kwong PD: Effective isotope labeling of proteins in a mammalian
 expression system. *Methods Enzymol* 2015, 565:289-307.
- 18. Buchanan SK: **Beta-barrel proteins from bacterial outer membranes: structure, function** and refolding. *Curr Opin Struct Biol* 1999, **9**:455-461.
- 19. Takeda M, Kainosho M: Cell-free protein synthesis using E. coli cell extract for NMR
 studies. Adv Exp Med Biol 2012, 992:167-177.
- 280 20. Smith SM: **Strategies for the Purification of Membrane Proteins**. *Methods Mol Biol* 2017, **1485**:389-400.
- 282 21. Zhou HX, Cross TA: **Influences of membrane mimetic environments on membrane** 283 **protein structures**. *Annu Rev Biophys* 2013, **42**:361-392.
- 22. Dodevski I, Pluckthun A: **Evolution of three human GPCRs for higher expression and stability**. *J Mol Biol* 2011, **408**:599-615.

- 23. Schuster M, Deluigi M, Pantic M, Vacca S, Baumann C, Scott DJ, Pluckthun A, Zerbe O:
 Optimizing the alpha(1B)-adrenergic receptor for solution NMR studies. Biochim
 Biophys Acta Biomembr 2020, 1862:183354.
- 24. Goricanec D, Stehle R, Egloff P, Grigoriu S, Pluckthun A, Wagner G, Hagn F:
 Conformational dynamics of a G-protein alpha subunit is tightly regulated by
 nucleotide binding. Proc Natl Acad Sci U S A 2016, 113:E3629-3638.

297

298

299

300

301

302

303

304

305

306

307

308

- 292 25. Yong KJ, Vaid TM, Shilling PJ, Wu FJ, Williams LM, Deluigi M, Pluckthun A, Bathgate 293 RAD, Gooley PR, Scott DJ: **Determinants of Ligand Subtype-Selectivity at** 294 **alpha(1A)-Adrenoceptor Revealed Using Saturation Transfer Difference (STD)** 295 **NMR**. ACS Chem Biol 2018, **13**:1090-1102.
 - 26. Yanaka S, Yagi H, Yogo R, Yagi-Utsumi M, Kato K: **Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems**. *J Biomol NMR* 2018, **71**:193-202.
 - 27. Puthenveetil R, Christenson ET, Vinogradova O: New Horizons in Structural Biology of Membrane Proteins: Experimental Evaluation of the Role of Conformational Dynamics and Intrinsic Flexibility. *Membranes (Basel)* 2022, 12.
 - 28. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, et al.: Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. *Nature* 2010, 463:108-112.
 - 29. Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, et al.: **The dynamic process of beta(2)-adrenergic receptor activation**. *Cell* 2013, **152**:532-542.
 - 30. Milic D, Veprintsev DB: Large-scale production and protein engineering of G protein-coupled receptors for structural studies. Front Pharmacol 2015, 6:66.
- 31. Schlinkmann KM, Pluckthun A: **Directed evolution of G-protein-coupled receptors for** 31. high functional expression and detergent stability. *Methods Enzymol* 2013, **520**:67-97.
- 312 32. Goba I, Goricanec D, Schum D, Hillenbrand M, Pluckthun A, Hagn F: Probing the
 313 Conformation States of Neurotensin Receptor 1 Variants by NMR Site-Directed
 314 Methyl Labeling. Chembiochem 2021, 22:139-146.
- 33. Van Aalst E, Yekefallah M, Mehta AK, Eason I, Wylie B: Codon Harmonization of a Kir3.1-KirBac1.3 Chimera for Structural Study Optimization. *Biomolecules* 2020, 10.
- 34. Levental I, Lyman E: **Regulation of membrane protein structure and function by their** 319 **lipid nano-environment**. *Nat Rev Mol Cell Biol* 2022.
- 320 35. Guo Y: Be Cautious with Crystal Structures of Membrane Proteins or Complexes 321 Prepared in Detergents. Crystals (Basel) 2020, 10.
- 36. Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, et al.: Perturbations of Native Membrane Protein
 Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018, 118:3559-3607.
- 37. Srivastava R, Alam MS: **Influence of micelles on protein's denaturation**. *International Journal of Biological Macromolecules* 2020, **145**:252-261.
- 38. Otzen DE: **Protein unfolding in detergents: effect of micelle structure, ionic strength,** pH, and temperature. *Biophys J* 2002, **83**:2219-2230.
- 39. Rawlings Andrea E: Membrane proteins: always an insoluble problem? *Biochemical Society Transactions* 2016, 44:790-795.

- 40. Seddon AM, Curnow P, Booth PJ: **Membrane proteins, lipids and detergents: not just a** soap opera. *Biochimica et Biophysica Acta (BBA) Biomembranes* 2004, **1666**:105-117.
- 41. Pocanschi CL, Kleinschmidt JH: The Thermodynamic Stability of Membrane Proteins in
 Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA. J
 Membrane Biol 2022, 255:485–502.
- 42. Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, Groot HJM, Kennis
 JTM, Grip WJ: Membrane Matters: The Impact of a Nanodisc-Bilayer or a
 Detergent Microenvironment on the Properties of Two Eubacterial Rhodopsins.
 Biochimica et Biophysica Acta (BBA) Biomembranes 2020, 1862:183113.
 - 43. Raschle T, Hiller S, Etzkorn M, Wagner G: **Nonmicellar systems for solution NMR spectroscopy of membrane proteins**. *Current Opinion in Structural Biology* 2010, **20**:471-479.

342

- 344 44. Valentine KG, Peterson RW, Saad JS, Summers MF, Xu X, Ames JB, Wand AJ: Reverse
 345 micelle encapsulation of membrane-anchored proteins for solution NMR studies.
 346 Structure 2010, 18:9-16.
- 45. Bayburt TH, Carlson JW, Sligar SG: Reconstitution and Imaging of a Membrane Protein
 in a Nanometer-Size Phospholipid Bilayer. *Journal of Structural Biology* 1998,
 123:37-44.
- 46. Frey L, Lakomek N-A, Riek R, Bibow S: Micelles, Bicelles, and Nanodiscs: Comparing
 the Impact of Membrane Mimetics on Membrane Protein Backbone Dynamics.
 Angewandte Chemie International Edition 2017, 56:380-383.
- 47. Losonczi JA, Prestegard JH: Improved dilute bicelle solutions for high-resolution NMR
 of biological macromolecules. *Journal of Biomolecular NMR* 1998, 12:447-451.
- 48. Dufourc EJ: Bicelles and nanodiscs for biophysical chemistry: A tribute to Prof Michèle
 Auger, University Laval, Canada. Biochimica et Biophysica Acta (BBA) Biomembranes 2021, 1863:183478.
- 49. Viegas A, Viennet T, Etzkorn M: **The power, pitfalls and potential of the nanodisc system for NMR-based studies**. *Biological Chemistry* 2016, **397**:1335-1354.
- 50. Kucharska I, Edrington TC, Liang B, Tamm LK: Optimizing nanodiscs and bicelles for
 solution NMR studies of two β-barrel membrane proteins. Journal of Biomolecular
 NMR 2015, 61:261-274.
- 51. Puthenveetil R, Nguyen K, Vinogradova O: **Nanodiscs and solution NMR: preparation,** application and challenges. *Nanotechnology Reviews* 2017, **6**:111-125.
- 365 52. Almgren M: Mixed micelles and other structures in the solubilization of bilayer lipid
 366 membranes by surfactants. Biochimica et Biophysica Acta (BBA) Biomembranes
 367 2000, 1508:146-163.
- 53. Rouse SL, Marcoux J, Robinson CV, Sansom MSP: Dodecyl Maltoside Protects
 Membrane Proteins In Vacuo. *Biophys J* 2013, 105:648–656.
- Tulumello DV, Deber CM: Efficiency of Detergents at Maintaining Membrane Protein
 Structures in Their Biologically Relevant Forms. Biochimica et Biophysica Acta
 (BBA) Biomembranes 2012, 1818:1351–1358.
- 55. Kermani AA: **A guide to membrane protein X-ray crystallography**. *The FEBS Journal* 2021, **288**:5788-5804.
- 375 56. Arora A: Solution NMR Spectroscopy for the Determination of Structures of Membrane
 376 Proteins in a Lipid Environment. Methods Mol Biol 2019, 2003:599-643.

57. Rosenbusch JP: Stability of Membrane Proteins: Relevance for the Selection of
 Appropriate Methods for High-Resolution Structure Determinations. Journal of
 Structural Biology 2001, 136:144-157.

383

384

385

386

387

388

389

390

404

405

411

- 58. Hanashima S, Nakane T, Mizohata E: Heavy Atom Detergent/Lipid Combined X-ray
 Crystallography for Elucidating the Structure-Function Relationships of Membrane
 Proteins. Membranes 2021, 11:823.
 - 59. Puthenveetil R, Vinogradova O: **Solution NMR: A powerful tool for structural and functional studies of membrane proteins in reconstituted environments**. *Journal of Biological Chemistry* 2019, **294**:15914-15931.
 - 60. Tate CG: Practical considerations of membrane protein instability during purification and crystallisation. *Methods Mol Biol* 2010, **601**:187-203.
 - 61. Morrison EA, Henzler-Wildman KA: Reconstitution of integral membrane proteins into isotropic bicelles with improved sample stability and expanded lipid composition profile. Biochimica et Biophysica Acta (BBA) Biomembranes 2012, 1818:814-820.
- Kurauskas V, Hessel A, Ma P, Lunetti P, Weinhäupl K, Imbert L, Brutscher B, King MS,
 Sounier R, Dolce V, et al.: How Detergent Impacts Membrane Proteins: Atomic Level Views of Mitochondrial Carriers in Dodecylphosphocholine. J. Phys. Chem.
 Lett 2018, 9:933–938.
- Kieber M, Ono T, Oliver RC, Nyenhuis SB, Tieleman DP, Columbus L: The Fluidity of
 Phosphocholine and Maltoside Micelles and the Effect of CHAPS. *Biophys J* 2019,
 117:2240.
- 398 64. Oliver RC, Lipfert J, Fox DA, Lo RH, Kim JJ, Doniach S, Columbus L: Tuning micelle
 399 dimensions and properties with binary surfactant mixtures. *Langmuir* 2014,
 30:13353-13361.
- 401 65. Caldwell TA, Baoukina S, Brock AT, Oliver RC, Root KT, Krueger JK, Glover KJ,
 402 Tieleman DP, Columbus L: Low-q Bicelles Are Mixed Micelles. The Journal of
 403 Physical Chemistry Letters 2018, 9:4469-4473.
 - 66. Triba MN, Warschawski DE, Devaux PF: **Reinvestigation by Phosphorus NMR of Lipid Distribution in Bicelles**. *Biophysical Journal* 2005, **88**:1887-1901.
- 406 67. Laguerre A, Löhr F, Henrich E, Hoffmann B, Abdul-Manan N, Connolly Peter J, Perozo E,
 407 Moore Jonathan M, Bernhard F, Dötsch V: From Nanodiscs to Isotropic Bicelles: A
 408 Procedure for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive
 409 Integral Membrane Proteins. Structure 2016, 24:1830-1841.
 410 68. Parton Daniel L, Klingelhoefer Jochen W, Sansom Mark SP: Aggregation of Model
 - 68. Parton Daniel L, Klingelhoefer Jochen W, Sansom Mark SP: **Aggregation of Model Membrane Proteins, Modulated by Hydrophobic Mismatch, Membrane Curvature, and Protein Class**. *Biophysical Journal* 2011, **101**:691-699.
- 413 69. Ren T, Erbakan M, Shen Y, Barbieri E, Saboe P, Feroz H, Yan H, McCuskey S, Hall JF,
 414 Schantz AB, et al.: Membrane Protein Insertion into and Compatibility with
 415 Biomimetic Membranes. Advanced Biosystems 2017, 1:1700053.
- 70. Sparr E, Ash WL, Nazarov PV, Rijkers DTS, Hemminga MA, Tieleman DP, Killian JA:
 Self-association of Transmembrane α-Helices in Model Membranes. Journal of
 Biological Chemistry 2005, 280:39324-39331.
- 71. Lee AG: Lipid-protein interactions in biological membranes: a structural perspective.
 Biochim Biophys Acta 2003, 1612:1-40.
- 421 72. Jo S, Kim T, Im W: **Automated builder and database of protein/membrane complexes** 422 **for molecular dynamics simulations**. *PLoS One* 2007, **2**:e880.

- 73. Oliver RC, Lipfert J, Fox DA, Lo RH, Doniach S, Columbus L: Dependence of Micelle Size
 and Shape on Detergent Alkyl Chain Length and Head Group. PLOS ONE 2013,
 8:e62488.
- 74. Kielec JM, Valentine KG, Babu CR, Wand AJ: Reverse Micelles in Integral Membrane
 Protein Structural Biology by Solution NMR Spectroscopy. Structure 2009, 17:345 351.
- 75. Kielec JM, Valentine KG, Wand AJ: A method for solution NMR structural studies of
 large integral membrane proteins: Reverse micelle encapsulation. Biochimica et
 Biophysica Acta (BBA) Biomembranes 2010, 1798:150-160.
- 76. Van Horn WD, Ogilvie ME, Flynn PF: Reverse Micelle Encapsulation as a Model for
 Intracellular Crowding. Journal of the American Chemical Society 2009, 131:8030-8039.
- 435 77. Maingi V, Rothemund PWK: **Properties of DNA- and Protein-Scaffolded Lipid**436 **Nanodiscs**. *ACS Nano* 2021, **15**:751-764.
- 78. Stepien P, Augustyn B, Poojari C, Galan W, Polit A, Vattulainen I, Wisnieska-Becker A,
 Rog T: **Complexity of seemingly simple lipid nanodiscs**. *Biochimica et Biophysica Acta*(BBA) Biomembranes 2020, **1862**:183420.
- 79. Hagn F, Nasr ML, Wagner G: Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nature Protocols 2018, 13:79-98.
- 442 80. Denisov IG, Sligar SG: **Nanodiscs for structural and functional studies of membrane** 443 **proteins**. *Nat Struct Mol Biol* 2016, **23**:481-486.
- 81. Li MJ, Atkins WM, McClary WD: Preparation of Lipid Nanodiscs with Lipid Mixtures.
 Curr Protoc Protein Sci 2019, 98:e100.
- 446 82. Gunsel U, Hagn F: **Lipid Nanodiscs for High-Resolution NMR Studies of Membrane**447 **Proteins**. *Chem Rev* 2022, **122**:9395-9421.
- 448 83. Daniilidis M, Brandl MJ, Hagn F: The Advanced Properties of Circularized MSP
 449 Nanodiscs Facilitate High-resolution NMR Studies of Membrane Proteins. J Mol
 450 Biol 2022, 434:167861.
- 84. Laguerre A, Lohr F, Henrich E, Hoffmann B, Abdul-Manan N, Connolly PJ, Perozo E,
 Moore JM, Bernhard F, Dotsch V: From Nanodiscs to Isotropic Bicelles: A Procedure
 for Solution Nuclear Magnetic Resonance Studies of Detergent-Sensitive Integral
 Membrane Proteins. Structure 2016, 24:1830-1841.
- 85. Knowles TJ, Finka R, Smith C, Lin YP, Dafforn T, Overduin M: Membrane proteins
 solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid
 copolymer. J Am Chem Soc 2009, 131:7484-7485.
- 86. Oluwole AO, Danielczak B, Meister A, Babalola JO, Vargas C, Keller S: Solubilization of
 Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a
 Diisobutylene/Maleic Acid Copolymer. Angewandte Chemie-International Edition
 2017, 56:1919-1924.
- 462 87. Smith AAA, Autzen HE, Faust B, Mann JL, Muir BW, Howard S, Postma A, Spakowitz AJ,
 463 Cheng YF, Appel EA: **Lipid Nanodiscs via Ordered Copolymers**. *Chem* 2020, **6**:2782464 2795.
- 88. Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG: Structures and Dynamics of
 Native-State Transmembrane Protein Targets and Bound Lipids. Membranes (Basel)
 2021, 11.

- 468 89. Gulamhussein AA, Uddin R, Tighe BJ, Poyner DR, Rothnie AJ: A comparison of SMA
 469 (styrene maleic acid) and DIBMA (di-isobutylene maleic acid) for membrane
 470 protein purification. Biochim Biophys Acta Biomembr 2020, 1862:183281.
- 90. Kopf AH, Lijding O, Elenbaas BOW, Koorengevel MC, Dobruchowska JM, van Walree CA,
 Killian JA: Synthesis and Evaluation of a Library of Alternating Amphipathic
 Copolymers to Solubilize and Study Membrane Proteins. Biomacromolecules 2022,
 23:743-759.
- 91. Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S,
 Raschle M, Victor J, et al.: Electroneutral Polymer Nanodiscs Enable Interference Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. Small 2022,
 18:e2202492.
- 92. Mors K, Roos C, Scholz F, Wachtveitl J, Dotsch V, Bernhard F, Glaubitz C: Modified lipid
 and protein dynamics in nanodiscs. *Biochim Biophys Acta* 2013, 1828:1222-1229.
 - 93. Real Hernandez LM, Levental I: Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. *Biophys J* 2023.

482

483

484

485

486

487

488

494

495

496

497

498

499

500

501

502

503

504

505

506

507

- 94. Soubias O, Gawrisch K: **Probing Specific Lipid—Protein Interaction by Saturation Transfer Difference NMR Spectroscopy**. *Journal of the American Chemical Society* 2005, **127**:13110-13111.
- 95. Pan B, Liu D, Yang L, Wuthrich K: **GPCR large-amplitude dynamics by (19)F-NMR of aprepitant bound to the neurokinin 1 receptor**. *Proc Natl Acad Sci U S A* 2022, **119**:e2122682119.
- 96. Abhyankar N, Szalai V: Challenges and Advances in the Application of Dynamic Nuclear
 Polarization to Liquid-State NMR Spectroscopy. J Phys Chem B 2021, 125:5171 5190.
- 492 97. Wang Y, Kim J, Hilty C: **Determination of protein-ligand binding modes using fast**493 **multi-dimensional NMR with hyperpolarization**. *Chem Sci* 2020, **11**:5935-5943.
 - 98. Min H, Sekar G, Hilty C: Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery. *ChemMedChem* 2015, **10**:1559-1563.
 - 99. Sanganna Gari RR, Seelheim P, Liang B, Tamm LK: Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing. ACS Sens 2019, 4:1230-1235.
 - 100. Liang B, Bushweller JH, Tamm LK: **Site-directed parallel spin-labeling and** paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. *J Am Chem Soc* 2006, **128**:4389-4397.
 - 101. Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH: **NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation**. *Mol Cell* 2008, **31**:896-908.
 - 102. Lo RH, Kroncke BM, Solomon TL, Columbus L: **Mapping membrane protein backbone dynamics: a comparison of site-directed spin labeling with NMR** ¹⁵N-relaxation **measurements**. *Biophys J* 2014, **107**:1697-1702.
- 509 103. Huang Y, Wang X, Lv G, Razavi AM, Huysmans GHM, Weinstein H, Bracken C, Eliezer D, Boudker O: **Use of paramagnetic (19)F NMR to monitor domain movement in a glutamate transporter homolog**. *Nat Chem Biol* 2020, **16**:1006-1012.
- 512 104. Cheng RC, Maduke M: **Expanding the membrane-protein NMR toolkit**. *Nat Chem Biol* 2020, **16**:937-938.

- 514 105. Mureddu LG, Vuister GW: **Fragment-Based Drug Discovery by NMR. Where Are the**515 **Successes and Where can It Be Improved?** Front Mol Biosci 2022, 9:834453.
- 516 106. Reymond J-L, van Deursen R, Blum LC, Ruddigkeit L: Chemical space as a source for new drugs. *MedChemComm* 2010, 1:30.
- 107. Ibrahim MA, Yamasaki T, Furukawa K, Yamasaki K: Fragment-Based Drug Discovery
 for Trypanosoma brucei Glycosylphosphatidylinositol-Specific Phospholipase C
 through Biochemical and WaterLOGSY-NMR Methods. J Biochem 2022, 171:619-629.
- 108. Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S,
 Drueckes P, Fabbro D, Gabriel T, et al.: Discovery of Asciminib (ABL001), an
 Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J Med Chem
 2018, 61:8120-8135.
 - 109. Kucharska I, Tamm LK: Solution NMR Provides New Insight into Lipid–Protein Interaction. *Biochemistry* 2017, **56**:4291-4292.

527

530

531

532

533

534

535

536

537

538

542

- 110. Roche J, Royer CA, Roumestand C: Exploring Protein Conformational Landscapes
 Using High-Pressure NMR. Methods Enzymol 2019, 614:293-320.
 - 111. Caro JA, Wand AJ: Practical aspects of high-pressure NMR spectroscopy and its applications in protein biophysics and structural biology. *Methods* 2018, 148:67-80.
 - 112. Nucci NV, Fuglestad B, Athanasoula EA, Wand AJ: Role of cavities and hydration in the pressure unfolding of T4 lysozyme. *Proc Natl Acad Sci U S A* 2014, 111:13846-13851.
 - 113. Brooks NJ: **Pressure effects on lipids and bio-membrane assemblies**. *IUCrJ* 2014, **1**:470-477.
 - 114. Pozza A, Giraud F, Cece Q, Casiraghi M, Point E, Damian M, Le Bon C, Moncoq K, Baneres JL, Lescop E, et al.: **Exploration of the dynamic interplay between lipids and membrane proteins by hydrostatic pressure**. *Nat Commun* 2022, **13**:1780.
- 539 115. Abiko LA, Grahl A, Grzesiek S: High Pressure Shifts the beta(1)-Adrenergic Receptor
 540 to the Active Conformation in the Absence of G Protein. J Am Chem Soc 2019,
 541 141:16663-16670.