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Abstract
Recent work on dissimilarity-based hierarchical clustering has led to the introduction of
global objective functions for this classical problem. Several standard approaches, such as
average linkage clustering, as well as some new heuristics have been shown to provide
approximation guarantees. Here, we introduce a broad new class of objective functions which
satisfy desirable properties studied in prior work. Many common agglomerative and divisive
clusteringmethods are shown to be greedy algorithms for these objectives, which are inspired
by related concepts in phylogenetics.
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1 Introduction

Background In hierarchical clustering, one seeks a recursive partitioning of the data that
captures clustering information at different levels of granularity. Classical work on the sub-
ject takes an algorithmic perspective. In particular various iterative methods are widely used,
including the well-known bottom-up approaches based on single, complete and average link-
age schemes, and other variations (see, e.g., [Murphy, 2012Chapter 25] or [Hastie et al., 2009
Chapter 14]). Recent work on dissimilarity-based hierarchical clustering in the theoretical
computer science literature has emphasized an alternative, optimization-based perspective.
It has led to the introduction of global objective functions for this problem (Dasgupta, 2016).
Some standard approaches as well as new heuristics have been shown to provide approxima-
tion guarantees (Dasgupta, 2016; Roy and Pokutta, 2016; Charikar and Chatziafratis, 2017;
Cohen-Addad et al., 2018; Chatziafratis et al., 2018; Charikar te al., 2019; Alon et al., 2020).
These new objective functions have also been justified through their behavior on random or
structured input models (Dasgupta, 2016; Cohen–Addad et al., 2017; Cohen-Addad et al.,
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2018; Manghiuc and Sun, 2021). This perspective provides a principled framework to design
improved clustering methods and assess them rigorously.

Here,we introduce a broad new class of objective functionswhich satisfy natural, desirable
properties considered in these previous works. As explained in Sect. 2, our work establishes
a connection between Dasgupta’s cost function approach (Dasgupta, 2016) and an important
class of methods in the phylogenetic reconstruction literature. We show that several common
agglomerative and divisive clustering methods, including average linkage clustering and
recursive sparsest cut, can be interpreted as greedy algorithms for these objectives, potentially
providing new insights into these well-known methods. This observation mirrors related
results on the popular Neighbor-Joining method in phylogenetics (see Sect. 2).

Definitions and main results Our input data is a collection of n objects to be clustered,
which we denote without loss of generality L := {1, . . . , n}, together with a dissimilarity
map.1

Definition 1 (Dissimilarity). A dissimilarity on L is a map δ : L × L → [0,+∞) which
satisfies: δ(x, x) = 0 for all x and δ(x, y) = δ(y, x) > 0 for all x $= y.

For disjoint subsets A, B ⊆ L , we set δ(A, B) := ∑
x∈A,y∈B δ(x, y) and define

δ̄(A, B) = δ(A, B)
|A||B| .

As in Dasgupta (2016); Cohen-Addad et al. (2018), we encode a hierarchical clustering
as a rooted binary tree whose leaves are the objects to be clustered.

Definition 2 (Hierarchy). A hierarchy on L is a rooted binary tree T = (V , E)with n leaves,
which we identify with the set L.

Wewill need some notation. The leaves below v ∈ V , i.e., of the subtree T [v] rooted at v, are
denoted by LT [v] ⊆ L . We let ST be the internal vertices of T , that is, its non-leaf vertices.
For s ∈ ST , we denote by s− and s+ the children of s in T . For a pair of leaves x $= y ∈ L ,
the most recent common ancestor of x and y in T , denoted x ∧T y, is the internal vertex s
furthest from the root (in graph distance) such that x, y ∈ LT [s].

In our setting, the goal of hierarchical clustering is to map dissimilarities to hierarchies.
As a principled way to accomplish this, a global objective function over hierarchies was
proposed in Dasgupta (2016). It was generalized in Cohen-Addad et al. (2018) to objectives
of the form:

"(T ; δ) =
∑

s∈ST
γ (|LT [s−]|, |LT [s+]|) δ(LT [s−], LT [s+]), (1)

where γ is a given real-valued function and |A| is the number of elements in A. One then seeks
a hierarchy T which minimizes "( ·; δ) under input δ.2 For instance, the choice γ (a, b) =
γD(a, b) := n − a − b is equivalent to that made in Dasgupta (2016). Heuristically, one way
to interpret the objective " is in terms of “merging cost”: each internal node s corresponds to
the merging of two clusters LT [s−] and LT [s+] into a super-cluster LT [s] in the hierarchy
T ; the cost γ (|LT [s−]|, |LT [s+]|) δ(LT [s−], LT [s+]) is associated to this operation; and we
seek to minimize the total cost over all hierarchies. See Sect. 2 for more discussion.

1 Our results can also be adapted to the case where the input are similarities Throughout, we confine ourselves
to dissimilarities for simplicity.
2 Note that we deviate from Dasgupta (2016); Cohen-Addad et al. (2018) (in the dissimilarity setting) and
minimize the objective function.
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It was shown in Dasgupta (2016); Cohen-Addad et al. (2018) that, for γD, the objective
" satisfies several natural conditions. In particular, it satisfies the following.

Definition 3 (Unit neutrality). An objective " is unit neutral if all hierarchies have the same
cost under the unit dissimilarity δ(x, y) = 1 for all x $= y.

Moreover, this " behaves well on ultrametric inputs. Formally, a dissimilarity δ on L is an
ultrametric if for all x, y, z ∈ L , it holds that

δ(x, y) ≤ max{δ(x, z), δ(y, z)}. (2)

Ultrametrics are naturally associated to hierarchies in the following sense. If δ is an ultra-
metric, then there is a (not necessarily unique) hierarchy T together with a height function
h : ST → (0,+∞) such that, for all x $= y ∈ L , it holds that

δ(x, y) = h(x ∧T y). (3)

See e.g. Semple and Steel (2003) for details. We say that such a hierarchy T is associated to
ultrametric δ.

Definition 4 (Consistency on ultrametrics3). The objective function " is consistent on ultra-
metrics if the following holds for any ultrametric δ and associated hierarchy T . For any
hierarchy T ′, we have the inequality

"(T ; δ) ≤ "(T ′; δ).
In other words, a hierarchy associated to an ultrametric δ is a global minimum under input
δ.

Observe that unit neutrality in fact follows from consistency on ultrametrics as the unit
dissimilarity on L is an ultrametric that can be realized on any hierarchy by assigning height
1 to all internal vertices.

Here we introduce a broad new class of global objective functions for dissimilarity-based
hierarchical clustering. For a subset of pairs M ⊆ L × L , let δ|M : M → [0,+∞) denote
the dissimilarity δ restricted to M , i.e., δ|M (x, y) = δ(x, y) for all (x, y) ∈ M . Let also
min δ|M and max δ|M be respectively the minimum and maximum value of δ over pairs in
M . We consider objective functions of the form

"(T ; δ) =
∑

s∈ST
ĥ(T [s], δ|LT [s−]×LT [s+]). (4)

This form generalizes Eq. 1 as we can take

ĥ(T [s], δ|LT [s−]×LT [s+]) = γ (|LT [s−]|, |LT [s+]|) δ(LT [s−], LT [s+]),
which is indeed a function of only T [s] (through the sizes |LT [s−]|, |LT [s+]|) and
δ|LT [s−]×LT [s+] (through a sum over all pairs). We refer to such an objective function as
a length-based objective, a name which will be explained in Sect. 2 along with a discusssion
of its interpretation.

We will require moreover that the function ĥ satisfy the condition

ĥ(T [s], δ|LT [s−]×LT [s+]) ∈
[
min δ|LT [s−]×LT [s+],max δ|LT [s−]×LT [s+]

]
, (5)

3 Our definition is related to what is referred to as admissibility in Cohen-Addad et al. (2018). We will not
introduce the more general setting of Cohen-Addad et al. (2018) here.
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for any hierarchy T , any s ∈ ST and any dissimilarity δ. This is satisfied for instance with
the choice

ĥ(T [s], δ|LT [s−]×LT [s+]) = δ̄(LT [s−], LT [s+]) =
δ(LT [s−], LT [s+])
|LT (s−)| |LT (s+)|

, (6)

a special case of Eq. 1 with

γ (|LT [s−]|, |LT [s+]|) =
1

|LT [s−]| |LT [s+]|
.

We show in Sect. 2 that there are many other natural possibilities that do not fit in the
framework Eq. 1, including more “non-linear” choices. Our main result is that, under con-
dition Eq. 5, our new objectives are unit neutral and consistent on ultrametrics and therefore
provide sound global objectives for hierarchical clustering.

Theorem 1 (Length-based objectives). Any length-based objective satisfying Eq. 5 is unit
neutral and consistent on ultrametrics.

Organization The rest of the paper is organized as follows. Theorem 1 is proved in Sect. 3.
Motivation and further related work is provided in Sect. 2.

2 Motivation

To motivate our class of objectives for hierarchical clustering, we first give a heuristic
derivation of the choice Eq. 6, which is inspired by the concept of minimum evolution (see
e.g. Gascuel and Steel, 2006 and references therein). In phylogenetics, one collects molecular
sequences from extant species with the goal of reconstructing a phylogenetic tree represent-
ing the evolution of these species (together with edge lengths which roughly measure the
amount of evolution on the edges). One popular approach is to estimate a distance between
each pair of species by comparing their molecular sequences. Various distance-based meth-
ods have been developed (see, e.g., [Warnow, 2017 Chapter 5]). One such class of methods
relies on the concept of minimum evolution, which in a nutshell stipulates that the best tree is
the shortest one (i.e., the one with the minimum sum of edge lengths). Put differently, in the
spirit of Occam’s razor, the solution involving the least amount of evolution to explain the
data should be preferred. Without going into details (see, e.g., Semple and Steel, 2003; Steel
2016; Warnow, 2017 for comprehensive introductions to phylogenetic reconstruction meth-
ods), we point out that methods based on minimum evolution are widely used in practice.
In particular one of the most popular methods in this area is Neighbor-Joining (NJ) (Saitou
and Nei, 1987), which has been “revealed” to be a greedy method (Gascuel and Steel, 2006)
for a variant of minimum evolution called balanced minimum evolution (which is itself an
NP-hard problem (Fiorini and Joret, 2012)). See also Mihaescu and Pachter (2008); Eick-
meyer et al. (2008); Pardi and Gascuel (2012) for related work, as well as Atteson (1999);
Bryant (2005); Willson (2005); Lacey and Chang (2006); Mihaescu et al. (2009) for further
theoretical analyses of NJ.

Total Length Inspired by the concept of minimum evolution, we reformulate the length-
based objective with choice Eq. 6, i.e.,

"(T ; δ) =
∑

s∈ST
δ̄(LT [s−], LT [s+]), (7)
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as a measure of the “total length of the hierarchy T under δ.” To explain, w e start with the
ultrametric case. If δ is ultrametric and T is associated to δ with height function h then, for
any s ∈ ST , x ∈ LT [s−] and y ∈ LT [s+], we have

δ̄(LT [s−], LT [s+]) = δ(x, y) = h(s). (8)

Moreover, letting M = max δ+1, consider a modified rooted tree T̃ = (Ṽ , Ẽ)with an extra
edge connected to the root of T and associate height M to the new root so created. Then
assign to each edge e = (s0, s1) of T̃ a length equal to h(s0) − h(s1), where s0 is closer to
the root than s1. Then the total length of T̃ is

∑

e=(s0,s1)∈Ẽ
[h(s0)−h(s1)] = M+

∑

s∈ST
h(s) = M+

∑

s∈ST
δ̄(LT [s−], LT [s+]) = M+"(T ; δ),

where we used the fact that each non-root internal vertex of T̃ is counted twice positively
and once negatively (since it has two immediate children and one immediate parent), while
the root of T̃ is counted once. In other words, up to translation by M , "(T ; δ) measures the
total length of hierarchy T associated to ultrametric δ.

Example 1 Consider the ultrametric δ over {1, . . . , 6}, with D = (δ(i, j))i, j∈[6] and

D =





0 2 4 4 6 6
2 0 4 4 6 6
4 4 0 2 6 6
4 4 2 0 6 6
6 6 6 6 0 2
6 6 6 6 2 0




.

An associated hierarchy T is depicted in Fig. 1. Here M = 7. The total length of the modified
tree T̃ is

6 × (2 − 0)+ 2 × (4 − 2)+ 1 × (6 − 2)+ 1 × (7 − 6) = 23,

which coincides with

M + "(T ; δ) = 7+ 3 × 2+ 1 × 4+ 1 × 6.

More generally, on a heuristic level, if δ is not ultrametric (but perhaps close to one) and
T is any hierarchy we interpret δ̄(LT [s−], LT [s+]) as a measure of the height of s on T
based on the values δ|LT [s−]×LT [s+]. Then, as above, we see "(T ; δ) as the total length4 of
T under δ (up to translation by M). Minimizing " hence corresponds roughly speaking to
finding a hierarchy whose total length is minimum under a fit to the input δ. In addition to
its connection to the fruitful concept of minimum evolution in phylogenetics, as pointed out
in Sect. 1 this objective has the desirable property of being consistent on ultrametrics.

Other Choices for ĥ Interpreting ĥ as a measure of height suggests many more natural
choices. For instance, one can take a model-based approach such as the one advocated in the
related work of Degens (1983); Castro et al. (2004). There, a simple error model is assumed
(adapted to our setting): the dissimilarity δ is in fact an ultrametric δ∗ plus an entrywise
additive noise that is i.i.d. If T is associated to δ∗ and s ∈ ST , then a likelihood-based
estimate of h(s) can be obtained from the values δ|LT [s−]×LT [s+], which all share the same

4 Note that we are not imposing that estimated edge lengths be positive.
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Fig. 1 A hierarchy associated to
δ (without the dotted edge).
Adding the dotted edge produces
the modified rooted tree T̃

mean h(s) and are independent. Under the assumption that the additive noise is Gaussian
for instance, one recovers the least-squares estimate Eq. 6. Taking the noise to be Laplace
leads to the median.5 As pointed out by Degens (1983), other choices of noise distribution
in the simple error model above also lead to estimates that arise naturally in the hierarchical
clustering context. For instance, if the probability density function of the additive noise is
assumed to be 0 below0 and non-increasing above 0 (with a discontinuous positive jump at 0),
then themaximum likelihood estimate is theminimumof the observed values δ|LT [s−]×LT [s+].
Note that all these examples satisfy Eq. 5 and therefore Theorem 1 implies that they produce
length-based objectives

"(T ; δ) =
∑

s∈ST
ĥ(T [s], δ|LT [s−]×LT [s+]),

that are consistent on ultrametrics.
We note further that we allow in general the function ĥ to depend on the structure of

the subtree rooted at the corresponding internal vertex. For instance, one could consider a
weighted average of the quantities δ|LT [s−]×LT [s+] where the weights depend on the graph
distance between the leaves. In the phylogenetic context, the choice

ĥ(T [s], δ|LT [s−]×LT [s+]) =
∑

x∈LT [s−],y∈LT [s+]
2−|x |LT [s−]2−|y|LT [s+]δ(x, y), (9)

where |x |LT [s−] denotes the graph distance between s− and x in T [s] (i.e., the number
of edges on the unique path between s− and x), is used in some distance-based phylogeny
reconstructionmethods andwas shown rigorously to lead to significantly improved theoretical
guarantees in certain regimes of parameters for standardmodels of sequence evolution (Roch,
2010). The analysis of Eq. 9 accounts for the fact that the dissimilarities in δ|LT [s−]×LT [s+]
are not independent—but in fact highly correlated—under these models. It can be shown
(by induction on the size of the hierarchy) that

∑
x∈LT [s−],y∈LT [s+] 2

−|x |T [s]2−|y|T [s] = 1, and
therefore Theorem 1 applies in this case as well.

5 Because the Gaussian and Laplace distributions allow for negative values, these models do not in fact
produce a valid dissimilarity. The resulting ĥ however is of interest.
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Greedy Algorithms Finally, following (Gascuel and Steel, 2006) where NJ is interpreted
as a greedy method, we connect our class of objectives to standard myopic approaches to
hierarchical clustering. The first clustering approach we consider, average linkage, is an
agglomerative method.

0. Average linkage
1. Input: dissimilarity δ on L = {1, . . . , n}.
2. Create n singleton trees with leaves respectively 1, . . . , n.
3. While there are at least two trees left:

a- Pick two trees T1, T2 with leaves A1, A2 minimizing δ̄(A1, A2).
b- Merge T1 and T2 through a new common root adjacent to their roots.

4. Return the resulting tree.

The second method we consider, recursive sparsest cut, is a divisive method.

0. Recursive sparsest cut
1. Input: dissimilarity δ on L = {1, . . . , n}.
2. Find a partition {A1, A2} of L maximizing δ̄(A1, A2).
3. Recurse on δ|A1×A1 and δ|A2×A2 to obtain trees TA1 and TA2 .
4. Merge TA1 and TA2 through a new common root adjacent to their roots.
5. Return the resulting tree.

Note that Step (2) is NP-hard and one typically resorts to approximation algorithms (Das-
gupta, 2016).

From an algorithmic point of view, these methods proceed in an intuitive manner: average
linkage starts from the bottom and iteratively merges clusters that are as similar as possible
according to δ̄; recursive sparsest cut starts from the top and iteratively splits clusters that
are as different as possible according to δ̄. From an optimization point of view, both methods
seemingly use the same local criterion: δ̄. But, given that at each iteration one minimizes
while the othermaximizes this criterion, it is natural to wonder whether they share a common
global objective?

Heuristically, one can think of Eq. 7 as such an objective. At each iteration, average linkage
forms a new cluster whose contribution to Eq. 7 is minimized among all possible merging
choices. As for recursive sparsest cut: when splitting A1 and A2, the value δ̄(A1, A2) is (in
the interpretation above) the height of the parent sA1,A2 of the two corresponding subtrees;
by maximizing δ̄(A1, A2), one then greedily minimizes the length of the newly added edge
above sA1,A2 and, hence, the contribution of that edge to the total length.

Other choices of ĥ lead to single linkage, complete linkage and median linkage as well as
the more general agglomerative approach of Castro et al. (2004). For instance, single linkage
greedily minimizes the total length of a hierarchy whose heights are “fitted” using maximum
likelihood assuming the additive noise has any density that is 0 below 0 and is non-increasing
above 0. The choice Eq. 9 on the other hand leads toWPGMA (Weighted Pair GroupMethod
with Arithmetic Mean) (Sokal, 1958).

3 Proof of Theorem 1

In this section, we prove Theorem 1. As we noted above, it suffices to prove consistency on
ultrametrics, as it implies unit neutrality.
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Proof of Theorem 1 We first reduce the proof to a special ĥ.

Claim 1 (Reduction tominimum). It suffices to prove Theorem 1 for the choice ĥ = ĥm where

ĥm(T [s], δ|LT [s−]×LT [s+]) = min δ|LT [s−]×LT [s+]. (10)

Proof Let ĥ be an arbitrary choice of a function satisfying Eq. 5 and let δ be an ultrametric
with associated hierarchy T . Recall that we seek to show that "(T ; δ) ≤ "(T ′; δ) for any
hierarchy T ′.

By Eq. 3, for any s ∈ ST and for any x, x ′ ∈ LT [s−] and y, y′ ∈ LT [s+], we have
δ(x, y) = δ(x ′, y′) = min δ|LT [s−]×LT [s+] = max δ|LT [s−]×LT [s+],

since x∧T y = x ′ ∧T y′ = s, where the first equality over all choices of x, x ′y, y′ implies the
other two. Therefore, under the ultrametric associated to T , this arbitrary ĥ in fact satisfies

ĥ(T [s], δ|LT [s−]×LT [s+]) = min δ|LT [s−]×LT [s+],

by Eq. 5. This holds for all s ∈ ST , so that

"(T ; δ) =
∑

s∈ST
ĥ(T [s], δ|LT [s−]×LT [s+]) =

∑

s∈ST
ĥm(T [s], δ|LT [s−]×LT [s+]), (11)

takes the same value for any ĥ.
On the other hand, for any other hierarchy T ′ and for any internal vertex s′ ∈ ST ′ it holds

that
ĥ(T ′[s′], δ|LT ′ [s′−]×LT ′ [s′+]) ≥ min δ|LT ′ [s′−]×LT ′ [s′+],

by Eq. 5. Hence,

"(T ′; δ) =
∑

s′∈ST ′

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+]) ≥
∑

s′∈ST ′

ĥm(T ′[s′], δ|LT ′ [s′−]×LT ′ [s′+]). (12)

Combining Eqs. 11 and 12, we see that establishing the desired inequality under the
choice Eq. 10

∑

s∈ST
ĥm(T [s], δ|LT [s−]×LT [s+]) ≤

∑

s′∈ST ′

ĥm(T ′[s′], δ|LT ′ [s′−]×LT ′ [s′+]),

implies that the desired inequality "(T ; δ) ≤ "(T ′; δ) holds under ĥ. That proves the
claim. -.

For the rest of the proof, we assume that ĥ = ĥm . We prove the result by induction on
the number of leaves. The proof proceeds by considering the two subtrees hanging from the
root in the hierarchy associated to the ultrametric δ and comparing their respective costs to
that of the subtrees of any other hierarchy on the same sets of leaves.

Let δ be an ultrametric dissimilarity on L = [n]. Let T be an associated hierarchy on L
with height function h. We start with the base of the induction argument.

Claim 2 (Base case). If n = 2, then "(T ; δ) ≤ "(T ′ : δ) for any hierarchy T ′ on L.

Proof When n = 2, there is only one hierarchy, so the statement is vacuous. -.
Now suppose n > 2 and assume that the result holds by induction for all hierarchies with

less than n leaves. Before we begin, it will be convenient to define a notion of hierarchy
allowing degree 2 vertices.
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Definition 5 (Generalized hierarchy). A generalized hierarchy on L is a rooted tree T ′′ with
n leaves, which we identify with the set L, such that all internal vertices have degree at most
3 and the root has degree 2.

We generalize the objective function to generalized hierarchies T ′′ by letting

"(T ′′; δ) =
∑

s∈S2
T ′′

ĥ(T ′′[s], δ|L[s−]×L[s+]),

where S2T ′′ is the set of internal vertices of T ′′ with exactly two immediate descendants. That
is, we ignore the degree 2 vertices in the objective, except for the root. We refer to these
ignored vertices as muted. We also trivially extend to generalized hierarchies the notion of
an associated ultrametric. We observe that the induction hypothesis holds for generalized
hierarchies as well. Indeed, the internal vertices of degree 2 (except the root) are ignored in
the objective, which is equivalent to suppressing those vertices in the generalized hierarchy
and computing the objective over the resulting (non-generalized) hierarchy.

The presence of degree 2 vertices will arise as a by-product of the following definition.

Definition 6 (Restriction). Let T ′′ be a hierarchy on L ′′ and let A′′ ⊆ L ′′. The restriction of
T ′′ to A′′, denoted T ′′

A′′ , is the generalized hierarchy obtained from T ′′ by keeping only those
edges and vertices lying on a path between two leaves in A′′.

Note that applying the restriction procedure to a hierarchy can indeed produce degree 2
vertices and that the root of a restriction has degree 2 by definition.

We are now ready to proceedwith the induction. Letρ be the root of T and let T− = T [ρ−],
T+ = T [ρ+], L− = LT [ρ−] and L+ = LT [ρ+]. We note that T− = TL− and T+ = TL+ . Let
T ′ be a distinct hierarchy on L . Note that, for any subset A ⊆ L , the dissimilarity δ|A×A is
an ultrametric on A as it continues to satisfy Eq. 2. Note, moreover, that TA is a generalized
hierarchy associated with δ|A×A, as the same heights can be used on the restriction. Hence,
we can apply the induction hypothesis to L− and L+. That is, we have by induction that:

Claim 3 (Induction on the subtrees hanging from the root).

"(T−; δ|L−×L−) ≤ "(T ′
L−; δ|L−×L−) and "(T+; δ|L+×L+) ≤ "(T ′

L+; δ|L+×L+).

We now relate the quantities in the previous claim to the objective values on T and T ′.
Let % := max δ.

Claim 4 (Relating T and T ′: Applying induction). It holds that

"(T ; δ) ≤ % + "(T ′
L−; δ|L−×L−)+ "(T ′

L+; δ|L+×L+).

Proof Because T is associated to ultrametric δ, the corresponding height of the root of T is
also the largest height on T and, hence,

ĥ(T [ρ], δ|L[ρ−]×L[ρ+]) = min δ|L[ρ−]×L[ρ+] = max δ = %.

Therefore, adding up the contributions to "(T ; δ) of the root and of the two subtrees hanging
from the root, we get

"(T ; δ) = % + "(T−; δ|L−×L−)+ "(T+; δ|L+×L+).

We use Claim 3 to conclude. -.
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So it remains to relate the RHS in the previous claim to the objective value of T ′. This
involves a case analysis. We start with a simple case.

Claim 5 (Relating T and T ′: Equality case). If there is s ∈ ST ′ such that LT ′ [s] = L− or
LT ′ [s] = L+, then it holds that

"(T ′; δ) = % + "(T ′
L−; δ|L−×L−)+ "(T ′

L+; δ|L+×L+). (13)

Proof Observe that s cannot be the root of T ′ as otherwise we would have L− = ∅. So s
has a parent. Let s̃ be the parent of s with descendants s̃− and s̃+, and assume without loss
of generality that LT ′ [s̃−] ⊆ L− and LT ′ [s̃+] = L+ (i.e., s̃+ = s). Then the contribution
to "(T ′; δ) of s̃ is %. Furthermore, the contribution to "(T ′; δ) of those vertices in T ′

L+
is "(T ′

L+; δ|L+×L+). Finally, in T ′
L− vertex s has degree 2 and so is muted. The remaining

vertices of T ′
L− contribute "(T ′

L−; δ|L−×L−) to both sides of Eq. 13. -.
The general case analysis follows. We assume for the rest of the proof that:

!s ∈ ST ′ , LT ′ [s] = L− or LT ′ [s] = L+. (14)

Claim 6 (Relating T and T ′: Case analysis). Under Eq. 14, it holds that

"(T ′; δ) ≥ % + "(T ′
L−; δ|L−×L−)+ "(T ′

L+; δ|L+×L+). (15)

Proof Recall that "(T ′; δ) is a sum over internal vertices of T ′. We divide up those vertices
into several classes. Below, we identify the vertices in the restrictions to the original vertices
andwewrite s ∈ T ′′ to indicate that s is a vertex of T ′′. Observe that, by definition, T− = TL−
and T+ = TL+ do not share vertices—but that T ′

L− and T ′
L+ might. Recall that, for s ∈ ST ′ ,

we denote by s− and s+ the immediate descendants of s in T ′.

1. Appears in one subtree: Let R1 be the elements s of ST ′ such that either (i) s ∈ T ′
L− but

s /∈ T ′
L+ , or (ii) s ∈ T ′

L+ but s /∈ T ′
L− . It will be important belowwhether or not s is muted.

Case (i) means that there is a path on T ′ between two leaves in L− that goes through
s—but not between two leaves in L+. Note that a path going through s necessarily has
an endpoint in LT ′ [s−] or LT ′ [s+], or both. We claim that, for such an s, we have that
both LT ′ [s−] and LT ′ [s+] have a non-empty intersection with L−. Indeed assume that,
say, LT ′ [s+] contains only leaves from L+. Because there is no path between two leaves
in L+ going through s in T ′, it must be that actually LT ′ [s+] = L+. But that contradicts
Eq. (14), and proves the claim. Moreover one of LT ′ [s−] or LT ′ [s+] (or both) is a subset
of L−, as otherwise there would be a path between two leaves in L+ going through s and
we would have that s ∈ T ′

L+ , a contradiction. In case (ii), the same holds with the roles
of L− and L+ interchanged. That implies further that s is not muted in the restriction it
belongs to. However it is muted in the restriction it does not belong to. Let r1 = |R1|.

2. Appears in both, twice muted: Let R2,tm be the elements s of ST ′ such that s ∈ T ′
L−

and s ∈ T ′
L+ and s is muted in both restrictions. That arises precisely when LT ′ [s−] and

LT ′ [s+] each belong to a different subset among L− and L+. Let r2,tm = |R2,tm |.
3. Appears in both, once muted: Let R2,om be the elements s of ST ′ such that s ∈ T ′

L−
and s ∈ T ′

L+ and s is muted in exactly one restriction. That arises precisely when one of
LT ′ [s−] and LT ′ [s+] has a non-empty intersection with exactly one of L− and L+, and
the other has a non-empty intersection with both L− and L+. Let r2,om = |R2,om |.

4. Appears in both, neither muted: Let R2,nm be the elements s of ST ′ such that s ∈ T ′
L−

and s ∈ T ′
L+ and s is muted in neither restriction. That arises precisely when both LT ′ [s−]

and LT ′ [s+] have a non-empty intersection with both L− and L+. Let r2,nm = |R2,nm |.
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Because the sets above form a partition of ST ′ and that any hierarchy on n leaves has
exactly n − 1 internal vertices, it follows that

r1 + r2,tm + r2,om + r2,nm = n − 1.

Moreover, on a generalized hierarchy with n′ < n leaves, the number of internal non-muted
vertices is n′ − 1 (which can be seen by collapsing the muted vertices). Hence, counting
non-muted vertices on each restriction with multiplicity, we get the relation

1 · r1 + 0 · r2,tm + 1 · r2,om + 2 · r2,nm = (|L−| − 1)+ (|L+| − 1) = n − 2.

Combining the last two displays gives

r2,tm = 1+ r2,nm . (16)

This last equality is the key to comparing the two sides of Eq. 15: the twice muted vertices
which contribute max δ to the LHS are in one-to-one correspondence with terms on the RHS
whose contributions are smaller or equal.

We expand on this last point. To simplify the notation, we let δ− = δ|L−×L− and δ+ =
δ|L+×L+ . By the observations above, we have the following. Recall that ĥ = ĥm .

1. R1: Each s ∈ R1 is muted in the restriction it does not belong to but it is not in the
restriction it belongs to, so that it contributed to exactly one term on the RHS, say
"(T ′

L−; δ|L−×L−). In that case, we have shown that both LT ′ [s−] and LT ′ [s+] have
a non-empty intersection with L−. The RHS term ĥ(T ′

L− , δ−|LT ′ [s−]×LT ′ [s+]) differs

from the corresponding LHS term ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+]) only in that pairs (x, y) ∈
LT ′ [s−] × LT ′ [s+] with (x, y) ∈ L− × L+ or L+ × L− are removed (which we refer
to below as being suppressed by restriction) from the minimum defining ĥ = ĥm—but
such pairs contribute % = max δ and therefore do not affect the minimum on the LHS.
We have also shown that none of these pairs can be in L+ × L+. As a result, we have

∑

s∈R1

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+])

=
∑

s∈R1∩ST ′
L−

ĥ(T ′
L− , δ−|LT ′ [s−]×LT ′ [s+])+

∑

s∈R1∩ST ′
L+

ĥ(T ′
L+ , δ+|LT ′ [s−]×LT ′ [s+]).

2. R2,tm : Each s ∈ R2,tm contributes to neither term on the RHS, as it is muted in both
restriction. On the other hand, we have argued that LT ′ [s−] and LT ′ [s+] each belong to
a different subset among L− and L+. Hence we have

∑

s∈R2,tm

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+]) = % · r2,tm,

while
∑

s∈R2,tm

ĥ(T ′
L− , δ−|LT ′ [s−]×LT ′ [s+])+

∑

s∈R2,tm

ĥ(T ′
L+ , δ+|LT ′ [s−]×LT ′ [s+]) = 0 · 2r2,tm .

3. R2,om : In this case, we have that
∑

s∈R2,om

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+])

=
∑

s∈R2,om

ĥ(T ′
L− , δ−|LT ′ [s−]×LT ′ [s+])+

∑

s∈R2,om

ĥ(T ′
L+ , δ+|LT ′ [s−]×LT ′ [s+]),
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where we used that (1) each s in R2,om is muted in exactly one of the sums on the second
line and that (2) the pairs of leaves suppressed by restriction in the non-muted terms on
the second line correspond to pairs on opposite sides of the root in T , which contribute
% = max δ and therefore do not affect the minimum defining ĥ.

4. R2,nm : Each s ∈ R2,nm contributes to both terms"(T ′
L−; δ|L−×L−) and"(T ′

L+; δ|L+×L+)

on the RHS of Eq. 15, once with the same value as the corresponding term on the LHS
and once with a larger value. Indeed, because both LT ′ [s−] and LT ′ [s+] have a non-
empty intersection with both L− and L+ and pairs (x, y) ∈ L− × L+ or L+ × L− have
dissimilarity %, it follows that the minimum

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+]) = min δ|LT ′ [s−]×LT ′ [s+], (17)

is achieved for a pair (x, y) ∈ L− × L− or L+ × L+. The claim then follows by noticing
that restriction increases the minimum. Let R−,=

2,nm be the set of all s ∈ R2,nm such that
the minimum in Eq. 17 is achieved for a pair in L− × L− and R+,=

2,nm = R2,nm \ R−,=
2,nm .

Then
∑

s∈R2,nm

ĥ(T ′[s], δ|LT ′ [s−]×LT ′ [s+])

=
∑

s∈R−,=
2,nm

ĥ(T ′
L− , δ−|LT ′ [s−]×LT ′ [s+])+

∑

s∈R+,=
2,nm

ĥ(T ′
L+ , δ+|LT ′ [s−]×LT ′ [s+]),

while
∑

s∈R+,=
2,nm

ĥ(T ′
L− , δ−|LT ′ [s−]×LT ′ [s+])+

∑

s∈R−,=
2,nm

ĥ(T ′
L+ , δ+|LT ′ [s−]×LT ′ [s+])

≤ % · r2,nm .
To sum up, the contributions of R1 and R2,om are the same on both sides of Eq. 15. The

contributions of R2,nm on the LHS are canceled out by the contributions of R−,=
2,nm and R+,=

2,nm
on theRHS. The remaining terms are: on the LHS,%·r2,tm ; and on theRHS,≤ %·(1+r2,nm).
Using Eq. 16 concludes the proof. -.
That concludes the induction and the proof of the theorem. -.
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